
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE FOUNDATIONS OF TOKENIZATION:
STATISTICAL AND COMPUTATIONAL CONCERNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tokenization—the practice of converting strings of characters from an alphabet into
sequences of tokens over a vocabulary—is a critical step in the NLP pipeline. The
use of token representations is widely credited with increased model performance
but is also the source of many undesirable behaviors, such as spurious ambiguity
or inconsistency. Despite its recognized importance as a standard representation
method in NLP, the theoretical underpinnings of tokenization are not yet fully
understood. In particular, the impact of tokenization on statistical estimation has
been investigated mostly through empirical means. The present paper contributes
to addressing this theoretical gap by proposing a unified formal framework for
representing and analyzing tokenizer models. Based on the category of stochastic
maps, this framework enables us to establish general conditions for a principled
use of tokenizers, and most importantly, the necessary and sufficient conditions
for a tokenizer model to preserve the consistency of statistical estimators. Addi-
tionally, we discuss statistical and computational concerns crucial for designing
and implementing tokenizer models, such as inconsistency, ambiguity, tractability,
and boundedness. The framework and results advanced in this paper contribute
to building robust theoretical foundations for representations in neural language
modeling that can inform future empirical research.

1 INTRODUCTION

As a critical step in the natural language processing (NLP) pipeline, tokenization generally refers to
the process of breaking up sequences of symbols into subsequences that can be represented as units
or “tokens”. The tokenization of linguistic data has long been a common practice in the processing
of natural language (cf. Palmer, 2000; Jurafsky & Martin, 2024). However, the significance of
tokenizers took a turn with the emergence of deep neural models for NLP, where the representation
of linguistic units plays a renewed fundamental role. With the development and widespread adoption
of the Byte Pair Encoding (BPE) algorithm (Sennrich et al., 2016), subword tokenization became
the privileged representation method for neural NLP. Adapting an existing compression algorithm
(Gage, 1994) to overcome the challenges of out-of-vocabulary (OOV) terms in the context of neural
machine translation, BPE quickly replaced previous heuristic and rule-based tokenizer models such as
Morfessor (Creutz & Lagus, 2002) and Moses (Koehn et al., 2007), and was soon followed by other
data-driven models, including WordPiece (Wu et al., 2016, following Schuster & Nakajima, 2012)
and Unigram (Kudo, 2018) among the most widely adopted (cf. Mielke et al., 2021, for a survey).

The importance of subword tokenization for language models (LMs) has grown ever since and are
now built into standard language modeling toolkits, remaining the only major step not fully integrated
into widely used end-to-end neural models. Among their recognized benefits, two are often advanced
in the literature. Tokenizers offer the capacity of training language models over an open vocabulary,
circumventing the difficulties associated with OOV terms (Sennrich et al., 2016). Also, tokenization is
often described as an efficient, lossless encoding of the original data (Zouhar et al., 2023a). Moreover,
based on empirical evidence of different kinds, tokenization has been hypothesized to introduce a
helpful inductive bias in language modeling (Nawrot et al., 2023; Schmidt et al., 2024; Uzan et al.,
2024), although in the current state of the art, this hypothesis remains an open question. At the same
time, tokenizers have also been in the spotlight for exhibiting undesirable behaviors that can have a
negative impact on LMs. To name just a few, tokenization can be the source of spurious ambiguity
(Kudo, 2018; Cao & Rimell, 2021), generate alignment issues (Poesia et al., 2022; Athiwaratkun

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2024), hinder robustness (Kudo, 2018; Xue et al., 2022), neglect relevant linguistic features
(Bostrom & Durrett, 2020; Hofmann et al., 2021; Gow-Smith et al., 2022; Beinborn & Pinter, 2023)
or result in inconsistent scoring in the use of LMs in other scientific fields, like psycholinguistics
(Salazar et al., 2020; Kauf & Ivanova, 2023).

The uncovering of undesirable behaviors together with the lack of conclusive theoretical explanations
for either their positive or negative effects in language modeling motivated several recent attempts to
dispense with tokenization altogether (Xue et al., 2022; Clark et al., 2022; Wang et al., 2024, inter
alia). However, in the current state of research, the practical benefits of token representations in
neural language modeling seem to outweigh their disadvantages, indicating that there is something to
be understood rather than discarded in the process of tokenization.

The study of tokenization models has been an active area of research in recent years. Most of the
work in this direction has been driven by an empirical perspective (Ding et al., 2019; Hou et al., 2023;
Domingo et al., 2023; Fujii et al., 2023, inter alia). Among the notable exceptions adopting a more
theoretical approach are Guo (1997); Kudo (2018); Zouhar et al. (2023b;a); Berglund & van der
Merwe (2023); Rajaraman et al. (2024). However, in the current state of the art, we still see a need for
a more foundational perspective from which necessary conditions for the consistent use of tokenizers
can be formally established in general. Such a perspective should also provide the means to analyze
known issues in tokenization in a formal way, ultimately informing future empirical research and
contributing to increasing the reliance on models in situations in which properties such as formal
guarantees, verification, or interpretability are as important as performance for an LM.

Accordingly, the objective of the present paper is to take a decisive step forward toward a robust
theoretical grounding for neural NLP by laying the foundations of tokenization from a formal
perspective. To that end, we characterize the problem of tokenization in current language modeling
as arising from the fact that, in practice, starting from an alphabet Σ of elementary units, one seeks to
estimate a probability distribution over Σ∗ indirectly, that is, by estimating a probability distribution
over sequences of tokens in ∆∗, where the set of tokens ∆ is, in general, different from Σ. Therefore,
the problem of tokenization is determined by the forward and backward mappings between Σ∗ and ∆∗.
To address this problem, we propose a formal framework based on what we found to be the simplest
mathematical tool allowing us to characterize tokenizer models in their full generality, namely the
category of stochastic maps. The proposed framework enables us to establish general conditions
for a principled use of tokenizers. Crucially, we prove the necessary and sufficient conditions for a
tokenizer model to preserve the consistency of statistical estimators. Additionally, this paper aims to
advance the theoretical understanding of existing challenges associated with tokenization, particularly
those pertaining to inconsistency, ambiguity, tractability, and boundedness. To achieve this, we
characterize these known issues through the lens of formal properties of composable maps, such as
injectivity, multiplicativity, and finite decomposition.

The plan of the paper is as follows. In §2, we present preliminary notions, including elementary
aspects of formal language theory and the concept of stochastic maps, extending some existing
results to cover the case of countably infinite sets. We also provide notational and terminological
remarks. In §3, we propose a unified formal framework for representing and analyzing tokenization
models and establish various results for the use of tokenizers, including the necessary and sufficient
conditions for a tokenizer model to preserve the consistency of estimators. Finally, in §§ 4 and 5
we discuss, from a formal perspective, statistical and computational concerns relevant to the study,
design, and implementation of tokenizer models.

2 PRELIMINARIES

2.1 FORMAL LANGUAGES, ESTIMATORS, AND STOCHASTIC MAPS

An alphabet Σ is a finite, non-empty set of symbols. The set Σn def
=

n times︷ ︸︸ ︷
Σ× · · · × Σ consists of

strings of symbols of length n. The symbol ε denotes the empty string of length 0. The union
Σ∗ def

=
⋃∞

n=0 Σ
n consists of all finite strings (including ε) from the alphabet Σ. Similarly, we denote

by Σ≤N the set of all strings from Σ of length less or equal to N . String concatenation is an

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

associative product Σ∗ × Σ∗ ·→ Σ∗ for which ε is an identity element. The triple (Σ∗, ·, ε) defines
a monoid, which is, in fact, a model of the free monoid on the set Σ.

A language L over an alphabet Σ is a set of strings L ⊆ Σ∗. A language model p is a probability
distribution over Σ∗. That is, p is a function p : Σ∗ → [0, 1] such that

∑
σ∈Σ∗ p(σ) = 1.

