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Abstract

Biological neural networks operate in parallel, a feature that sets them apart from
artificial neural networks and can significantly enhance inference speed. However,
this parallelism introduces challenges: when each neuron operates asynchronously
with a fixed execution time, an N -layer feed-forward neural network without skip
connections experiences a delay of N time-steps. While reducing the number of
layers can decrease this delay, it also diminishes the network’s expressivity. In
this work, we investigate the balance between delay and expressivity in neural
networks. In particular, we study different types of skip connections, such as resid-
ual connections, projections from every hidden representation to the action space,
and projections from the observation to every hidden representation. We evaluate
different architectures and show that those with skip connections exhibit strong per-
formance across different neuron execution times, common reinforcement learning
algorithms, and various environments, including four Mujoco environments and all
MinAtar games. Additionally, we demonstrate that parallel execution of neurons
can accelerate inference on standard modern hardware by 6-350%.

1 Introduction
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Figure 1: Parallel computations speed-up infer-
ence time. Speed-up on GPU is achieved using
default Pytorch software and widely accessible
Nvidia A100SXM4 GPU with 40 GB memory.
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Inference delay, or the time required to compute the output of a model, can significantly impact
performance in many real-world applications. Faster inference times for a given model can express
better policies, as the model processes more observations per second. This is particularly crucial in
domains such as robotics, algorithmic trading, real-time gaming and other fields where quick reaction
time is essential.

A straightforward approach to speeding up inference is to compute layers in parallel (Carreira et al.,
2018; Iuzzolino et al., 2021). Instead of waiting for the entire neural network to complete its forward
pass, each layer can begin processing the next input as soon as it produces its output. This method
mirrors the asynchronous operation of neurons in the brain (Zeki, 2015). Moreover, neuromorphic
computing inherently utilizes such a speed-up.

However, even with parallel execution, a traditional N -layer feed-forward neural network without
skip connections still experiences a delay equivalent to the combined execution times of N neurons, as
each layer processes the input from the previous time-step. To mitigate this delay, we may reduce the
number of layers, but this also limits the network’s expressivity. Similarly, adding skip connections
can reduce the delay (see Fig. 3) as they do not only shortcut between layers along depth, but also
along time, by sending activations forward in time. However, the computational path through these
temporal skip connections is shorter and thus offers limited expressivity compared to longer paths
through more neurons.
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Figure 3: Computation flow of agents with different architectures in a parallel neuron computation
framework. δ represents execution time of each neuron. Architectures with skip connections exhibit
less delay as they perform shortcuts along time-steps.

We explore the trade-off between delay and network expressivity and investigate various types of
skip connections to find an optimal balance. Specifically, we study residual connections, projections
from every hidden representation to the action space, and projections from the observation to every
hidden representation to handle delay more effectively in a setup with parallel computations.

To summarize, we introduce a new problem in reinforcement learning (RL): training an RL agent
in the presence of delay caused by the parallel execution of neurons. We provide a naive solution
to train the agent with skip connections using regular backpropagation. Although the parallel layer
execution approach and temporal skip connections were proposed before to accelerate predictions

2



on image (Iuzzolino et al., 2021; Fischer et al., 2018) and video (Carreira et al., 2018; Kugele et al.,
2020) domains, we are not aware of prior works that explore such ideas in RL. We argue that this
problem is more challenging in RL. Unlike image or video prediction, where incorrect predictions
can be corrected in subsequent frames, one bad action in RL can lead to the failure of the entire policy
as the agent’s actions influence the dynamics of the environment.

Our contributions are as follows:

• Introducing a new problem in RL. We present the challenge of training an RL agent in the
presence of delay caused by parallel execution of neurons (or layers), a problem previously
explored in image and video domains but now examined in the context of RL.

• Providing solution and analysis. We evaluate different agents and show that in a setup
with parallel computation of neurons, agents with skip connections trained with regular
backpropagation exhibit strong performance. The agents with skip connections always
perform as well as or better than those without skip connections, often significantly outper-
forming them across different environments, neuron execution times, and RL algorithms.
Furthermore, while allowing fast parallel computations, we show that in many cases, the
drop in performance is either absent or not significant when compared to the original RL
algorithm that assumes an instant forward pass. Our analysis supports the intuition that skip
connections enhance policy performance by facilitating faster actions.

