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Abstract

Parameter-efficient fine-tuning (PEFT) is essen-001
tial for adapting large language models (LLMs),002
with low rank adaptation (LoRA) being the003
most popular approach. However, LoRA suf-004
fers from slow convergence, and some recent005
LoRA variants, such as PiSSA, primarily rely006
on Singular Value Decomposition (SVD) for007
initialization, leading to expensive computa-008
tion. To mitigate these problems, we resort009
to Nyström method, which follows a three-010
matrix manipulation. Therefore, we first in-011
troduce StructuredLoRA (SLoRA), investigat-012
ing to introduce a small intermediate matrix013
between the low-rank matrices A and B. Sec-014
ondly, we propose NyströmLoRA (NLoRA),015
which leverages Nyström-based initialization016
for SLoRA to improve its effectiveness and effi-017
ciency. Finally, we propose IntermediateTune018
(IntTune) to explore fine-tuning exclusively the019
intermediate matrix of NLoRA to furthermore020
boost LLMs’ efficiency. We evaluate our meth-021
ods on 5 natural language generation (NLG)022
tasks and 8 natural language understanding023
(NLU) tasks. On GSM8K, SLoRA and NLoRA024
achieve accuracies of 56.48% and 57.70%, sur-025
passing LoRA by 33.52% and 36.41% with026
only 3.67M additional trainable parameters.027
IntTune boosts average NLG performance over028
LoRA by 7.45% while using only 1.25% of029
its parameters. These results demonstrate the030
efficiency and effectiveness of our approach in031
enhancing model performance with minimal032
parameter overhead.033

1 Introduction034

Fine-tuning large language models (LLMs) has035

emerged as a fundamental approach to enhancing036

model capabilities (Yu et al., 2023; Li et al., 2023;037

Xia et al., 2024) and aligning models with spe-038

cific application requirements (Zheng et al., 2023;039

Ouyang et al., 2022). However, the growing scale040

of LLMs introduces significant challenges to LLM041
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Figure 1: The comparison among LoRA and our models

