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ABSTRACT

Learning generalizable manipulation policies hinges on data, yet robot manipula-
tion data is scarce and often entangled with specific embodiments, making both
cross-task and cross-platform transfer difficult. We tackle this challenge with task-
agnostic embodiment modeling, which learns embodiment dynamics directly
from task-agnostic action data and decouples them from high-level policy learning.
By focusing on exploring all feasible actions of the embodiment to capture what is
physically feasible and consistent, task-agnostic data takes the form of independent
image-action pairs with the potential to cover the entire embodiment workspace,
unlike task-specific data, which is sequential and tied to concrete tasks. This data-
driven perspective bypasses the limitations of traditional dynamics-based modeling
and enables scalable reuse of action data across different tasks. Building on this
principle, we introduce AnyPos, a unified pipeline that integrates large-scale auto-
mated task-agnostic exploration with robust embodiment modeling through inverse
dynamics learning. AnyPos generates diverse yet safe trajectories at scale, then
learns embodiment representations by decoupling arm and end-effector motions
and employing a direction-aware decoder to stabilize predictions under distribution
shift, which can be seamlessly coupled with diverse high-level policy models. In
comparison to the standard baseline, AnyPos achieves a 51% improvement in test
accuracy. On manipulation tasks such as operating a microwave, toasting bread,
folding clothes, watering plants, and scrubbing plates, AnyPos raises success rates
by 30–40% over strong baselines. These results highlight data-driven embodi-
ment modeling as a practical route to overcoming data scarcity and achieving
generalization across tasks and platforms in visuomotor control.

1 INTRODUCTION

Building embodied agents that can perceive, reason, and act in complex physical environments
remains a central goal of robotics and AI. Vision–language–action (VLA) models such as RT-
X O’Neill et al. (2024), Octo Ghosh et al. (2024), RDT Liu et al. (2024), and OpenVLA Kim et al.
(2024) advance this goal by learning task-conditioned visuomotor policies from paired demonstrations,
achieving impressive results in tasks like pick-and-place or instruction following Kim et al. (2024);
Liu et al. (2024). Yet, their ability to generalize remains fundamentally constrained by data. Robotic
datasets are expensive to curate, often tightly coupled to specific hardware, and predominantly
task-specific: they concentrate on narrow goal distributions (e.g., stacking blocks, opening doors)
within fixed embodiments. Such data under-covers the state–action space, limits behavioral diversity,
and fails to transfer across morphologies—an issue widely documented in benchmarks such as
ManiSkill2 Gu et al. (2023), RT-X O’Neill et al. (2024), and RoboVerse Geng et al. (2025), and
underscored by large-scale efforts like Bridge Data Ebert et al. (2022).

In this work, we take a complementary route through task-agnostic embodiment modeling. Rather
than supervising policies with goal labels, we exploit trajectories that capture the task-invariant
structure of body–world interaction—kinematics, reachability, and contact dynamics. This reframes
the learning problem from “what actions should be taken to accomplish a labeled goal ” to “what
actions are physically feasible and consistent.” By shifting focus to feasibility through the leverage
of diverse embodiment-specific data, embodiment modeling supplies reusable priors that expand
coverage of the state–action space, reduce dependence on narrow goal annotations, and transfer
across tasks, embodiments, and viewpoints.
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Figure 1: AnyPos illustration. We obtain a task-agnostic dataset covering the entire feasible cubic
workspace of robotic arms for embodiment modeling. Input to AnyPos: Images containing the
robotic arms. Output of AnyPos: The action/joint position values inferred from the image.

Crucially, embodiment data and task-specific data are not substitutes but complements. Unlabeled
embodiment-specific trajectories capture what is feasible, supporting dynamics and inverse mappings
(e.g., p(st+1 | st, at), p(at | st, st+1)), while goal-conditioned demonstrations capture what is
desired (e.g., p(at | st, g) or p(at | st, ℓ)). Decoupling feasibility from desirability yields two
benefits: (1) few-shot adaptation, where a lightweight goal module can be trained atop a stable
embodiment backbone, and (2) rollout stability, as long-horizon predictions are gated by feasibility
checks learned from task-agnostic data. In this framing, labels are reserved for which/why, while
embodiment modeling supplies the how, reducing data costs and enabling scalable generalization
across tasks and platforms.

Following the above motivation, we instantiate task-agnostic embodiment modeling with AnyPos,
a unified framework that learns reusable embodiment priors transferable across tasks. AnyPos
emphasizes feasibility—“what actions are physically consistent and executable”—rather than direct
goal achievement, and is instantiated through a two-step pipeline complemented by an extensible
design for coupling with higher-level policies, as demonstrated in Fig. 1.

First, we automate task-agnostic exploration to collect diverse, safety-aware, and feasible trajectories
without relying on goal labels or human teleoperation. To fully cover the manipulator’s 3D workspace,
we employ a three-stage approach. Initially, we construct a mapping from end-effector positions
to feasible joint positions using either reinforcement learning or inverse kinematics. Next, the
embodiment-specific mapping guides a uniform exploration of the workspace. Finally, we further
enrich the collected data through orientation augmentation for the wrist joints. This procedure yields
large-scale, physically grounded ⟨image, action⟩ pairs that expand the state–action space beyond
goal-specific demonstrations. Second, we learn inverse dynamics from these unlabeled rollouts using
lightweight inductive biases that stabilize training on noisy, task-agnostic data. To be more specific,
the model takes in an image and predicts the actions of the robot depicted in it. Concretely, we
decouple the robot into separate components (e.g., each arm and end-effector) to suppress irrelevant
joints and disentangle cross-arm effects, and we employ a direction-aware decoder that aligns visual
features with plausible motion directions, improving robustness under distribution shift. Together,
AnyPos replaces supervision about “what actions should be taken to achieve a goal” with supervision
about “what is physically feasible and consistent.” The resulting embodiment backbone is modular:
it can be seamlessly coupled with various high-level policy models—such as goal-conditioned or
video-conditioned models—enabling few-shot adaptation and stable rollout without redesigning the
low-level dynamics.

Results. Our experiments demonstrate that this perspective translates into both stronger embodiment
modeling and tangible task-level gains. AnyPos achieves significantly higher accuracy in action
prediction on challenging test sets with unseen skills and objects, surpassing standard baselines
by over 51%. When deployed to real robots, the learned embodiment backbone further improves
manipulation success rates by more than 30% compared to models trained on human-collected
datasets. Moreover, AnyPos is modular: when coupled with complementary models such as diffusion-
based video generation models, it extends naturally to diverse tasks including basket lifting, clicking,
and pick-and-place with unseen objects. These results highlight the advantage of framing embodiment
modeling as learning what is physically feasible and consistent, and establish AnyPos as a scalable
foundation for generalizable visuomotor control.
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2 RELATED WORK

Embodied Data Collection. Data collection for embodied AI typically falls into three categories:
simulation, real robots, and internet videos. Simulation-based approaches such as RoboTwin (Mu
et al., 2024), ManiBox (Tan et al., 2024), and AgiBot DigitalWorld (Zhang et al., 2025) enable
scalable collection at low cost, but face persistent Sim2Real gaps and limited physical fidelity on
complex manipulation tasks. Real-world pipelines, including Diffusion Policy (Chi et al., 2023),
Mobile Aloha (Fu et al., 2024), recent VLAs (Liu et al., 2024; O’Neill et al., 2024; Kim et al.,
2024), and large-scale datasets (Khazatsky et al., 2024; Ebert et al., 2022; Wu et al., 2024; AgiBot-
World-Contributors et al., 2025), demonstrate strong practical capabilities but remain expensive
and constrained by task-specific action labels, which hinder generalization across embodiments.
Internet videos, by contrast, offer abundant priors on physical interactions and motion patterns, and
early work (Du et al., 2023; Hu et al., 2024; Cheang et al., 2024; Zhou et al., 2024) shows promise
in leveraging them. Yet connecting raw video to high-precision action generation is still an open
challenge.