• Estimating speed-up on modern hardware. While the ideal speed-up is equal to the
number of layers with asynchronous neuron execution on a neuromorphic computers, we
demonstrate that significant speed-up can also be achieved on common modern hardware,
such as GPU, by executing each layer in parallel.

2 Related Work

Parallel execution of neurons (or layers). Parallel processing of information is consistent with
popular mathematical models of the human cortex (Tomita et al., 1999; Betti and Gori, 2019; Kubilius
et al., 2018; Larkum, 2013), where neurons operate asynchronously. Inspired by this, several attempts
have been made to parallelize neural networks, aiming to maximize processing resource utilization
and reduce latency. Carreira et al. (2018) introduced parallel video networks that employ parallel
layer execution and temporal skip connections, significantly boosting throughput (or frame rate)
during inference. Similarly, Iuzzolino et al. (2021) explored this approach for still images, enabling
fast “anytime predictions” that improve over time. Additionally, Fischer et al. (2018) provided a
theoretical framework for these ideas, and Kugele et al. (2020) applied them for Spiking Neural
Networks on image and video domains. Unlike these approaches, we apply these ideas in RL.

Several studies have proposed techniques to handle parallel execution of layers not only during the
forward pass but also during the backward pass (by modifying or replacing backpropagation) in both
training and inference. Sideways (Malinowski et al., 2020, 2021) achieved this with approximate
backpropagation in the video domain. Asynchronous Coagent Networks (Kostas et al., 2020)
and Chung (2022) introduced methods where each neural network unit operates independently to
maximize its own reward, enabling asynchronous inference and training of neurons. However,
Sideways focuses on video data, and both Coagent Networks and Chung (2022) are limited to a small
number of neurons, making scalability to larger networks challenging compared to our approach.

Delay in RL. Early works on handling delays in traditional RL settings include (Walsh et al., 2007;
Bander and White, 1999; Katsikopoulos and Engelbrecht, 2003; Altman and Nain, 1992). Notably,
(Katsikopoulos and Engelbrecht, 2003) was the first to introduce the notion of a Delayed Markov
Decision Process (DMDP). However, their results have not been fully translated into Deep RL.

Recent efforts have addressed delays in Deep RL. Firoiu et al. (2018) tackled delay by predicting
future observations, while Wang et al. (2023) trained the critic without delay, augmented state
information with historical data, and used self-supervised losses to improve performance on DMDPs.
The RLRD method (Bouteiller et al., 2021) further enhanced the critic by augmenting its input with
future on-policy actions available due to delay, resulting in more accurate value estimations.

These approaches consider delay as an external factor to the agent. However, our agent inherently
introduces delays due to parallel computations, resulting in additional interplay between the agent’s
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architecture and these inherent delays. This allows us to introduce more inductive biases, such as
temporal skip connections, into the neural network architecture to effectively mitigate such delays.

3 Background: Delayed Observation Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical framework used to model decision-making in
environments where outcomes are partly random and partly under the control of a decision-maker.
An MDP is defined by a set of states S, a set of actions A, transition probabilities P(s′ | s, a) that
describe the probability of moving from state s to state s′ given action a, and a reward function
R(s, a, s′) that specifies the immediate reward received after transitioning from state s to state s′ due
to action a.

However, stated in the previous section, in many real-world scenarios, an agent’s observations are not
instantaneous and there is a delay between taking an action and observing its effect. Thus, to handle
such situations, we need to extend the MDP framework to consider delayed observations.

A delayed-observation Markov Decision Process (DOMDP) can be converted to an MDP by esti-
mating the true state of the environment based on the history (delayed observation Markov decision
processes (DOMDP) is the special case of partially observable Markov decision process (POMDP))
(Wang et al., 2023). We present the mathematical formulation of DOMDP below.

Consider an Markov decision process (MDP) where there is a delay of d steps in observation. The key
components are modified as follows: The extended state space S is represented as: S = S×Ad×Sd,
where S is the original set of states, Ad is the set of action sequences of length d, and Sd is the set
of state sequences of length d. The action space A remains unchanged. The transition probability
P(s̃′ | s̃, a) that accounts for the observation delay is given by:

P(s̃′ | s̃, a) = P(st−d | st−d−1, at−d−1) ·
d−1∏
i=1

1(s′t−i = st−i−1, a
′
t−i = at−i−1),

where 1 is the indicator function, ensuring historical consistency in states and actions. The reward
function R(s̃, a, s̃′) is defined as:

R(s̃, a, s̃′) = R(st−d, at−d, st−d+1).

