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Figure 1: The audio description is from a classic Chinese essay “Kou Ji", which vividly depicts a performer using
only vocal mimicry to recreate an entire dramatic scene. The existing Text-to-Audio generation model struggles to
generate such narrative and multi-event audios. The generated audio often fails to contain all events in the described
sequence while maintaining acoustic quality and harmony.

Abstract

Text-to-audio (T2A) generation has achieved001
remarkable progress in generating a variety of002
audio outputs from language prompts. How-003
ever, current state-of-the-art T2A models still004
struggle to satisfy human preferences for005
prompt-following and acoustic quality when006
generating complex multi-event audio. To im-007
prove the performance of the model in these008
high-level applications, we propose to enhance009
the basic capabilities of the model with AI feed-010
back learning. First, we introduce fine-grained011
AI audio scoring pipelines to: 1) verify whether012
each event in the text prompt is present in the013
audio (Event Occurrence Score), 2) detect de-014
viations in event sequences from the language015
description (Event Sequence Score), and 3) as-016
sess the overall acoustic and harmonic quality017
of the generated audio (Acoustic&Harmonic018
Quality). We evaluate these three automatic019
scoring pipelines and find that they correlate020
significantly better with human preferences021
than other evaluation metrics. This highlights022
their value as both feedback signals and eval-023
uation metrics. Utilizing our robust scoring024
pipelines, we construct a large audio preference025
dataset, T2A-FeedBack, which contains 41k026
prompts and 249k audios, each accompanied by027
detailed scores. Moreover, we introduce T2A-028
EpicBench, a benchmark that focuses on long029

captions, multi-events, and story-telling scenar- 030
ios, aiming to evaluate the advanced capabili- 031
ties of T2A models. Finally, we demonstrate 032
how T2A-FeedBack can enhance current state- 033
of-the-art audio model. With simple preference 034
tuning, the audio generation model exhibits sig- 035
nificant improvements in both simple (Audio- 036
Caps test set) and complex (T2A-EpicBench) 037
scenarios. The project page is available at 038
https://T2Afeedback.github.io 039

