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Abstract

Classical semi-supervised approaches achieve state-of-the-art results on various visual recog-
nition tasks, especially image classification, but they are typically designed with expert
knowledge of the task at hand such as task-specific data augmentation. However, these
approaches do not generalize to novel tasks such as image segmentation and surface normal
estimation. In this work, we instead study self-training for a wide variety of tasks in a
task-agnostic fashion. We find out a simple success recipe: to construct a continuous sched-
ule of learning updates that iterates between self-training on novel segments of the streams
of unlabeled data, and fine-tuning on the small and fixed labeled data. Our task-agnostic
self-training approach works with a few labeled samples per task by leveraging millions of
unlabeled web images, and it requires neither enormous computational resources to process
data nor domain-specific unlabeled data, which are assumed in most prior works. We show
that our simple approach, without hyper-parameter tuning, can be as effective as state-
of-the-art semi-supervised learning method (Fixmatch) that is designed with task-specific
knowledge for image classification. Furthermore, we demonstrate the findings for both (1)
pixel-level tasks such as surface normal estimation and segmentation, and (2) diverse do-
mains with extreme differences to web images, including medical, satellite, and agricultural
imagery, where there does not exist a large amount of labeled or unlabeled data. The exper-
iments consistently suggest that ours is a competitive baseline to consider before developing
compute-heavy and task-specific semi-supervised methods.

1 Introduction

Training a visual recognition model requires enormous domain-specific resources, specifically (1) large amount
of high-quality curated labeled data (Krizhevsky et al., 2012; Lin et al., 2014); (2) extensive computational
resources (Radford et al., 2021; Devlin et al., 2015) (disk space to store data and GPUs to process it);
(3) task-specific optimization or dataset-specific knowledge to tune hyperparameters (Sohn et al., 2020;
Berthelot et al., 2019; Cai et al., 2022; Xu et al., 2022). In this work, we study the role of domain-agnostic
unlabeled images to improve a visual recognition model in a task-agnostic fashion. Recent semi-supervised
approaches (Xie et al., 2020b; Yalniz et al., 2019; Cai et al., 2022) (not requiring extensive labeled data)
may cost a million dollar budget for AWS compute resources. Our goal is to benefit the advances in
semi-supervised learning with minimal resources. We present a simple success recipe for task-agnostic self-
training which allows a user to train a visual recognition model from a few labeled examples (Fig. 1-(a)) and
a domain-agnostic streams of unlabeled web images (Fig. 1-(b)).

Self-Training and Semi-Supervised Learning: A large variety of self-training (Du et al., 2020; Wei
et al., 2020) and semi-supervised approaches (Radosavovic et al., 2018; Scudder, 1965; Van Engelen & Hoos,
2020; Yarowsky, 1995; Xie et al., 2020b; Yalniz et al., 2019) use unlabeled images in conjunction with labeled
images to learn a better representation (Fig. 2-(b)). These approaches require: (1) task-specific knowledge
such as better loss-functions and augmentation tricks for image classification tasks (Azuri & Weinshall, 2020;
Barz & Denzler, 2020; Cai et al., 2022); (2) intensive computational requirements (Radosavovic et al., 2018;
Xie et al., 2020b; Yalniz et al., 2019) or heavy hyperparameter tuning such as thresholding noisy pseudo-
labels (Arazo et al., 2020; Iscen et al., 2019; Lee, 2013; Xie et al., 2020b; Yalniz et al., 2019); and (3) a
large domain-specific unlabeled dataset sampled from same or similar data distribution as that of labeled
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(a) Children continually improve their knowledge about a concept.