This function captures the reward received after a delay, based on actions taken d steps prior.

4 Method

In this work, we explore a new problem formulation in RL settings where each neuron’s execution
takes one time-step, introducing an additional layer of complexity due to inherent delays. This
formulation is motivated by the asynchronous firing of neurons in the brain.

To address this new problem, we apply Soft Actor Critic (SAC) (Haarnoja et al., 2018), training a
critic without delay and an actor with appropriate delay following suggestions from (Wang et al.,
2023). While doing so we appropriately account for the order of computations inside the actor, as
illustrated in Fig. 3, during forward and backward pass while training with vanilla backpropagation.

We also employ skip connections to handle delay more effectively. Skip connections do not only
shortcut between layers along depth in parallel neuron execution framework, but also along time,
transforming the state-based model into a spatio-temporal one.

The basic structure of our algorithm is presented in Algorithm 1. To begin collecting experience,
we initialize the first observation from the environment and set initial hidden activations, depicted
in Fig. 3, to zero. While the critic is trained online without delay, our actor is trained within the
in-parallel execution framework by unrolling on sub-trajectories sampled from the buffer (with hidden
activation set to zero at the first state of a sub-trajectory), allowing all weights to be available for
backpropagation.

We model a neuron execution time (δ) relative to the interval between environment observations. For
instance, if δ is 2, the environment transitions from ot to ot+2 during the neuron’s execution. If the δ
is 0.5, two subsequent neurons execute between transitions from ot to ot+1. It means that with the
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neuron execution time δ > 1, the actor bases its actions on ot−δ, and the next observation it sees is
ot. To produce some action in between we use a sticky-action mechanism that repeats action at−δ for
δ steps. On the other hand if δ is less than one, we repeat observations ⌈1/δ⌉ times.

Algorithm 1 General Actor-Critic Algorithm with parallel neuron execution.

1: Init an actor and a critic with random parameters.
2: Set initial state to be s0, h

0
0, ..., h

N
0 , where hj

0 is activations for layer j at a time step 0.
3: Wrap the environment with sticky actions or repeating observations wrapper if needed based on

neural execution time.
4: for t ∈ 0, . . . , L do
5: at, h

0
t+1, ..., h

N
t+1 = Actor(st, h

0
t , ..., h

N
t ) (Query current policy for the next action and next

Actor’s hidden activations given current observation and hidden activations)
6: Take the action at and receive {rt, st+1} from the environment.
7: Put {st, at, rt, st+1} to the buffer.
8: Sample transition {si, ai, ri, si+1} from the buffer and update the critic on it.
9: Sample sub-trajectory from the buffer {si, ai, ri, si+1, ..., ri+k, si+k}

10: Init h0
0, ..., h

N
0 and simulate the actor dynamic forward on given sub-trajectory.

11: Update the actor on the last transition of the sub-trajectory (via back-propagation through time
if needed)

12: end for

We need to highlight that methods that experience delays due to neuron parallelization are not directly
comparable with approaches that deal with delay but treat the neural network as a “black box” without
considering the processing time of individual neurons. For example, in RLRD (Bouteiller et al.,
2021) and other “black-box” approaches, actors always base their actions on observation ot−n with a
delay of n, and the next observation an actor receives is ot−n+1 which is in contrast with parallel
neuron computation framework. Another key difference is that given a neuron execution time of 1, in
a parallel computation framework, agents experience a delay of one only if there is a skip-connection
from the observation to the action space. For all other layers, the delay will be greater. On one hand,
RLRD is advantageous to our framework as it provides the NN with unlimited expressivity to react to
delayed observations. On the other hand, our framework employs sticky actions that may enhance
performance.

5 Experiments

We perform our main experiments on Mujoco (Todorov et al., 2012) and MiniAtar (Young and Tian,
2019) environments with continuous and discrete action space respectively. We train our agents using
SAC for Mujoco and discrete version of SAC for MinAtar. We report mean and one standard error
(SE) in all our plots and experiments if not stated otherwise. Results with PPO (Schulman et al.,
2017) can be found in Appendix E.