1 Introduction 040

Recent Text-to-Audio (T2A) generation mod- 041

els (Huang et al., 2023b,a; Liu et al., 2023a, 2024; 042

Ghosal et al., 2023; Majumder et al., 2024; Vyas 043

et al., 2023) have made drastic performance im- 044

provements. By trained on massive audio-text 045

data (Gemmeke et al., 2017; Fonseca et al., 2021; 046

Chen et al., 2020; Kim et al., 2019), these genera- 047

tive models learn to generate diverse sounds with a 048

given language prompt. For audio generation, gen- 049

erating harmonious multi-event audio or describing 050

a story with audio has important applications in 051

music (Agostinelli et al., 2023), advertising, video- 052

audio generation (Luo et al., 2024; Wang et al., 053

2024), etc. However, as shown in Figure. 1, ex- 054

isting audio generation models are struggling to 055

generate harmonious and high-quality audio from 056

1

https://T2Afeedback.github.io


narrative and complex descriptions, which limits057

the potential for high-level applications.058

The failure of the generated results is often059

demonstrated in three aspects: 1) cannot fully in-060

clude all the events described, 2) cannot accurately061

follow the order of all the events described, and 3)062

cannot organize all the events harmoniously. There-063

fore, the model performance in multi-event scenar-064

ios is determined by its capabilities in these three065

fundamental aspects.066

To improve the model’s performance across067

more advanced applications, we focus on strength-068

ening the audio generation model’s fundamental069

abilities. Inspired by feedback learning in large070

language models (Ouyang et al., 2022; Bai et al.,071

2022; Touvron et al., 2023), we propose creating an072

audio preference dataset centered on three abilities073

necessary for generating harmonic and complex074

audio: 1) Event Occurrence Prompt-Following,075

2) Event Sequence Prompt-Following, and 3)076

Acoustic&Harmonic Quality. Based on the pref-077

erence information, we can refine the model’s core078

abilities, resulting in better results in both simple079

and challenging scenarios.080

However, due to the scarcity of audio data and081

the challenges of annotating the scale of user pref-082

erences, it is difficult to collect massive audio pref-083

erence datasets that only rely on human annotators.084

To fill this void, we explore using AI feedback (Cui085

et al., 2023; Lee et al., 2023; Yuan et al., 2024;086

Burns et al., 2023) in text-to-audio generation, uti-087

lizing AI models to rank audios instead of relying088

on human annotators. Compared to manual annota-089

tion, automating the data collection and annotation090

process reduces the cost of obtaining audio prefer-091

ence data and enhances scalability.092

Specifically, we develop three AI scoring093

pipelines to evaluate the generated audio in a fine-094

grained and holistic manner, corresponding to three095

core capabilities:096

• Event Occurrence Score: To specifically097

check whether each event occurs in, we cal-098

culate the audio-text semantic matching score099

for each described event separately. A lower100

score suggests that the corresponding event101

might be absent from the audio.102

• Event Sequence Score: To verify the cor-103

rectness of event order, we analyze the start104

and end times of each event and compare105

them with the event order outlined in the text106

prompt. A higher score implies a greater simi- 107

larity between the event sequences in caption 108

and audio. 109

• Acoustics&Harmonic Quality: Drawing inspi- 110

ration from aesthetic scoring methods used 111

in image quality scoring, we manually anno- 112

tate acoustic and harmonic quality for audio 113

samples. These data are then used to train an 114

automatic acoustic&harmonic predictor. 115

We confirm that our three scoring functions show 116

a stronger correlation with human evaluations com- 117

pared to existing automatic audio evaluation meth- 118

ods (Wu et al., 2023b; Xie et al., 2024). Conse- 119

quently, in addition to their application in ranking 120

preference data, these scoring functions can be used 121

as evaluation metrics that more effectively capture 122

human preferences across different aspects. 123

Leveraging these advanced AI scoring pipelines, 124

we establish a comprehensive data collection and 125

annotation framework. As a result, we construct 126

T2A-Feedback, a large audio preference dataset 127

comprising 41,627 captions and 249,762 generated 128

audios, each annotated with detailed scores. 129

Furthermore, to evaluate the higher-level capa- 130

bilities of text-to-audio models in multi-event sce- 131

narios, we introduce a more challenging bench- 132

mark, T2A-EpicBench, which features longer, 133

more imaginative, and story-telling captions for 134

audio generation. We enhance the advanced text-to- 135

audio diffusion model, Make-an-Audio 2 (Huang 136

et al., 2023a), with T2A-Feedback. Our results 137

show that using T2A-Feedback not only effec- 138

tively improves the basic capabilities of the model 139

in simple AudioCaps benchmark, but also emer- 140

gently improves the performance in complex T2A- 141

EpicBench. 142

2 Related Work 143

2.1 Text-to-Audio Generation 144

Text-to-audio generation is an emerging field that 145

aims to convert textual descriptions into corre- 146

sponding audio outputs. Existing text-to-audio 147

generation methods can be divided into two cat- 148

egories: Diffusion-based and Language model- 149

based. Diffusion-based techniques have gained 150

prominence for generating high-quality, realis- 151

tic audio by modeling the process of denoising. 152

These methods, like Make-an-Audio (Huang et al., 153

2023b,a), AudioLDM (Liu et al., 2023a, 2024), 154

Tango (Ghosal et al., 2023; Majumder et al., 2024), 155
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start with random noise and iteratively refine it to156