(b) Machines can also improve their knowledge about a concept in this iterative manner.
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Flowers-102 dataset: 10 examples per class

Figure 1: (a) We take inspiration from developmental psychology that explores howchildren learn. Children
maybe exposed to a concept (say flowers), play with other things in their environment, and eventually return
to the lesson at hand. By interleaving periods of self-supervised play and teacher-supervised learning, they
can continually evolve their representations about the world. (b) We use unlabeled web images to improve
the performance for various tasks without any task-specific or domain-specific knowledge.

examples (Berthelot et al., 2020; 2019; Chen et al., 2018; Iscen et al., 2019; Lerner et al., 2020; Phoo &
Hariharan, 2021; Sohn et al., 2020; Xie et al., 2020a; Xu et al., 2022). We differ from this setup. In this
work, the unlabeled data is domain-agnostic and have no relation with the intended task. We use a 4
GPU (GeForce RTX 2080) machine to conduct all our experiments. Finally, we do not apply any advanced
optimization schema, neither we apply any task-specific knowledge nor we tune any hyperparameters.

Streams of Unlabeled Web Images: Existing semi-supervised methods use unlabeled data from similar
data distribution (Berthelot et al., 2020; 2019; Chen et al., 2018; Iscen et al., 2019; Lerner et al., 2020;
Phoo & Hariharan, 2021; Sohn et al., 2020; Xie et al., 2020a). In this work, we observe that unlabeled
examples from quite different data distributions can still be helpful. We make use of domain-agnostic
unlabeled streams of web images (such as ImageNet-21K (Deng et al., 2009), YFCC100M (Thomee et al.,
2016), and INaturalist1 (Van Horn et al., 2018)) to improve a variety of domain-specific tasks defined on
satellite images, agricultural images, and even medical images. Starting from a very few labeled examples,
we iteratively improve task performance by constructing a schedule of learning updates that iterates between
pre-training on segments of the unlabeled stream and fine-tuning on the small labeled dataset (Fig. 2-(e)).
We progressively learn more accurate pseudo-labels as the stream is processed. This observation implies that
we can learn better mappings using diverse unlabeled examples without any extra supervision or knowledge
of the task.

12021’s version at: https://github.com/visipedia/inat_comp/tree/master/2021
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Figure 2: Task-Agnostic Self-Training and Established Methods: (a) Continual learning continually
learns new tasks in a supervised manner without forgetting previous ones. Our approach can continuously learn better
models for a fixed task using an infinite stream of unlabeled data.(b) Semi-supervised learning typically requires
(1) a large domain-specific unlabeled dataset sampled from same or similar data distribution as that of labeled
examples (Berthelot et al., 2020; 2019; Chen et al., 2018; Iscen et al., 2019; Lerner et al., 2020; Phoo & Hariharan,
2021; Sohn et al., 2020; Xie et al., 2020a); (2) intensive computational resources (Radosavovic et al., 2018; Xie et al.,
2020b; Yalniz et al., 2019); and (3) task-specific knowledge such as better loss-functions for image classification
tasks (Azuri & Weinshall, 2020; Barz & Denzler, 2020) or cleaning noisy pseudo-labels (Arazo et al., 2020; Iscen
et al., 2019; Lee, 2013; Xie et al., 2020b; Yalniz et al., 2019). In contrast, our approach makes use of unlabeled data
that is domain-agnostic and has no relation with the intended task. We also require modest compute; we use a 4
GPU (GeForce RTX 2080) machine to conduct all our experiments. (c) Self-supervised learning methods learn a
representation from unlabeled images using an auxiliary task. This learned representation can then be fine-tuned for
downstream target task. In this work, we explore the role of unlabeled images for the target task without defining
an auxiliary task. Our work shares insights with Chen et al. (2020) that use big self-supervised models for semi-
supervised learning. We find it to be true even when using impoverished models for initialization, i.e., training the
model from scratch for a task given a few labeled examples. The performance for the task is improved over time
in a streaming/iterative manner. While we do observe the benefits of having a better initialization, we initialize
the models from scratch for a task throughout this work. (d) Few-shot learning learns representations from a
few-labeled examples. Guo et al. (Guo et al., 2020) show that popular few-shot learning methods (Finn et al., 2017;
Lee et al., 2019; Snell et al., 2017; Sung et al., 2018; Tseng et al., 2020; Vinyals et al., 2016) underperform simple
finetuning, i.e., when a model pre-trained on large annotated datasets from similar domains is used as an initialization
to the few-shot target task. The subsequent tasks in few-shot learners are often tied to both original data distribution
and tasks. Our approach makes use of few-labeled examples but it is both task-agnostic and domain-agnostic.