5.1 Mujoco Results

We present results on four Mujoco environments, HalfCheetah-v4, Walker2d-v4, Ant-v4, and Hopper-
v4, varying neuron execution time from one to four for each of them. In all our experiments, unless
otherwise specified, we use a three-layer neural network with ReLU activation. We normalize return
for every environment and neuron execution time with respect to vanilla SAC performance without
delay. Additionally, we report results for the RLRD method, which is available online. We ran RLRD
on these environments to obtain statistics. Though it should be noted that RLRD is not directly
comparable with this framework (please see Section 4 for the discussion).

Fig. 2 shows that normalized return averaged across four Mujoco environments and neuron execution
times is high for the three-layer architectures with skip connections, specifically those with projections
to action, with residuals and projections to action and with projections from observation described in
Fig. 3. These architectures outperform three baseline agents without skip-connections with different
depth, and RLRD method.

Fig. 4 further illustrates this, showing that the actor with projections from observation performs
stronger or the same against agents without any skip connections and RLRD across all tested
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environments and neuron execution times. The plots also indicate that, in many cases, there is no
drop in performance when compared to the vanilla SAC without any delay for our with projections
from observation agent. For instance, this holds true for Hopper across all neuron execution time, as
well as for Walker and Ant with neuron execution times of one and two.

HalfCheetah is the only environment with a significant performance drop compared to the instanta-
neous actor. We accelerated neuron execution time by a factor of two, adjusting the environment to
generate twice as many states per second. This resulted in a normalized performance of 0.87± 0.06
for the agent w/ projections from observations, closer matching vanilla SAC performance.

These results suggest the effectiveness of temporal skip connections in handling delay. Additionally,
they show that with skip connections and a suitable neuron execution time, an agent in the parallel
regime can achieve similar performance to an agent in the instantaneous regime across all Mujoco
environments while significantly boosting inference time. Full Mujoco results can be found in
Appendix A.
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Figure 4: Comparison between w/ projections from observations agent, three and two-layer agents
without skip connections and RLRD baseline. The w/ projections from observations agent performs
as well or better than other agents. The vanilla SAC w/o delay, which has a normalized performance
of one, is omitted from the plots. The shaded area indicates the standard error across 10 seeds.

5.2 Ablation Study and Analysis

To understand the impact of different architectural choices on the agent’s performance and identify
potential improvements, we conducted an ablation study. Fig. 5 compares agents with different skip
connections. Although no single variant outperforms the others in all cases, the agent with projections
from observation demonstrates the most robust performance across Mujoco environments.
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Figure 5: Comparison between different skip connections. The shaded area indicates the standard
error across 10 seeds for /w prjections to observation agent and 3 seeds for other agents.

To account for delayed observations in Markov Decision Processes (DOMDP), we augmented
observations with the two previous actions or use an LSTM. Augmenting the state with previous
actions resulted in better performance for the w/ projections from observation agent, producing an
average normalized return of 0.83 ± 0.04 compared to 0.79 ± 0.04 for the non-augmented state
space. This suggests potential improvements in our pipeline. However the LSTM did not yield good
results in Mujoco environments with delay. Both results are consistent with the findings of Wang
et al. (2023).

Additionally, while maintaining the augmented state, we tested all possible forward skip connections
between layers. This variant achieved an average normalized return of 0.82± 0.04, which is slightly
lower but comparable to the best-performing augmentated agent with projections from observation,
which had a return of 0.83± 0.04.
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Furthermore, we varied the number of layers in the augmented agent with projections from observation
having a neuron execution time of four across three Mujoco environments, Fig. 6. We observed
that all environments benefited from increasing the number of layers from two to three. However,
the trends diverged beyond this point. For Walker2d, performance continued to improve with an
increasing number of layers. In contrast, for HalfCheetah and Hopper, performance either deteriorated
or remained the same.

Distillation. We attempted to distill (employing Dagger (Ross et al., 2011)) a vanilla SAC HalfChee-
tah policy, which achieved a return of 11, 000, into our agent with projections from observation and
a neuron execution time of one. However, we did not observe any performance improvement. The
distilled agent’s performance was 7590± 93, compared to the delayed agent trained with SAC, which
achieved 7892± 378. This indicates that the performance bottleneck is due to the lack of the agent’s
expressivity to recover the true state rather than the specific RL algorithm, such as SAC.