produce coherent audio over a series of denois-157

ing steps. On the other hand, Language model-158

based methods (Borsos et al., 2023; Agostinelli159

et al., 2023; Cideron et al., 2024) tokenize audios160

as acoustic discrete tokens, and predict the tokens161

within an auto-regressive model conditioned on162

text inputs.163

The above models acquire the ability to gener-164

ate diverse audio by training on large-scale audio-165

text datasets. However, current datasets like Au-166

dioSet (Gemmeke et al., 2017), AudioCaps (Kim167

et al., 2019), and FSD50k (Fonseca et al., 2021)168

only provide tag-level annotations or short captions.169

As a result, when processing long, detailed lan-170

guage prompts, existing models often produce low-171

quality, noisy outputs and struggle to accurately172

follow the text. Due to the difficulty of annotating173

detailed audio captions, scaling rich and accurate174

audio descriptions remains a challenge. In this175

work, we focus on enhancing the model’s basic176

abilities in event occurrence, sequence, and har-177

mony, thereby improving its performance in both178

simple scenarios and advanced applications.179

2.2 Perference Tuning with Human&AI180

Feedback181

Tuning generative models according to human pref-182

erences has emerged as a standard practice for im-183

proving the quality of outputs. By tuning with feed-184

back information on different aspects, the model185

can be improved and aligned with human pref-186

erences in corresponding aspects. Traditionally,187

this preference data used for tuning relied heav-188

ily on human evaluators who rank multiple gener-189

ated results, assessing their quality based on vari-190

ous criteria such as relevance, coherence, and aes-191

thetic value (Bai et al., 2022; Touvron et al., 2023;192

Ouyang et al., 2022; Kirstain et al., 2023; Liang193

et al., 2024; Wu et al., 2023a; Cideron et al., 2024).194

While effective, manual human annotation is195

costly and time-consuming, which greatly hampers196

the scalability of preference tuning across more197

diverse generative tasks. To address the difficulty,198

more recent developments have focused on leverag-199

ing pre-trained AI models to automate the process200

of scoring generated content (Cui et al., 2023; Lee201

et al., 2023; Yuan et al., 2024; Burns et al., 2023).202

Such an AI feedback approach has achieved im-203

pressive improvements in large language models.204

Recently, some studies have attempted prefer-205

ence fine-tuning in text-to-audio generation models.206

One recent paper related to our work, Tango2 (Ma- 207

jumder et al., 2024), utilizes contrastive language- 208

audio pre-training (CLAP) (Wu et al., 2023b) to 209

rank audio generated by the Tango model. How- 210

ever, CLAP can only evaluate the global alignment 211

between audio and text but falls short in assessing 212

the fine-grained details, like detailed event occur- 213

rence, sequence, and harmony. In this paper, we 214

construct more robust AI audio scoring pipelines 215

with fine-grained recognition ability. Our method 216

shows a much stronger correlation with human 217

preference and the constructed dataset brings sig- 218

nificant improvement to the current text-to-audio 219

generation model. 220

2.3 Text-to-Audio Evaluation Metric 221

Existing evaluation metrics for audio generation, 222

such as FAD and IS, assess audio distributions but 223

cannot evaluate the quality of individual samples. 224

Additionally, many studies rely on similarity scores 225

from the CLAP model to assess global audio-text 226

semantic alignment. PicoAudio (Xie et al., 2024) 227

uses a text-to-audio grounding model (Xu et al., 228

2024) to detect audio segments based on language 229

prompts. However, there remains a lack of fine- 230

grained evaluation methods for assessing detailed 231

event occurrence, sequencing, and acoustic quality. 232

Our research fills this gap by creating robust audio 233

AI scoring pipelines, that show a strong correlation 234

with humans, and significantly surpass alternative 235

methods. 236

3 T2A-Feedback 237

In this section, we first dive into the three AI audio 238

scoring pipelines: (i) Event Occurrence Prompt- 239

following, in Section. 3.1; (ii) Event Sequence 240

Prompt-following, in Section. 3.2; (iii) Acoustic 241

Quality, in Section. 3.3. We then describe the spe- 242

cific data generation and sorting method for the 243

T2A-Feedback dataset in Section. 3.4. 244

3.1 Events Occurrence Prompt-following 245

Generating audio that accurately reflects the events 246

described in a given prompt is the fundamental re- 247

quirement of prompt-following. However, when 248

multiple events are included in the text description, 249

current text-to-audio generation models often strug- 250

gle to generate each event precisely. To improve 251

the generation model’s event occurrence prompt- 252

following ability, we first build an AI pipeline to 253

determine the occurrence of events in audio. 254

3



Figure 2: The overview of event occurrence and se-
quence scoring pipelines.