Language models generalize languages in the sense that the support of a language model, i.e.,
supp(p) = {σ | p(σ) ̸= 0}, is a language. The definition of a language model as a probability
distribution on Σ∗ is deliberately broad. In particular, note that no compatibility between p and the
monoidal structure in Σ∗ is assumed.

In NLP, practitioners generally seek to estimate a language model p from exemplars of naturally
occurring text. Formally, the modeler assumes there exists a true distribution p⋆ over Σ∗, and
considers a multiset of naturally occurring texts {σn}Nn=1 ⊂ Σ∗ to be samples from p⋆. In its most
general form, an estimator of p⋆ is a sequence {pn} of probability distributions on Σ∗ such that pn
becomes closer to p⋆ as n increases. We call an estimator consistent if the sequence {pn} converges
pointwise to p⋆.1 More precisely, given a probability distribution p⋆ : Σ∗ → [0, 1] , and a sequence of
distributions {pn : Σ∗ → [0, 1]}, we say that {pn} is a consistent estimator of p⋆ if and only if, for
all strings σ ∈ Σ∗, the sequence of numbers {pn(σ)} converges to the number p⋆(σ).

This notion of consistent estimation is general enough to include many estimation methods, where the
pi can depend on various properties of the sample, such as the size N , or possibly a set of parameters
θ. Likewise, we use pointwise convergence to define consistent estimation because pointwise
convergence is a weak kind of convergence, and so our definition is compatible with a wide variety of
convergence measures, and relatively easy to check for. For example, a common practice in NLP is
to produce an estimator {pn} through a sequence of steps in the process of minimizing cross entropy
loss, which amounts to minimizing the relative entropy also called the Kullback–Leibler divergence,
DKL(p

⋆ ∥ pn) between p⋆ and pn. This is a stronger form of convergence: if DKL(p
⋆ ∥ pn) → 0 then

pn → p⋆ pointwise (a consequence of Pinsker’s lemma) and so {pn} is a consistent estimator of p⋆.

Our definition of tokenizer models will require the use of a special kind of map between sets called a
stochastic map. The reference Baez & Fritz (2014) contains a detailed introduction to the category of
finite sets with stochastic maps between them. Here, we will extend some of the results in Baez &
Fritz (2014) to cover the case of countably infinite sets. We assume all sets are countable, either finite
or countably infinite. A stochastic map from a set X to a set Y is a function from X to the set of
probability distributions on Y . We use

X ⇝ Y

to denote a stochastic map from X to Y and the notation x 7→ f(y | x) to denote the probability of
y ∈ Y in the distribution assigned to x ∈ X . In other words, a stochastic map f : X ⇝ Y is a function

X × Y → [0, 1]

(x, y) 7→ f(y | x)

satisfying
∑

y∈Y f(y | x) = 1 for all x ∈ X . The notation f(y | x) is evocative of the conditional
probability of y given x, but it’s more accurate to think of “indexing” by x rather than “conditioning"
on x since there is no assumption that the numbers f(y | x) assemble into a joint distribution on
X × Y . In particular, the sum

∑
x∈X f(y | x) could, for example, be infinite.

Significantly, stochastic maps can be composed. The composition

X Y Z
f

gf

g

gf : X ⇝ Z is defined by

gf(z | x) =
∑
y∈Y

g(z | y)f(y | x). (1)

1Following common convention, we will sometimes denote convergence as {pn} → p⋆, which is not to
be confused with the notation for functional types (e.g., Σ∗ → ∆∗). The context of use should be enough to
prevent any ambiguity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Since the sum in equation 1 is infinite, it requires a check that the formula for gf(z | x) is finite, and
that for each x ∈ X , gf(− | x) defines a probability distribution on Z, both of which follow from
the fact that:∑

z∈Z

gf(z | x) =
∑
z∈Z

∑
y∈Y

g(z | y)f(y | x) =
∑
y∈Y

∑
z∈Z

g(z | y)f(y | x) =
∑
y∈Y

f(y | x) = 1.

If one arranges a stochastic map into an |X| × |Y | matrix with the f(y | x) entry in the x, y position,
then every entry is nonnegative and the sum of every row is 1. The computation above shows
that composition of stochastic maps is realized by matrix multiplication, and that even when the
matrices are infinite, the row-column dot products are finite and the result of matrix multiplication is
again a matrix with nonnegative entries whose rows sum to 1. From this perspective, it is clear that
composition of stochastic maps is associative.

Stochastic maps generalize both ordinary probability distributions and functions. A probability
distribution over a set X can be represented as a stochastic map into X from a 1-element set, denoted
as 1 := {1}, i.e., p : 1 ⇝ X . In such cases, the customary notation p(x) can be used without risk
of ambiguity as a shorthand of the more cumbersome p(x | 1). An ordinary function f : X → Y
can be regarded as a stochastic map X ⇝ Y by mapping x to the probability distribution on Y
concentrated on the singleton {f(x)}, in which case we say the stochastic map f is deterministic.
For simplicity, when a stochastic map f : X ⇝ Y is deterministic, writing y = f(x) means
that f(y | x) = 1 and f(y′ | x) = 0 for y′ ̸= y. Composition generalizes both composition
of functions and the pushforward of a probability function via a function. If p : 1 ⇝ X is a
probability distribution on X and f : X → Y is a deterministic function, then the composition

1 X Y
p f

is a stochastic map fp : 1 ⇝ Y , which is a probability distribution on
Y whose formula is fp(y) =

∑
x∈X f(y|x)p(x|1) =

∑
x∈f−1(y) p(x). That is, fp is just the

pushforward of the probability distribution p via the function f .

For any set X , the identity function on X behaves as an identity for stochastic maps. That is
idX : X ⇝ X is the stochastic map defined by idX(x′ | x) = 1 when x′ = x and idX(x′ | x) = 0
when x′ ̸= x. In matrix representation, idX is the identity matrix, and satisfies f idX = f = idY f for
all stochastic maps f : X ⇝ Y .

The notions of injectivity and surjectivity exist for stochastic maps. A stochastic map f : X ⇝ Y is
injective iff the support of f(− | x) and f(− | x′) are disjoint whenever x ̸= x′. The support of
the stochastic map f is the union of the support of the distributions f(− | x) as x ranges over X . A
stochastic map f : X ⇝ Y is surjective iff, for all y ∈ Y , there exists x ∈ X such that f(y | x) ̸= 0.
Injectivity and surjectivity for stochastic maps reduce to their ordinary definitions for deterministic
functions.

2.2 NOTATION AND TERMINOLOGY

We adopt the following notational conventions. Alphabets will be denoted by uppercase Greek letters
(e.g., Σ, ∆). In the context of tokenization, we will be interested in looking at maps between strings
of languages over two different alphabets, which we will denote as Σ and ∆. For a more intuitive
presentation that avoids ambiguity, we reserve the term alphabet for the former and call vocabulary
the latter instead. We denote symbols by lowercase Greek letters, e.g., σ ∈ Σ, δ ∈ ∆, calling them
characters in the first case and tokens in the second. Strings will be denoted by bold lowercase
Greek letters, e.g., σ ∈ Σ∗, δ ∈ ∆∗, reserving the name character strings or texts for the former and
token strings or token sequences for the latter. The reader should keep in mind these terminological
distinctions are for expository purposes only. From the formal perspective advanced in this paper, we
do not assume any inherent privilege of Σ over ∆, focusing, instead, on how their respective elements
can be mapped into each other.