Embodied Policies and VLAs. Recent embodied manipulation policies such as ACT (Fu et al., 2024)
and Diffusion Policy (Chi et al., 2023; Ze et al., 2024; Ren et al., 2024) have achieved success in real-
world tasks, learning direct mappings from visual input to action trajectories. However, these policies
are largely single-task and lack explicit language grounding or multi-task scalability. To address this,
vision-language-action (VLA) models (Liu et al., 2024; Zitkovich et al., 2023; Brohan et al., 2022;
Ghosh et al., 2024; Kim et al., 2024; Liu et al., 2025; Ding et al., 2025; Li et al., 2024a; O’Neill et al.,
2024; Pertsch et al., 2025; Black et al., 2024) introduce natural language as a task-conditioning signal,
enabling broader instruction following and multi-task generalization. Despite their promise, VLAs
depend on large-scale, task-conditioned action datasets for each embodiment. Current datasets remain
relatively small and embodiment-specific, leaving persistent gaps in generalization and limiting
robustness under morphology shifts (O’Neill et al., 2024).

Embodiment Modeling for Manipulation. A key gap is embodiment modeling—learning
morphology-specific feasibility priors that transcend tasks. Cross-embodiment datasets and generalist
policies (Open-X Embodiment, RT-X, Octo) improve transfer but still entangle task semantics with
embodiment constraints (O’Neill et al., 2024; Zitkovich et al., 2023; Ghosh et al., 2024). World-model
and generative lines (UniSim, RoboDreamer) and planners built on predicted futures (UniPi, Gen2Act,
VPP, Seer/PIDM) broaden flexibility but face inconsistencies across action spaces and reliance on
task-labeled actions (Yang et al., 2024; Zhou et al., 2024; Du et al., 2023; Bharadhwaj et al., 2024; Hu
et al., 2024; Tian et al., 2024). Generalist agents and curated multi-env datasets (RoboCat, BridgeData
V2) report cross-robot adaptation, yet require demonstrations and platform tuning (Bousmalis et al.,
2024; Walke et al., 2023). These limitations motivate task-agnostic embodiment modeling: learning a
reusable inverse-dynamics prior from unlabeled exploration that decouples feasibility from semantics
and supports precise, stable control across morphologies.

3 METHOD

3.1 TASK-AGNOSTIC EMBODIMENT MODELING

We consider language-conditioned robotic manipulation with observation x ∈ X , instruction ℓ ∈ L,
and action a ∈ A. Here, X ,A ⊆ Rd and L denote the observation, action, and language command
spaces, respectively, where d denotes the dimensionality of the action. Here, X and A ⊆ Rd denote
the observation space and the action space, respectively, where d denotes the dimensionality of the
action. For example, for a 6-DoF dual-arm manipulator with two grippers, A ⊆ R14.

The agent learns a policy π that takes x and ℓ and rolls out a to complete the task. Standard VLA
models learn temporally extended policies pθ(aT+1:T+k | xT−H+1:T , ℓ),

1 where θ are model
parameters, T is the current timestep, k is the action chunk size (Zhao et al., 2023), and H is the
history window, which is typically set to 1. Given an expert dataset Dexpert, the training objective
maximizes

max
θ

EaT+1:T+k,xT ,ℓ∼Dexpert pθ(aT+1:T+k | xT , ℓ). (1)

1For clarity, we denote the model’s action at timestep i− 1 as ai, which corresponds to the joint position at
timestep i.
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However, due to the high-dimensional nature of (L,Ak), such direct modeling is data-hungry and
brittle.

Task-agnostic factorization. Following a feasibility-first view, we factor action prediction by
integrating over all possible future:

p(aT+1:T+k | xT , ℓ) =

∫
p(xT+1:T+k | xT , ℓ) p(aT+1:T+k | xT+1:T+k) dxT+1:T+k (2)

= ExT+1:T+k∼p(xT+1:T+k|xT ,ℓ)

[
T+k∏

i=T+1

p(ai | xi−1,xi)

]
. (3)

For position-controlled robots, ai depends solely on xi, so p(ai | xi−1,xi) reduces to p(ai | xi).
Even if the action space includes joint velocities, conditioning on xi−1 suffices. This yields a
decomposition into task-specific predicted images and task-agnostic actions:

p(aT+1:T+k | xT , ℓ)︸ ︷︷ ︸
task-specific actions

=ExT+1:T+k∼p(xT+1:T+k|xT ,ℓ)

 T+k∏
i=T+1

p(ai | xi−1,xi)︸ ︷︷ ︸
task-agnostic actions

 . (4)

AnyPos: Modular Embodiment Modeling. We introduce AnyPos, a framework for task-agnostic
embodiment modeling that separates semantic intent from physical feasibility. At its core, an
action prediction model Fδ is pre-trained on large-scale, unlabeled exploration data Dagnostic =
{(xi−1,ai,xi)}. The model learns to map observation transitions (xi−1,xi) or observation xi into
feasible actions ai by minimizing an action-space discrepancy:

min
δ

E(xi,ai)∼Dagnostic d
(
ai,Fδ(xi−1,xi)

)
, (5)

where d : A × A → R+ is an action-space metric. Through this pre-training on a broad range of
feasible actions, the model Fδ acquires a fundamental ability to generalize across the action space,
producing smooth, physically valid behaviors (e.g., collision avoidance, stable motions) independent
of downstream tasks—effectively serving as a form of embodiment modeling.

This universal feasibility prior can be seamlessly coupled with high-level policies (e.g., video
generation models, VLAs, world models) that predict task-aligned future features, via co-training or
model pipelines; Fδ then grounds these predictions into executable actions. By learning a "shared
motor library" (i.e., prior knowledge of feasible action space) from large-scale, inexpensive, unlabeled
action data, AnyPos reduces reliance on costly human demonstrations, and enables generalist policies
to adapt to new skills and tasks with strong, zero-shot generalization.

3.2 AUTOMATED EXPLORATION FOR TASK-AGNOSTIC ACTION DATA COLLECTION

To instantiate the task-agnostic factor , we need large volumes of diverse yet safe trajectories collected
without teleoperation or goal labels. Pure joint-space randomization underperforms in practice,
yielding poor coverage and frequent self-collisions (Fig. 7). AnyPos reframes exploration as feasible-
action synthesis: uniformly sample end-effector (EEF) targets in workspace and project each target
to a collision-free joint configuration, thereby turning uniform task-space coverage into physically
grounded actions. While this projection could be achieved using either IK or an RL policy, we adopt
a task-agnostic RL policy to avoid the physically infeasible solutions that IK can sometimes produce.
Notably, the RL policy is used only for projecting EEF targets to joint positions.