Our Contributions: (1) We use the same method for a wide variety of tasks using the same set of unlabeled
images. In this work, we present a study to empirically understand the role of domain-agnostic unlabeled web
images to learn a better representation without any task-specific knowledge. We demonstrate this behaviour
for the tasks where data distribution of unlabeled images drastically varies from the labeled examples of the
intended tasks, such as using web images for medical-image classification, crop-disease classification, and
satellite-image classification. We improve surface normal estimation on NYU-v2 depth dataset (Silberman
et al., 2012) and semantic segmentation on PASCAL VOC-2012 (Everingham et al., 2010) by 3−7%; (2) We
observe that one can improve the performance by leveraging more streams of unlabeled data on fine-grained
image classification tasks. Without any domain-specific or task-specific knowledge, we improve the results
in few iterations of our approach. We observe that learning can be made faster by increasing the capacity
of models; and (3) finally, we study that how these insights allow us to design an efficient and cost-effective
system for a non-expert.
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Figure 3: Our Approach: There are three important steps of our approach. (a) Step 1: Initialization–
we learn an initial mapping F on (x, y) ∈ S; (b) Step 2: Learning a new representation– We use F to
learn a new model F ′ from scratch on sample x ∈ U ; and (c) finally, Step 3: Fine-tune with original data
– we fine-tune F ′ on S. This becomes our new F . We continually cycle between Step-2 and Step-3. The
capacity of model F ′ increases with every cycle.

2 Related Work

Our work is inspired from the continuously improving and expanding human mind (Ahn & Brewer, 1993; Ahn
et al., 1987). Prior work focuses on one-stage approaches for learning representations for a task, typically via
more labeled data (Lin et al., 2014; Russakovsky et al., 2015; Zhou et al., 2017), higher capacity parametric
models (He et al., 2016; Huang et al., 2017; Krizhevsky et al., 2012; Simonyan & Zisserman, 2015), finding
better architectures (Cao et al., 2019; Tan & Le, 2019; Zoph et al., 2018), or adding task-specific expert
knowledge to train better models (Qi et al., 2018; Wang et al., 2015).

Continual and Iterated Learning: Our work shares inspiration with a large body of work on continual
and lifelong learning (Thrun, 1996; 1998; Silver et al., 2013). A major goal in this line of work (Finn et al.,
2017; 2019; Rao et al., 2019; Rebuffi et al., 2017; Wallingford et al., 2020) has been to continually learn
a good representation over a sequence of tasks (Fig. 2-(a)) that can be used to adapt to a new task with
few-labeled examples without forgetting the earlier tasks (Castro et al., 2018; Li & Hoiem, 2017). Our goal,
however, is to learn better models for a task given a few labeled examples without any extra knowledge.
Our work shares insights with iterated learning (Kirby, 2001; Kirby et al., 2014) that suggests evolution
of language and emerging compositional structure of human language through the successive re-learning.
Recent work (Lu et al., 2020b;a) has also used these insights in countering language drift and interactive
language learning. In this work, we restrict ourselves to visual recognition tasks and show that we can get
better task performance in an iterated learning fashion using infinite stream of unlabeled data.