development, with fine-tuning requiring substan- 042

tial computational and memory resources (Hu et al., 043

2021; Chang et al., 2024). For example, fine-tuning 044

a LLaMA-65B model requires more than 780 GB 045

of GPU memory (Dettmers et al., 2023), while 046

training GPT-3 175B requires 1.2 TB of VRAM 047

(Hu et al., 2021). Such resource-intensive pro- 048

cesses are infeasible for many researchers and in- 049

stitutions, driving the development of parameter- 050

efficient fine-tuning (PEFT) methods. Among these 051

methods, Low-Rank Adaptation (LoRA) (Hu et al., 052

2021) has received widespread attention due to its 053

ability to achieve competitive performance com- 054

pared to full parameter fine-tuning, while signifi- 055

cantly reducing memory consumption and avoiding 056

additional inference latency. 057

LoRA enables the indirect training of dense lay- 058

ers in a neural network by optimizing low-rank 059

decomposition matrices that represent changes in 060

the dense layers during adaptation, all while keep- 061

ing the pre-trained weights fixed. For a pre-trained 062

weight matrix W ∈ Rm×n, LoRA introduces a 063

low-rank decomposition ∆W = AB, where A ∈ 064

Rm×r, B ∈ Rr×n, and the rank r ≪ min(m,n). 065

This modifies the forward pass of a layer as fol- 066

lows: 067

Y = X(W +∆W ) = X(W +AB), (1) 068

where X ∈ Rb×m, Y ∈ Rb×n, and b represents 069

the batch size. For initialization, A is randomly ini- 070

1



Figure 2: The comparison among Full Fine-tuning, LoRA, and SLoRA

tialized with Gaussian values and B is set to zero,071

ensuring that injection of the low-rank adaptation072

does not alter the model predictions at the start of073

training. Unlike traditional fine-tuning methods074

that require updating and storing gradients for the075

full weight matrix W , LoRA optimizes only the076

smaller matrices A and B, significantly reducing077

the number of trainable parameters and memory078

usage. Furthermore, LoRA often achieves perfor-079

mance comparable or superior to full fine-tuning,080

demonstrating that adapting only a small subset of081

parameters suffices for many downstream tasks.082

Despite the above benefits, LoRA suffers from083

slow convergence (Ding et al., 2023). To address084

this issue, some recent LoRA variants, such as085

PiSSA (Meng et al., 2024), choose to conduct ini-086

tialization of the low rank matrices by using Singu-087

lar Value Decomposition (SVD). However, SVD-088

based initialization is computationally expensive089

and requires a long time. To mitigate this issue, we090

investigate using Nyström method, which approx-091

imates a matrix as a product of three matrices, to092

approximate SVD. To fit the three-matrix structure,093

we first propose StructuredLoRA (SLoRA), where094

an additional r × r matrix is inserted between the095

low-rank matrices A and B, as shown in Figure 2.096

Furthermore, we explore whether an extra matrix097

can influence the language model’s performance,098

experimental results indicate that SLoRA effec-099

tively enhances performance with only a minor100

increase in the number of parameters, demonstrat-101

ing the potential of the three-matrix structure for102

PEFT.103

Secondly, inspired by NyströmFormer (Xiong104

et al., 2021), we proposed NyströmLoRA105

(NLoRA) to leverage Nyström method, which con-106

ducts SVD approximation by sampling a subset of 107

rows and columns of the pre-trained parameter ma- 108

trix to reduce the computational cost, for weight ini- 109

tialization. NLoRA is supposed to bypass the com- 110

putational cost of SVD’s eigenvalue decomposition, 111

reducing time complexity to O(mr+r2+rn) com- 112

pared to the O(mn2) complexity of SVD-based 113

methods. 114

Finally, to explore whether we can further com- 115

press the trainable parameters of NLoRA, we pro- 116

pose IntermediateTune (IntTune), which exclu- 117

sively adjusts the intermediate matrix of NLoRA. 118

This method significantly reduces the number of 119

trainable parameters. Specifically, on the evalua- 120

tion of LLaMA 2-7B across five NLG benchmarks, 121

LoRA uses 320M parameters, while our IntTune 122

method only requires tuning 4M parameters. In the 123

meantime, IntTune outperforms LoRA by 7.45% 124

on average across NLG benchmarks. The com- 125

parison of our proposed methods with LoRA in 126

terms of performance and trainable parameters is 127

illustrated in Figure 1. 128

In summary, our contributions are as follows: 129

1. We propose SLoRA, an extension to the LoRA 130

framework, incorporating an additional inter- 131

mediate matrix to enhance model expressive- 132

ness, achieving improved performance with 133

minimal parameter overhead. 134

2. We introduce NLoRA, leveraging Nyström 135

approximation for efficient and effective ini- 136

tialization, particularly excelling in natural 137

language generation (NLG) and natural lan- 138

guage understanding (NLU) tasks. 139

3. We propose IntTune to fulfill supervised fine- 140

tuning (SFT) LLaMA 2-7B by tuning 4M 141

2



parameters, achieving superior performance142

compared to LoRA on average, offering a143

lightweight and efficient alternative for SFT144

LLMs in resource-constrained scenarios.145

2 Related Works146

2.1 LoRA’s variants147

With the introduction of LoRA (Hu et al.,148

2021), many derivative methods have emerged.149

AdaLORA (Zhang et al., 2023) highlights that150

LoRA ignores the importance of different layer151

parameters based on a uniform setting of the rank,152

and proposes an adaptive allocation strategy based153

on parameter importance to improve fine-tuning154

efficiency. DoRA (Liu et al., 2024) introduces a155

decomposation of weight matrices into magnitude156

and direction components, leveraging LoRA to up-157

date only the directional component, thereby reduc-158

ing the number of trainable parameters. ReLoRA159

(Lialin et al., 2023) achieves high-rank training160

through iterative low-rank updates, periodically161

merging parameters into the main model. LoRA+162

(Hayou et al., 2024) further improves efficiency by163

applying different learning rates to the two matrices164

in LoRA, assigning a higher learning rate to matrix165

B to accelerate convergence and enhance perfor-166

mance. Other works have focused on improving167

the initialization of the AB matrix, such as PiSSA168

(Meng et al., 2024), which suggests initializing A169

and B by performing SVD on the pre-trained ma-170

trix W to accelerate the convergence speed. LoRA-171

