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ABSTRACT
Gait recognition aims to identify individual-specific walk-

ing patterns by observing the different periodic movements
of each body part. However, most existing methods treat
each part equally and fail to account for the data redundancy
caused by the different step frequencies and sampling rates of
gait sequences. In this study, we propose a multi-granularity
motion representation network (GaitMM) for gait sequence
learning. In GaitMM, we design a combined full-body and
fine-grained sequence learning module (FFSL) to explore
part-independent spatio-temporal representations. Moreover,
we utilize a frame-wise compression strategy, referred to as
multi-scale motion aggregation (MSMA), to capture discrim-
inative information in the gait sequence. Experiments on
two public datasets, CASIA-B and OUMVLP, show that our
approach reaches state-of-the-art performances.

Index Terms— Gait Recognition, Multi-Granularity Mo-
tion Representation, Multi-Scale Motion Aggregation

1. INTRODUCTION

Gait recognition has emerged as a promising biometric
technology that leverages human gait information for long-
distance identification without the cooperation of subjects.
This technology has shown great potential in many fields,
including video surveillance, rail transit, and sports simula-
tion. However, gait recognition performance is often affected
by various factors in real-world scenarios, such as changing
viewpoints [1], occlusion [2], and different wearing condi-
tions [3, 4]. Therefore, learning gait representations that
are invariant to these factors is a major challenge for gait
recognition.

Most gait recognition methods utilize (convolutional neu-
ral networks) CNNs to extract spatio-temporal information
from gait sequences. They can be categorized as set-based
or sequence-based, depending on whether they consider the
temporal order of frames. Set-based methods treat a gait se-
quence as an unordered set, which can either be compressed
into a single gait template [5] or learn order-independent gait
representations from silhouette sets [6, 7]. Although the or-
dering of inputs is not essential for gait assessment in these
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methods, they may ignore the temporal nature of the gait se-
quence, resulting in the loss of discriminative local motion
information.

Sequence-based methods tend to explore individual gait
patterns from multiple spatial and temporal scales [8, 9, 10,
11]. As the input sequences are usually aligned, a uniform
horizontal division of intermediate layer features can improve
recognition performance [9, 10]. Another approach intro-
duces a body part-level localization module to achieve a more
adaptive local representation [11]. However, localization
errors caused by changes in wear conditions or movement
amplitude may degrade recognition accuracy. Additionally,
the redundancy of adjacent frames limits the recognition
of spatio-temporal variation patterns. While some methods
[10, 12] have been proposed to aggregate local clips, they
may lack adaptability to motion aggregation.

To address the issues mentioned above, we propose a
multi-scale motion learning framework named GaitMM for
cross-view gait recognition. GaitMM comprises two main
components: a combined full-body and fine-grained sequence
learning module (FFSL) and a multi-scale motion aggregation
(MSMA) operation. Rather than using shared convolutional
kernels to extract part-specific features, in FFSL, the fine-
grained motion patterns are independently obtained from
body-part sequences. To reduce the redundancy of adjacent
frames, MSMA compresses a sequence by aggregating infor-
mation in each local clip. The contributions of our work are
summarised as follows:

1) We propose a gait recognition framework named
GaitMM, which combines global and fine-grained motion
information for gait sequence learning.

2) We propose an adaptive MSMA module that reduces
redundancy in the gait sequence.

3) Experimental results on two public datasets, CASIA-B
and OUMVLP, demonstrate that our method achieves state-
of-the-art performance.

2. RELATED WORK

According to order sensitivity, there are two main categories
of gait recognition techniques: set-based and sequence-based.
In set-based approaches, gait silhouettes are typically consid-
ered as an unordered set, from which a set-level representa-
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Fig. 1. Overview of GaitMM. The spatio-temporal dimensions of the feature map, i.e., D, H and W , are indicated in the figure,
and we omit the channel dimension C for simplicity. The ⊕ represents the element-wise summation operation, and the TP
represents the temporal pooling operation. The SeFC represents the separable fully connected layer.