Previous methods primarily utilize contrastive255

language-audio pre-training (CLAP) (Wu et al.,256

2023b) over the audios and language descriptions257

to assess their semantic relevance. However, in258

multi-event scenarios, the sentence-level match-259

ing score struggles to identify event-level misalign-260

ment, and can not pinpoint which specific events261

are present and which are not, as shown in Figure. 4.262

To accurately identify misaligned events, we pro-263

pose to measure the audio-text semantic alignment264

at the event-level. To this end, we first separate the265

language description and audio into basic events,266

as shown in the “Event Separation" part of Fig-267

ure. 2. Specifically, we utilize a large language268

model (LLM) (Jiang et al., 2023) to decompose269

descriptions into event captions according to the270

described order. Meanwhile, we employ an ad-271

vanced audio separation model (Liu et al., 2023b)272

to segment the audio into event-level sub-audios273

based on these event captions. By calculating the274

similarity between each event-level description and275

its corresponding sub-audio in CLAP space, we276

can gain clearer insights into the specific aligned277

and misaligned events.278

To encourage the models to comprehensively279

generate all described events, for each audio-text280

pair, we select the lowest value among all event-281

level audio-text matching scores as the Event Oc-282

currence Score. For audios generated from the283

same caption, a higher score indicates that the284

audio is more likely to contain all the described285

events.286

3.2 Events Sequence Prompt-following287

In addition to generating all events, whether these288

events occur in the temporal order described in the289

caption is also a crucial aspect of prompt-following.290

Some recent work attempts to detect the sequence 291

of events in audio. Tango2 (Majumder et al., 2024) 292

computes the CLAP matching score between the 293

temporal description and corresponding audios, but 294

we find the sentence-level CLAP score is not sen- 295

sitive to the temporal description in captions, as 296

demonstrated in Figure. 4 and Table. 2. On the 297

other hand, PicoAudio (Xie et al., 2024) employs 298

audio grounding model (Xu et al., 2024) to detect 299

audio segments. However, due to the limitation of 300

the training scale, the generalization performance 301

of the audio grounding model is limited. 302

To robustly analyze audio event sequences, we 303

propose a new pipeline for event sequence analysis. 304

Similar to event occurrence, we first use the LLM 305

and audio separation model to extract event-level 306

descriptions and their corresponding sub-audios. 307

For each separated audio track, we determine the 308

event’s start and end times based on volume levels. 309

Specifically, we normalize the volume to a range 310

of [0,1], and the period where the normalized vol- 311

ume exceeds a certain threshold is identified as the 312

event’s duration. 313

In multi-event scenarios, there are multiple com- 314

plex temporal relationships. To comprehensively 315

assess the temporal alignment between the lan- 316

guage prompt and the generated audio, and to 317

specifically identify which temporal relationships 318

are accurate and which are misaligned, we em- 319

ploy Kendall’s τ coefficient. This widely used 320

non-parametric statistic measures rank correlation 321

between two variables. Considering n events and 322

their n(n− 1) event pairs, we use LLM to analyze 323

the relationships between each event pair in the lan- 324

guage description and extract the event sequence in 325

the audio based on the starting time of each event. 326

The Events Sequence Score (e.g., Kendall’s τ co- 327

efficient between event sequences in language and 328

audio) is calculated as: 329

τ = C −Dn(n− 1) (1) 330

where C represents the number of concordant event 331

pairs between the description and the audio, D de- 332

notes the number of discordant ones. Higher τ 333

indicates a greater alignment of the event sequence 334

in the generated audio with the text description. 335

Specifically, τ = 1 signifies that the event sequence 336

in the generated audio is identical to the language 337

description, while τ = −1 indicates that the se- 338

quences are completely reversed. 339
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3.3 Acoustic&Harmonic Quality340

In addition to generating all events accurately fol-341

lowing the language prompt, organically integrat-342

ing different events to create a pleasant-sounding343

effect is also one of the basic capabilities. However,344

current audio generation models often produce low-345

quality and noisy results.346

To alleviate this challenge, we first develop an au-347

dio acoustic&harmonic quality predictor. Inspired348

by the image aesthetic predictor in (Schuhmann349

et al., 2022), we first manually score audio sam-350

ples on a scale from 1 to 4 according to their qual-351

ity. Three annotators independently score the audio352

samples according to the same criteria, and samples353

with consistent scores are accepted as training data.354

Detailed scoring criteria is provided in Appendix.355

Using the human-annotated data, we train a lin-356

ear predictor on the top of CLAP audio embeddings.357

With the high-quality pre-trained representation,358

we find that, akin to aesthetic score predictors for359

images, a small amount of annotated data can yield360

a generalized subjective quality predictor. Specif-361

ically, we train the acoustic predictor with 2,000362

meticulously annotated audio samples using cross-363

entropy loss. The output of the predictor is termed364

the Acoustic&Harmonic Quality.365

3.4 Preference Data Generation366

To generate diverse and comprehensive audio, we367

first augment the text prompts used for audio gener-368

ation. We begin with the captions from the training369

set of the large-scale audio-text dataset, AudioCaps.370

By employing an LLM, we decompose these cap-371

tions into fundamental event descriptions and cal-372

culate their semantic similarity within the CLAP373

space to filter out non-overlapping, basic event de-374

scriptions. Then, we prompt the LLM with ran-375

domly selected events to create varied and natural376

multi-event audio descriptions, with explicit tem-377

poral ordering. Finally, we combine the enhanced378

3,769 captions with the 37,858 captions from the379

training set of AudioCaps, serving as the prompt380

source for audio generation.381

As highlighted in (Cui et al., 2023), diversity382

is crucial for preference datasets. To mitigate the383

potential bias of using a single audio generation384

model and to enhance the generalization of the gen-385

erated data, we employ three advanced audio gener-386

ation models: Make-an-Audio2, AudioLDM2, and387

Tango2. Each model generates 2 audio per caption,388

resulting in a total of 6 audio files for each cap-389

tion. In summary, we produce 249,762 audios from 390

41,627 descriptions. For audios generated from the 391

same captions, we combine three rankings of each 392

score to derive the overall ranking. 393

The histogram plots of the scores on all the gen- 394

erated audios are shown in Appendix. The dis- 395

tribution of Event Occurrence Scores and Acous- 396

tic&Harmonic Quality is similar to a Gaussian dis- 397

tribution. Since most descriptions contain one or 398

two sequential events, Event Sequence Scores are 399

concentrated between -1 and 1. As noted in (Liang 400

et al., 2024), this discriminative score distribution 401

ensures a balanced ratio of negative to positive sam- 402

ples, enabling effective preference tuning. 403

4 T2A-EpicBench 404

Current text-to-audio generation models are mainly 405

evaluated and compared on the AudioCaps test set. 406

However, the captions in AudioCaps are generally 407

short and simple, averaging 10.3 words per sen- 408

tence. Specifically, 17% of the captions feature 409

only a single event, and 44% contains two events. 410

This is not enough to assess the model’s capabilities 411

in more advanced applications involving detailed, 412

multi-event, and narrative-style audio generation. 413

To fill this gap, we propose T2A-EpicBench, 414

consisting of 100 detailed, multi-event, and story- 415

telling captions. Each caption averages 54.8 words 416

and 4.2 events, with 86% containing four events 417

and the remainder featuring five or more. Initially, 418

we manually write 10 detailed captions, then used 419

them as in-context examples to prompt LLM for 420

generating the remaining captions. All 100 cap- 421

tions are manually reviewed for accuracy. Several 422

examples from T2A-EpicBench are included in the 423

Appendix. 424

5 Experiment 425

5.1 Analysis of AI Scoring Pipelines 426

5.1.1 Quantitative analysis 427

Evaluation of Event Occurrence Score (EOS) 428

To evaluate the scoring model’s capability in rec- 429

ognizing whether audios contain all the events de- 430

scribed in the text, we propose a missing event 431

recognition task. We construct distracting captions 432

by adding random event descriptions to the ground- 433

truth captions. This task challenges models to 434

distinguish the ground-truth caption from the con- 435

structed interference captions. The test sets of Au- 436

dioCaps (3,701 samples), Clotho (5,225 samples), 437
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AudioCaps Clotho MusicCaps