GA (Wang et al., 2024) initializes A and B using172

the eigenvectors of the full-gradient matrix, align-173

ing the gradient direction of the low-rank product174

BA with the gradient direction of the pretrained175

weight matrix W .176

2.2 Nyström-like methods177

Nyström-like methods approximate matrices by178

sampling a subset of columns, a technique widely179

used in kernel matrix approximation (Baker and180

Taylor, 1979; Williams and Seeger, 2000). Numer-181

ous variants have been proposed to enhance the182

basic Nyström method, including Nyström with183

k-means clustering (Wang et al., 2019), Nyström184

with spectral problems (Vladymyrov and Carreira-185

Perpinan, 2016), randomized Nyström (Li et al.,186

2010; Persson et al., 2024), ensemble Nyström187

method (Kumar et al., 2009), fast-Nys (Si et al.,188

2016).189

The Nyström method has also been extended to190

general matrix approximation beyond symmetric 191

matrices (Nemtsov et al., 2016). Some methods 192

(Wang and Zhang, 2013; Xiong et al., 2021) ex- 193

plicitly address general matrix approximation by 194

sampling both rows and columns to reconstruct the 195

full matrix. Inspired by such strategies, we propose 196

NLoRA method by to optimize the approximation 197

for efficient matrix reconstruction. 198

3 Method 199

The Nyström method (Baker and Taylor, 1979), 200

originating from the field of integral equations, is a 201

approach for discretizing integral equations using 202

a quadrature technique. It is commonly employed 203

for out-of-sample extension problems. Specifically, 204

given an eigenfunction problem of the form: 205

λf(x) =

∫ b

a
M(x, y)f(y) dy, (2) 206

the Nyström method utilizes a set of s sample 207

points y1, y2, . . . , ys to approximate f(x) as fol- 208

lows: 209

λf̃(x) ≜
b− a

s

s∑
j=1

M(x, yj)f(yj). (3) 210

This approach effectively converts the continuous 211

integral equation into a discrete summation, facili- 212

tating numerical computation and enabling out-of- 213

sample extensions. 214

For the pre-trained matrix W ∈ Rm×n, we as- 215

sume that it can be decomposed as follows: 216

W =

[
AW BW

FW CW

]
, (4) 217

where, AW ∈ Rr×r is designated to be our sample 218

matrix, BW ∈ Rr×(n−r) and FW ∈ R(m−r)×r rep- 219

resent the remaining sampled column and row com- 220

ponents, respectively, and CW ∈ R(m−r)×(n−r) 221

corresponds to the remainder of the matrix W . 222

The matrix W can be efficiently approximated us- 223

ing the Nyström method’s basic quadrature tech- 224

nique. Starting with the singular value decomposi- 225

tion (SVD) of the sample matrix AW , represented 226

as AW = UΛV T , where U, V ∈ Rr×r are unitary 227

matrices and Λ ∈ Rr×r is diagonal. The Nyström 228

approximation reconstructs W based on the out- 229

of-sample approximation strategy (Nemtsov et al., 230

2016). This strategy utilizes the entries of FW and 231

BW as interpolation weights for extending the sin- 232

gular vector, resulting in the full approximations of 233
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Figure 3: The diagram of the Nyström-based initialization

the left and right singular vectors of W :234

Û =

[
U

FWV Λ−1

]
, V̂ =

[
V

BT
WUΛ−1

]
, (5)235

Using the Nyström method, the pretrained ma-236

trix W can be approximated as:237

Ŵ = ÛΛV̂ T =

[
AW BW

FW FWA+
WBW

]
238

=

[
AW

FW

]
A+

W

[
AW BW

]
, (6)239

where A+
W is the Moore-Penrose pseudoinverse of240

the sampled core matrix AW . The remaining block241

CW is approximated as FWA+
WBW . This approx-242

imation demonstrates that W can be effectively243

reconstructed using only AW , BW , and FW , sig-244

nificantly reducing computational complexity. For245

the detailed derivation, please refer to Appendix A.246

In this way, the matrix W can be approximated247

as the product of three matrices. Based on this248

finding, we propose an improvement to LoRA249

by introducing an intermediate matrix, named as250

StructuredLoRA (SLoRA). Specifically, we intro-251

duce an intermediate matrix N ∈ Rr×r between252

the low-rank matrices A and B, as illustrated in253

Figure 2. This modification transforms the weight254

update into:255

∆W = ANB, (7)256

where A ∈ Rm×r, B ∈ Rr×n, N ∈ Rr×r, and257

r ≪ min(m,n).258

Building on the three-matrix structure, we fur-259

ther enhance SLoRA’s effectiveness by employing260

a Nyström-based initialization. Specifically, by261

sampling r rows and r columns—corresponding262

to the rank of LoRA—we efficiently approximate263

W through matrix decomposition. The resulting264

submatrices are then directly utilized to initialize265

the three components of SLoRA, specifically:266

• The component
[
AW

FW

]
is used to initialize the 267

matrix A in SLoRA. 268

• The component A+
W , representing the Moore- 269

Penrose pseudoinverse of AW , is used to ini- 270

tialize the matrix N in SLoRA. 271

• The component
[
AW BW

]
is used to initial- 272

ize the matrix B in SLoRA. 273

While the pseudoinverse can be computed using 274

singular value decomposition (SVD), the process is 275

computationally inefficient on GPUs. To overcome 276

this challenge, we simplify the initialization by di- 277

rectly employing AW instead of its pseudoinverse, 278

thereby reducing computational overhead while 279

preserving the effectiveness of the initialization. 280

The diagram of the Nyström-based initialization is 281

shown in Figure 3. 282

By employing this decomposition based on the 283

Nyström approximation method, we propose an 284

initialization strategy for SLoRA, which we term 285

as NyströmLoRA (NLoRA). Additionally, we 286

explore fine-tuning only the intermediate matrix 287

while keeping the other two matrices fixed, which 288

we term IntermediateTune (IntTune). 289

4 Experiments 290

The experiments were performed on NVIDIA L20 291

GPUs. For these experiments, we follow the exper- 292

imental setting given by (Meng et al., 2024), we 293

employ the AdamW optimizer with a batch size of 294

4, a learning rate of 2E-4, and a cosine annealing 295

schedule with a warmup ratio of 0.03, all while 296

avoiding weight decay. The parameter lora_alpha 297

is consistently set equal to lora_r, with lora_dropout 298

fixed at 0. Adapters are integrated into all linear 299

layers of the base model, and both the base model 300

and adapters utilized Float32 precision for com- 301

putation. We take the convenience to directly cite 302
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Model Strategy Parameters GSM8K MATH HumanEval MBPP MT-Bench