When necessary, we will distinguish the empty character string εΣ ∈ Σ∗ from the empty token
sequence ε∆ ∈ ∆∗. Examples of strings and tokens will be written in monospace font (e.g., t, the).
There are cases where ∆ ∩ Σ∗ ̸= ∅, and it will be necessary to distinguish between concatenation
in Σ∗ and ∆∗. In ∆∗, concatenation will be denoted as p. So, for example, if Σ = {t,h,e} and
∆ = {th,he,e}, the expression t · h · e denotes the concatenation in Σ∗ of the three characters
t, h, and e, while the expression tphe represents the concatenation in ∆∗ of the two tokens t and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

he. The cases when ∆ ∩ Σ∗ ̸= ∅ are of sufficient significance that we shall generally avoid using
simple juxtaposition of characters to express concatenation. Therefore, the reader should always
interpret th as a token in ∆, and not a text in Σ∗ (written t · h). If further notational clarification is
needed, square brackets may be used to represent the concatenation of two texts in Σ∗ (and likewise
for ∆∗). For instance, [t · h] · e denotes the concatenation of the text t · h with the character e in Σ∗.
Should any ambiguity between specific characters and tokens arise (e.g., t ∈ Σ vs. t ∈ ∆), it will be
explicitly disambiguated whenever there is a risk that context alone is insufficient.

3 A FORMAL FRAMEWORK FOR TOKENIZATION

As observed in the previous pages, in current NLP, the problem of tokenization arises from the fact
that one seeks to estimate a model p⋆ over strings of symbols in one alphabet indirectly, that is, by
estimating a probability distribution q over strings of symbols on a different alphabet. Therefore,
from a strictly formal perspective, the problem of tokenization can be characterized as that of the
respective mappings between two sets of strings, conventionally referred to as the set Σ∗ of character
strings and the set ∆∗ of token sequences. In order to estimate p⋆ through q, Σ∗ needs to be mapped
into and from ∆∗. The connection between Σ∗ and ∆∗ is thus made through a pair of mappings
(τ, κ) that constitutes the basis of our formal characterization of tokenization. Accordingly, in its
most general form, a tokenizer can be defined as follows:
Definition 3.1. A tokenizer model (or simply tokenizer) from Σ∗ to ∆∗ is a pair of stochastic maps
T = (τ, κ), respectively called the encoder and the decoder, where the encoder is a stochastic map
τ : Σ∗ ⇝ ∆∗, and the decoder is a stochastic map κ : ∆∗ ⇝ Σ∗.

Definition 3.1 is deliberately broad, covering any pair of string-to-string mappings τ and κ. Other than
the fact that the domain of each mapping constitutes the codomain of the other, we define the encoder
and decoder as arbitrary stochastic maps. In other words, we will be regarding τ and κ primarily
from the point of view of their composition. In particular, we do not require any specific connection
between the alphabet Σ and the vocabulary ∆, and hence the use of the terms encoder and decoder is
also strictly conventional. However, the distinction is motivated by an implicit assumption behind
the established use of tokenizers in language models—namely, that the samples {σn}Nn=1 ⊂ Σ∗ of
naturally occurring texts used for estimation can be mapped into ∆∗ in such a way that the estimated
model q can be, in turn, transformed into a model p over Σ∗ through the map κ, such that κq = p can
be considered as an estimate of the original distribution p⋆.

Despite the potential empirical increase in a model’s predictive performance resulting for specific
tokenization choices, the soundness of such a procedure is not guaranteed for arbitrary τ and κ
without further conditions. On one hand, the notion of estimation in ∆∗ is not well-defined unless
there exists a reference distribution q⋆ over ∆∗ to which the estimator {qn} can converge. On the
other, assuming such an estimator is consistent, transforming it into a consistent estimator of p⋆
requires a way to map the sequence {qn} into a sequence {pn} that converges to p⋆.

Assuming a reference distribution p⋆ exists on Σ∗, one obtains a reference q⋆ on ∆∗ simply as
the composition (Eq. (1)) with the encoder: q⋆ = τp⋆. In other words, the following diagram of
stochastic maps commutes

1

Σ∗ ∆∗

p⋆ q⋆

τ

The distribution q⋆ is just the pushforward of the measure p⋆ along τ , which then makes the encoder
τ a measure-preserving map between (Σ∗, p⋆) and (∆∗, q⋆)

In the same way, {pn} can be obtained by mapping the sequence {qn} through κ. By defining
pi = κqi, we obtain the following commutative diagram

N

∆∗ Σ∗

{qn} {pn}

κ

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

So far, none of these requirements imposes conditions on τ and κ other than being well-defined
mappings between their respective domains and codomains. Notably, the notion of estimation of
τp⋆ is well defined for arbitrary τ . However, given a consistent estimator {qn} of q⋆, {κqn} is not
guaranteed to converge to p⋆ without further conditions on κ. To establish such conditions, we will
need the following lemmas.2

Lemma 3.1. Let {pn} be a sequence of probability distributions over a countable set X that
converges pointwise to a probability distribution p. Then limn→∞

∑
x∈X |pn(x)− p(x)| = 0.

Corollary 3.0.1. Let {pn} be a sequence of probability distributions over a countable set X that
converges pointwise to a probability distribution p. Then {pn} → p uniformly.

Lemma 3.2. Let f be a stochastic map from X to Y , and {pn} be an estimator for a probability
distribution p on X . Then fpn is an estimator for the probability distribution fp on Y .

In other words, Lemma 3.2 says that stochastic maps preserve the consistency of estimators. Armed
with this lemma, it is now easy to establish a simple but fundamental principle for the use of
tokenization models in language modeling:
Theorem 3.1 (Fundamental Principle of Tokenization). Given a reference probability distribution
p⋆ over Σ∗, a tokenizer T = (τ, κ) from Σ∗ to ∆∗, and a consistent estimator {qn} of the image
reference distribution q⋆ = τp⋆, the sequence {κqn} is a consistent estimator of p⋆ if and only if
κτp⋆ = p⋆.

Our whole setting can be represented with the following diagram:

1

N

Σ∗ ∆∗ Σ∗

p⋆

q⋆
p⋆

{qn}

{pn}

τ κ

This setting is quite general, and Theorem 3.1 characterizes precisely when a consistent estimator
{qn} of q⋆ yields a consistent estimator {pn} of p⋆ after decoding. Based on the fundamental
principle expressed in Theorem 3.1, we propose the following definitions:
Definition 3.2. Given a probability distribution p over Σ∗, a tokenizer T = (τ, κ) from Σ∗ to ∆∗ is
consistent with respect to p if we have κτp = p.
Definition 3.3. Let p be a probability distribution over Σ∗ and T = (τ, κ) a tokenizer from Σ∗ to
∆∗. When κτ = idΣ∗ , we say that T is exact.

Notice that exact tokenizers are consistent, but a tokenizer that is consistent with respect to a
distribution p is not necessarily exact. Take, for instance, a probability distribution p over some set X
and x′, x′′ ∈ X such that p(x′) = p(x′′) = c. Then one can fashion a tokenizer for which κτ(x) = x
for all x except κτ(x′) = x′′ and κτ(x′′) = x′. Such a tokenizer is consistent with respect to p
without being exact. Consistency with respect to all distributions, however, is the same as being exact.
Proposition 3.1. A tokenizer T = (τ, κ) from Σ∗ to ∆∗ is exact if and only if it is consistent with
respect to every probability distribution over Σ∗.

Significantly, exact tokenizers have special properties. First, if a tokenizer (τ, κ) is exact, then κ is
deterministic over the image of τ , because idΣ∗ also is. Formally:
Proposition 3.2. Let T = (τ, κ) be an exact tokenizer from Σ∗ to ∆∗. Then κ is deterministic on the
support of τ (or, κ is deterministic “τ almost everywhere.”)

The condition κτ = idΣ∗ means τ is a right inverse (or section) of κ and κ is a left inverse (or
retraction) of τ . The proof of Proposition 3.2 shows that τ(δ | σ) places probability zero on every
δ ∈ ∆∗ such that κ(σ | δ) = 0. Since κ is deterministic in this case, it follows that for an exact
tokenizers (τ , κ), the encoder does not place positive probability mass on a token sequence for more
than one text. In other words, τ is injective. Additionally, it must be that for each text σ there is a δ
with κ(σ | δ) = 1, and therefore κ is surjective.