Random Guess 50.0% 50.0% 50.0%
CLAP 77.5% 86.4% 69.4%
PANNs 82.0% 79.9% 56.1%

EOS(ours) 90.9% 90.4% 99.8%

Table 1: Results of event occurrence recognition

Two Events Three Events
Correlation

Acc F1 Acc F1

CLAP 49.6% - 53.7% - -
PicoAudio 71.6% 0.787 51.3 0.574 0.30

ESS0.1 79.6% 0.814 54.2 0.606 0.43
ESS0.3 79.1% 0.851 57.6 0.587 0.52
ESS0.5 78.0% 0.769 56.7 0.535 0.52

Table 2: Results of event sequence recognition. ESS0.x

stands for using 0.x as volume thresholds.

and MusicCaps (4,434 samples) are employed for438

evaluation.439

We mainly compare our EOS with CLAP and440

PANNs. The caption with the higher matching441

score to the audio is considered as the prediction.442

For the audio tagging model, PANNs, we match443

the top 5 recognized audio categories with open-444

domain descriptions. As shown in Table 1, our445

EOS score showcases a notable advantage over446

baselines on all the benchmarks, demonstrating the447

superiority of event-level audio-text matching in448

identifying whether all events are correctly con-449

tained in audios.450

Evaluation of Event Sequence Score (ESS) To451

verify the ability to distinguish the alignment of452

event sequences in text and audio, we collect 450453

two-event and 200 three-event samples from Pi-454

coAudio’s data, and reverse the events orders in455

the description as interference caption. Using this456

dataset, we compare different methods by calculat-457

ing the accuracy of recognizing the ground-truth458

description versus the interference description, and459

by evaluating the Segment F1 Score (Mesaros et al.,460

2016) for detecting the start and end times of each461

audio event. Moreover, we manually annotate tem-462

poral order alignment for 100 audios generated463

from our temporal-enhanced captions and compute464

the correlation between different methods and hu-465

mans.466

The results of event sequences are provided in467

Table. 2. We compare ESS with CLAP score and468

the audio grounding model (Xu et al., 2024) used469

by PicoAudio (Xie et al., 2024). Compared to base-470

Figure 3: Visualization of the predicted scores from our
AI scoring pipeline. We highlight the first, second, and
third events described in the captions using blue, brown,
and green, respectively.

Figure 4: Qualitative comparison between CLAP scores
and EOS/ESS scores reveals distinct sensitivities to mis-
alignment. By adding or reversing events in the ground-
truth caption, the captions become misaligned with the
audio in terms of event occurrence and sequence.

lines, our method distinguishes the ground-truth 471

caption from the distracting one more accurately 472

and achieves higher F1 scores in detecting the start 473

and end times of events in audio. More importantly, 474

our method shows a much stronger correlation to 475

human annotations. 476

Additionally, we investigate various volume 477

thresholds used to determine the duration of each 478

event. In Table 2, we test thresholds of 0.1, 0.3, and 479

0.5. ESS consistently outperforms other methods 480

across most settings, with 0.3 providing the optimal 481

results and thus chosen as the default setting. 482

Evaluation of Acoustic&Harmonic Quality 483

(AHQ) To validate our acoustic&harmonic pre- 484

dictor, we independently annotate 100 additional 485

audios as a test set. The correlation between the 486

model predictions and human labels on the test set 487

is 0.786, showing strong generalization ability and 488

high consistency with human preferences. 489

Moreover, we explore building the Acous- 490

tic&Harmonic Predictor on top of various pre- 491
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FAD↓ KL↓ IS↑ CLAP↑ EOS.↑ ESS.↑ AQ.↑

Make an Audio 2 1.82 1.44 10.03 69.97 42.05 0.53 2.33

Preference Tuning

Audio-Alpaca
RAFT 1.93 1.29 10.37 72.23 44.85 0.53 2.45
DPO 3.20 1.24 12.27 72.36 44.42 0.55 2.14

T2A-Feedback
(ours)

RAFT 2.29 1.33 11.66 73.10 45.53 0.51 2.50
DPO 2.64 1.31 11.35 74.00 49.58 0.57 2.57

Table 3: Evaluation results on AudioCaps. The EOS,
ESS and AHQ represent the Event Occurrence Score,
Event Sequence Score and Acoustic&Harmonic Quality,
respectively.

