Under review as a conference paper at ICLR 2021

DETECTING ADVERSARIAL EXAMPLES BY ADDITION-
AL EVIDENCE FROM NOISE DOMAIN

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks are widely adopted powerful tools for perceptual tasks.
However, recent research indicated that they are easily fooled by adversarial ex-
amples, which are produced by adding imperceptible adversarial perturbations to
clean examples. In this paper, we utilize the steganalysis rich model (SRM) to
generate noise feature maps, and combine them with RGB images to discover the
difference between adversarial examples and clean examples. In particular, we
propose a two-stream pseudo-siamese network and train it end-to-end to detect
adversarial examples. Our approach fuses the subtle difference in RGB images
with the noise inconsistency in noise features. The proposed method has strong
detection capability and transferability, and can be combined with any classifier
without modifying its architecture or training procedure. Our extensive empiri-
cal experiments show that, compared with the state-of-the-art detection methods,
the proposed method achieves excellent performance in distinguishing adversarial
samples generated by popular attack methods on different real datasets. More-
over, our method has good generalization, it trained by a specific adversary can
generalize to other adversaries.

1 INTRODUCTION

Deep neural networks have achieved superior performance on many perceptual tasks, such as face
recognition (Jiang et al.,|2020)), object detection (L1 et al., | 2019) and image classification (Hu et al.,
2018). However, there is obvious difference between the perception systems of humans and neural
networks. Szegedy et al.|(2014) have demonstrated that adversarial examples generated by adding
tiny but elaborately designed perturbations can easily fool neural networks with high confidence. For
images, the perturbations are imperceptible and do not stir any doubt about the correct classification
for humans. Many different methods (Goodfellow et al.| 2015} |Kurakin et al., 2017b; Madry et al.,
2018; [Papernot et al., [2016a; [Su et al., [2019; |Carlin1 & Wagner, 2017} |Dong et al., [2018}; |[Uesato
et al.|[2018) have been proposed to design the worst-case perturbations. Most strikingly, adversarial
examples have transferability, e.g., an adversarial example generated by a model can remain attack
effective for other models. This makes adversaries can successfully attack a model without knowing
its details, thereby reducing the difficulty of implementing attacks.

The undesirable property of deep neural networks has become major problem in safety-critical ap-
plications like medicine, finance and autonomous driving. Methods to increase the robustness of
neural networks against adversarial examples have been proposed from augmenting the training
data (Huang et al.| [2016; [Kurakin et al.| 2017a; Xie et al.,[2019; Song et al., [2020) with adversarial
examples to distilling robust networks from the original networks (Papernot et al., [2016b). Unfor-
tunately, no matter how robust a model is, there are always new attacks that can successfully fool
it. When a trained model is being applied, the cost is huge of retraining it to deal with new attacks.
Therefore, convenient and flexible methods to defend against adversarial examples are essential.

Detection only methods are flexible, and can provide protection to a model even if the model is
being used. KD+BU (Feinman et al.|[2017), LID (Ma et al.,|2018) and ML-LOO (Yang et al., 2020)
utilize the distribution character of different categories in hidden layers of the targeted model to
detect adversarial examples. Metzen et al.|(2017) grafted a detection subnetwork on the targeted
model. Although these methods show compelling performance results on a number of state-of-the-
art adversarial attacks, one major drawback is that these methods depend closely on the protected
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network, which will restrict their application. These methods will fail when they are used to provide
protection to a task that uses the online machine learning service providers such as Amazon Ma-
chine Learning and BigML. If a detector can detect adversarial examples effectively only by input
samples, this problem then is no longer a problem. However, an adversarial image is very similar
to its corresponding original image, hence it is extremely difficult to effectively discriminate the
adversarial of an image without relying on the targeted model.