2The proofs for all formal results (theorems, propositions, lemmas) have been placed in the Appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 STATISTICAL CONCERNS: INCONSISTENCY AND AMBIGUITY

While in most concrete cases of statistical language modeling a tokenizer’s consistency is implicitly
or explicitly assumed, there are many ways in which the conditions established in the previous section
can, and in practice do, fail to be satisfied. In this section, we discuss two main statistical concerns
to be considered when implementing or using tokenizers, namely inconsistency and ambiguity,
and associate them with the properties of maps introduced in the previous section. The following
definitions will be convenient:

Definition 4.1. Given a tokenizer T = (τ, κ), we say T has a deterministic encoder (resp. decoder)
or is τ -deterministic (resp. κ-deterministic) if τ (resp. κ) is a deterministic map. When a tokenizer
T is both τ -deterministic and exact, we have that T is also κ-deterministic, and κ = τ−1 over τ(Σ∗).
Therefore, in such a case we say T is strictly bijective.

Noninjective τ and Inconsistency. Most commonly used tokenizers have deterministic encoders,
including BPE (Sennrich et al., 2016) and WordPiece (Wu et al., 2016), as well as Unigram
(Kudo, 2018) when used without regularization. As we have seen, deterministic functions can be
understood as a particular case of stochastic maps where the probability mass is concentrated on
one element. Tokenizers with deterministic encoders thus constitute a simplified form of tokenization.
However, even in this simplified setting, the consistency of the tokenization process is not guaranteed.
Example 8.1 in the appendix offers an elementary intuition of this circumstance.

As shown in §3 and illustrated in Example 8.1, a fundamental cause of a tokenizer’s inconsistency
is the lack of injectivity of the encoder τ . This is not just a theoretical concern. Even if in its
abstract specification a tokenizer’s encoder may appear to be injective, implementation decisions
often introduce noninjective behaviors. These include normalizing operations, such as lowercasing,
stripping accents, removing punctuation, or uniforming whitespaces (e.g., Moi & Patry, 2023).
Irrespective of how the core tokenization function is defined, including this preprocessing step as
part of the tokenizer model results in a noninjective encoding that compromises the consistency of
estimators.

Even if all text normalization is excluded from the decoding function, it can still happen that τ
is undefined for some elements in Σ, and is, therefore, only a partial function. If the exceptions
are handled by returning a unique distinguished token in ∆ (e.g., an ‘unknown’ token UNK), then
τ becomes noninjective, incurring the risk of inconsistency. The appeal to an UNK token and the
difficulties associated with it have been widely studied from the perspective of OOV terms, especially
in the context of NMT (e.g., Luong & Manning, 2016; Jean et al., 2015), ultimately leading to
subword tokenizers as a way of providing “open vocabulary” solutions (Sennrich et al., 2016; Wu
et al., 2016).3 Formally, it is enough to inject Σ into ∆ (i.e., to include the alphabet in the vocabulary)
to achieve an open vocabulary, something most tokenizers do by default. However, open vocabulary
solutions do not entirely remove the risk of noninjective decoding, which is not reducible to OOV
problems. Some open vocabulary models, for instance, limit the size of Σ to the sample’s k most
frequent symbols, mapping all other symbols to an UNK character in Σ (e.g., Wu et al., 2016).
Understood as a preprocessing step, this operation should not affect τ ’s injectivity. However, the
use of copy models (e.g., Luong et al., 2015) that keep track of the original out-of-alphabet symbols
to restore them in decoding, violates de facto the tokenizer’s injectivity, and with it, the model’s
consistency over strings including those symbols.

Even if all symbols in the training sample are included in Σ, out-of-alphabet symbols can always be
encountered at test or inference time. The recourse to a distinguished UNK symbol both in Σ and
∆ must, therefore, be handled in such a way that the injectivity of τ is guaranteed. The use of a
stochastic κ (e.g., Mielke & Eisner, 2019) over the restricted domains of out-of-alphabet/vocabulary
elements could, in principle, provide novel ways of addressing this problem in agreement with
consistency concerns.

Noninjective κ Ambiguity. Whenever κ is noninjective, the tokenizer introduces ambiguity in
the model because more than one token sequence is mapped into a unique text. In strictly bijective
tokenizers, decoding is injective over the encoder’s image, thus preventing ambiguity in principle.

3For a tokenization-free alternative to the OOV problem, see, for instance, Xue et al. (2022) and Clark et al.
(2022), who also offer a good overview of existing approaches to this problem.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

However, in practice, whenever τ(Σ∗) is a proper subset of ∆∗, it may happen that the probability
mass placed by the estimated language model outside the image of τ is nonzero, reintroducing
ambiguity into the model (cf. Example 8.2 in the Appendix for an elementary illustration). This
ambiguity is, however, spurious because τ was assumed to be deterministic, and hence the ambiguity
does not stem from the reference distribution p⋆, but is a side-effect of the estimator. An obvious
source of spurious ambiguity resides in the fact that consistency is a property defined in the limit. As
a consequence, for any δ ∈ ∆∗, qn(δ) can and will generally differ from q⋆(δ). Spurious ambiguity
can also result from the fact that, due to the properties of gradient descent and certain activation
functions such as softmax, neural models are incapable of assigning zero probability to elements of
∆∗. While spurious ambiguity has been identified among the motivations for introducing subword
regularization (Kudo, 2018; Provilkov et al., 2020), it is often overlooked or disregarded, despite its
potential nonnegligible effect on estimation (Cao & Rimell, 2021), although mostly in the case of
“strongly out-of-domain evaluation sets” (Chirkova et al., 2023).

Spurious ambiguity is not the only kind of ambiguity that can result from the use of tokenization in
language models. Whenever a tokenizer model is stochastic, a deterministic κ must be noninjective
for the model to preserve the consistency of estimators. However, the ambiguity thus introduced
is not spurious in that it is deliberately designed for statistical purposes. In current tokenization
practices, the main reason for the introduction of stochastic ambiguity is regularization (Kudo, 2018;
Provilkov et al., 2020). The claim is that, by exhibiting different token sequences corresponding to
the same text during training, a model increases its capability to handle text compositionality as well
as its robustness to noise and tokenization errors. However, one could also conceive of a stochastic
tokenizer where the possible images of a text reflect the objective probabilities of all linguistic
ambiguities potentially affecting it (e.g., anpicecream, anpicepcream, apnicepcream as three
possible token sequences for the text: a ·n ·i ·c ·e ·c ·r ·e ·a ·m). This would require, however, to
enhance tokenizers with linguistically motivated segmentation (see, for instance, Bostrom & Durrett,
2020; Hofmann et al., 2021; Gow-Smith et al., 2022; Beinborn & Pinter, 2023).

Although all these classes of ambiguity (spurious, stochastic, and linguistic) are both formally and
semantically different, they all represent the same challenge for the tokenizer’s consistency: The
probability mass indirectly assigned by the model to one text in a language is spread out over different
token sequences. Notice that all these cases of ambiguity can coexist, and hence their impact is
difficult to evaluate. Yet, from a formal perspective, the solution for all these cases is the same:
The computation of κqn for a single text σ ∈ Σ∗ requires marginalizing over all its preimages δ
through κ, for which qn(δ) > 0, following the composition of stochastic maps presented in the
previous section (Eq. (1)). However, such operation can be computationally challenging because it
can imply summing over a large or even infinite number of terms. For different strategies to address
that challenge, see van Merriënboer et al. (2017); Buckman & Neubig (2018); Grave et al. (2019);
Hannun et al. (2020); Cao & Rimell (2021).

5 COMPUTATIONAL CONCERNS: TRACTABILITY AND BOUNDEDNESS

As the end of the previous section shows, even when a tokenizer model is consistent and all statistical
concerns are taken into account, there are still computational aspects that can hinder the practice
of tokenization. In this section, we turn to issues of tractability, and boundedness.