Let the reachable EEF workspace be a bounded volume W ⊂ R3 and the action space be joint
positions A ⊂ Rd. AnyPos learns fRL : W → A that maps a target w ∈ W to a feasible action.
We adopt position control and simplify p(ai | xi−1,xi) to p(ai | xi); extensions to velocity/torque
control are analogous. A policy πθ(a | w) is trained in simulation with PPO to minimize target error
subject to safety:

r(a;w) = −∥w −wtarget∥22 − γ ϕcoll(a) − η ϕlimit(a),

where x(a) is the forward-kinematics EEF position, ϕcoll penalizes self/scene proximity, and ϕlimit
penalizes joint/velocity violations. At rollout, samples from W are projected to feasible actions by
fRL and executed to log (xi,ai,xi+1).

4
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The exploration process maintains a voxel grid over W and selects EEF targets using low-discrepancy
sequences with inverse-visit reweighting, ensuring balanced coverage and a curriculum that expands
gradually from a compact core to the full workspace. Each target is then projected into a constraint-
compliant joint configuration via fRL, guaranteeing feasibility under kinematic and safety constraints.
To enrich contact diversity, orientation-related joints are sampled from Awrist and appended to the RL
output, yielding aaug = [ fRL(w) ∥awrist ]. Execution is further protected by a real-time safety shield
that enforces bounded-rate increments, distance margins, and actuator-current thresholds.

Bimanual embodiments. For dual-arm platforms, we introduce a minimal spatial prior via a random
separating plane B that partitions W into (WL,WR). Independently sample wL ∼ U(WL) and
wR ∼ U(WR), map them to (aL,aR) with fRL, and apply coupled collision checks; violations
trigger resampling. This preserves breadth while preventing inter-arm interference.

AnyPos factorizes exploration into workspace coverage and feasibility projection. Uniform sampling
in W guarantees broad behavioral support, while fRL anchors each sample in physical constraints.
Orientation enrichment expands contact modes without destabilizing reachability, and the bimanual
prior injects just enough coordination to avoid collisions while keeping data task-agnostic. The result
is dense, collision-aware ⟨image, action⟩ pairs that faithfully encode embodiment constraints.

Embodiment-aware reuse. AnyPos depends only on the robot URDF and kinematics, not on camera
intrinsics/extrinsics or scene semantics. When sensors or viewpoints change, we simply replay
workspace sampling and feasibility projection to regenerate trajectories consistent with the new setup,
preserving embodiment constraints and enabling rapid data refresh across platforms.

Compared to naive joint-space sampling, AnyPos attains markedly better workspace coverage with
substantially fewer collisions, and scales seamlessly from single- to dual-arm systems under the same
policy and safety shield. The resulting task-agnostic dataset forms a strong prior for downstream
policy learning, where semantics can be injected later through video or instruction alignment.

3.3 EMBODIMENT MODELING AND APPLYING TASK SEMANTICS

Minor Movement,
Fatal Difference!

Success

���� � =
 . . . , �. ��, − �. ��, �. ��, . . . 

���� � =
 . . . , �. ��, − �. ��, − �. ��, . . . 

Failure

Figure 2: A visual example of the high preci-
sion requirements for robotic manipulation.
A minor movement in just one dimension
can lead to the failure of the entire operation.
This level of precision presents a formidable
challenge for action estimation.

We train our model Fδ on task-agnostic dataset Dagnostic
to learn a feasibility prior:

min
δ

E(xi,ai)∼Dagnostic d
(
ai, Fδ(xi−1,xi)

)
, (6)

where d(·, ·) is a regression loss. When the entire arm
configuration is visible and the platform uses position
control, we adopt a deterministic mapping Fδ : X →A;
otherwise we condition on two frames, Fδ : X 2→A with
inputs (xi−1,xi).

3.3.1 TRAINING WITH TASK-AGNOSTIC DATA

Let x denote multi-view observations (e.g., overhead and
wrist cameras) and a = (a1, . . . , ad) the joint configura-
tion. For dual 6-DoF arms with grippers, d = 14. Direct
monolithic regression is fragile due to doubled output di-
mensionality, combinatorial joint hypotheses, cross-arm
visual interference, and the high precision (See Fig. 2)
required for reliable replay. We therefore combine arm-
decoupled estimation with a Direction-Aware Decoder
(DAD).

Arm-decoupled estimation. A heuristic segmentation
Φ : x→(xL,xR) (initialized by pedestal/shoulder seeds
with a split fallback under occlusion) isolates each arm;
we then regress joints independently:

x
Φ−−→ (xL,xR)

fL, fR−−−−→ â =
[
fL(xL) ; fR(xR)

]
,

with grippers predicted by wrist-centric heads. Decoupling reduces cross-arm interference (see
Appendix A.2)) and narrows the hypothesis space.
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Direction-Aware Decoder (DAD). Using a DINOv2-with-registers encoder (DINOv2-Reg) for
clean, spatially faithful features, DAD targets sub-0.06 joint error (on a 3.0-unit scale) via three com-
ponents: (i) Multi-scale dilated convs Fd = σ(Cd(Y )) aggregated as F =

⊕
d∈D Fd; (ii) Deformable

convs (Dai et al., 2017) with offsets/masks (∆p,m) = ϕ(F ), producing Y ′ = Cdef(F ; ∆p,m) to
adapt to articulation; (iii) Angle-sensitive pooling P =

⊕
θ∈Θ P(Rθ(Y

′)) to encode orientation
cues. A linear head maps P to joints, â = MLP(P ).

Objective and gains. We minimize a weighted smooth-ℓ1 objective with per-joint weights reflecting
range heterogeneity:

L(δ) = E(x,a)∼Dagnostic d
(
â(x; δ), a

)
.

Empirically, arm decoupling improves action prediction by ∼20% over a monolithic baseline, and
DAD adds a further ∼20%, meeting the 0.06 precision required for video-driven manipulation replay.

3.3.2 COUPLING WITH TASK SEMANTICS

For accomplishing manipulation tasks, a straightforward approach is to build a model pipeline with
a video generation model Mx : L × X → XN and an inverse dynamics model Ma : X → A.
Here AnyPos (Fδ) serves as the IDM ( Ma), mapping given observations into actions. At inference,
the visual generation model Mx(xT , ℓ) generates task-aligned futures xT+1:T+k from the current
observation xT and instruction ℓ. The IDM Ma(xT ) then maps each predicted frame to an action,
giving a sequence of actions aT+1:T+k. This modular design keeps data efficiency, enables zero-shot
or few-shot transfer by updating only Mx, and cleanly separates image-space planning from low-level
feasibility via Fδ .

4 EXPERIMENTS

Figure 3: The schematic of the
dual-arm setup. The red box is
added manually, not model in-
put. The bottom-left/right sub-
figures display left/right grippers.
The top subfigure depicts the 2
lightweight 6-DOF robotic arms,
each comprising 2 base joints, 1
elbow joint, and 3 high-precision
wrist joints.