Analyzing skip connections. We hypothesize that skip connections can produce good fast actions,
and more layers of computations help to refine these fast actions. To confirm it we delete skip
connections from observations, skip connections from the first layer representations, and connections
from the last second layer representations to action space in the agent with projections to action (Fig.
7). The agent performs very poorly without the first two skip-connections, but it can produce some
non-zero return if we delete connections from the last layer, which supports our hypothesis.

Asynchronous neuron computation. Though we simulate parallel executions of neurons during
inference and training time, the executions were globally synchronized, in as sense that all neurons
finish and start new executions at the same time. To test whether it would be possible to train capable
agents without the global synchronization we apply dropout as a proxy to asynchronous execution in
every hidden layer during the training and inference stage to our with projection to the action agent,
Fig. 8. One can see that the agent is quite robust to a large amount of dropout, and the performance
starts to deteriorate if the probability of “not updating a neuron” becomes more than 40%.
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5.3 MinAtar Results

The results for all MinAtar games are presented in Fig. 9. Consistent with our findings in continuous
action spaces, the method with skip connections significantly outperforms those without. Full results
can be found in Table 4 in Appendix.

Our actor employs a 3-layer Convolutional Neural Network (CNN) followed by one fully connected
layer. All CNN layers have a kernel size of 3 and C = {32, 64, 64} channels, maintaining the
same resolution throughout the CNN. The feature volume is then flattened and fed into the fully
connected layer for action prediction. For architectures with skip connections, the feature volumes
from previous layers are maxpooled, then concatenated and then flattened and subsequently fed to
the fully connected layers.

When working with networks incorporating skip connections, we observed that performance de-
teriorated when directly combining all convolutional features from skip connections by flattening
and concatenating them into a single feature volume. We experimented with various methods to
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Figure 10: Qualitative analysis for SpaceInvaders-v0 (1st row) and Breakout-v0 (2nd row) (best
viewed at 400% zoom). In SpaceInvaders-v0, the pink ball represents the agent’s fire, while the white
ball represents the alien’s fire. In Breakout-v0, the green ball indicates the direction of movement:
if the ball is below the paddle, it is moving downward; if it is above, it is moving upward. The
action codes are as follows: N: No move, L: Left, R: Right, F: Fire. The agent with
skip connections (w/ projections to action) performs significantly better in both games, perceiving
incoming objects and acting more quickly and decisively. In Breakout-v0, as seen in the 2nd and 5th
visuals in the 2nd row, the agent can determine the ball’s movement direction with high confidence
even when the ball is far away. In contrast, the agent without skip connections struggles due to
delayed observations. Similarly, in SpaceInvaders-v0, as seen in the 1st and 5th visuals in the 1st row,
the agent with skip connections successfully and confidently dodges the alien’s fire. This trend is
consistent across all figures.

combine the features and found that max-pooling all features to a fixed size, followed by flattening
and concatenating, yielded the best results. Our Q-network shares the same architecture as the actor.

Qualitative analysis. Qualitative analysis of the agent with projections to action and the de-
fault CNN agent (without skip connections) is presented in Fig. 10 for the SpaceInvaders and
Breakout games. The analysis shows the agent with skip connections demonstrates better policy
compared with the one without, showing quicker and more decisive responses in both Breakout-v0
and SpaceInvaders-v0. In Breakout-v0, it accurately predicts the ball’s movement even when distant,
while in SpaceInvaders-v0, it effectively dodges alien fire much quicker and effectively, highlighting
its superior performance.

5.4 Inference Time Speed-Up

We evaluated the speed-up caused by parallel computations of neurons on various hardware platforms,
observing significant improvements in inference time when utilizing a GPU. Fig. 1 illustrates
the percentage improvement in inference speed as the number of layers increases across different
hardware configurations.
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GPU. For GPU setting we measured performance speed-up on a single A100SXM4 GPU with 40
GB memory. The tests were conducted on a deep Multilayer Perceptron (MLP) with a batch size of
one and a hidden layer size of 256 for all layers. For parallel computation on the GPU, we naively
concatenated all inputs to the layers and combined all layer weights into one large sparse matrix. For
agents without skip connections, this matrix has a block-diagonal form. We then used either regular
or sparse matrix multiplication to compute the output for each layer. In Fig. 1, these approaches are
labeled as GPU and GPU (sparse weights), respectively. The MLP was implemented in PyTorch,
utilizing PyTorch’s sparse tensor representations and sparse matrix multiplication for the GPU (sparse
weights) approach.