Multiplicativity and Tractability. Definitions 3.1 to 3.3 are general enough to allow for all kinds of
encoding and decoding functions, including uncomputable ones (see Example 8.3 in the Appendix for
an example). However, even when a tokenizer model is computable, its tractability is not guaranteed.
Indeed, there are many reasons that could make the computation of tokenization intractable. Many of
the operations defining tokenizer models involve sums over infinite sets. This is particularly true for
the composition of stochastic maps whenever it is performed over an infinite domain, as in our case.
Therefore, it is crucial to assess the tractability not only of τ and κ, but also of their composition κτ .

We have seen that when a tokenizer model is exact, τ is a section for κ, or equivalently, τ is
injective. It follows that, for any σ ∈ Σ∗, τ concentrates the probability mass on only a subset of ∆∗.
This property can help reduce the computational costs by restricting the sums to just those subsets.
However, without further constraints, those subsets can still be infinite. For this reason, we consider
the following properties:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Definition 5.1. We say a tokenizer model T = (τ, κ) is multiplicative if its decoder κ respects the
concatenation products; that is, if κ(δ′pδ′′) = κ(δ′) · κ(δ′′).
Definition 5.2. We say the kernel of a multiplicative tokenizer’s decoder κ is trivial if κ maps
nonempty token sequences to nonempty token sequences (i.e., if δ ̸= ε∆ then κ(δ) ̸= εΣ).

The most commonly used tokenizers, including BPE, WordPiece, and Unigram, are multiplicative.
An obvious consequence of multiplicative tokenizers is that decoding preserves the prefix structure
of token sequences. More precisely, let δ′ ⪯ δ denote the fact that δ = δ′pδ′′ for δ, δ′, δ′′ ∈ ∆∗

(and likewise for σ,σ′,σ′′ ∈ Σ∗). Then we have that δ′ ⪯ δ implies κ(δ′) ⪯ κ(δ). This property
is crucial in autoregressive models, where each token in a sequence depends only on the tokens
preceding it and can then be computed in a left-to-right fashion. In these cases, multiplicativity
ensures that the model’s output can be decoded on the fly, excluding decoding functions such as
string reversal. Moreover, notice that, for a kernel of a multiplicative tokenizer’s decoder to be trivial,
it is enough that κ(δ) ̸= εΣ for any δ ∈ ∆. This implies that token sequences do not include special
tokens that are erased during decoding, e.g., padding or end-of-sentence tokens.

Importantly, when a multiplicative tokenizer’s decoder has a trivial kernel, a decoded text cannot be
shorter than the token sequence from which it has been decoded. This simple observation guarantees
that the number of preimages of a text under κ is finite. More precisely,
Proposition 5.1. Let T = (τ, κ) be a multiplicative tokenizer model whose decoder’s kernel is trivial.
If κ(δ1pδ2p . . . pδm) = σ1 · σ2 · . . . · σn then m ≤ n.

Corollary 5.0.1. Let T = (τ, κ) be a multiplicative tokenizer model whose decoder’s kernel is trivial.
Then for any text σ, the set κ−1(σ) is finite.

Proposition 5.1 guarantees that, if no token in the vocabulary is mapped to the empty string, then the
length of every preimage of a text σ of length n has length less than or equal to n. So the number of
elements in κ−1(σ), and hence also the support of τ for any given σ ∈ Σ∗ when (τ, κ) is exact, is
bounded by

∑n
i=1 |∆|i.

Since this bound is exponential in n, the exact or approximate computation of a tokenizer’s encoding
and decoding so that the consistency of the language model is not compromised requires the appeal
to multiple strategies as the ones mentioned at the end of §4. Ideally, the complexity of a tokenizer
model (that is, of the composition κτ) should be at most linear in the length of the input text. By
placing all the probability mass on one token sequence, κτ in exact deterministic tokenizers, such as
BPE and WordPiece, can be computed in linear time as long as τ and κ can be computed in linear
time. However, rigorously handling spurious ambiguity still represents a challenge in these cases.

Finite Decomposition and Boundedness. Finally, even though multiplicativity ensures the length
of all the preimages of κ−1(σ) is bounded by the length of σ, texts themselves may have unbounded
length. In practice, the bounded character of tokenization is secured externally, namely by fixing a
hyperparameter that artificially limits the length of input texts. However, it can be desirable to address
boundedness as an internal property of a tokenizer. For this reason, we introduce the following
definitions:
Definition 5.3. Given two sets A,B, and a map f : A∗ → B∗ we say f is of finite type if, there exists
n ∈ N such that, for every a ∈ A∗, there exists a nonempty a′ ∈ A≤n such that a = a′ · a′′ and
f(a) = f(a′) · f(a′′).

Definition 5.4. A tokenizer model T = (τ, κ) is called bounded if both τ and κ are of finite type.

If a tokenizer is bounded, it means the input can be decomposed into bounded components. The
“maximal munch” approach (Reps, 1998; Palmer, 2000) adopted by WordPiece, for instance, itera-
tively maps the successive longest prefixes of a text to tokens in the vocabulary. WordPiece’s encoder
is thus bounded by the maximum length of the preimages of ∆ through τ , and can therefore be
implemented as a finite-state transducer (Song et al., 2021). Notice, however, that, in general, if
a tokenizer is bounded in the sense of Definitions 5.3 and 5.4, that does not mean there exists a
tractable algorithm to find the decomposition a = a′ · a′′, which could, in principle, depend on the
entire a. Significantly, Berglund & van der Merwe (2023) showed that, under specific conditions on
the structure of the list of rules or “merges”, BPE is also bounded and an algorithm can be found
to compute τ(σ′)pτ(σ′′) = τ(σ) in an online fashion with finite lookahead. Moreover, Berglund

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

et al. (2024) proposed an algorithm for constructing deterministic finite automata representing BPE’s
encoder.

6 CONCLUSION

In this work, we have addressed the use of token representations in NLP from a foundational
perspective. Relying on the category of stochastic maps as an elementary formal tool, we proposed a
general definition of a tokenizer as an arbitrary pair of composable maps. The framework proposed
enabled us to formally establish several properties of tokenization, and most importantly, the necessary
and sufficient condition for a tokenizer to preserve the consistency of estimators. Furthermore, our
approach allowed to shed new theoretical light on known issues concerning tokenization, namely
inconsistency, ambiguity, tractability, and boundedness, by characterizing the latter through formal
properties of composable maps such as injectivity, multiplicativity, or finite decomposition. We
believe this framework will inform future empirical research and contribute to establishing and
developing theoretical and practical aspects of representation learning in NLP on solid grounds,
especially in cases where the reliance on a model requires to go beyond its mere performance,
and take into account properties such as formal guarantees, verification, theoretical soundness,
interpretability, or liability.

7 LIMITATIONS

Statistical and computational concerns are not the only concerns relevant to a foundational approach
to tokenization. In particular, this paper does not address structural concerns, i.e., structural properties
of the sets Σ∗ and ∆∗ such as their monoidal structure, the preservation of structural features through
τ and κ, or the important question of the choice of ∆. Algorithmic concerns related to the effective
computation of exact tokenizers have been left unaddressed, as well as theoretical concerns related to
interpretability and the possible relation to linguistic segmentation. Although the perspective adopted
here is purely formal, and as such, self-contained, some aspects alluded in this paper could benefit
from the insights given by experimental results. These points will be the object of future work.

REFERENCES

Ben Athiwaratkun, Shiqi Wang, Mingyue Shang, Yuchen Tian, Zijian Wang, Sujan Kumar Gonu-
gondla, Sanjay Krishna Gouda, Rob Kwiatowski, Ramesh Nallapati, and Bing Xiang. Token
alignment via character matching for subword completion, 2024.

John C. Baez and Tobias Fritz. A Bayesian characterization of relative entropy. CoRR, abs/1402.3067,
2014. URL http://arxiv.org/abs/1402.3067.