tion is obtained by characterizing the complementarity of the
silhouettes in the set [5, 6, 7, 13, 14]. A straightforward way
to handle a set of silhouettes is to compress them into a single
template, i.e., gait energy image (GEI), allowing the feature
extraction and matching processes to be performed at the im-
age level [5]. However, these template-based methods largely
ignore the spatial and temporal properties during preprocess-
ing. In order to maximally preserve the set information, some
methods take the raw silhouettes as inputs [6, 7, 14]. Chao
et al. [6] first propose a set-based gait recognition frame-
work named GaitSet, which employs a max-pooling function
to learn a permutation-invariant representation of a set. Hou et
al. [7] further propose a lateral connection to fuse silhouette-
level and set-level features. While the methods above provide
flexibility by dropping the sequential constraints, the tempo-
ral cues are also essential for revealing subtle gait changes.

Sequence-based approaches emphasize continuous pose
variations, aggregating multi-scale motion features associated
with body models or silhouettes. The model-based methods
extract geometric and dynamic gait features from human
motion models[15, 16]. However, these approaches suf-
fer from performance degradation caused by the inaccurate
pose estimation results from low-resolution conditions. The
silhouette-based methods usually extract spatio-temporal gait
information from the sequence [8, 17, 9, 10, 11]. To capture
the various temporal cues in the sequence, some researchers
considered extracting gait information from multiple tempo-
ral scales [8, 17]. For example, Lin et al. [8] develop large and
small temporal scales feature extractors for gait sequences us-
ing the designed 3D basic network blocks. Huang et al. [17]
explore the temporal features at three scales: frame-level,
short-term and long-term. However, these methods insuffi-
ciently consider the motion differences among body parts.
Therefore, some studies horizontally divide the silhouette
into several parts and extract part-specific features [9, 10, 12].
Moreover, Huang et al. [11] propose 3D local operations
to extract 3D volumes of body parts. Nevertheless, some
irregular gait patterns (such as wearing a coat) may affect the

localization accuracy and reduce the recognition accuracy.

3. METHOD

This section outlines the framework of our proposed method
and describes several components, including the full-body
and fine-grained sequence learning module (FFSL) and the
multi-scale motion aggregation (MSMA) operation.

3.1. Our Framework

In GaitMM, multiple FFSL modules are stacked to learn
gait motion features, and an MSMA module is available
for frame-level downsampling. The whole pipeline is illus-
trated in Fig. 1. Given a gait sequence S ∈ RCin×D×H×W ,
where D means the number of frames, (H,W ) is the image
size of each frame, C denotes the number of input chan-
nels. First, we feed S into GaitMM. Next, after frame com-
pression by the MSMA module, the output feature map
FFFSL3 ∈ RCout×D

3 ×H×W of the third FFSL modoule
(FFSL3) is mapped to the discriminative space via temporal
pooling (TP) [8, 10] and generalized mean pooling (GeM)
[10, 12] operations. Finally, we train the model using a
combination of triplet and cross-entropy losses, which are
commonly used for gait recognition [10, 7, 11, 18].

3.2. Full-body and Fine-grained Sequence Learning

The proposed FFSL module consists of a body-level mo-
tion feature extractor (BME) and a part-level motion fea-
ture extractor (PME). Specifically, the BME is implemented
through a 3D convolution. Meanwhile, the PME learns
part-independent spatio-temporal representations using non-
shared 3D convolution filters that can account for diverse
movement patterns of different body parts. For a input gait
sequence S, the process of BME can be formulated as:

FBME = 3DConv3×3×3 (S) , (1)
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Table 1. Rank-1 accuracy (%) on CASIA-B under all views and different conditions, excluding identical-view cases.
Gallery NM #1-4 0◦ − 180◦

MeanProbe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

LT

NM
#5-6

GaitSet[6] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart[9] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
GaitGL[10] 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4

3D Local[11] 96.0 99.0 99.5 98.9 97.1 94.2 96.3 99.0 98.8 98.5 95.2 97.5
LagrangeGait[18] 95.7 98.1 99.1 98.3 96.4 95.2 97.5 99.0 99.3 98.9 94.9 97.5

Ours 97.2 98.6 99.2 98.1 97.0 95.7 97.8 99.1 99.3 99.3 96.6 98.0

BG
#1-2

GaitSet[6] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart[9] 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
GaitGL[10] 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5