Full FT 6738M 49.05 7.22 21.34 35.59 4.91
LoRA 320M 42.30 5.50 18.29 35.34 4.58
PiSSA 320M 53.07 7.44 21.95 37.09 4.87

SLoRA 323M 56.48 10.68 23.78 42.32 4.85
LLaMA 2-7B

NLoRA 323M 57.70 9.94 25.00 43.12 4.82

Full FT 7242M 67.02 18.6 45.12 51.38 4.95
LoRA 168M 67.70 19.68 43.90 58.39 4.90
PiSSA 168M 72.86 21.54 46.95 62.66 5.34

SLoRA 169M 73.01 21.88 47.6 60.3 5.12
Mistral-7B

NLoRA 169M 73.92 22.00 44.5 60.3 5.21

Table 1: Experimental results on NLG tasks

Strategy MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

DeBERTa-v3-base

Full FT 89.90 95.63 89.46 69.19 94.03 92.40 83.75 91.60
LoRA 90.65 94.95 89.95 69.82 93.87 91.99 85.20 91.60
PiSSA 90.43 95.87 91.67 72.64 94.29 92.26 87.00 91.88
SLoRA 90.43 96.10 91.91 70.82 93.94 92.11 88.09 91.86
NLoRA 90.74 96.22 91.91 73.41 94.45 92.03 88.09 92.14

RoBERTa-large

Full FT 90.2 96.4 90.9 68.0 94.7 92.2 86.6 91.5
LoRA 90.6 96.2 90.9 68.2 94.9 91.6 87.4 92.6
PiSSA 90.7 96.7 91.9 69.0 95.1 91.6 91.0 92.9
SLoRA 90.8 96.8 91.7 68.5 94.9 91.6 90.3 92.7
NLoRA 90.7 96.6 91.9 69.7 95.2 91.6 90.3 92.7

Table 2: Experimental results on NLU tasks

the baseline performance values from (Meng et al.,303

2024).304

In this section, we evaluate the performance of305

SLoRA and NLoRA across various benchmark306

datasets. We compare them with the following307

baselines:308

• Full Fine-tune: which updates all model pa-309

rameters;310

• LoRA (Hu et al., 2021): which approximates311

weight updates with low-rank matrices while312

freezing the base model;313

• PiSSA (Meng et al., 2024): which initializes314

adapters using principal singular components315

and freezes residuals while retaining LoRA’s316

architecture.317

We evaluate the capabilities of natural language 318

generation (NLG) using the LLaMA 2-7B (Tou- 319

vron et al., 2023) and Mistral-7B (Jiang et al., 2023) 320

models through mathematical reasoning, coding 321

proficiency, and dialogue tasks. Additionally, natu- 322

ral language understanding (NLU) tasks were eval- 323

uated using the GLUE dataset (Wang, 2018) with 324

DeBERTa-v3-base (He et al., 2021) and RoBERTa- 325

large (Liu, 2019). Finally, we analyze the empirical 326

effects of exclusively fine-tuning the intermediate 327

matrix on both NLU and NLG tasks. 328

4.1 Experiments on Natural Language 329

Generation 330

We conduct experiments using LLaMA 2-7B and 331

Mistral-7B-v0.1. To evaluate mathematical rea- 332

soning abilities, we perform fine-tuning using the 333

MetaMathQA dataset and evaluated their perfor- 334
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Strategy Parameters GSM8K MATH HumanEval MBPP MT-Bench

LoRA 320M 42.30 5.50 18.29 35.34 4.58
IntTune 4M 44.28 6.86 20.70 34.40 4.46

Table 3: IntTune performance on NLG tasks

Strategy Parameters MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

LoRA 1.33M 90.65 94.95 89.95 69.82 93.87 91.99 85.20 91.60
IntTune 3.07K 81.93 92.20 85.29 65.38 89.13 85.18 76.90 88.37