Fig. 1 shows that the parallel computations on the GPU accelerate inference time considerably for
deep neural networks. Regular matrix multiplication reached its peak performance speed-up around
30 layers, after which the speed-up started to decline; sparse matrix multiplication surpassed regular
matrix multiplication at around 30 layers and continued to increase almost linearly with the number
of layers achieving 350% speed-up for 100-layers MLP in our test setting.

CPU. We examined the benefits of parallelization on a CPU by running each layer in a separate
thread utilizing C++ multi-threading. Our results showed a modest improvement of approximately
6% for a network with 10 layers. However, for networks with more than 20 layers, the gains were
marginal (around 0.1-1%). This reduction in speed-up is likely due to the overhead associated with
thread synchronization. The CPU used in our tests had 32 cores and 32 GB of RAM. For the CPU
tests, we assumed a batch size of 10,000 and a hidden layer dimension of 10,000 in MLP.

We also hypothesize that the limited speed-up on the CPU is due to the use of the Eigen C++ package
for matrix multiplication. Eigen already employs multi-threading extensively to optimize matrix
operations, ensuring efficient CPU utilization even for sequential matrix multiplication. As a result,
additional multi-threading provides only minor speed-up.

6 Limitations

We execute each neuron in parallel, though not asynchronously. While we apply dropout (see Fig.
8) as a proxy for asynchronous neuron updates, true asynchronous updates are more challenging to
model. Additionally, since neuromorphic chips are not widely available, our immediate impact on the
field may be limited.

7 Conclusion

In conclusion, our work addresses the challenge of delays in reinforcement learning caused by parallel
computations of neurons. We found that architectures with temporal skip connections significantly
outperform traditional feed-forward networks without skip connections. These architectures demon-
strate robust performance across various environments and neuron execution times. Furthermore,
we show that with skip connections and a suitable neuron execution time, an agent in the parallel
regime can achieve similar performance to an agent in the instantaneous regime while significantly
accelerating inference time on GPU, proving particularly beneficial in dynamic settings requiring
rapid decision-making.
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Tables 1 and 2. SAC-sticky-2 and SAC-sticky-3 refer to the vanilla version of SAC with sticky
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Table 1: Mujoco average returns after 1mln states of training for the four selected environments. The
results are averaged across ten seeds for two layers, three layers and w/ projections from observation
agents, across 5 seeds for RLRD and the rest of results use 3 seeds. Mean and one standard deviation
are reported. We take mean action as a policy during evaluation stage as we notice it may significantly
boost the performance of the delayed actor. The same results but with the policy that samples actions
from the normal distribution instead of taking the mean can be found in the Table 2. RLRD (Bouteiller
et al., 2021) is a baseline.

Halfcheetah-v4 Walker2d-v4 Ant-v4 Hopper-v4
SAC 11739± 490 4415± 320 3595± 1779 2672± 801
SAC-sticky-2 8626± 523 4670± 221 4102± 1228 3520± 140
SAC-sticky-3 8168± 618 3763± 582 2625± 796 3517± 94

neuron execution time of 1

RLRD (delay of 1) 3147± 1044 3714± 547 2924± 568 3314± 157
one layer 5086± 1147 1209± 1304 1043± 744 759± 173
two layers 6660± 1081 4271± 232 1938± 865 3001± 971
three layers 7814± 412 4459± 528 2792± 1753 3115± 548
w/ projections to action 7690± 831 4048± 1179 4599± 157 2871± 956
w/ residuals & projections to action 8295± 904 4567± 213 4425± 734 3019± 749
w/ projections from observations 7892± 1198 4496± 445 3728± 1123 3187± 615