Learning from Unlabeled or Weakly-Labeled Data: The power of large corpus of unlabeled or
weakly-labeled data has been widely explored in semi-supervised learning (Arazo et al., 2020; Chapelle
et al., 2009; Iscen et al., 2019; Nigam et al., 2000; Radford et al., 2018; Radosavovic et al., 2018; Raina et al.,
2007; Zhang et al., 2016b; Zhu, 2005), self-supervised learning (Fig. 2-(c)) (Doersch et al., 2015; Gidaris
et al., 2018; Zhang et al., 2016a), or weakly-supervised learning (Izadinia et al., 2015; Joulin et al., 2016;
Sun et al., 2017; Zhou, 2018). Self-supervised approaches learn a representation from unlabeled images via
an auxiliary task. The learned model is then fine-tuned for the target task. In this work, we explore the use
of domain-agnostic unlabeled examples to learn a representation for the target task without any auxiliary
task. A wide variety of work in few-shot learning (Li et al., 2019; Ravi & Larochelle, 2017; Wang et al.,
2018; Wertheimer & Hariharan, 2019), meta-learning (Ren et al., 2018; Snell et al., 2017; Sung et al., 2018)
aims to learn from few labeled samples. These approaches largely aim at learning a better generic visual
representation from a few labeled examples (Fig. 2-(d)). In this work, we too use few labeled samples for
the task of interest along with large amounts of domain-agnostic unlabeled images. Our goal is to learn a
better model for any task without any domain biases, neither employing extensive computational resources
nor expert human resources. Our work shares insights with Chen et al. (2020) that use big self-supervised
models for semi-supervised learning. We observe that it is true even when using impoverished models for
initialization, i.e., training the model from scratch for a task given a few labeled examples. The performance
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for the task is improved over time in a streaming/iterative manner. While we do observe the benefits of
having a better initialization (Sec 4.1.3), we initialize the models from scratch for a task for all our analysis
throughout this work.

Domain Biases and Agnosticism: Guo et al. (Guo et al., 2020) show that meta-learning methods (Finn
et al., 2017; Lee et al., 2019; Snell et al., 2017; Sung et al., 2018; Tseng et al., 2020; Vinyals et al., 2016)
underperform simple finetuning, i.e., when a model pre-trained on large annotated datasets from similar
domains is used as an initialization to the few-shot target task. The subsequent tasks in few-shot learners
are often tied to both original data distribution and tasks. Our approach makes use of few-labeled examples
but it is both task-agnostic and domain-agnostic. In this work, we initialize models from scratch (random
gaussian initialization) from a few labeled examples. In many cases, we observe that training from scratch
with a few-labeled examples already competes with fine-tuning a model pretrained on large labeled dataset.
Specifically, we show substantial performance improvement in surface normal estimation (Fouhey et al.,
2013; Wang et al., 2015) on NYU-v2-depth (Silberman et al., 2012) (that is primarily an indoor world
dataset collected using a Kinect) via an unlabeled stream of web images. We similarly show that unlabeled
Internet streams can be used to improve classification accuracy of crop-diseases (Russakovsky et al., 2015),
satellite imagery (Helber et al., 2019), and medical images (Codella et al., 2019; Tschandl et al., 2018) with
a modest number of labeled examples (20 examples per class).

Avoiding Overfitting: An important consequence of our work is that we can now train very deep models
from scratch using a few labeled examples without any expert neural network knowledge. The large capacity
models are often prone to overfitting in a low-data regime and usually under-perform (Newell & Deng,
2020). For e.g. a ResNet-50 model (He et al., 2016) trained from scratch (via a softmax loss) for a 200-way
fine-grained bird classification (Welinder et al., 2010) using 30 examples-per-class overfits and yields 21.7%
top-1 accuracy on a held-out validation set. In a single iteration of our approach, the same model gets
51.5% top-1 accuracy in a day. We take inspiration from prior art on growing networks (Wang et al., 2017;
Wen et al., 2016; Zhang & Yu, 2020) that slowly “grow” the network using unlabeled examples from similar
distribution. In this work, we observe that we can quickly increase the capacity of model by streaming
learning via a large amount of diverse unlabeled images. This is crucial specially when there is a possibility
of a better representation but we could not explore them because of the lack of labeled and unlabeled data
from similar distribution. Our “growing" mechanism is also much simpler compared to prior arts; we can
just replace ResNet18 by any larger capacity models such as ResNet50, resulting in only one line of code
change.