In this paper, we treat adversarial perturbations as special noise, and extract noise features to provide
additional evidence for adversarial example detection. The noise features supply rich information
for discriminating adversarial examples, making the proposed model can effectively detect adver-
sarial examples without the targeted model. Our model consists of a two-stream pseudo-siamese
network and a decision network. The first stream discovers clues to the subtle difference like con-
trast difference, unnatural pixels from the RGB features. The second stream is a noise stream which
utilizes the noise features to capture the noise inconsistency between clean samples and adversarial
samples. The intuition behind the second stream is that although adversarial perturbations are pretty
special, they are still noise, the noise features between original images and adversarial images are
unlikely to match. To utilize the noise features, we need to choose a suitable tool to convert the RGB
image into the noise domain. We observe that the total variation of adversarial images is obviously
larger than that of original images, which shows that the value difference between adjacent pixels is
larger in adversarial images. We thus select steganalysis rich model (SRM) (Fridrich & Kodovsky,
20125 [Zhou et al., [2018)) to generate the noise features. SRM extracts local noise features from ad-
jacent pixels, and amplifies local pixel difference in adversarial images. The noise feature maps are
directly used as input to the second stream. We then adopt bilinear pooling (Lin et al.| 20155 [Fukui
et al.,|2016) to combine the features produced from the two streams. Bilinear pooling is often used
for fine-grained classification, it can fuse two streams while preserving spatial information. Finally,
the decision network uses the fused features to discriminate adversarial examples.

We summarize our contributions as follows:

1. We propose a novel two-stream adversarial example detection framework and perform end-
to-end training. The proposed method can obtain rich feature information from noise fea-
tures to provide additional evidence for adversarial example detection. With the rich feature
information, our model gets rid of the dependence on the targeted model. Compared with
the state-of-the-art detection methods, our method has good transferability while maintain-
ing effective detection capability, and it can be reused to protect different models after once
training.

2. We select the steganalysis rich model (SRM) to produce noise feature maps. We notice that
the total variation of adversarial images is significantly larger than that of clean images.
This means the difference in the value of neighboring pixels is larger in adversarial images.
SRM amplifies the difference in noise domain, and obtains additional plentiful information
to assist in detecting adversarial samples.

3. Extensive experiments show that our method achieves excellent performance in defending
against both white-box attacks and black-box attacks. Moreover, our method has good
generalization, it trained by an attack can defend against other attacks effectively.

2 RELATED WORK

In this section, we briefly review the related work in steganalysis rich model, adversarial attack and
adversarial defense.

Steganalysis Rich Model: Steganalysis rich model (SRM) is mainly used in image forensics tasks.
It extracts local noise features from adjacent pixels to capture the inconsistency between authen-
tic and tampered regions. [Cozzolino et al.| (2015 2017) demonstrated the performance of SRM in
distinguishing tampered regions from authentic regions, and combined SRM features with Convo-
lutional Neural Networks to perform manipulation localization. [Rao & Ni|(2016) used a SRM filter
kernel as the initialization of a Convolutional Neural Network to improve detection accuracy. [Zhou
et al.| (2018) utilized SRM filter kernels to extract low-level noise used as input to a Faster R-CNN
network, and captured tampering traces in the noise features.
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Figure 1: Illustration of our two-stream pseudo-siamese network. Color code used: light green =
Conv+ReLU, purple = max pooling, green = bilinear pooling, yellow = fully connected layers. The
RGB stream uses original images as input, and captures subtle difference like contrast difference,
unnatural pixels from the RGB features. The noise stream first obtains noise feature maps through
a SRM filter layer, and leverages the noise features to provide additional evidence for adversarial
image detection. Bilinear pooling combines the spatial co-occurrence features extracted by the two
streams. Finally, passing the combined features through a decision network composed of fully
connected layers and a softmax layer, the network generates the predicted label and determines
whether the input image is adversarial or not.