Table 4: IntTune performance on NLU tasks

mance on GSM8K (Cobbe et al., 2021) and MATH335

(Yu et al., 2023). In terms of coding capability, we336

perform fine-tuning on the CodeFeedback dataset337

(Zheng et al., 2024) and evaluated them using the338

HumanEval (Chen et al., 2021) and MBPP (Austin339

et al., 2021) benchmarks. To measure session capa-340

bilities, the model is fine-tuned on the WizardLM-341

Evol-Instruct dataset (Xu et al., 2024) and tested342

using the MT-Bench dataset (Zheng et al., 2023).343

All experiments use a subset of 100K data points.344

As shown in Table 1, SLoRA consistently out-345

performs LoRA, which is labeled with a blue back-346

ground in Table 1, and even outperforms PiSSA347

in most tasks. In most cases, NLoRA further en-348

hances the performance of SLoRA. Both meth-349

ods maintain high parameter efficiency, with only350

slight increases in trainable parameters (1.15% for351

LLaMA 2-7B and 0.55% for Mistral-7B compared352

to LoRA), yet deliver significant performance gains.353

On these two models, SLoRA achieves average354

improvements of 38.68%, 15.37%, and 5.19%355

in mathematical reasoning, coding, and conversa-356

tional tasks, respectively, relative to LoRA’s perfor-357

mance, while NLoRA achieves improvements of358

34.53%, 15.83%, and 5.78% over LoRA.359

Although the addition of intermediate matrices360

results in additional matrix multiplication opera-361

tions, the time overhead increases only slightly362

compared to LoRA. In the MetaMathQA dataset,363

the training time for SLoRA increases to 27,690.03364

seconds, which is an increase of 10. 13% compared365

to LoRA (25142.26 seconds). The training time for366

NLoRA increases to 25,323.34 seconds, which is367

almost identical to LoRA’s training time. As for368

initialization time, as shown in Table 5, SLoRA in-369

curs only an 11.95% increase in initialization time370

compared to LoRA, while NLoRA adds just 12.66371

seconds. Both are significantly lower than the time372

Strategy Time (seconds)

SLoRA 14.21
NLoRA 25.35
LoRA 12.69
PiSSA 106903.20

Table 5: Initialization time of different strategies

cost of PiSSA. Subsequently, we further discuss the 373

effects under different ranks (Section 4.4), learning 374

rates (Appendix C), and optimizers (Appendix D). 375

4.2 Experiments on Natural Language 376

Understanding 377

We also assess the NLU capabilities of RoBERTa- 378

large and DeBERTa-v3-base on the GLUE bench- 379

mark. Table 2 summarizes the results of eight tasks 380

performed using these two base models. 381

SLoRA demonstrates consistent improvements 382

over the baseline LoRA across all tasks, as high- 383

lighted in blue. In addition, SLoRA surpasses 384

PiSSA in several cases, showcasing the poten- 385

tial of incorporating an intermediate matrix in 386

LoRA. NLoRA further enhances the performance 387

of SLoRA in most tasks, achieving superior results 388

in tasks such as QNLI, MRPC, and CoLA. For in- 389

stances where NLoRA does not outperform PiSSA, 390

NLoRA consistently achieves a lower training loss 391

in these scenarios, suggesting its potential for fur- 392

ther optimization and efficient fine-tuning. Details 393

can be found in Appendix E. 394

4.3 NLoRA’s Intermediate Matrix 395

Fine-Tuning: A Minimalist Approach 396

To further improve the computational efficiency of 397

NLoRA, we try to investigate reducing its train- 398

able parameters without sacrificing much perfor- 399
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Figure 4: Compare the performance of different ranks for NLoRA on NLG tasks
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mance. Therefore, we propose IntermediateTune400

(IntTune), which exclusively fine-tune the inter-401

mediate matrix in SFT. To validate the effective-402

ness of IntTune, we conduct experiments using403

LLaMA-2-7B and DeBERTa-v3-base for NLG and404

NLU tasks, respectively. For NLG tasks, we set the405

learning rate to 2E-3 while keeping other settings406

unchanged. For NLU tasks, the specific parameter407

settings are detailed in Appendix E. The results are408

shown in Table 3 and Table 4.409

For NLG tasks, IntTune achieves competitive410

performance, surpassing LoRA on the GSM8K,411

MATH, and HumanEval tasks, and attaining com-412

parable results on MBPP and MT-Bench. Overall,413

the average performance of IntTune across all tasks414

exceeds that of LoRA, surpassing LoRA’s average415

performance by 7.45%. The comparison of train-416

ing parameters and memory allocation between Int-417

Tune and LoRA is shown in Figure 5, with all mea-418

surements recorded on the MetaMathQA dataset.419

In terms of computational efficiency, IntTune sig-420

nificantly reduces the number of trainable parame-421

ters to 4M, accounting for only 0.05% of the total422

model parameters and just 1.13% of LoRA’s train-423

able parameters. Despite this substantial reduction,424

the training time is shortened to 85.2% of LoRA’s.425

Specifically, LoRA’s training time is 25,142.27s, 426

IntTune’s training time is reduced to 21,439.26s. 427

Additionally, IntTune enables GPU memory allo- 428

cation to decrease as well. The percentage of GPU 429

memory allocated drops from 80.9% to 72.5%, 430

with the average memory usage reduced from 36.42 431

GB to 32.78 GB, a reduction of 9.98%. These re- 432

sults highlight the method’s potential for improv- 433

ing performance while optimizing computational 434

resources, making it particularly suitable for SFT 435

LLMs in resource-constrained scenarios. 436

For NLU tasks, the number of trainable param- 437

eters was reduced to 3.07K, representing 0.002% 438

of the total model parameters. Despite this sig- 439

nificant reduction, the approach achieved 92.61% 440

of LoRA’s average performance across all tasks. 441

Specifically, it attained 96.2% of LoRA’s perfor- 442

mance on SST-2, 94.5% on QNLI, and 96.2% on 443

STS-B, demonstrating comparable performance 444

across various GLUE tasks, underscoring its ro- 445

bustness and effectiveness in diverse scenarios. 446

These results demonstrate the potential of the 447

Nyström initialization, as fine-tuning only the in- 448

termediate matrix can still yield competitvie per- 449

formance. 450

4.4 Experiments on Various Ranks 451

In this section, we examine the impact of progres- 452

sively increasing the rank of NLoRA and SLoRA 453

from 1 to 128 to assess their ability to consistently 454

outperform the baseline across different ranks. 455

Training is performed on the MetaMathQA dataset 456

for a single epoch, with validation conducted on 457

the GSM8K and MATH datasets. 458

The experimental results are presented in Fig- 459

ure 4. On the GSM8K dataset, NLoRA performs 460

relatively better at higher ranks, surpassing LoRA 461
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Strategy Parameters GSM8K MATH HumanEval MBPP MT-Bench