To evaluate whether AnyPos has learned a good feasible action and
embodiment modeling prior from the task-agnostic dataset Dagnostic,
and how it enhances task-specific models, we conduct three pro-
gressively rigorous tests: (a) Action Prediction Accuracy: We com-
pare the performance of AnyPos against standard baselines (ResNet,
which is used in (Du et al., 2023; Yang et al., 2024; Zhou et al.,
2024; Black et al., 2023)), and task-specific datasets) on a unified
test benchmark to assess its high-precision action prediction capa-
bility. (b) Real-World Replay: We test the robustness of AnyPos on
common and unseen long-horizon tasks by executing its predictions
through ground-truth videos, comparing success rates with base-
lines. (c) Real-World Model-Pipeline Deployment: Coupling with
other models (e.g., video generation models), AnyPos consistently
completes diverse tasks using generated (non-real) video inputs.

4.1 EXPERIMENTAL SETUP

Real Robot: Mobile ALOHA (Fu et al., 2024) is a commonly used
mobile dual-arm robot for manipulation tasks. Each 6-DoF arm has
a gripper, creating a 14-dimensional action space for various tasks.
We modify it with three RGB cameras: two wrist-mounted and one
rear-mounted elevated camera to observe the workspace. This setup
provides complete visual data for IDMs’ qpos predictions. The model uses this input to predict all 14
joint positions for robot position control. The red box in Fig. 3 (added manually, not part of model
input) emphasizes the wrist joint details, which are crucial for high-precision tasks.

Training Dataset: We collect 610k task-agnostic image-action pairs, along with human-teleoperation
training data for comparison. AnyPos’s task-agnostic action coverage across all action dimensions
in the test dataset, demonstrating the comprehensiveness of our data-collection methods. (see
Appendix A.4).

Evaluation Method: We evaluate prediction accuracy (Sec. 4.2) using 13 teleoperated manipulation
tasks (2.5k image-action pairs) with unseen skills/objects. For real-world tasks, we assess AnyPos’s
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success rate with ground-truth videos (Sec. 4.4) and demonstrate 14 tasks with AI-generated videos
(Sec. 4.5).
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(a) Accuracy on Manipulation Test Dataset.
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(b) The Success Rates Benchmark of Video Replay.

Figure 4: (a) The Accuracy Benchmark on Manipulation Test Dataset. All the models are trained on
the 610k task-agnostic AnyPos dataset. We only report the test accuracy as the predictions of the
models are deterministic. (b) The Success Rates Benchmark of Video Replay. Refer to Appendix A.7
for specific task demonstrations and statistical information. AnyPos-Human is trained on data
collected from humans, whereas other models are trained on task-agnostic AnyPos data.

4.2 FULL EVALUATION OF TASK-AGNOSTIC DATA

Table 1: The Comparison of Human Data (human-collected manipulation data) and AnyPos (Task-
Agnostic Actions) method. SR denotes the success rate.

Test Acc. Replay SR Collection Time Dataset Size Manpower?

Human Data 57.78% 59.26% ∼ 2 days (16h) 33k Yes
AnyPos 57.13% 92.59% ∼ 10h 610k Automatic

To fully assess AnyPos’s data collection framework’s potential, we evaluate it across three critical
dimensions: data quality, collection efficiency, and labor requirements.

For comparison, we collect a human-teleoperated training dataset with 33k image-action pairs of
manipulation tasks. This data collection process is labor-intensive and time-consuming, taking 2
days to complete. In comparison, it only took 10 hours for AnyPos to collect 610k task-agnostic
image-action pairs without human labor, speeding up data collection by 30×.

We evaluate AnyPos trained on the task-agnostic dataset and that trained on the human-collected
dataset on two experimental tasks: namely, action prediction accuracy experiment and real-world
replay experiment. Detailed descriptions of action prediction accuracy experiment and real-world
replay experiment can be found in Sec. 4.3 and Sec. 4.4, respectively.

As shown in Tab. 1, AnyPos trained on the 610k AnyPos dataset matches the test accuracy of the
human-collected test dataset. In comparison, Fig. 4b, AnyPos trained with AnyPos dataset outperform
that trained on human-collected dataset in real-world replay tasks. The demonstrated high data quality
of the AnyPos dataset is primarily due to the uniform spatial distribution of robot positions in the
workspace.

4.3 EVALUATION OF THE DESIGN OF ANYPOS MODELING

We conduct an action prediction accuracy experiment to test the importance of individual modules
and evaluate AnyPos’s action prediction accuracy under real-world manipulation task distributions.

For this experiment, we collect human demonstrations of image-action pairs and build a test bench-
mark with 2.5k samples. Performance is measured as the success rate of predictions where the error
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falls below a threshold of 0.06 (except for the gripper, which allows 0.5). This threshold of joint
position prediction accuracy was selected through empirical error analysis.

Specifically, AnyPos is compared against two baselines: a widely used ResNet (He et al., 2016)+MLP
for embodiment modeling (e.g., IDMs for (Du et al., 2023; Yang et al., 2024; Zhou et al., 2024;
Black et al., 2023)), and a DINOv2-Reg (Oquab et al., 2024; Darcet et al., 2024)+MLP model,
respectively. We also compare their performance with and without Arm-Decoupled Estimation to
assess the decoupling design. Details of model configuration can be found in Appendix B.3.

As shown in Figure. 4a, our AnyPos (i.e., DINOv2-Reg + DAD, enhanced by Arm-Decoupled
Estimation), trained on task-agnostic AnyPos data, significantly outperforms other approaches. The
Arm-Decoupled Estimation alone improves accuracy by about 20%, while DAD further boosts it by
about 21%. Compared to the simple ResNet + MLP used in (Du et al., 2023; Yang et al., 2024; Zhou
et al., 2024; Black et al., 2023), our method achieves a 56% higher accuracy.

Table 2: The Comparison of GPTDecoder, DiffusionDecoder and Direction Aware Decoder (AnyPos)
as action decoder, with DINO-Reg as vision encoder. SR denotes the success rate.

Parameters RoboTwin SR Test Acc.

GPTDecoder 118.9M 48.67% 19.43%
DiffusionDecoder 90.3M 58.78% 35.25%
Direction Aware Decoder (AnyPos) 89.5M 70.72% 57.13%

To further evaluate the effectiveness of our Direction Aware Decoder, we conduct an ablation study
comparing it with two other decoders: the GPTDecoder and the DiffusionDecoder. Both are policy
heads adopted from RoboFlamingo (Li et al., 2024b), a prominent VLA model that combines a visual
language model with interchangeable action decoders. Specifically, we adopt DINOv2 with register
as the vision encoder, as it proved to be the most effective in our earlier evaluation. All models are
trained and tested on our human demonstration dataset. In addition, we introduce a new training
set from the RoboTwin 2.0 clean environment (50 tasks, 20 trajectories per task) and a test set from
the randomized environment. The training configuration for the decoder remains the same, and the
testing setup is consistent with Appendix A.1. As shown in Tab. 2, our model outperforms the other
two decoders, reflecting the high quality of embodiment modeling in AnyPos.