3D Local[11] 92.9 95.9 97.8 96.2 93.0 87.8 92.7 96.3 97.9 98.0 88.5 94.3
LagrangeGait[18] 94.2 96.2 96.8 95.8 94.3 89.5 91.7 96.8 98.0 97.0 90.9 94.6

Ours 94.9 97.1 97.6 96.1 94.6 91.2 93.6 97.4 98.3 97.0 93.3 95.6

CL
#1-2

GaitSet[6] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart[9] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
GaitGL[10] 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6

3D Local[11] 78.2 90.2 92.0 87.1 83.0 76.8 83.1 86.6 86.8 84.1 70.9 83.7
LagrangeGait[18] 77.4 90.6 93.2 90.2 84.7 80.3 85.2 87.7 89.3 86.6 71.0 85.1

Ours 81.3 91.4 93.7 90.7 86.8 83.3 86.2 89.0 91.8 87.8 76.9 87.2

where 3DConv3×3×3 (·) denotes a 3D convolution with a
convolution kernel size of 3×3×3, FBME ∈ RCout×D×H×W

is the output of the BME. For PME, the input S is evenly di-
vided into k parts along the horizontal axis, which are denoted
as Sj , j ∈ 1, 2, 3, · · · , k, where Sj ∈ RCin×D×H

k ×W . The
PME process for j-th part sequence is written as:

F j
PME = 3DConv3×3×3

(
Sj

)
, (2)

where F j
PME ∈ RCout×D×H

k ×W is the output feature map.
Note that each part sequence undergoes a separate 3D con-
volution, ensuring independence and diversity of the learned
spatio-temporal representations. Next, these part-level fea-
ture maps are concatenated along the horizontal axis, which
can be formulated as:

FPME = F1
PME©F2

PME · · ·©Fk
PME , (3)

where © represents the concatenation operation , FPME ∈
RCout×D×H×W is the output of PME. The output of FFSL is
obtained by fusing FBME and FPME with an element-wise
summation, which can be expressed as:

FFFSL = FBME + FPME . (4)

3.3. Multi-scale Motion Aggregation

MSMA is employed to reduce data redundancy and enhance
the discriminability of motions. It consists of two parallel
branches, as shown in Fig. 1. Each branch is based on a local
motion aggregation (LMA) operation, which is designed to
perform temporal-downsampling for each gait sequence. The

part branch uses l separate LMAs for body parts to preserve
distinctive movement patterns, while the global branch em-
ploys a body-level LMA to compress temporal information.
The LMA can be formulated as:

FLMA = p1Max3×1×1 (F) + p2Avg3×1×1 (F) , (5)

where Max3×1×1 (·) denotes max pooling operation with ker-
nel size (3 × 1 × 1), Meant×1×1 (·) denotes average pooling
operation with kernel size (3 × 1 × 1). F ∈ RCin×D×H×W

and FLMA ∈ RC2×D
3 ×H×W are the input and output of

LMA, respectively. The p1 and p2 are two learnable parame-
ters.

4. EXPERIMENTS

4.1. Datasets and Implementation Details

CASIA-B. The widely-used CASIA-B dataset [1] includes
gait data for 124 subjects, captured from 11 camera views
at regular intervals. Each view includes six normal walking
(NM) sequences, as well as two sequences each of walking
with a bag (BG) and walking with a coat (CL), resulting in a
total of ten sequences per subject. Experiments in this study
follow the large-sample training (LT) protocol [6], in which
the first 74 subjects are used for training and the remaining
50 for testing. During testing, NM#01-04 sequences are used
as the gallery, and NM#05-06, BG#01-02, and CL#01-02 se-
quences are used as the probe for evaluation.
OUMVLP. The OUMVLP dataset [19] is a large gait dataset,
consisting of 10307 subjects. Each subject is captured at 14
camera views with a sampling interval of 15◦, and each view
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Fig. 2. The trade-off between accuracy and parameters of our
method and other comparison methods on CASIA-B.