LoRA 320M 42.30 5.50 18.29 35.34 4.58
IntTune(Rank=256) 15M 49.51 6.62 21.30 33.90 3.59
IntTune(Rank=128) 4M 44.28 6.86 20.70 34.40 4.46
IntTune(Rank=64) 0.9M 37.98 5.56 14.60 34.70 4.55

Table 6: Compare the performance of different ranks for IntTune on NLG tasks
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Figure 6: Compare the performance of different ranks for IntTune on NLU tasks

by 43.08% and 36.41% at ranks 64 and 128, re-462

spectively. SLoRA, on the other hand, exhibits463

relatively stronger performance at lower ranks, out-464

performing LoRA by 107.45%, 77.31%, 53.54%,465

and 76.13% at ranks 1, 2, 4, and 8, respectively.466

On the MATH dataset, SLoRA shows a slight over-467

all advantage, while NLoRA continues to deliver468

strong performance, particularly at higher ranks.469

For IntTune, we compared ranks of 64, 128, and470

256 in the NLG tasks, following the same experi-471

mental setup as shown in Section 4.1. In the NLU472

experiments, we evaluated ranks of 4, 8, and 16.473

The results of these experiments are presented in474

Table 6 and Figure 6. On NLG tasks, IntTune does475

not exhibit a strictly increasing performance trend476

with higher ranks. Instead, different ranks excel in477

different tasks. Specifically, rank 128 and rank 256478

achieve 7.45% and 5.62% higher performance than479

LoRA on average, both outperforming LoRA over-480

all. Meanwhile, rank 64, though slightly lower, still481

reaches 93.66% of LoRA’s performance, demon-482

strating the feasibility of fine-tuning with even483

fewer parameters while maintaining competitive re-484

sults. On NLU tasks, the model performance grad-485

ually improves with increasing rank. For ranks 4, 8,486

and 16, the average performance reaches 86.20%,487

92.61%, and 95.80% of LoRA’s performance, re-488

spectively, while the number of parameters is only489

1.35K, 3.07K, and 9.99K, respectively.490

5 Conclusion 491

This work advances parameter-efficient fine-tuning 492

strategies for large language models by introducing 493

SLoRA and NLoRA, along with an exploration of 494

an intermediate matrix fine-tuning method, IntTune. 495

SLoRA incorporates a small intermediate matrix, 496

enhancing expressiveness with minimal parameter 497

overhead, while NLoRA leverages Nyström-based 498

initialization to bypass the computational complex- 499

ity of SVD, achieving competitive downstream per- 500

formance. IntTune, by fine-tuning only the inter- 501

mediate matrix in NLoRA, even boosts average 502

NLG performance over LoRA while maintaining 503

high parameter efficiency. Extensive experiments 504

on NLG and NLU tasks demonstrate the robustness 505

and adaptability of our methods, providing prac- 506

tical solutions for optimizing large models under 507

resource constraints. 508

6 Limitaion 509

While our method demonstrates strong perfor- 510

mance in both NLG and NLU tasks, its applicabil- 511

ity to ultra-low parameter fine-tuning approaches, 512

such as IntTune, warrants further exploration. Ad- 513

ditionally, extending our approach to visual tasks 514

could provide valuable insights into its generaliza- 515

tion and versatility across modalities. Furthermore, 516

integrating SLoRA with advanced LoRA variants 517

presents a compelling direction for future research 518

to further enhance fine-tuning efficacy. 519
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A Detailed Derivation for Nyström 684