Adversarial Attack: Since Szegedy et al.|(2014) first noticed the existence of adversarial exam-
ples, many attack methods have been proposed. The fast gradient sign method (FGSM) (Goodfel-
low et al., 2015) is a pioneering attack method, it performs a single-step gradient update along the
direction of the sign of gradient at each pixel. Although FGSM is simple, it is a very effective attack.
The basic iterative method (BIM) (Kurakin et al., 2017b)) extends FGSM into an iterative algorithm.
It replaces the single-step with multiple small steps. The projected gradient descent (PGD) (Madry
et al., [2018)) is similar to BIM, and chooses a randomly perturbed image of an original image as
the initial image to generate the adversarial image. The Momentum Iterative Method (MIM) (Dong
et al., |2018) integrates the momentum term into the iterative process for attacks to generate more
transferable adversarial examples. [Papernot et al.| (2016a) proposed the Jacobian-based saliency
map attack (JSMA) that modifies only a few pixels in an image to generate correspongding adver-
sarial image. The one pixel attack (Su et al.l [2019) only changes one pixel in an image to fool the
targeted classifier. |Uesato et al.| (2018) used the finite difference in the random direction to esti-
mate approximate gradients, thereby generating adversarial samples when the gradients cannot be
used. Moosavi-Dezfooli et al.| (2016)) proposed Deepfool to find the shortest distance from the clean
images to the decision boundary of the adversarial images. |Carlini & Wagner| (2017)) converted
adversarial examples into the argtanh space, making it more flexible to use the optimization solvers.

Adversarial Defense: Due to the huge potential hazard of adversarial samples, a number of defense
methods have been proposed to defend against adversarial examples, including adversarial training
(Huang et al.| 2016} |Kurakin et al.,[2017a; Xie et al., 2019;/Song et al., 2020)), data compression (Guo
et al.,|2018};Bhagoji et al.l 2018), defensive distillation (Papernot et al.| | 2016b), input reconstruction
(Gu & Rigaziol |2015;|Liao et al., 2018 Jia et al.,[2019)), feature squeezing (Xu et al.,|2018)), verifiable
defense (Wong & Kolter, 2018)) and randomized model (Lecuyer et al.,[2019;|Liu et al., 2018;[2019).
These defense methods often involve modifications in the model training process, which usually
require higher computational or example complexity, and lead to loss of accuracy (Yang et al., 2020).
Complimentary to the previous defense methods, an alternative line of works focus on screening
out adversarial samples in the testing phase without touching the training of the targeted model or
preprocessing input samples. [Metzen et al.| (2017) grafted a discriminator on the targeted model, and
used the output of the intermediate layers as input to the discriminator to detect adversarial examples.
Feinman et al.| (2017), Ma et al.[|(2018)) and |Yang et al.| (2020) utilized the distribution character in
hidden-layer output of different categories to identify adversarial examples. Although these defenses
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Figure 2: The SRM filter kernels used in our work to extract local noise features. In grayscale
images, we only use the left kernel to generate SRM images.

Original Adversarial Original Adversarial Original Adversarial

= I

Figure 3: Examples of original, adversarial images and corresponding SRM images in CIFAR-10.
The adversarial images are produced using PGD with maximum perturbation e = 0.05 (out of 1.0).
Each column shows a RGB image and its corresponding SRM image. As shown in second row,
the SRM images generated from adversarial images are significantly noisier than the SRM images
generated from original images. A clean image usually consists of different smooth regions and
complex texture regions. The adversarial perturbations will destroy the smooth regions and make
the complex texture area more cluttered. The main focus of a RGB channel is on semantic image
content, thus ignoring these difference.

do not modify the model and input samples, they rely closely on the targeted model. This will restrict
the transferability of these methods. Our work focuses on presenting an effective defense that does
not modify the model and input samples, while has good transferability and generalization.

3 PROPOSED METHOD

We adopt a two-stream pseudo-siamese network to detect adversarial images. As shown in Figure
[} the RGB stream uses RGB images as input and the noise stream uses SRM images as input. We
utilize compact bilinear pooling to fuse the features produced by the two steams before a decision
network. The SRM filter layer is used to produce SRM images. Without relying on the targeted
model, our method can still effectively identify adversarial examples. And, our approach can be
combined with different models repeatedly after once training.