includes two groups of sequences. Following the protocol
in [6], 5153 subjects are used for training and the remain-
ing 5154 subjects for testing. During the testing phase, the
sequences (Seq#01) are regarded as the gallery, while the se-
quences (Seq#00) are treated as the probe for evaluation.
Implementation Details. The k in Equ. 3 and the l in MSMA
are both set to 8. The p1 and p2 in Equ. 5 are initialized to
0.5. The δ in GeM is initialized to 6.5, and the margin β of
the triplet loss is set to 0.2. The number of FFSL is set to 3
for CASIA-B and double for OUMVLP. The gait silhouettes
are aligned as [19] and the silhouette images uniformly crop
to a size of 64 × 44. The batch size (P ×K) is set to (8, 8)
on CASIA-B and (32, 8) on OUMVLP. During training, the
number of frames D is set to 30, and the model uses a Adam
optimizer with the initial learning rate of 1e-4. For CASIA-
B, the number of iterations is 80K, and the learning rate reset
to 1e-5 after 70K. For OUMVLP, the number of iterations is
160K, the learning rate reset to 1e-5 after 150K iterations.

4.2. Comparison with State-of-the-Art Methods

CASIA-B. Tab. 1 shows the performance comparison of our
proposed GaitMM with the state-of-the-art (SOTA) methods
on CASIA-B. Our approach achieves mean view recognition
accuracies of 98.0%, 95.6% and 87.2% for the NM, BG and
CL walking conditions, respectively, which are 0.5%, 1.0%
and 2.1% higher than LagrangeGait [18], demonstrating the
superiority of GaitMM in cross-view recognition. However,
the operation of independent feature extraction in FFSL in-
creases the number of parameters. To address this issue, we
replace the 3D convolution in PME with the 3D depthwise
separable convolution (DWConv) [20]. As shown in Fig. 2,
we can observe that the proposed methods, especially the
DWConv version, achieve a better trade-off between model
size and accuracy.
OUMVLP. Tab. 2 presents the rank-1 accuracy of GaitMM
evaluated on OUMVLP compared to several SOTA methods.
The results demonstrate that our proposed method outper-
forms the current methods in all views, highlighting the gen-

eralization capability of GaitMM.

4.3. Ablation Study

The effects of FFSL and MSMA are shown in Tab. 3. Re-
moving both PME and MSMA leads to a decrease in perfor-
mance. FFSL is necessary for accurately modeling spatial
scale information and capturing motion relationships between
body parts, while MSMA is important for extracting discrim-
inative temporal clues while compressing gait sequences.

Table 2. Rank-1 accuracy (%) on OUMVLP under all views,
excluding identical-view cases.

Probe
Gallery All 14 views

GaitSet[6] GaitPart[9] GaitGL[10] 3D Local[11] Ours
0° 84.5 88.0 90.5 - 92.9
15° 93.3 94.7 96.1 - 97.1
30° 96.7 97.7 98.0 - 98.4
45° 96.6 97.7 98.1 - 98.4
60° 93.5 95.5 97.0 - 97.5
75° 95.3 96.6 97.6 - 98.0
90° 94.2 96.2 97.1 - 97.7

180° 87.0 90.6 94.2 - 95.8
195° 92.5 94.2 94.9 - 96.3
210° 96.0 97.2 97.4 - 97.8
225° 96.0 97.1 97.4 - 97.8
240° 93.0 95.1 95.7 - 96.4
255° 94.3 96.0 96.5 - 97.1
270° 92.7 95.0 95.7 - 96.6
Mean 93.3 95.1 96.2 96.5 97.0

Table 3. Ablation study on FFSL and MSMA.
FFSL

MSMA
Rank-1 Accuracy

BME PME NM BG CL Mean
✓ 97.1 94.4 84.1 91.9
✓ ✓ 97.8 95.2 85.2 92.7
✓ ✓ 97.1 94.0 85.1 92.1
✓ ✓ ✓ 98.0 95.6 87.2 93.6

5. CONCLUSION

This paper proposes GaitMM, a novel gait recognition frame-
work that integrates fine-grained and global motion proper-
ties. The FFSL module is designed to learn the part-based
sequence and body representations, while the MSMA opera-
tion aggregates sequence information by compressing redun-
dant frames. We conduct extensive experiments on two public
datasets to demonstrate the effectiveness of GaitMM.
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