The results highlight that AnyPos achieves a significantly higher accuracy in high-precision action
prediction compared to other embodiment modeling methods.

4.4 EVALUATION OF REAL-WORLD REPLAY

A
ny

Po
s (

O
ur

s) Make Toast

Organize Tableware

Fold Clothes Water Plants

Serve Plates

Place carrot

Wipe TableScrub Plates

Microwave Bread

Trash Cubes

Figure 5: The results of AnyPos with video replay to accomplish various manipulation tasks.

To further test the embodiment modeling ability of AnyPos, we conducted a series of long-horizon,
high-precision replay experiments in real-world setting. First, human operators record robot-view
videos of teleoperated task executions. The environment is then reset to the initial state shown
in the video. Next, we feed each frame of these ground truth videos to the IDMs, execute the
generated actions, and observe whether the robot completes the tasks successfully under the same
initial conditions.
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Our real-robot replay tasks consist of 10 bimanual tasks across 18 objects. Each manipulation task
consists of multiple finer sub-steps to evaluate the stability of AnyPos in long-horizon execution.

Fig. 5 and Fig. 4b show AnyPos significantly outperforming both the ResNet50 baseline (+44.4%)
and AnyPos-Human (trained on human data) (+33.3%) in replay tests, completing nearly 100% of
task steps. Failures primarily occur in highly specific corner cases, falling into two distinct categories.
One category involves reset errors. For example, in the Organize Tableware task, a minor fork
misalignment during environment reset can cause the gripper to miss the fork during execution and
thus result in failure. The other category involves limited error tolerance in teleoperation data. For
example, in the Trash Cubes task, human operators sometimes placed cubes too close to the trash bin’s
rim while attempting to trash it, causing unexpected dislodgement during robotic replay when the
cube tripped over the rim in the trash attempt. Despite only 57% action prediction accuracy, AnyPos
achieves high real-world success because few critical actions need high precision, while others are
more forgiving. Experiments demonstrate that AnyPos reliably reproduces human behaviors from the
replay video.

These results show that even 610k steps of automated random action collection (collected in 10 hours)
can effectively enable AnyPos to generalize across diverse and long-horizon manipulation tasks.

4.5 MODEL-PIPELINE DEPLOYMENT

Real-World Deployment. To evaluate the potential of AnyPos for action prediction and the ability
of AnyPos combined with task-specific policies (e.g., video generation models, VLAs, world models)
in real-world manipulation tasks, we finetune video generation models (e.g., Vidu (Bao et al., 2024),
Wan2.2 (Wan et al., 2025)), following Vidar (Feng et al., 2025) (see Appendix B.5), and combine its
outputs with IDM predictions. The video model takes the current RGB observation and generates
predicted future observations. AnyPos then processes each video frame to infer actions, which the
robot executes. We implement VPP (Hu et al., 2024) as our baseline, following their approach of
coupling a video generation model with an action diffusion model. For fair comparison, we use the
same fine-tuned video generation model as in our main pipeline (VGM+IDM).

As shown in Fig. 13, our AnyPos, when combined with video generation models, can successfully
complete real-world tasks, such as lifting the basket, clicking, and picking up and placing various
objects, even when the generated videos are non-real and slightly blurred (Appendix A.8). This
demonstrates the potential of integrating AnyPos with generated videos for real-world manipulation
tasks.

Table 3: The Success Rates Benchmark of Real-World Experiments.

Tasks VGM+AnyPos (Ours) VPP (Hu et al., 2024)

Placing bread into steam baskets 100% 0%
Transferring apples to fruit baskets 60% 0%
Wiping tables with rags 60% 40%

To further test the background generalization of AnyPos in real-world environment, we conduct ex-
tended experiments (placing bread into steam baskets, transferring apples to fruit baskets, and wiping
tables with rags), all performed against complex, unseen physical backdrops. Our VGM+AnyPos
framework achieved success rates of 100%, 60%, and 60% in the three experiments respectively.
Primary failures stemmed from inherent limitations in video generation precision.

Simulation Benchmarking. Additionally, Tab. 4 provides a comprehensive comparison with
leading baseline models on the robotwin benchmark. We trained a single, masked (Feng et al.,
2025) AnyPos model across all tasks, using 20 clean-environment demonstrations per task. The
baselines were obtained from the official RoboTwin 2.0 Chen et al. (2025) leaderboard. They follow
a per-task training scheme, with a separate model trained for each task, each utilizing 50 trajectories
on clean environment. All the models are evaluated in the same clean environment. As shown in the
17 manipulation tasks, our method (AnyPos), when combined with high-level policies like video
generation models, achieves strong performance. It surpasses the previous state-of-the-art methods,
RDT and Pi0, by 34% and 23% in average success rate, respectively. Notably, our model is trained
across multiple tasks within a single model, whereas the baseline models are trained individually for
each task, which further highlights our model’s stable performance across tasks.
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Table 4: Success Rates of 17 Tasks in RoboTwin 2.0.

Task / Success Rate (%) AnyPos(Ours) RDT Pi0 ACT DP DP3

Adjust Bottle 95 81 90 97 97 99
Click Alarmclock 100 61 63 32 61 77
Click Bell 95 80 44 58 54 90
Grab Roller 100 74 96 94 98 98
Lift Pot 75 72 84 88 39 97
Move Can Pot 50 25 58 22 39 70
Move Pillbottle Pad 70 8 21 0 1 41
Move Playingcard Away 100 43 53 36 47 68
Pick Dual Bottles 75 42 57 31 24 60
Place Container Plate 100 78 88 72 41 86
Place Empty Cup 100 56 37 61 37 65
Place Object Stand 95 15 36 1 22 60
Press Stapler 90 41 62 31 6 69
Shake Bottle 100 74 97 74 65 98
Shake Bottle Horizontally 100 84 99 63 59 100
Stack Bowls two 85 76 91 82 61 83
Turn Switch 70 35 27 5 36 46

Average Success Rate 88.24 55.59 64.88 49.82 46.29 76.88

We provide additional ablation studies on RoboTwin in Appendix A.1, evaluating AnyPos’s perfor-
mance under challenging visual conditions such as partial occlusion of the robotic arm or when it
moves out of the camera view. Our experiments demonstrate that the model remains robust even
when the arm exits the view, as critical grasping actions are consistently performed within the visible
frame. We also compare task success rates using ground truth videos versus videos generated by
the VGM pipeline. Results indicate that ground truth video+AnyPos achieves a marginally higher
success rate than VGM+AnyPos, suggesting that the actions predicted by the IDM are sufficient
for near-perfect execution and that AnyPos’s own error is effectively negligible. These findings are
presented in Appendix A.1.