Approximation 685

This section provides a detailed derivation of the 686

Nyström approximation presented in Section 3, fol- 687

lowing the approach proposed in (Nemtsov et al., 688

2016). Specifically, the quadrature technique is 689

applied to the sample matrix of W , followed by an 690

out-of-sample extension to approximate W . 691

The basic quadrature technique of the Nyström 692

method is used to approximate the Singular Value 693

Decomposition (SVD) of a matrix. In this context, 694

no eigen-decomposition is required. Specifically, 695

denote the matrix W ∈ Rm×n can be decomposed 696

as: 697

W =

[
AW BW

FW CW

]
. (8) 698

where, AW ∈ Rr×r is designated to be the sample 699

matrix, BW ∈ Rr×(n−r) and FW ∈ R(m−r)×r rep- 700

resent the remaining sampled column and row com- 701

ponents, respectively, and CW ∈ R(m−r)×(n−r) 702

corresponds to the remainder of the matrix W . 703

The derivation begins with the SVD of AW , ex- 704

pressed as: 705

AW = UΛV T , (9) 706

where U, V ∈ Rr×r are unitary matrices, and Λ ∈ 707

Rr×r is a diagonal matrix. Assuming that zero is 708

not a singular value of AW , the decomposition can 709

be further approximated. Accordingly, the matrix 710

U is formulated as: 711

U = AWV Λ−1. (10) 712

Let ui, hi ∈ Rr represent the i-th columns of U 713

and V , respectively. Denote ui = {uil}rl=1 as the 714

individual elements of the i-th column of U . Using 715

Eq. (10), each element uil is expressed as the sum: 716

uil =
1

λi

n∑
j=1

Wlj · hij . (11) 717

The elements of FW can be used as interpola- 718

tion weights to extend the singular vector ui to 719

the kth row of W , where s + 1 ≤ k ≤ n. Let 720

ũi = {ũik−s}nk=s+1 ∈ Rn−s×1 denote a column 721

vector comprising all the approximated entries. 722

Each element ũik is computed as: 723

ũik =
1

λi

n∑
j=1

Wkj · hij . (12) 724
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Thus, the matrix form of ũi is given by ũi =725
1
λi
FW · hi. By arranging all the ũi’s into a ma-726

trix Ũ =
[
ũ1 ũ2 . . . ũr

]
∈ Rn−s×r, the following727

expression is obtained:728

Ũ = FWHΛ−1. (13)729

The Eq. (9) can also be written as V = AT
WUΛ−1.730

To approximate the right singular vectors of the731

out-of-sample columns, a symmetric argument is732

applied, yielding:733

H̃ = BT
WUΛ−1. (14)734

In that case, the full approximations of the left and735

right singular vectors of Ŵ , represented by Ũ and736

H̃ , respectively, are then obtained as follows:737

Û =

[
U

FWV Λ−1

]
, V̂ =

[
V

BT
WUΛ−1

]
. (15)738

The explicit Nyström form of M̃ is given by:739

Ŵ = ÛΛV̂ T740

=

[
U

FWV Λ−1

]
Λ
[
V T Λ−1UTBW

]
741

=

[
AW BW

FW FWA+
WBW

]
742

=

[
AW

FW

]
A+

W

[
AW BW

]
, (16)743

where A+
W denotes the pseudo-inverse of W . In744

this approximation, Ŵ does not modify AW , BW745

and FW but approximates CW by FWA+
WBW .746

This approach achieves a matrix approximation747

using only the selected rows and columns, effec-748

tively capturing the essential structure with reduced749

computational complexity.750

B Experiments on Various Initializations751

For SLoRA, we kept the initialisation of the A752

and B matrices the same as for LoRA, and in turn753

explored the effect of different methods of initiali-754

sation of the intermediate matrices on the results.755

Specifically, we experimented with Kaiming initial-756

ization and Gaussian initialization on all the NLG757

tasks of LLaMA 2-7B, with the same experimental758

setup as in Section 4. The performance of the mod-759

els under these settings is shown in Table 7. The760

results indicate that Kaiming initialization consis-761

tently achieves better performance across all tasks.762

Gaussian initialization also achieves competitive763

results, which demonstrates the robustness of our764

method. In our experiments, we use kaiming to765

initialize SLoRA.766

Tasks Kaiming Gaussian
GSM8K 56.48 56.10
MATH 10.68 9.56

HumanEval 23.78 23.2
MBPP 42.32 40.5

MT-Bench 4.85 3.93

Table 7: Different Initialization on SLoRA

Strategy LR GSM8K MATH

SLoRA

2E-4 56.48 10.68
5E-4 59.51 11.04
2E-5 51.02 6.94
5E-5 52.84 8.36

NLoRA

2E-4 57.70 9.94
5E-4 54.81 10.60
2E-5 45.11 6.42
5E-5 52.39 7.58

Table 8: Comparasion of different learning rate on
SLoRA and NLoRA

C Experiments on Various Learning 767

Rates 768

We evaluated the impact of four learning rates: 2E- 769

4, 2E-5, 5E-4 and 5E-5 on the model’s performance. 770

The experimental setup remains the same as de- 771

scribed earlier. The results of these experiments are 772

presented in Table 8. Among the evaluated learning 773

rates, 5E-4 achieved the best overall performance. 774

However, we opted for 2E-4 in our experiments, as 775

its performance, while slightly lower than that of 776

5E-4, remained comparable and still exceeded the 777

original baseline. Moreover, at the learning rate of 778

2E-4, NLoRA exhibited lower loss and better con- 779

vergence behavior, making it a more appropriate 780

choice for our experimental setup. 781

For the case of fine-tuning only the intermediate 782

matrix, we tested the performance under different 783

learning rates. The results indicate that a learning 784

rate of 2E-3 achieved the best performance. The 785

result is shown in Figure 9. 786

LR GSM8K MATH
2E-4 43.29 5.74
5E-4 44.20 5.70
2E-3 44.28 6.86
5E-3 40.86 6.08

Table 9: Comparasion of Different Learning Rates on
IntTune
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Strategy Parameters GSM8K MATH HumanEval MBPP MT-Bench