neuron execution time of 2

RLRD (delay of 2) 2884± 831 2688± 764 2874± 422 2928± 787
one layer 1846± 880 1535± 466 1783± 323 1980± 1161
two layers 3173± 1263 3791± 900 2061± 264 3317± 99
three layers 3027± 1041 3277± 571 1780± 827 2538± 888
w/ projections to action 4729± 252 3197± 686 2685± 33 3597± 25
w/ residuals & projections to action 3330± 1301 4226± 447 2049± 176 3531± 106
w/ projections from observations 4715± 1241 4137± 920 2669± 592 3569± 199

neuron execution time of 3

RLRD (delay of 3) 2150± 547 3014± 814 2002± 611 2877± 763
one layer 1293± 1272 2157± 268 1597± 191 1150± 919
two layers 2299± 1160 3037± 441 1884± 279 2098± 337
three layers 3145± 524 3054± 352 1865± 137 1171± 261
w/ projections to action 2886± 254 2391± 10 2160± 94 3633± 56
w/ residuals & projections to action 2897± 1176 2711± 425 1205± 658 3647± 26
w/ projections from observations 3224± 1339 3043± 574 2097± 188 3505± 137

neuron execution time of 4

RLRD (delay of 4) 2682± 466 2893± 678 1988± 412 2688± 479
one layer 1284± 795 1975± 318 1132± 971 1372± 476
two layers 1681± 933 2355± 582 1427± 809 1263± 302
three layers 2421± 442 2532± 362 735± 1512 1041± 68
w/ projections to action 2330± 1029 3079± 452 1642± 51 3310± 61
w/ residuals & projections to action 1748± 717 2886± 322 1909± 251 3472± 135
w/ projections from observations 2674± 911 2898± 422 1959± 157 2990± 661
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Table 2: The same as Table. 1, but a policy samples actions from normal distribution during evaluation.
The relative order of agent performance stay approximately the same.

Halfcheetah-v4 Walker2d-v4 Ant-v4 Hopper-v4
SAC 11108± 432 4665± 452 4284± 871 2737± 813

neuron execution time of 1

one layer 3675± 458 1084± 993 1518± 919 832± 320
two layers 6137± 926 4010± 575 1989± 1061 2969± 784
three layers 7120± 388 4339± 510 2453± 1527 3012± 393
w/ projections to action 7051± 947 4089± 1036 4339± 263 2687± 771
w/ residuals & projections to action 7785± 762 4299± 252 4001± 733 2888± 682
w/ projections from observation 7305± 1123 4496± 376 3414± 1001 3012± 524

neuron execution time of 2

one layer 1635± 711 1859± 896 1487± 181 1754± 1015
two layers 2787± 1073 3652± 806 1994± 241 3156± 242
three layers 2728± 896 3234± 550 1684± 762 2242± 827
w/ projections to action 4279± 261 3117± 584 2444± 98 3540± 93
w/ residuals & projections to action 3059± 1188 4182± 426 1862± 84 3490± 154
w/ projections from observation 4241± 1095 4043± 858 2426± 538 3522± 187

neuron execution time of 3

one layer 1306± 912 2159± 284 1501± 948 1024± 875
two layers 1986± 1062 2888± 412 1538± 667 2033± 343
three layers 2779± 417 2998± 351 1640± 543 1059± 270
w/ projections to action 2699± 170 2377± 18 2066± 88 3591± 58
w/ residuals & projections to action 2609± 1013 2702± 422 911± 606 3523± 5
w/ projections from observation 2926± 1219 3005± 549 1896± 334 3430± 129

neuron execution time of 4

one layer 1168± 726 1876± 401 1074± 879 1327± 460
two layers 1501± 828 2393± 381 1371± 871 1197± 297
three layers 2138± 385 2493± 351 988± 992 1026± 39
w/ projections to action 2084± 961 3041± 435 1559± 8 3234± 68
w/ residuals & projections to action 1548± 625 2821± 322 1771± 175 3250± 54
w/ projections from observation 2385± 795 2845± 381 1854± 149 2910± 640

Table 3: Different architectures with vanilla SAC without delay. Having skip connections doesn’t
translate to better performance in Halfcheetah or Walker environments. Though residual connections
perform better in Ant and projections to action in Hopper.