3.1 STEGANALYSIS RICH MODEL

When generating adversarial images, L, norm, including Lo, Lo and L., norm, are usually used
to restrict the change of pixel values. Hence an adversarial image and its corresponding original
image are very similar. RGB channels are not sufficient to tackle all different information to detect
adversarial examples. We notice that the total variation of adversarial images is significantly larger
than that of original images. This is easy to understand, due to the addition of adversarial perturba-
tions, the value difference of adjacent pixels in an image becomes larger. We use SRM filter kernels
to extract local noise features from RGB images to amplify the difference, and provide additional
evidence for adversarial example detection. This is novel-while a number of detection only meth-
ods have been proposed to improve the robustness of models, no prior work in defending against
adversarial attacks has investigated learning from noise distribution in detection.
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Steganalysis rich model generates the noise features of one image through the residual between
a pixel value and the estimation of the pixel value generated by only interpolating the adjacent
pixel value. SRM uses 30 basic filters to gather the basic noise features by performing nonlinear
operations like maximum and minimum of the nearby output after filtering. By quantifying and
truncating the output of these filters, SRM extracts the nearby co-occurrence information as final
features. |Zhou et al.| (2018)) demonstrated that using only 3 kernels can achieve similar performance
as using 30 kernels. Therefore, we choose 3 kernels and their weights are shown in Figure 2] We
copy each kernel twice to form three 5x5x3 convolution kernels as the parameters of SRM filter
layer with 3-channel input and 3-channel output. For grayscale images, we only use the left kernel
as the parameters of SRM filter layer with 1-channel input and 1-channel output.

Figure[3|shows the resulting noise feature maps after the SRM layer. We can clearly see that there is
significant difference between original images and adversarial images in the SRM images although
they are similar in the RGB images. Especially in smooth regions, SRM amplifies the insignificant
difference between neighboring pixels.

3.2 TwO-STREAM NETWORK

The SRM images are directly used as input to the noise stream, which has same architecture with the
RGB stream (structure details as shown in Lable [2]in Appendix). Then, we adopt bilinear pooling
(Lin et al} [2015) to fuse the noise stream and the RGB stream, and pass the fused results into the
decision network. Bilinear pooling is proposed for fine-grained classification, it combines two CNN
network streams while preserving spatial information. However, the bilinear features combined by
bilinear pooling are high dimensional, typically on the order of hundreds of thousands to millions.
To speed up training, we use compact bilinear pooling (Fukui et al., 2016)) to fuse the two streams.
The compact bilinear pooling has the same performance as the full bilinear representation but with
only thousands dimensions.

After the fused features pass through a decision network consisting of two fully connected layers
and a softmax layer, the final predicted result is obtained (see Figure[I). We use cross entropy loss
and squared Ly-norm regularization that leads to the following objective function:

minimize L = )\||WH2 + Lcross(fD(CBP(fRGB(m)a fN(fSRM(m))))’ y)7 (1)

where A is a hyperparameter for balancing the regularization and loss. x is the input image and y is
a’s label. || - ||2 denotes the Ly norm. w are the weights of networks except for the SRM network.
fsra denotes the SRM network with fixed weights. frep and fn are the RGB stream network
and the noise stream network. C'B P denotes the compact bilinear pooling. L.,,ss denotes the cross
entropy loss.

4 EXPERIMENTS

In this section, we present an experimental evaluation of our method, and compare it with several
state-of-the-art detection methods.

4.1 EXPERIMENTAL SETTING

Datasets: We extensively evaluate our method on MNIST, CIFAR-10 and CIFAR-100. MNIST is
a gray scale image dataset of handwritten digits with the image shape 28 x 28, including 60000
training samples and 10000 testing samples. CIFAR-10 consists of 60000 32 x 32 color images in
10 classes, with 5000 training samples and 1000 testing samples per class. CIFAR-100 is just like
CIFAR-10, except it has 100 classes, with 500 training images and 100 test images per class.

The adversarial datasets corresponding to MNIST are generated with maximum perturbation € = 0.3
(out of 1.0), and the adversarial datasets corresponding to CIFAR-10 and CIFAR-100 are generated
with maximum perturbation e = 0.05 (out of 1.0).