5 DISCUSSIONS

This work formally introduces task-agnostic actions for embodiment modeling, demonstrating
their potential for general-purpose embodied manipulation and their advantages over task-specific
actions in terms of efficiency, cost-effectiveness, and performance. Our whole method introduces 2
components: (1) Task-agnostic Data: Efficiently and scalably collecting task-agnostic random actions
to mitigate action data scarcity in embodied AI, (2) Model trained with task-agnostic Data: AnyPos
with Arm-Decoupled Estimation and Direction-Aware Decoder to effectively and robustly predict
high-precision actions. Experiments demonstrate that AnyPos significantly outperforms previous
methods in action prediction accuracy (+51%) and real-world dual-arm manipulation success rates
(+30∼40%). Additionally, we validate the synergistic potential of AnyPos combined with task-
specific policies (e.g., video generation models) in both simulation and real-world manipulation
tasks.

Limitation and Discussion Replay tasks requiring fine manipulation (e.g., tying knots, laptop
power adapter connection) were excluded because human operators could not collect reliable tele-
operation data, and real-world model-pipeline deployment is still limited by the capabilities of
current video generation models. Furthermore, for each embodiment or altered camera viewpoint,
AnyPos must first collect task-agnostic action data for embodiment modeling and establishing a prior
for feasible actions specific to that embodiment. These factors prevent us from fully testing and
leveraging AnyPos’s potential. In addition, we will improve background generalization, enhance the
task-agnostic dataset, and expand the action space to support multiple robotic platforms and dynamic
manipulation. This will enable AnyPos to serve as an adapter between general embodied models and
robot-specific actions.
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A MORE RESULTS

A.1 FURTHER STUDY ON ROBOTWIN

In the RoboTwin environment, we evaluate how partial occlusion of the robot arm and video prediction
error affect the performance of the video+AnyPos pipeline, respectively. Both models are trained
across multiple tasks.

Partial occlusion scenarios. We follow the leaderboard of RoboTwin to collect data for fine-tuning
the video generation model and training AnyPos. To be more specific, we collect 50 episodes per
task under the clean scenario on RoboTwin using the original camera viewpoints, where partial arm
occlusion frequently occurs. We finetune Wan2.2 (Wan et al., 2025) following Vidar(Feng et al.,
2025) as our video generation model.

Error propagation analyses. We directly use the collected ground truth task completion videos as
video input for AnyPos.

We select 17 tasks and conduct 20 trials for each task. The results are shown in Tab. 5. AnyPos-occ
denotes the occluded case. AnyPos-gt denotes the error propagation analyses case, where we use the
ground truth video instead of generated videos as the input.

Our experiments show that AnyPos is robust to the arm exiting the view, as the critical grasping
actions are consistently performed within the visible frame. Moreover, AnyPos achieves a comparable
success rate distribution with real videos, suggesting that the error attributable to the IDM is negligible.

Table 5: Success Rates of 17 Tasks in RoboTwin

Task / Success Rate (%) AnyPos AnyPos-occ AnyPos-gt

Adjust Bottle 95 70 100
Click Alarmclock 100 100 100
Click Bell 95 100 100
Grab Roller 100 95 100
Lift Pot 75 100 100
Move Can Pot 50 75 90
Move Pillbottle Pad 70 80 100
Move Playingcard Away 100 95 100
Pick Dual Bottles 75 80 100
Place Container Plate 100 95 95
Place Empty Cup 100 85 100
Place Object Stand 95 80 100
Press Stapler 90 100 100
Shake Bottle 100 100 100
Shake Bottle Horizontally 100 100 95
Stack Bowls two 85 100 90
Turn Switch 70 50 80

Average Success Rate 88.24 88.53 97.06

A.2 DEMONSTRATION OF CROSS-ARM INTERFERENCE

To investigate potential interference between the two arms during IDM inference, we visualize the
attention maps derived from input image gradients. Our analysis reveals that even when estimating
the qpos of a single arm, the other arm still receives significant attention, demonstrating the presence
of cross-arm interference in the model’s processing.
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Figure 6: Attention heatmap of the input image. Here we only estimate the qpos of the left arm, but
there is a clear attention focus on the right arm. demonstrating that the model can not fully distangle
the two arm during inference.

A.3 ANALYSIS OF EXPLORATION EFFICIENCY AND SAFETY

This section provides a qualitative analysis comparing our AnyPos data collection framework against
a naive random action collection baseline. Fig. 7 reveals three fundamental limitations in naïve
task-agnostic data collection, namely inefficient coverage of reachable states, redundant or degenerate
motions (e.g., arms exiting the field of view), and frequent self-collisions. Our AnyPos data collection
framework systematically addresses each limitation through its automated, task-agnostic design,
enabling dense coverage, diverse behavior generation, and built-in safety mechanisms.

AnyPos - Automated Exploration

Naïve Random Data Collection 

Collision-proneOff-screen motionsPoor coverage

Collision-freeOn-screen motionsFull coverage

Figure 7: Visual comparison between naive random action collection (upper) and our proposed
AnyPos framework (lower). Here we highlight three key limitations in the baseline approach: (a)
inefficient coverage, (b) redundant motions, and (c) self-collisions. Our method demonstrates superior
coverage density, in-frame behavior generation, and inherent safety constraints.

A.4 DISTRIBUTION OF TASK-AGNOSTIC ANYPOS DATASET AND TEST DATASET

To measure the coverage of the action space of our random actions, we evaluate the distribution of
qpos on each dimension, shown in Figure 8.
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Figure 8: Qpos distribution of task-agnostic random actions and test dataset. The figure calculates
the frequency distribution of qpos in 14 dimensions. We show that random action can cover all the
possible qpos in each dimension. Note that the volume of task-agnostic data significantly exceeds
that of the test dataset.

A.5 DATA-SCALING ANALYSIS

We studied the scaling laws governing our method, quantifying its performance improvement with
increasing volumes of training data.

In practice, we trained the model on subsets of the full dataset, ranging from 50K to 610K image-
action pairs. We keep the training steps proportional to the size of the dataset.

The results, visualized in Figure 9, reveal a logarithmic growth trend in accuracy as the dataset scales
up. This scaling behavior indicates that our method consistently benefits from additional training data,
providing valuable guidance for practical applications where data collection costs must be balanced
against performance requirements.

Additionally, real-world robot accuracy reached 92.59% when test set accuracy is only 57.13%,
underscoring the practical scalability of our model.
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Figure 9: The accuracy of AnyPos training on dataset with different size.
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A.6 EVALUATION OF ACTION PREDICTION

The results presented in Table 6 demonstrate the performance of various methods on the Manipulation
Test Dataset. We compare the performance of DINOv2 against ResNet50, MLPs with DAD, with
and without Arm-Decoupling, and task-agnostic data versus human data.

Table 6: The Test Accuracy and Error Benchmark on Manipulation Test Dataset. Due to the gripper’s
higher tolerance for errors, the gripper’s error significantly impacts the overall error. Therefore, the
Test L1 Error in the table is calculated after excluding the gripper.