LoRA 320M 42.30 5.50 18.29 35.34 4.58
NLoRA 323M 57.70 9.94 25.00 43.12 4.82

NLoRA+RMSProp 323M 58.10 10.82 25.60 43.40 4.99

Table 10: Comparision of Adamw and RMSProp on NLG

Strategy MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

LoRA 90.65 94.95 89.95 69.82 93.87 91.99 85.20 91.60
NLoRA 90.74 96.22 91.91 73.41 94.45 92.03 88.09 92.14

NLoRA+RMSProp 90.41 96.22 91.91 68.61 94.18 92.03 88.09 91.86

Table 11: Comparision of Adamw and RMSProp on NLU

D Experiments on Various Optimizers787

We experimented with different optimizers on both788

NLG and NLU tasks. In addition to the default789

AdamW optimizer, we also evaluated the RMSProp790

optimizer. Other experimental setups are the same791

as Section 4. The experimental results are shown792

in Table 10 and Table 11.793

On NLG tasks, we observed that the RMSProp794

optimizer further improved the model’s perfor-795

mance. However, its performance on NLU tasks796

was relatively mediocre. This discrepancy might797

stem from the underlying differences in the nature798

of NLG and NLU tasks. NLG tasks typically in-799

volve generating coherent sequences of text, which800

require more stable gradient updates over longer801

contexts. RMSProp’s adaptive learning rate mech-802

anism, which emphasizes recent gradients, may803

help maintain stability and enhance performance804

in such scenarios. In contrast, NLU tasks often805

involve classification or regression over shorter in-806

put sequences, where AdamW’s weight decay and807

bias correction might be more effective in avoid-808

ing overfitting and ensuring generalization, thus809

outperforming RMSProp in these tasks.810

E Experimental Settings on NLU811

We evaluate the performance on the GLUE bench-812

mark, which includes two single-sentence tasks813

(CoLA and SST-2), three natural language infer-814

ence tasks (MNLI, QNLI, and RTE), and three815

similarity and paraphrase tasks (MRPC, QQP, and816

STS-B). For evaluation metrics, we report over-817

all accuracy (matched and mismatched) for MNLI,818

Matthew’s correlation for CoLA, Pearson’s corre-819

lation for STS-B, and accuracy for the remaining820

datasets. 821

In DeBERTa-v3-base, SLoRA and NLoRA were 822

applied to the WQ, WK , and WV matrices, while 823

in RoBERTa-large, they were applied to the WQ 824

and WV matrices. The experiments for natural lan- 825

guage understanding (NLU) were conducted using 826

the publicly available LoRA codebase. For MRPC, 827

RTE, and STS-B tasks, we initialized RoBERTa- 828

large with a pretrained MNLI checkpoint. The 829

rank of SLoRA and NLoRA in these experiments 830

was set to 8. Optimization was performed using 831

AdamW with a cosine learning rate schedule. Ta- 832

ble 12 and Table 13 outline the hyperparameters 833

used for the GLUE benchmark experiments. 834

For IntTune, we set both the LoRA rank and 835

LoRA alpha to 8. The remaining parameter config- 836

urations are provided in Table 14. 837
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Dataset DeBERTa-v3-base RoBERTa-large

LR BS Epoch LoRA alpha LR BS Epoch LoRA alpha

CoLA 3E-04 16 40 16 4E-04 8 20 8
SST-2 5E-04 16 10 8 5E-04 16 10 8
MRPC 5E-04 32 100 16 2E-04 32 50 16
MNLI 3E-04 32 10 16 3E-04 32 10 16
QNLI 2E-04 32 20 16 6E-04 16 10 8
QQP 6E-04 32 20 8 6E-04 16 10 16
RTE 3E-04 32 40 16 5E-04 32 30 16

STS-B 5E-04 16 10 16 3E-04 16 30 16

Table 12: Hyperparameters of NLoRA on GLUE

Dataset DeBERTa-v3-base RoBERTa-large

LR BS Epoch LoRA alpha LR BS Epoch LoRA alpha

CoLA 3E-04 16 40 16 4E-04 8 20 8
SST-2 5E-04 16 10 8 5E-04 16 10 8
MRPC 5E-04 32 100 16 2E-04 32 50 16
MNLI 3E-04 32 10 16 3E-04 32 20 16
QNLI 2E-04 32 20 16 6E-04 16 10 8
QQP 6E-04 32 20 8 6E-04 16 10 16
RTE 3E-04 32 40 16 5E-04 32 30 16

STS-B 5E-04 16 10 16 3E-04 16 30 16

Table 13: Hyperparameters of SLoRA on GLUE

Dataset LR BS Epoch
CoLA 7E-03 16 40
SST-2 6E-03 32 30
MRPC 4E-03 16 50
MNLI 6E-03 64 20
QNLI 8E-03 64 20
QQP 6E-03 32 20
RTE 6E-03 16 25

STS-B 6E-03 16 60

Table 14: Hyperparameters for IntTune
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