Lisa Beinborn and Yuval Pinter. Analyzing cognitive plausibility of subword tokenization. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 4478–4486, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.272. URL https:
//aclanthology.org/2023.emnlp-main.272.

Martin Berglund and Brink van der Merwe. Formalizing BPE tokenization. In Benedek Nagy and
Rudolf Freund (eds.), Proceedings of the 13th International Workshop on, Non-Classical Models of
Automata and Applications, Famagusta, North Cyprus, 18th-19th September, 2023, volume 388 of
Electronic Proceedings in Theoretical Computer Science, pp. 16–27. Open Publishing Association,
2023. doi: 10.4204/EPTCS.388.4.

Martin Berglund, Willeke Martens, and Brink van der Merwe. Constructing a BPE tokenization
DFA. In Szilárd Zsolt Fazekas (ed.), Implementation and Application of Automata, pp. 66–78,
Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-71112-1. URL https://link.
springer.com/chapter/10.1007/978-3-031-71112-1_5.

Kaj Bostrom and Greg Durrett. Byte pair encoding is suboptimal for language model pretraining.
In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 4617–4624, Online, November 2020. Association for Computational

10

http://arxiv.org/abs/1402.3067
https://aclanthology.org/2023.emnlp-main.272
https://aclanthology.org/2023.emnlp-main.272
https://link.springer.com/chapter/10.1007/978-3-031-71112-1_5
https://link.springer.com/chapter/10.1007/978-3-031-71112-1_5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Linguistics. doi: 10.18653/v1/2020.findings-emnlp.414. URL https://aclanthology.
org/2020.findings-emnlp.414.

Jacob Buckman and Graham Neubig. Neural lattice language models. Transactions of the Association
for Computational Linguistics, 6:529–541, 2018. doi: 10.1162/tacl_a_00036. URL https:
//aclanthology.org/Q18-1036.

Kris Cao and Laura Rimell. You should evaluate your language model on marginal likelihood over
tokenisations. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 2104–2114, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.161. URL https:
//aclanthology.org/2021.emnlp-main.161.

Nadezhda Chirkova, Germán Kruszewski, Jos Rozen, and Marc Dymetman. Should you marginalize
over possible tokenizations? In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pp. 1–12, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-short.1. URL https://aclanthology.org/2023.
acl-short.1.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John Wieting. Canine: Pre-training an effi-
cient tokenization-free encoder for language representation. Transactions of the Association
for Computational Linguistics, 10:73–91, 2022. doi: 10.1162/tacl_a_00448. URL https:
//aclanthology.org/2022.tacl-1.5.

Mathias Creutz and Krista Lagus. Unsupervised discovery of morphemes. In Proceedings of
the ACL-02 Workshop on Morphological and Phonological Learning, pp. 21–30. Association
for Computational Linguistics, July 2002. doi: 10.3115/1118647.1118650. URL https://
aclanthology.org/W02-0603.

Shuoyang Ding, Adithya Renduchintala, and Kevin Duh. A call for prudent choice of subword
merge operations in neural machine translation. In Mikel Forcada, Andy Way, Barry Haddow,
and Rico Sennrich (eds.), Proceedings of Machine Translation Summit XVII: Research Track, pp.
204–213, Dublin, Ireland, August 2019. European Association for Machine Translation. URL
https://aclanthology.org/W19-6620.

Miguel Domingo, Mercedes García-Martínez, Alexandre Helle, Francisco Casacuberta, and Manuel
Herranz. How much does tokenization affect neural machine translation? In Alexander Gelbukh
(ed.), Computational Linguistics and Intelligent Text Processing, pp. 545–554, Cham, 2023.
Springer Nature Switzerland. ISBN 978-3-031-24337-0. URL https://link.springer.
com/chapter/10.1007/978-3-031-24337-0_38.

Takuro Fujii, Koki Shibata, Atsuki Yamaguchi, Terufumi Morishita, and Yasuhiro Sogawa. How do
different tokenizers perform on downstream tasks in scriptio continua languages?: A case study
in Japanese. In Vishakh Padmakumar, Gisela Vallejo, and Yao Fu (eds.), Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research
Workshop), pp. 39–49, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-srw.5. URL https://aclanthology.org/2023.acl-srw.5.

Philip Gage. A new algorithm for data compression. C Users J., 12(2):23–38, feb 1994. ISSN
0898-9788. URL https://dl.acm.org/doi/abs/10.5555/177910.177914.

Edward Gow-Smith, Harish Tayyar Madabushi, Carolina Scarton, and Aline Villavicencio. Im-
proving tokenisation by alternative treatment of spaces. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 11430–11443, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.786. URL
https://aclanthology.org/2022.emnlp-main.786.

Edouard Grave, Sainbayar Sukhbaatar, Piotr Bojanowski, and Armand Joulin. Training hybrid
language models by marginalizing over segmentations. In Anna Korhonen, David Traum, and Lluís

11

https://aclanthology.org/2020.findings-emnlp.414
https://aclanthology.org/2020.findings-emnlp.414
https://aclanthology.org/Q18-1036
https://aclanthology.org/Q18-1036
https://aclanthology.org/2021.emnlp-main.161
https://aclanthology.org/2021.emnlp-main.161
https://aclanthology.org/2023.acl-short.1
https://aclanthology.org/2023.acl-short.1
https://aclanthology.org/2022.tacl-1.5
https://aclanthology.org/2022.tacl-1.5
https://aclanthology.org/W02-0603
https://aclanthology.org/W02-0603
https://aclanthology.org/W19-6620
https://link.springer.com/chapter/10.1007/978-3-031-24337-0_38
https://link.springer.com/chapter/10.1007/978-3-031-24337-0_38
https://aclanthology.org/2023.acl-srw.5
https://dl.acm.org/doi/abs/10.5555/177910.177914
https://aclanthology.org/2022.emnlp-main.786

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 1477–1482, Florence, Italy, July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1143. URL https://aclanthology.org/P19-1143.

Jin Guo. Critical tokenization and its properties. Computational Linguistics, 23(4):569–596, 1997.
URL https://aclanthology.org/J97-4004.

Awni Hannun, Vineel Pratap, Jacob Kahn, and Wei-Ning Hsu. Differentiable weighted finite-state
transducers, 2020. URL https://arxiv.org/abs/2010.01003.

Valentin Hofmann, Janet Pierrehumbert, and Hinrich Schütze. Superbizarre is not superb: Deriva-
tional morphology improves BERT’s interpretation of complex words. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 3594–3608, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.279. URL
https://aclanthology.org/2021.acl-long.279.

Jue Hou, Anisia Katinskaia, Anh-Duc Vu, and Roman Yangarber. Effects of sub-word segmentation
on performance of transformer language models. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 7413–7425, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.459. URL https://aclanthology.org/2023.
emnlp-main.459.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using very large
target vocabulary for neural machine translation. In Chengqing Zong and Michael Strube (eds.),
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 1–10, Beijing, China, July 2015. Association for Computational Linguistics. doi: 10.3115/v1/
P15-1001. URL https://aclanthology.org/P15-1001.

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition. Third edition draft
edition, 2024. URL https://web.stanford.edu/~jurafsky/slp3/.

Carina Kauf and Anna Ivanova. A better way to do masked language model scoring. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 925–935, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-short.80.
URL https://aclanthology.org/2023.acl-short.80.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej Bojar,
Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical machine
translation. In Sophia Ananiadou (ed.), Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions,
pp. 177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics.
URL https://aclanthology.org/P07-2045.

Taku Kudo. Subword regularization: Improving neural network translation models with multiple
subword candidates. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 66–75, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1007. URL https://aclanthology.org/P18-1007.

Minh-Thang Luong and Christopher D. Manning. Achieving open vocabulary neural machine trans-
lation with hybrid word-character models. In Katrin Erk and Noah A. Smith (eds.), Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 1054–1063, Berlin, Germany, August 2016. Association for Computational Linguistics.
doi: 10.18653/v1/P16-1100. URL https://aclanthology.org/P16-1100.