Methods Arm-Decoupling? Data Test Acc. Test L1 Error

ResNet50 + MLPs No Task-agnostic Data 5.83% 0.1022
DINOv2-Reg + MLPs No Task-agnostic Data 23.96% 0.0440
DINOv2-Reg + DAD No Task-agnostic Data 34.64% 0.0491
ResNet50 + MLPs Yes Task-agnostic Data 22.23% 0.0444
DINOv2-Reg + MLPs Yes Task-agnostic Data 36.20% 0.0352
DINOv2-Reg + DAD Yes Task-agnostic Data 57.13% 0.0282
DINOv2-Reg + DAD Yes Human Data 57.78% 0.0203

A.7 EVALUATION OF REAL-WORLD VIDEO REPLAY

Fig. 10, Fig. 11, and Fig. 12 show the detailed replay performance of AnyPos, baseline (ResNet+MLP),
and AnyPos-Human (trained with human-collected data) on the manually collected real-world video
replay dataset, respectively.
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Figure 10: The results of AnyPos collaborating with video replay to accomplish various manipulation
tasks.
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Figure 11: The results of baseline (ResNet+MLP) collaborating with video replay to accomplish
various manipulation tasks.
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Figure 12: The results of AnyPos-Human (trained with human-collected data) collaborating with
video replay to accomplish various manipulation tasks.
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Figure 13: The results of AnyPos collaborating with video generation models to accomplish various
manipulation tasks.

A.8 REAL-WORLD DEPLOYMENT WITH VIDEO GENERATION MODEL

Fig. 14 demonstrates how AnyPos collaborates with a video generation model in real-world de-
ployment. Especially when the robotic arm is a bit blurry in the generated video, AnyPos can still
complete the manipulation task. More detailed execution videos can be found in the supplementary
materials.

B IMPLEMENTATION DETAILS

B.1 ANYPOS DATASET AND PPO IMPLEMENTATION

Our PPO implementation is built on rsl_rl. Key settings of PPO and AnyPos Dataset are summarized
in Table 7.

B.2 REWARD FUNCTION

To ensure the policy in the AnyPos dataset collection achieve the desired behavior on our robot, we
design a reward function that reflects the task’s objectives. We design a multi-stage reward function
focusing on EEF goal distances, action rate and joint velocity, in order to yield higher-quality data
collection.

Definitions of each part of our reward functions are listed as follows:

1. EEF Goal Distance

Rreaching_obj =

(
1− tanh

(
∥pobject − pee∥2

σ

))
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Pick Cucumber Grab Bottle

prediction execution prediction execution

Place Green Apple onto the Plate Put the Green Apple into the Box

prediction execution prediction execution

Grasp the Blue Cube Grasp the Red Apple

prediction execution prediction execution

Pick up Two Apples Simultaneously Retreive Toast from Toaster
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Figure 14: Sampled results of AnyPos collaborating with generated video to accomplish various
manipulation tasks. In tasks such as "Grasp the Blue Cube" and "Grab Bottle", the generated video
frames on the left exhibit blurred wrist joint details of the robotic arm. Nevertheless, AnyPos
successfully accomplishes the manipulation task under these conditions.

where pobject denotes the target position in world coordinates. pee denotes the position of
the end-effector in world coordinates. σ is a scaling factor for distance normalization. In
this term, σ = 0.08.

2. EEF Goal Distance (Fine-Grained)

Rreaching_obj_fine =

(
1− tanh

(
∥pobject − pee∥2

σ

))
The formulation is identical to the preceding term, but σ is smaller foir finer control. In the
term, we let σ = 0.01.
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Table 7: Parameters of PPO and AnyPos Dataset.

Parameters of PPO Value

Clip Param. of PPO 0.2
Value Function Clipping True
Value Loss Coeff. 1.0
Desired KL Divergence 0.01
Entropy Coef. 0.01
gamma 0.98
GAE (lambda) 0.95
Gradient Clipping 1.0
Learning Rate 0.001
Mini-Batch 4
The Number of Steps per Env per Update 24
Learning Epochs 5
Schedule adaptive
Empirical Normalization True
Target EEF position Range of Left Arm x ∈ (0.36, 0.7), y ∈ (−0.08, 0.41), z ∈ (0.6, 1.0)
Hidden Dim. of Actor [512, 256, 128]
Hidden Dim. of Critic [512, 256, 128]
Activation Elu

Parameters of AnyPos Dataset Value

Dataset Size (steps) 610k image-action pairs
Dataset Size (trajectories) 638
Input Concatenated image of high, left-wrist, and right-wrist views
Image Resolution 640*720
Output 14-dim joint position
Content Task-agnostic random dual-arm trajectories collected by AnyPos
Virtual Random Boundary Plane B y ∈ (−0.15, 0.15)
Target EEF position Range of Left Arm x ∈ (0.36, 0.7), y ∈ (−0.08, 0.41), z ∈ (0.6, 1.0)
Target EEF position Range of Right Arm x ∈ (0.36, 0.7), y ∈ (−0.41, 0.08), z ∈ (0.6, 1.0)
Interval Threshold between Arms 0.15

3. Action Rate Penalty
Ract_rate = −∥at − at−1∥22

where at denotes the action at current time step t, while at−1 denotes the action at the
previous time step t− 1.

4. Joint Velocity Penalty
Rjoint_vel = −

∑
i∈joint_ids

q̇2i

where joint_ids denotes the set of joint indices whose velocities are to be penalized, and q̇2i
is the velocity of the i-th joint in the set.

The total reward is the weighted sum of each reward function:

ϕcoll = wreaching_obj ×Rreaching_obj + wreaching_obj_fine ×Rreaching_obj_fine

ϕlimit = wact_rate ×Ract_rate + wjoint_vel ×Rjoint_vel

where the weight design for the reward function is: wreaching_obj = 200, wreaching_obj_fine = 100,
wact_rate = −1× 10−4, and wjoint_vel = −1× 10−4.

B.3 MODEL CONFIGURATION

The model configuration of Anypos and other models trained on task-agnostic action dataset is listed
in Table 8. The model accepts 4 images as input, two from the wrist cameras, and two from the front
camera divided by the split-line algorithm. The four images are resized to the same size of 518× 518
and normalized.

For training on human-collected data, only replace the iteration to 48000, because human-collected
data is smaller, thus the epoch will be larger. The model converges after 48000 iterations on human-
collected data (validation accuracy: 97.8%).
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Table 8: Configuration of Different Models Trained on Task-Agnostic Action Dataset

Models Value

DINO-Reg

Hidden Size 768
Hidden Layers 12
Model Size 86.6M params
Pretrained Yes

MLP-regressor
Convolution 1× 1, (768, 2)
MLP (2738, 256), (256, 14/6/1)
Activation Function GELU
Model Size 0.71M params

DAD

D {1, 2, 3, 6}
Θ {0◦, 45◦, 90◦, 135◦}
MLP (256, 512), (512, 14/6/1)
Activation Function GELU
Model Size 2.96M params

ResNet50

Input 224× 224
MLP (2048, 14/6/1)
Model Size 23.6M params
Pretrained Yes

Training

Batchsize 8
Iteration 96000
Optimizer AdamW, β = (0.9, 0.999), ϵ = 0.01
Learning Rate 5× 10−5 for DINO-Reg, 5× 10−4 for the rest
Weight Decay 0.01
LR Scheduler Cosine Scheduler
Warmup Steps 9600