Classifiers: For MNIST dataset, we design two classifiers, as shown in Label[3]in Appendix, a local
model and a black model. All classifiers are used to generate adversarial images with different attack
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methods, but only the local model is used to assist detection methods. That is, if the local model as
the protected model, then defending against the adversarial examples generated by the local model
is defending against white-box attacks, and defending against the adversarial examples generated by
the black model is defending against black-box attacks. The classifiers for CIFAR-10 and CIFAR-
100 are shown in Lable[3|and @]in Appendix. We use three classifiers as black models for CIFAR-10
and CIFAR-100, respectively. All classifiers are trained by Adam optimizer (Kingma & Ba, 2015)
(81 = 0.9, B2 = 0.999) with the batch size of 128, learning rate of 0.001, and epochs of 50.

Baseline models: We compare our method with state-of-the-art detection methods including graft
network (G-RGB) (the authors did not give their method a proper name, for convenience we named
it graft network) (Metzen et al 2017)), two-stream graft network (G-RGB-N), KD+BU (Feinman
et al.l [2017) and single-stream network (RGB). G-RGB grafts a detection network on the targeted
model, and uses the features in the hidden layer of the targeted model as input to the detection
network. Due to the authors shown that choosing the output of the upper layer of the fully connected
layers as input has good generalization. Hence, we choose the input of G-RGB and G-RGB-N by
this way. G-RGB-N is G-RGB with an additional noise stream. Similar to our method, we use
SRM to generate SRM images and pass them to the targeted model to obtain hidden-layer features.
KD+BU detects adversarial samples by looking at Bayesian uncertainty estimates and performing
density estimation in the subspace of the deep features learned by the targeted model. RGB is a
single stream network with RGB images as input, it has the same architecture as the RGB stream of
our method. For convenience, we use RGB-N to represent our method.

Attack methods: We consider five attack methods, FGSM (Goodfellow et al.l 2015)), MIM (Dong
et al.,|2018)), PGD (Madry et al.,|2018)), SPSA (Uesato et al.,|2018)) and BIM (Kurakin et al.,2017b)),
to evaluate the discrimination power of different detection methods. For G-RGB and G-RGB-N, we
select the MIM to assist their training. And for RGB and RGB-N, the BIM is selected to assist their
training. This is not randomly selected. New attack methods are emerging one after another. The
generalization of a detector is very important, so we only choose one attack method to assist the
training of the detector each time. We find that G-RGB and G-RGB-N with MIM-assisted training
and RGB and RGB-N with BIM-assisted training have the best generalization.

Evaluation metric: We use true positive rate (TPR) and Area Under the receiver operating charac-
teristic Curve (AUC) as the evaluation metrics for performance comparison. TPR is the proportion
of original images classified as original. There are four situations: TPR and AUC scores are both
high, TPR and AUC scores are both low, TPR score is high and AUC score is low, TPR score is low
and AUC score is high. In the first case, it indicates that the detection method can classify original
samples and adversarial samples effectively. The second case shows the detection method is rather
chaotic. The third case means that the detector cannot effectively identify adversarial samples. And
the forth case means that the detector cannot effectively identify original samples.

Parameter setting: The four detectors that need training are trained by Adam (8, = 0.5, =
0.999) with the batch size of 128, learning rate of 0.0001, and epochs of 100. We set the value
of A = 0.0005 in Equation Each batch consists of 64 clean images and their corresponding
adversarial images.

4.2 EXPERIMENTAL RESULTS

Table [1] shows the TPR and AUC scores of different detection methods on the three datasets with
the local model as the targeted model. On the MNIST dataset, we can see that RGB and our method
(RGB-N) have excellent effects in defending against both white-box attacks and black-box attacks.
As we mention above, RGB and RGB-N are trained by using the adversarial examples generated by
BIM based on the local model. Thus, we can see that they have good generalization, they can well
defend against adversarial samples generated by other attack methods. Although G-RGB and G-
RGB-N are not as good as RGB and RGB-N, their performance is also good. In addition, G-RGB-N
is obviously better than G-RGB. Due to space limitation, a more intuitive display is shown in Figure
[in Appendix.