AI Scoring Human Scoring

winEOS winESS winAHQ winEOS winESS winAHQ

Make an Audio 2 - (14.21) - (0.03) - (1.96) - - -

Preference Tuning

Audio-Alpaca
RAFT 53%(15.73) 51%(0.04) 42%(1.69) 57% 54% 53%
DPO 55%(16.87) 52%(0.03) 49%(1.96) 65% 64% 59%

T2A-Feedback
(ours)

RAFT 52%(15.85) 52%(0.05) 54%(2.14) 61% 57% 61%
DPO 58%(19.96) 64%(0.13) 52%(2.10) 68% 62% 68%

Table 4: Evaluation results on T2A-EpicBench. The
winEOS , winESS and winAHQ represent the win rates
of tuned models over the original model in terms
of Event Occurrence, Event Sequence and Acous-
tic&Harmonic Quality, respectively.

trained audio models and evaluate how well each492

variant correlates with human preferences. The cor-493

relation of the predictor built on CLAP (Wu et al.,494

2023b) (0.79) outperforms those based on self-495

supervised models like AudioMAE (Huang et al.,496

2022) (0.61) and BEAT (Chen et al., 2022) (0.52).497

Similarly, the image aesthetics predictor (Schuh-498

mann et al., 2022) is built on the CLIP model (Il-499

harco et al., 2021). This advantage may stem from500

the alignment with language, resulting in better501

semantic discrimination.502

5.1.2 Qualitative Analysis503

We show some example predictions from our scor-504

ing pipelines in Figure. 3, where our methods can505

specifically identify the misaligned event, the out-506

of-order event order, and the disharmony between507

events in the audio. Moreover, we provide the qual-508

itative comparison between our EOS and ESS with509

the single CLAP score, in Figure. 4. For the ground-510

truth audio-caption pairs from AudioCaps, we per-511

turb the captions by adding an event or shuffling512

the order of events. We find that the CLAP score is513

not sensitive to these perturbations and even yields514

a higher score with the incorrect, perturbed caption.515

In contrast, our EOS and ESS scores more accu-516

rately reflect the alignment between audio and text517

regarding event occurrence and event order.518

5.2 Analysis of Preference Tuning 519

To demonstrate the effect of T2A-Feedback dataset 520

in improving audio generation model, we finetun- 521

ing the advanced text-to-audio model, Make-an- 522

Audio 2 (Huang et al., 2023a), with two preference 523

training methods: Direct Preference Optimization 524

(DPO) (Wallace et al., 2024) and Reward rAnked 525

FineTuning (RAFT) (Dong et al., 2023). Another 526

audio preference dataset, Audio-Alpace, proposed 527

by (Majumder et al., 2024) is the main baseline 528

for comparison. Both the widely-used AudioCaps 529

and the new T2A-EpicBench are used as bench- 530

marks, corresponding to applications in simple and 531

complex scenarios respectively. 532

5.2.1 Quantitative Results on AudioCaps 533

The classical automated metrics (FAD, KL, IS, and 534

CLAP), as well as our three new scores (EOS, ESS, 535

and AHQ) are employed to quantitatively evaluate 536

and compare different model variants. 537

The quantitative results are provided in Table. 3. 538

FAD, KL, and IS assess audio fidelity by evalu- 539

ating the distribution of the generated audio. For 540

these metrics, both the preference dataset and train- 541

ing methods result in similar overall improvements. 542

CLAP is commonly used to measure the semantic 543

alignment between the input prompt and the gen- 544

erated audio. While both Audio-Alpaca and T2A- 545

Feedback improve the CLAP score, T2A-Feedback 546

yields greater gains. 547

Moreover, as analyzed in Section. 5.1.1, the pro- 548

posed EOS and ESS are more accurate than CLAP 549

in judging event occurrence and event sequence, 550

and AHQ shows a strong correlation to human pref- 551

erence in acoustic and harmony. We calculate the 552

three scores for different model variants to evalu- 553

ate audio generation results more accurately and 554

comprehensively. The significantly better results 555

across these three metrics demonstrate that T2A- 556

Feedback yields far greater improvements com- 557

pared to Audio-Alpaca, and the DPO method out- 558

performs RAFT in our setting. 559

5.2.2 Quantitative Results on T2A-EpicBench 560

Since there are no ground-truth audios for the long 561

and story-telling text prompts in T2A-EpicBench, 562

we primarily measure the win rate of preference- 563

tuned models against the original model outputs 564

across three key areas: event occurrence, event 565

sequence, and acoustic & harmonic quality. In 566

addition to scoring the generated audio with our 567

AI pipeline, we conduct a user study where two 568

7



a). AudioCaps

b). T2A-EpicBench

Figure 5: Visualization of the impact of preference tuning with T2A-Feedback.