Halfcheetah-v4 Walker2d-v4 Ant-v4 Hopper-v4
SAC 11508± 563 4590± 392 3706± 1779 2621± 842
SAC w/ projections to action 9730± 1112 4200± 573 5389± 389 2491± 708
SAC w/ res & proj to action 11415± 351 4535± 276 3889± 1308 3063± 205

B Full MinAtar Results

Full Mujoco results for all considered environments and neuron execution times can be found in
Tables 4. Skip connections consistently improve performance across all cases for both architectures
that utilize skip connections, with projections to action, and with residuals and projections to action,
over the default CNN architecture.
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Table 4: Best average returns after 5 million training steps on MinAtar games. Results are averaged
across three seeds and standard deviation is reported.

Breakout-v0 Seaquest-v0 Freeway-v0 Asterix-v0 SpaceInv-v0
SAC 8.33± 2.6 7.03± 2.06 25.76± 5.06 19.33± 5.0 60.0± 20.0

neuron execution time of 0.5

default CNN 2.01± 1.76 2.0± 2.0 0± 0 2.02± 2.0 14.06± 7.33
w/ projections to action 8.03± 2.06 6.66± 3.0 22.33± 5.06 8.01± 4.06 37.66± 8.0
w/ res & proj to action 6.03± 3.0 7.03± 3.00 20.33± 6.06 6.03± 4.0 29.06± 4.0

neuron execution time of 1

default CNN 2.0± 2.0 1.0± 1.0 0.0± 0.0 2.0± 2.0 11.61± 5.98
w/ projections to action 7.12± 3.88 5.31± 1.55 1.0± 1.0 5.89± 3.0 30.07± 7.0
w/ res & proj to action 6.48± 3.38 4.87± 2.0 2.0± 1.0 5.77± 4.32 30.65± 7.34

neuron execution time of 1.5

default CNN 2.04± 1.78 1.0± 1.0 0.0± 0.0 1.0± 1.0 10.79± 4.58
w/ projections to action 5.98± 3.22 5.11± 2.98 1.0± 1.0 6.18± 4.0 22± 5
w/ res & proj to action 5.76± 2.97 3.95± 2.48 1.0± 1.0 5.09± 3.24 23.22± 6.0

neuron execution time of 2

default CNN 2.0± 2.0 1.0± 1.0 0.0± 0.0 1.0± 1.0 5.02± 3.0
w/ projections to action 6.07± 2.88 5.33± 3.47 1.0± 1.0 5.0± 3.32 20.59± 3.71
w/ res & proj to action 4.81± 2.2 6.08± 3.57 0.0± 0.0 4.93± 3.44 21.68± 6.95

C Training & Hardware

We used A100SXM4 GPU for training all our methods. We use the same GPU for testing our methods
as well. It took us approximately 6 hours per seed to train a MinAtar experiment for 5 million steps
while it took 7 hours per seed to train one MuJoCo experiment on the same GPU for 1 million steps.

D Hyperparameters Used in Experiments

The hyperparameters used in the main experiments on SAC Mujoco and MinAtar can be found in
Table 5.

E PPO Learning Curves

PPO learning curves are present in Fig. 11. Agent with projections to action reaches almost the same
level of performance in all four Mujoco environments as vanilla PPO agent without delay except
Ant-v4 where it completely fails. The agent without skip connections performs much worse. The
neural execution time is one. The shaded area indicates the standard error across 3 seeds.
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Table 5: Hyperparameters used in experiments.

Parameter Value

SAC Mujoco
Discount rate γ 0.99
Policy frequency 2
Target network frequency 1
Target smoothing coefficient 0.005
Policy learning rate 3e-4
Q-function learning rate 1e-3
Optimizer Adam
Adam beta (0.9, 0.999)
Adam epsilon 1e-8
Replay buffer size 1,000,000
Batch size 256
Learning starts 10,000
Entropy regularization Auto-tuned
Target entropy scale 1

SAC MinAtar
Discount rate γ 0.99
Policy frequency 32
Target network frequency 8000
Target smoothing coefficient 1
Policy learning rate 3e-4
Q-function learning rate 3e-4
Optimizer Adam
Adam beta (0.9, 0.999)
Adam epsilon 1e-4
Replay buffer size 1,000,000
Batch size 64
Learning starts 20,000
Entropy regularization Auto-tuned
Target entropy scale 0.89

Figure 11: Results of PPO on various Mujoco environments. Agent with projections to action agent
reaches almost the same level of performance in all Mujoco environments except Ant-v4 where it
completely fails.
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