12

https://aclanthology.org/P19-1143
https://aclanthology.org/J97-4004
https://arxiv.org/abs/2010.01003
https://aclanthology.org/2021.acl-long.279
https://aclanthology.org/2023.emnlp-main.459
https://aclanthology.org/2023.emnlp-main.459
https://aclanthology.org/P15-1001
https://web.stanford.edu/~jurafsky/slp3/
https://aclanthology.org/2023.acl-short.80
https://aclanthology.org/P07-2045
https://aclanthology.org/P18-1007
https://aclanthology.org/P16-1100

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals, and Wojciech Zaremba. Addressing the
rare word problem in neural machine translation. In Chengqing Zong and Michael Strube (eds.),
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
11–19, Beijing, China, July 2015. Association for Computational Linguistics. doi: 10.3115/v1/
P15-1002. URL https://aclanthology.org/P15-1002.

Sabrina J. Mielke and Jason Eisner. Spell once, summon anywhere: A two-level open-vocabulary
language model. AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019. ISBN 978-1-57735-809-1.
doi: 10.1609/aaai.v33i01.33016843. URL https://doi.org/10.1609/aaai.v33i01.
33016843.

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias Gallé, Arun
Raja, Chenglei Si, Wilson Y. Lee, Benoît Sagot, and Samson Tan. Between words and characters:
A brief history of open-vocabulary modeling and tokenization in NLP. CoRR, abs/2112.10508,
2021. URL https://arxiv.org/abs/2112.10508.

Anthony Moi and Nicolas Patry. HuggingFace’s Tokenizers, April 2023. URL https://github.
com/huggingface/tokenizers.

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and Edoardo Maria Ponti. Efficient transformers
with dynamic token pooling. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 6403–6417, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.353. URL https://aclanthology.org/
2023.acl-long.353.

David D. Palmer. Tokenisation and sentence segmentation. In Robert Dale, Hermann Moisl, and
Harold Somers (eds.), Handbook of Natural Language Processing, chapter 2, pp. 24–25. Marcel
Dekker, 2000.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models, 2022.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita. BPE-dropout: Simple and effective subword
regularization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1882–1892,
Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.
170. URL https://aclanthology.org/2020.acl-main.170.

Nived Rajaraman, Jiantao Jiao, and Kannan Ramchandran. Toward a theory of tokenization in LLMs,
2024.

Thomas Reps. “Maximal-munch” tokenization in linear time. ACM Trans. Program. Lang. Syst.,
20(2):259–273, mar 1998. ISSN 0164-0925. doi: 10.1145/276393.276394. URL https:
//doi.org/10.1145/276393.276394.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin Kirchhoff. Masked language model scoring.
In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 2699–2712, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.240. URL
https://aclanthology.org/2020.acl-main.240.

Craig W. Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pinter, and
Chris Tanner. Tokenization is more than compression, 2024.

Mike Schuster and Kaisuke Nakajima. Japanese and Korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5149–5152, 2012. doi:
10.1109/ICASSP.2012.6289079.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin,

13

https://aclanthology.org/P15-1002
https://doi.org/10.1609/aaai.v33i01.33016843
https://doi.org/10.1609/aaai.v33i01.33016843
https://arxiv.org/abs/2112.10508
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://aclanthology.org/2023.acl-long.353
https://aclanthology.org/2023.acl-long.353
https://aclanthology.org/2020.acl-main.170
https://doi.org/10.1145/276393.276394
https://doi.org/10.1145/276393.276394
https://aclanthology.org/2020.acl-main.240

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162.
URL https://aclanthology.org/P16-1162.

Xinying Song, Alex Salcianu, Yang Song, Dave Dopson, and Denny Zhou. Fast WordPiece
tokenization. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 2089–2103, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.160. URL
https://aclanthology.org/2021.emnlp-main.160.

Omri Uzan, Craig W. Schmidt, Chris Tanner, and Yuval Pinter. Greed is all you need: An evaluation
of tokenizer inference methods, 2024.

Bart van Merriënboer, Amartya Sanyal, Hugo Larochelle, and Yoshua Bengio. Multiscale sequence
modeling with a learned dictionary, 2017. URL https://arxiv.org/abs/1707.00762.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M. Rush. MambaByte:
Token-free Selective State Space Model, 2024. URL https://arxiv.org/abs/2401.
13660.

Yonghui Wu, Mike Schuster, Z. Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson,
Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason R. Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and Jeffrey Dean. Google’s
neural machine translation system: Bridging the gap between human and machine translation.
ArXiv, abs/1609.08144, 2016. URL https://api.semanticscholar.org/CorpusID:
3603249.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. ByT5: Towards a token-free future with pre-trained byte-to-byte
models. Transactions of the Association for Computational Linguistics, 10:291–306, 2022. doi:
10.1162/tacl_a_00461. URL https://aclanthology.org/2022.tacl-1.17.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Mrinmaya Sachan, and Ryan Cotterell. To-
kenization and the noiseless channel. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 5184–5207, Toronto, Canada, July 2023a. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.284. URL https:
//aclanthology.org/2023.acl-long.284.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Tim Vieira, Mrinmaya Sachan, and Ryan Cotterell.
A formal perspective on byte-pair encoding. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp. 598–614,
Toronto, Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-acl.38. URL https://aclanthology.org/2023.findings-acl.38.

8 APPENDIX

8.1 PROOFS

Lemma 3.1. Let {pn} be a sequence of probability distributions over a countable set X that
converges pointwise to a probability distribution p. Then limn→∞

∑
x∈X |pn(x)− p(x)| = 0.

Proof. Fatou’s lemma applied to X with the counting measure implies that for any sequence of
nonnegative functions {fn} on X ,∑

x∈X

lim inf
n→∞

fn(x) ≤ lim inf
n→∞

∑
x∈X

fn(x). (2)

14

https://aclanthology.org/P16-1162
https://aclanthology.org/2021.emnlp-main.160
https://arxiv.org/abs/1707.00762
https://arxiv.org/abs/2401.13660
https://arxiv.org/abs/2401.13660
https://api.semanticscholar.org/CorpusID:3603249
https://api.semanticscholar.org/CorpusID:3603249
https://aclanthology.org/2022.tacl-1.17
https://aclanthology.org/2023.acl-long.284
https://aclanthology.org/2023.acl-long.284
https://aclanthology.org/2023.findings-acl.38

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We’ll apply this to fn := pn + p − |pn − p|. First, note that since limn→∞ pn(x) = p(x), we
have lim infn→∞ fn(x) = p(x) + p(x) − 0 = 2p(x) so the left hand side of equation 2 becomes∑

x∈X 2p(x) = 2. Therefore,

2 ≤ lim inf
n→∞

∑
x∈X

fn(x)

= lim inf
n→∞

∑
x∈X

pn(x) + p(x)− |pn(x)− p(x)|

= lim inf
n→∞

∑
x∈X

pn(x) +
∑
x∈X

p(x)−
∑
x∈X

|pn(x)− p(x)|

= lim inf
n→∞

1 + 1−
∑
x∈X

|pn(x)− p(x)|

= 2− lim sup
n→∞

∑
x∈X

|pn(x)− p(x)|.

It follows that lim supn→∞
∑

x∈X |pn(x)−p(x)| ≤ 0. So limn→∞
∑

x∈X |pn(x)−p(x)| = 0.

Corollary 3.0.1. Let {pn} be a sequence of probability distributions over a countable set X that
converges pointwise to a probability distribution p. Then {pn} → p uniformly.

Proof. Since the sum of nonnegative numbers is always greater than any particular term in the sum and
limn→∞

∑
x∈X |pn(x)− p(x)| = 0, we can conclude that the sequence {pn} → p uniformly.

Lemma 3.2. Let f be a stochastic map from X to Y , and {pn} be an estimator for a probability
distribution p on X . Then fpn is an estimator for the probability distribution fp on Y .