human annotators evaluate and select the better569

output based on each criterion.570

The results on T2A-EpicBench, are illustrated571

in Table. 4, indicate that Audio-Alpaca provides572

only marginal improvements in handling detailed573

captions and multi-event scenarios, whereas T2A-574

Feedback significantly and comprehensively en-575

hances the model’s performance.576

It is worth noting that T2A-Feedback does not577

include long audio descriptions. The average word578

count per caption in T2A-Feedback is 9.6, which is579

considerably shorter than the 54.8 average word580

number of T2A-EpicBench prompts, and even581

shorter than Audio-Alpaca’s 10.2 words per cap-582

tion. T2A-Feedback does not directly provide addi-583

tional long caption data, and the 65% average win584

rate in the user study reinforces that by focusing on585

improving the basic capabilities, the audio gener-586

ation model can emergently learn to handle more587

complex long-text and multi-event scenarios.588

5.2.3 Qualitative Findings589

To better demonstrate the effectiveness of prefer-590

ence tuning on T2A-Feedback, we visualize some591

examples of tuning the original model on our T2A-592

Feedback with the DPO method in Figure. 5. For593

the examples of short captions in Figure. 5a, while594

both models before and after fine-tuning can pro-595

duce clean audio, the fine-tuned model successfully596

generates all events in the described order. In the597

more challenging case from T2A-EpicBench, the 598

original model often generates noisy, low-quality 599

audio, making it difficult to distinguish the events. 600

Preference tuning on T2A-Feedback, as shown in 601

Figure. 5b, significantly reduces background noise 602

and generates audio that more faithfully captures 603

both events and their orders. 604

6 Conclusion 605

In this paper, we build AI scoring pipelines to 606

evaluate three fundamental capabilities of audio 607

generation: Event Occurrence Prompt-following, 608

Event Sequence Prompt-following, and Acous- 609

tics&Harmonic Quality. Using these automatic 610

evaluation metrics, which are highly correlated 611

with human preferences, we build a large-scale 612

audio preference dataset, T2A-Feedback. Experi- 613

mentally, the three scores demonstrate a strong cor- 614

relation to human preferences, which highlights its 615

potential to better evaluate text-to-audio generation 616

models. To assess the model’s ability in complex 617

multi-event scenarios, we propose a new challeng- 618

ing benchmark, T2A-EpicBench, which requires 619

models to generate detailed and narrative audios. 620

Using our T2A-Feedback to tune the audio genera- 621

tion model effectively improves its capabilities in 622

the three basic capabilities and achieves better per- 623

formance in both simple (AudioCaps) and complex 624

(T2A-EpicBench) scenarios. 625

8



Limitation626

Automatically generating high-quality and harmo-627

nious audio from detailed, narrative, and multi-628

event scenarios remains a long-term goal. The per-629

formance of the audio generation model depends630

on both the pre-training phase and the post-training631

phase (fine-tuning and feedback learning). To fully632

address the challenge of generating coherent au-633

dio for long narrative prompts, improvements are634

needed across the entire process.635
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A Examples from T2A-EpicBench 847

1. At a lively beach, the waves crash rhythmi-
cally against the shore, providing a soothing
melody. Suddenly, a seagull caws overhead,
drawing attention from sunbathers. Children‘s
giggles fill the air as they splash in the water.
Just then, a distant drumbeat starts, adding a
festive atmosphere to the scene.

2. In a vibrant classroom, the teacher’s
voice resonates as she explains a lesson.
Suddenly, a pencil rolls off a desk and clatters
to the floor, causing a brief distraction. A
student whispers a joke, provoking a wave
of giggles. Just then, the school bell rings,
signaling the end of the period.

3. In a busy city street, the honking of
cars creates a chaotic symphony. Suddenly, a
bicycle bell rings sharply as a cyclist weaves
through traffic. The murmur of pedestrians
chatting fills the air, blending with the distant
sound of street performers playing music.
Just then, the sound of footsteps approaches,
adding to the urban rhythm.

4. At a busy construction site, the sound
of drills and saws fills the air, creating a
symphony of labor. Suddenly, a heavy beam
falls with a loud thud, causing workers to
pause. A whistle blows, signaling a break,
and conversations buzz among the crew. Just
then, a truck backs up, beeping as it arrives.

5. In a vibrant downtown area, the honking of
cars creates a chaotic symphony. Suddenly, a
street vendor shouts out their specials, trying
to attract customers. The laughter of people
enjoying a nearby café adds warmth to the
urban sounds. Just then, a bus rumbles past,
its engine growling as it continues.

6. In a vibrant market, the chatter of
vendors fills the air as they hawk their goods.
Suddenly, a loud crash echoes as a stack of
crates falls over, causing startled gasps. A
nearby musician strums a guitar, trying to
restore the upbeat mood. Just then, a child
squeals with delight, tugging at their parent’s
hand to explore further.

848
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B Scoring Criteria for849

Acoustic&Harmonic Quality850

Annotators need to score the auditory quality
of audio from the following four perspectives:
Acoustic Quality: Does the generated audio
sound realistic and pleasant?
Harmony: Do different sound elements inte-
grate well, forming a cohesive auditory scene?
Background Noise: Is there noise that dis-
rupts the clarity and naturalness of the audio?
Dynamic Range: Are the different audio ele-
ments within their reasonable volume range?
The specific standards for each score are as
follows:

Score Standard

1

Poor audio quality;
sounds unrealistic with disjointed elements;
severe background noise interference;
and extremely limited dynamic range.

2

Normal audio quality;
some events are natural but harmony is lacking;
Background noise affects clarity;
and dynamic range is limited.