On the CIFAR-10 dataset. In the face of white-box attacks, our method (RGB-N) is significantly
superior to other methods. Although the AUC scores of RGB are close to that of RGB-N, the scores
of TPR are significantly behind RGB-N. This means that RGB misjudges a part of original images
as adversarial. Combining TPR and AUC scores, G-RGB-N performs second to our method and
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Table 1: Performance of detection methods in defending against adversarial examples generated by
different models and attack methods on different datasets.

Dataset Model Method FGSM MIM PGD SPSA BIM

TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC
G-RGB 0.946 0.933 0.950 0.986 0.950 0.989 0.947 0.809 0.950 0.980

G-RGB-N 0.954 0.955 0.958 0.991 0.958 0.993 0.955 0.852 0.958 0.985

Local KD+BU 0.480 0.771 0.489 0.795 0.498 0.809 0.464 0.749 0.500 0.810
RGB 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MNIST RGB-N 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

G-RGB 0.947 0.979 0.946 0.953 0.950 0.919 0.926 0.755 0.948 0.865
G-RGB-N 0.956 0.985 0.955 0.962 0.957 0.929 0.929 0.803 0.956 0.866

Black KD+BU 0.513 0.785 0.482 0.765 0.490 0.772 0.397 0.645 0.463 0.752
RGB 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
RGB-N 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

G-RGB 0.940 0.670 0.904 0.961 0.903 0.956 0.979 0.621 0.902 0.962
G-RGB-N 0.934 0.882 0.908 0.967 0.908 0.952 0.966 0.784 0.907 0.944
Local KD+BU 0.301 0.599 0.562 0.721 0.617 0.761 0.660 0.521 0.656 0.798

RGB 0.830 0.996 0.843 0.996 0.843 0.995 0.839 0.995 0.843 0.965

RGB-N 0.948 0.999 0.950 0.998 0.950 0.996 0.955 0.998 0.950 0.984

G-RGB 0.967 0.477 0.968 0.500 0.988 0.527 0.987 0.493 0.987 0.527
G-RGB-N 0.960 0.833 0.962 0.742 0.980 0.716 0.986 0.763 0.976 0.619

VGG16 KD+BU 0.700 0.493 0.308 0.513 0.320 0.524 0.708 0.500 0.323 0.524

RGB 0.849 0.994 0.846 0.991 0.848 0.993 0.867 0.996 0.839 0.913

RGB-N 0.960 0.998 0.956 0.997 0.960 0.996 0.962 0.998 0.953 0.959

CIFAR-10 G-RGB 0.977 0.475 0.981 0.493 0.989 0.495 0.989 0.500 0.988 0.488
G-RGB-N 0.965 0.850 0.969 0.766 0.983 0.710 0.983 0.771 0.977 0.613

MobileNet KD+BU 0.694 0.486 0.707 0.494 0.289 0.522 0.307 0.528 0.301 0.537

RGB 0.853 0.995 0.849 0.993 0.849 0.993 0.859 0.995 0.852 0.935

RGB-N 0.962 0.997 0.958 0.992 0.959 0.994 0.960 0.999 0.956 0.972
G-RGB 0.973 0.450 0.972 0.500 0.985 0.529 0.988 0.509 0.981 0.516
G-RGB-N 0.964 0.838 0.964 0.783 0.975 0.731 0.978 0.774 0.967 0.665
ResNet50 KD+BU 0.703 0.504 0.690 0.497 0.325 0.520 0.721 0.491 0.328 0.531
RGB 0.851 0.993 0.850 0.991 0.853 0.993 0.853 0.995 0.846 0.956
RGB-N 0.959 0.994 0.960 0.991 0.959 0.993 0.961 0.998 0.959 0.975