Weighted Smooth L1 Loss : d(x, x̂) =

{
0.5w · (x−x̂)2

β
if |x− x̂| < β

w · (|x− x̂| − 0.5β) otherwise
β 0.1
w w4,11 = 2, w{0,1,...,13}−{4,11} = 1

Data Augmentation

ColorJitter Brightness Range: (0.8, 1.2)
Contrast Range: (0.7, 1.3)
Saturation: (0.5, 1.5)
Hue: 0.05

Randomize Background Randomize pixels in non-arm-colored background.
Random Apply Probability: 0.4

Random Adjust Sharpness Sharpness Factor: 1.8
Sharpness Probability 0.7
Resize (518, 518)
Normalization mean = [0.485, 0.456, 0.406]

std = [0.229, 0.224, 0.225]

B.3.1 ARM-DECOUPLED ESTIMATION TO REDUCE HYPOTHESIS SPACE

Our approach consists of two stages: (1) Arm Segmentation: Leveraging the fact that the pedestal
joints remain stable and the robotic arms are uniformly black, we use the pedestal joint pixel as a
seed point for flood-fill-based arm segmentation to calculate a split line for the image that divides two
arms. However, if the two arms overlap or part of the arm goes out of the picture, which causes the
flood-fill algorithm to fail, we fall back to a default bounding box strategy, cropping the left or right
3/5 of the image based on arm position prior. (2) Decoupled qpos Estimation: The segmented left and
right arm regions are fed into two independent sub-models, each predicting qpos for their respective
arm excluding the gripper. Specifically, Gripper states are estimated separately by two additional
sub-models that take only the image of the left or right wrist as input. Therefore, by combining split
lines with four specialized sub-models, our method achieves arm-decoupled estimation, significantly
improving qpos prediction accuracy compared to entangled bimanual approaches.
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Table 9: Composition of Different Models.

Model Arm-Decoupling Composition

DINO + DAD (Anypos) Yes (×2 Arms) DINO-Reg + DAD
(×2 Wrists) DINO-Reg + MLP-regressor

No DINO-Reg + DAD

DINO + MLP Yes (×4 Arms & Wrists) DINO-Reg + MLP-regressor
No DINO-Reg + MLP-regressor

ResNet50 + MLP Yes (×4 Arms & Wrists) ResNet50
No ResNet50

B.4 COMPUTATION RESOURCES

We conduct the training on a machine equipped with 8 * 80GB NVIDIA Hopper series GPUs,
utilizing Accelerate (Gugger et al., 2022) and Pytorch (Paszke et al., 2019) for multi-GPU parallelism.
AnyPos required 25 hours to train on 610k pairs of data for 96,000 iterations * 8 batch size * 8 GPUs.

B.5 VIDEO GENERATION MODEL

In practical implementation, we finetune Vidu 2.0(Bao et al., 2024) and Wan2.2 (Wan et al., 2025)
following Vidar(Feng et al., 2025) as our video generation model. We collected 750,000 multi-view
robotic trajectories from open-source datasets (Agibot, RDT, RoboMind) for Stage-1 fine-tuning.
Each image provides three distinct perspectives: top-down, left-side, and right-side views. These
images do not necessarily align with AnyPos’s input requirements. Subsequently, we performed
Stage-2 fine-tuning using 230 task-specific trajectories gathered from our specific robotic platform.
For the RobotWin benchmark, we collected 50 tasks, each with 20 trajectories, to apply stage-2
fine-tuning to the video generation model.

C EXPERIMENTAL DETAILS

C.1 EVALUATION OF ACTION PREDICTION

The parameters of evaluation of action prediction are shown in Table 10.

Table 10: Parameters of evaluation of action prediction.

Parameter Value

Training Dataset 610k Task-Agnostic Data or 33k Human-Collected Data
Test Dataset 2.5k Manipulation Dataset
Evaluation Threshold on Test Dataset for i = 6, 13, d(ai, âi) < 0.5

others: d(ai, âi) < 0.06

C.2 EVALUATION OF REAL-WORLD VIDEO REPLAY

We design our Real-World Video Replay scenario to replicate the daily workspace setting, which
includes a typical white laboratory desk, with cluttered objects on the desk, and several computer
monitors in the background. We manually collected 10 long-horizon robot manipulation tasks for
real-world video replay, which represent ubiquitous daily household chores. Each task exhibits
sequential dependency, where successful completion of subsequent stages directly depends on the
preceding stage’s achievement.

Our 10 tasks include the following tasks and stages:

• Make Toast: (1) Pick toast from plate, (2) Insert toast into toaster slot, (3) Push down the
toasting lever.
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• Serve Plates: (1) Grip plate with both hands, (2) Position plate forward on the table.
• Microwave Bread: (1) Open microwave door, (2) Retrieve baking tray with bread, (3) Place

baking tray inside microwave, (4) Close microwave door.
• Organize Tableware: (1) Position bowl on plate, (2) Place fork on right side of plate, (3)

Place spoon on left side of plate.
• Place carrot: (1) Pick up the carrot, (2) Place the carrot in the basket.
• Trash Cubes: (1) Select cube from right side, (2) Dispose cube in trash bin, (3) Select cube

from left side, (4) Dispose cube in trash bin.
• Fold Clothes: (1) Fold pants by waistband and hem, (2) Fold pants using waistband grip.
• Water Plants: (1) Hold water-filled cup, (2) Tilt cup to irrigate plant.
• Scrub Plates: (1) Simultaneously grasp sponge and plate, (2) Scrub plate with leftward

sponge motion, (3) Scrub plate with rightward sponge motion.
• Wipe Table: (1) Maintain firm rag grip, (2) Wipe table surface with rag.

Due to the deterministic and costly nature of the replaying experiment, real-world implementations
of these experiments are typically limited to a single trial.

C.3 REAL-WORLD DEPLOYMENT WITH VIDEO GENERATION MODEL

The experimental setup of real-world deployment with a video generation model follows that of the
real-world video replay experiment, except that the videos used are different. AnyPos processes
the generated video frames to infer actions, which are executed by the ALOHA robot. A task is
considered successful if the robot accomplishes it as instructed.

D HARDWARE DETAILS

Tab. 11 and Fig. 15 show the detailed information of our robot.

Figure 15: Hardware features.

Table 11: Hardware.

Parameter Value

DoF (6 + 1 (gripper))× 2 = 14
Size 770× 700× 1000
Arm Weight 3.9kg
Arm Payload 1500g (peak), 1000g (valid)
Arm Reach 600mm
Arm repeatability 1mm
Arm working radius 620mm
Joint motion range J1 : 180◦ ∼ −120◦, J2 : 0◦ ∼ 210◦

J3 : −180◦ ∼ 0◦, J4 : ±90◦

J5 : ±90◦, J6 : ±110◦

Gripper range 0 ∼ 80mm
Gripper max force 10N
Cameras 3 RGB camears: front×1, wrist×2
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E BROADER IMPACTS

This work advances robotic manipulation by introducing AnyPos, a framework for IDM learning
from scalable, task-agnostic action data. The application of this framework in various fields may lead
to breakthroughs in automation and intelligent systems, benefiting sectors such as household robotics,
healthcare assistance, precision manufacturing, and logistics automation. By reducing reliance on
human demonstrations, AnyPos could accelerate the deployment of adaptable robotic solutions in
real-world environments.
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