3

Good audio quality;
most events are realistic with good integration;
Background noise is minimally disruptive;
and dynamic range is reasonable.

4

Excellent audio quality;
all events are realistic with perfect integration;
well-managed background noise;
and wide dynamic range.

851

C Implementation Details852

Audio Generation During the audio generation853

process in T2A-Feedback, all models are set to854

100 denoising steps with the DDIM scheduler, and855

classifier-free guidance is configured at 4.0.856

Training Details For Acoustic&Harmonic Pre-857

dictor, we train an extra two-layer MLP projector858

on the top of CLAP audio representations using859

Cross Entropy(CE) loss. The predictor is trained860

using the Adam optimizer with a learning rate of 1e-861

2.5 for 6 epochs on 1,000 manually annotated data.862

For preference tuning, we employ the AdamW op-863

timizer with a learning rate of 1e-5 for both DPO864

and RAFT strategy, and train one epoch for both865

Audio-Alpaca and T2A-Feedback.866

D Other models on T2A-EpicBench867

The performance of AudioLDM 2 and Tango 2 on868

T2A-EpicBench is as follows:869

EOS ESS AHQ

Make an Audio 2 14.21 0.03 1.96
AudioLDM2 16.35 0.04 1.98

Tango2 19.42 0.07 2.11

Make an Audio 2 +
T2A-Feedback (DPO)

19.96 0.13 2.10

Table 5: Results of AudioLDM2 and Tango2 on our
T2A-EpicBench.

AudioCaps Clotho MusicCaps

Average 89.3 88.8 99.8
Lowest 90.9 90.4 99.8

Table 6: Comparison between selecting lowest or aver-
age score for event occurrence score

As shown in Table. 5, the improvements ob- 870

served across Make-an-audio 2, AudioLDM2, and 871

Tango2 on EpicBench align with their inherent ca- 872

pabilities, with newer and more advanced models 873

achieving better results. This indirectly validates 874

the robustness and effectiveness of our benchmark 875

and AI-based scoring pipeline. 876

Moreover, we observed that although the Make- 877

an-audio 2 model does not perform well on 878

EpicBench initially, it achieves the best per- 879

formance after feedback alignment with T2A- 880

Feedback. This highlights the practicality and sig- 881

nificance of our dataset. 882

E Study about Lowest Score for EOS 883

We tested the effect of selecting the average score 884

and the lowest score among all matching scores for 885

event occurrence judgment in Table. 6. We find 886

that using the lowest score can better distinguish 887

the caption with extra events for current audio-text 888

datasets. According to the statistical results, we 889

empirically select the lowest score for event occur- 890

rence. 891

F Negative Effect to FAD Score 892

FAD and FID estimate the mean and covariance of 893

two sample groups in a high-dimensional feature 894

space and calculate their similarity. A negative cor- 895

relation between FAD (FID) and subjective metrics 896

is widely observed in the text-to-image and text-to- 897

audio generations. The study Pick-a-Pic (Kirstain 898

et al., 2023) for text-to-image feedback learning 899

has discussed this phenomenon, suggesting that it 900
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Figure 6: Histograms of three different scores in T2A-Feedback.

A-1 A-2 A-3 Majority

Predictor 70.31% 68.75% 62.50% 73.44%
A-1 - 64.06% 68.75% 74.33%
A-2 64.06% - 65.63% 71.88%
A-3 68.75% 65.63% - 70.31%

Table 7: Agreement between AHQ annotations and
predictions on 100 testing samples. A-1, A-2 and A-
3 are three human annotators. “Majority" stands for
the agreement between each judge and the other three
judges’s majority votes.

may be correlated to the classifier-free guidance901

scale mechanism. Larger classifier-free guidance902

scales tend to produce more vivid samples, which903

humans generally prefer, but deviate from the dis-904

tribution of ground truth samples in the test set,905

resulting in worse (higher) FID (FAD) scores.906

More specifically, this phenomenon is witnessed907

in Tables 1 and 2 of CogView3 (Zheng et al., 2024)908

(text-to-image method) and Table 3 of Tango2 (Ma-909

jumder et al., 2024) (text-to-audio method), where910

models achieve higher human preference scores but911

worse FID (FAD) scores. The negative correlation912

between FID (FAD) and subjective scores, as con-913

sistently shown by previous methods, appears to914

be an expected outcome when aligning generative915

models with human preferences.916

G Statistic of Each Score917

We provide the histogram maps of three different918

scores in Figure. 6.919

H Agreement between AHQ Annotations920

We provide the agreement between Acous-921

tic&Harmonic Quality (AHQ) annotations and pre-922

dictions in Table. 7. All the annotators exhibit an923

agreement rate of over 70% with the majority vote,924

which demonstrates the reliability of our annotation925

process.926

I Potential Risks 927

Since our audio data is generated by the model 928

based on the text, its content is mainly determined 929

by the provided text. Therefore, if using genera- 930

tion models without safety checkers, offensive and 931

unsafe content may be generated. In our work, we 932

checked the content of the text prompt to ensure 933

that the generated data does not contain offensive 934

content. 935
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