Proof. Fix y ∈ Y . We will show that {fpn(y)} → fp(y). By Lemma 3.1, we have that
limn→∞

∑
x∈X |pn (x)− p (x)| = 0. Therefore,

lim
n→∞

|fpn(y)− fp(y)| = lim
n→∞

∣∣∣∣∣∑
x

f(y | x)pn(x)−
∑
x

f(y | x)p(x)

∣∣∣∣∣ (3)

≤ lim
n→∞

∑
x

f(y | x) |pn (x)− p (x)| (4)

≤ lim
n→∞

∑
x

|pn (x)− p (x)| (5)

= 0. (6)

Theorem 3.1 (Fundamental Principle of Tokenization). Given a reference probability distribution
p⋆ over Σ∗, a tokenizer T = (τ, κ) from Σ∗ to ∆∗, and a consistent estimator {qn} of the image
reference distribution q⋆ = τp⋆, the sequence {κqn} is a consistent estimator of p⋆ if and only if
κτp⋆ = p⋆.

Proof. By hypothesis, {qn} → q⋆ and by definition q⋆ = τp⋆. By Lemma 3.2, applying κ to both
sides, we have that {κqn} → κq⋆ and so

{κqn} → κτp⋆.

Therefore, if κτp⋆ = p⋆ we have {κqn} → p⋆. Conversely, if {κqn} → p⋆ we have both {κqn} →
p⋆ and {κqn} → κτp⋆ and so by the uniqueness of limits, κτp⋆ = p⋆.

Proposition 3.1. A tokenizer T = (τ, κ) from Σ∗ to ∆∗ is exact if and only if it is consistent with
respect to every probability distribution over Σ∗.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. Exact means κτ = idΣ∗ hence κτp = p for every probability distribution p on Σ∗. To prove
the other direction, suppose that κτp = p for every p on Σ∗. Fix an arbitrary σ ∈ Σ∗. Let pσ be the
point mass distribution on Σ∗ concentrated on σ. So pσ(σ) = 1 and pσ(σ

′) = 0 for any σ′ ̸= σ. By
hypothesis, pσ = κτpσ. Apply to σ to get 1 = κτpσ(σ). The right hand side, as the pushforward
of pσ via κτ , says 1 = pσ(κτ(σ)). Since pσ takes the value 1 at only one point, it follows that the
argument κτ(σ) = σ. Since σ was arbitrary, we conclude that κτ = idΣ∗ , i.e., the tokenizer (τ, κ)
is exact.

Proposition 3.2. Let T = (τ, κ) be an exact tokenizer from Σ∗ to ∆∗. Then κ is deterministic on the
support of τ (or, κ is deterministic “τ almost everywhere.”)

Proof. Assume (τ, κ) is exact, i.e., κτ = idΣ∗ , and let σ ∈ Σ∗.

Since
∑

δ∈∆∗ τ(δ | σ) = 1 and κτ(σ|σ) = idΣ∗(σ | σ) = 1. We obtain:

0 =
∑
δ∈∆∗

τ(δ | σ)− κτ(σ|σ) (7)

=
∑
δ∈∆∗

τ(δ | σ)−
∑
δ∈∆∗

κ(σ | δ)τ(δ | σ) (8)

=
∑
δ∈∆∗

τ(δ | σ)− κ(σ | δ)τ(δ | σ) (9)

=
∑
δ∈∆∗

τ(δ | σ)(1− κ(σ | δ)). (10)

Since Eq. (10) is a sum of nonnegative terms that equals zero, each terms must be zero. It follows that
if τ(δ | σ) > 0 for some δ (e.g.: δ is in the support of τ) then then 1−κ(σ | δ) = 0 ⇔ κ(σ | δ) = 1.
From which it follows that

κ(σ′ | δ) =
{
1 if σ′ = σ

0 if σ′ ̸= σ.
.

Proposition 5.1. Let T = (τ, κ) be a multiplicative tokenizer model whose decoder’s kernel is trivial.
If κ(δ1pδ2p . . . pδm) = σ1 · σ2 · . . . · σn then m ≤ n.

Proof. We can reason by induction. The property is true when m = 1 since 1 is the minimun
length of any possible image of κ. Assume it is true for m = k and let δ = δ1p . . . pδk pδk+1. Then
κ(δ) = κ(δ1p . . . pδk) · κ(δk+1) = σ1 · . . . · σr · σr+1 · . . . · σr+s, where κ(δk+1) = σr+1 · . . . · σr+s.
Since r ≥ k and s ≥ 1, we have that r + s ≥ k + 1.

8.2 EXAMPLES

Example 8.1. Consider the simple configuration represented in Fig. 1, where both τ and κ are
deterministic maps. Let p⋆(σ1) = 0.2 and p⋆(σ2) = p⋆(σ3) = 0.4, with p⋆(σi) = 0 for i > 3.
For q⋆ = τp⋆, we have, therefore, q⋆(δ1) = 0.2, q⋆(δ2) = 0, and q⋆(δ3) = 0.8, with q⋆(δi) = 0
for i > 3, and hence κτp⋆(σ1) = 0 ̸= 0.2, κτp⋆(σ2) = 0.2 ̸= 0.4, and κτp⋆(σ1) = 0.8 ̸= 0.4.
Assuming {qn} is a consistent estimator of q⋆, the pushforward of qn through κ (i.e., κqn) would
result in an inconsistent estimation of p⋆. Notice that the consistency of the tokenizer is relative to the
distribution. Relative to a different distribution p in Σ∗, where, for instance, p(σ1) = p(σ2) = 0 and
p = p⋆ otherwise, the tokenizer specified in Fig. 1 is consistent.

Example 8.2. Take, for instance, a strictly bijective tokenizer such as BPE or WordPiece, with
κ performing concatenation of the token maps in the usual way. Let Σ = {t,h,e} and ∆ =
{t,h,e,th,he}. In this minimal configuration, it is easy to see that κ(tphpe) = κ(tphe) =
κ(thpe) = t · h · e ∈ Σ∗. However, BPE or WordPiece being strictly bijective tokenizers, τ can
only map the value of κ to at most one of the latter’s arguments, say τ(t · h · e) = thpe. We then
have that τ(κ(tphe)) ̸= tphe (and likewise for tphpe). If the estimator happens to place nonzero
probability mass on any of the latter two token sequences, the model will exhibit spurious ambiguity.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

σ1

σ2

σ3

...

δ1

δ2

δ3

...

τ

κ

Σ∗ ∆∗

p⋆(σ1) = 0.2 q⋆(δ1) = 0.2 κτp⋆(σ1) = 0

p⋆(σ2) = 0.4
τ−−−−→ q⋆(δ2) = 0

κ−−−−→ κτp⋆(σ2) = 0.2
p⋆(σ3) = 0.4 q⋆(δ3) = 0.8 κτp⋆(σ3) = 0.8

Figure 1: Example of an inconsistent tokenizer with τ represented in violet and κ represented in teal.

Example 8.3. Let Σ = ∆ = {0,1}, and define Tunc = (τunc, κunc) as a deterministic model in the
following way:

τunc(σ) =


σp1, if σ describes a valid

Turing Machine followed by
an input for which it halts.

σp0, otherwise.

κunc(δ) =

{
ε, if δ ∈ ∆.
σ, otherwise, where δ = σpδ.

Significantly, Tunc is not only well-defined but also exact and therefore consistent for any language
model p over Σ∗. However, τunc is famously an uncomputable function, and hence Tunc is an
uncomputable tokenizer.

17

	Introduction
	Preliminaries
	Formal Languages, Estimators, and Stochastic Maps
	Notation and Terminology

	A Formal Framework for Tokenization
	Statistical Concerns: Inconsistency and Ambiguity
	Computational Concerns: Tractability and Boundedness
	Conclusion
	Limitations
	Appendix
	Proofs
	Examples