G-RGB 0.879 0.777 0.873 0.919 0.873 0.960 0.906 0.637 0.873 0.954
G-RGB-N 0.903 0.966 0.900 0.960 0.900 0.957 0913 0.865 0.900 0.933
ResNet101V2 KD+BU 0.586 0.597 0.717 0.862 0.870 0.958 0.600 0.569 0.881 0.965

RGB 0.869 0.973 0.871 0.981 0.871 0.983 0.871 0.974 0.871 0.959

RGB-N 0.924 0.987 0.926 0.990 0.926 0.990 0.921 0.994 0.926 0.986

G-RGB 0.905 0.759 0.914 0.713 0.912 0.624 0.926 0.622 0.912 0.586
G-RGB-N 0.918 0.973 0.927 0.915 0.930 0.801 0.933 0.881 0.923 0.670

ResNet152 KD+BU 0.619 0.590 0.645 0.613 0.616 0.593 0.598 0.567 0.604 0.594

RGB 0.879 0.975 0.884 0.974 0.877 0.975 0.889 0.973 0.873 0.922

RGB-N 0.918 0.987 0.925 0.986 0.925 0.988 0.934 0.996 0.924 0.984

CIFAR-100 G-RGB 0.913 0.743 0.913 0.701 0.924 0.600 0.935 0.613 0.925 0.567

G-RGB-N 0.924 0.967 0.924 0.917 0.928 0.801 0.936 0.874 0.925 0.676
DenseNet169 KD+BU 0.620 0.582 0.631 0.595 0.600 0.566 0.609 0.567 0.591 0.559
RGB 0.883 0.975 0.885 0.974 0.904 0.977 0.885 0.976 0.895 0.928
RGB-N 0.926 0.992 0.929 0.985 0.937 0.989 0.934 0.996 0.935 0.983
G-RGB 0.904 0.741 0.909 0.697 0.927 0.623 0.931 0.613 0.920 0.584
G-RGB-N 0.921 0.966 0.921 0.920 0.929 0.819 0.932 0.870 0.922 0.682
DenseNet201 KD+BU 0.623 0.582 0.619 0.582 0.601 0.576 0.597 0.555 0.607 0.579
RGB 0.875 0.974 0.878 0.973 0.886 0.972 0.891 0.976 0.870 0.932
RGB-N 0.924 0.993 0.923 0.988 0.933 0.989 0.924 0.995 0.925 0.981

RGB ranks third. When defending against the adversarial examples generated by the black models,
the performance of RGB-N is still outstanding. But we can see that the TPR scores of RGB-N
are slightly lower than the TPR scores of G-RGB. This does not mean that G-RGB is better than
RGB-N. The reason is obviously that G-RGB categorizes most of the testing images as original.
RGB and G-RGB-N have their pros and cons. In general, RGB ranks second and G-RGB-N ranks
third. In Figure [ we select some ROC curves for display. For a complete version, please see
Figure[6)in Appendix. In Figure[d] we can clearly see that, the performance of RGB-N is better than
other detection methods in all cases. G-RGB and G-RGB-N perform well when defending against
white-box attacks, but they are much less effective when defending against black-box attacks.

The evaluation results of detection methods on CIFAR-100 dataset are similar to those on CIFAR-10
dataset, and our method is still significantly superior to other methods. The difference is that G-
RGB-N performs better than RGB. The ROC curves of different detection methods on CIFAR-100
dataset are shown in Figure [7]in Appendix. To sum up, our method shows excellent performance
on all datasets, followed by G-RGB-N and RGB. It is worth noting that G-RGB-N is obviously
better than G-RGB. This shows that the high-level features generated by SRM images through the
targeted model can still provide useful information for adversarial example detection. For the three
methods other than RGB and our method (RGB-N), they still require the knowledge of the targeted
model during the testing phase. They cannot be used separately from the targeted model, which
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Figure 4: Some ROC curves of detection methods on CIFAR-10. We choose to display the ROC
curves of detection methods on three different attacks. We can intuitively see that our method (RGB-
N) is better than other methods in all cases.

limits their scope of application. Our model is independent of the targeted model in the testing
phase. Therefore, there is no difference for our model whether to protect the local model or the
black model in the testing phase.

5 CONCLUSION

In this paper, we propose a novel method using both a RGB stream and a noise stream to learn
rich features for adversarial example detection. We extract the local noise features by SRM, which
amplifies the inconsistency between original images and adversarial images. Rely on the additional
evidence extracted by SRM, our method can be independent of the protected model. That is, our
method has strong transferability, it can be reused to protect different model after once training.
Before the decision network, we use bilinear pooling to fuse the two streams. The bilinear pooling
can combine the two streams while preserving the spatial information. Experiments on standard
datasets show that our method has excellent performance on both white-box and black-box attacks.
Moreover, our method has good generalization, it trained by an attack method is fully capable of
defending against other attack methods.
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A APPENDIX

Table 2: The detailed two-stream network architectures for MNIST, CIFAR-10 and CIFAR-100.
Conv(d,k,s) denotes the convolutional layer with d as dimension, k as kernel size and s as stride.

MNIST CIFAR-10 and CIFAR-100
RGB Stream Noise Stream RGB Stream Noise Stream
Conv(32,3,1), ReLU Conv(32,3,1), ReLU Conv(32,3,1), ReLU Conv(32,3,1), ReLU
Max Pooling Max Pooling Max Pooling Max Pooling
Conv(64,3,1), ReLU Conv(64,3,1), ReLU Conv(64,3,1), ReLU Conv(64,3,1), ReLU
Max Pooling Max Pooling Max Pooling Max Pooling
Conv(128,3,1), ReLU Conv(128,3,1), ReLU Conv(128,3,1), ReLU Conv(128,3,1), ReLU
Compact Bilinear Pooling Max Pooling Max Pooling
Full Connected 256, ReLU Conv(256,3,1), ReLU Conv(256,3,1), ReLU
Full Connected 256, ReLU Max Pooling Max Pooling
Softmax 2 Conv(256,3,1), ReLU Conv(256,3,1), ReLU

Full Connected 256, ReLU
Full Connected 256, ReLU
Softmax 2

Table 3: Classifier architectures for MNIST and CIFAR-10. These three classifiers are designed by
us, so it is specifically explained here in the form of a table. All models will be used to generate
adversarial examples with different attack methods, but only local models can be used to assist
detection methods.

MNIST MNIST CIFAR-10
Local Model Black Model Local Model

Conv(32,3,1), ReLU Conv(32,3,1), ReLU Conv(64,3,1), ReLU
Max Pooling 2 x 2 Conv(32,3,1), ReLU  Conv(64,3,1), ReLU
Conv(64,3,1), ReLU  Max Pooling 2 x 2 Max Pooling 2 x 2
Max Pooling 2 x 2 Conv(64,3,1), ReLU Conv(128,3,1), ReLU
Full Connected 200  Conv(64,3,1), ReLU Conv(128,3,1), ReLU
Softmax 10 Max Pooling 2 x 2 Max Pooling 2 x 2
Full Connected 200 Full Connected 256
Full Connected 200 Full Connected 256
Softmax 10 Softmax 10

Table 4: Classifiers for CIFAR-10 and CIFAR-100

CIFAR-10 CIFAR-100 CIFAR-100
Black Model Local Model  Black Model

VGG-16 ResNet101V2 ResNet152
MobileNet DenseNet169
ResNet50 DenseNet201

11
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Figure 5: ROC curves of detection methods on MNIST. Due to the curves of RGB and RGB-N
coincide with the coordinate axes, they are not displayed.
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Figure 6: ROC curves of detection methods on CIFAR-10.
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Figure 7: ROC curves of detection methods on CIFAR-100.

13

False Positive Rate.




	Introduction
	Related Work
	Proposed Method
	Steganalysis Rich Model
	Two-Stream Network

	Experiments
	Experimental Setting
	Experimental Results

	Conclusion
	Appendix