3 Method

Our streaming learning approach is both an extension and a simplification of state-of-the-arts semi-supervised
learning algorithms such as (Yalniz et al., 2019). To derive our approach, assume we have access to an
optimization routine that minimizes the loss on a supervised data set of labeled examples (x, y) ∈ S:

Learn(H, S)← arg min
F ∈H

∑
(x,y)∈S

loss(y, F (x)) (1)

We will explore continually-evolving learning paradigms where the model class H grows in complexity over
time (e.g., deeper models). We assume the gradient-based optimization routine is randomly initialized “from
scratch" unless otherwise stated.

Semi-supervised learning: In practice, labeled samples are often limited. Semi-supervised learning as-
sumes one has access to a large amount of unlabeled data x ∈ U . We specifically build on a family of deep
semi-supervised approaches that psuedo-label unsupervised data U with a model trained on supervised data
S (Arazo et al., 2020; Iscen et al., 2019; Lee, 2013). Since these psuedo-labels will be noisy, it is common
to pre-train on this large set, but fine-tune the final model on the pristine supervised set S (Yalniz et al.,
2019). Specifically, after learning an initial model F on the supervised set S:

1. Use F to psuedo-label U .
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Algorithm 1: StreamLearning(S, {Ut}T
t=1, {Ht}T

t=1)
Input : S: Labeled dataset

{Ut}T
t=1: T slices from unlabeled stream

{Ht}T
t=1: T hypothesis classes

Output: F
// Initialize the model on S
F ← Learn(H1, S);
for t← 1 to T do

// Pseudo-label stream slice
U ← {(x, F (x)) : x ∈ Ut};
// Pretrain model on U
F ′ ← Learn(Ht, U);
// Fine-tune model on S
F ← Finetune(F ′, S);

end

2. Learn a new model F ′ from random initialization on the pseudo-labelled U .

3. Fine-tune F ′ on S.

Iterative learning: The above 3 steps can be iterated for improved performance, visually shown in Fig. 3.
It is natural to ask whether repeated iteration will potentially oscillate or necessarily converge to a stable
model and set of pseudo-labels. The above iterative algorithm can be written as an approximate coordinate
descent optimization (Wright, 2015) of a latent-variable objective function:

min
{z},F ∈H

∑
(x,y)∈S

loss(y, F (x)) +
∑
x∈U

loss(z, F (x)) (2)

Step 1 optimizes for latent labels {z} that minimize the loss, which are obtained by assigning them to the
output of model z := F (x) for each unlabeled example x. Step 2 and 3 optimize for F in a two-stage fashion.
Under the (admittedly strong) assumption that this two-stage optimization finds the globally optimal F , the
above will converge to a fixed point solution. In practice, we do not observe oscillations and find that model
accuracy consistently improves.

Streaming learning: We point out two important extensions, motivated by the fact that the unsupervised
set U can be massively large, or even an infinite stream (e.g., obtained by an online web crawler). In this
case, Step 1 may take an exorbitant amount of time to finish labeling on U . Instead, it is convenient to
“slice" up U into a streaming collection of unsupervised datasets Ut of manageable (but potentially growing)
size, and simply replace U with Ut in Step 1 and 2. One significant benefit of this approach is that as Ut

grows in size, we can explore larger and deeper models (since our approach allows us to pre-train on an
arbitrarily large dataset Ut). In practice, we train a family of models Ht of increasing capacity on Ut. Our
final streaming learning algorithm is formalized in Alg. 1.

4 Experiments

We first study the role of domain-agnostic unlabeled images in Section 4.1. We specifically study tasks where
the data distribution of unlabeled images varies drastically from the labeled examples of the intended task.
We then study the role of streaming learning in Section 4.2. We consider the well-studied task of fine-grained
image classification here. We observe that one can dramatically improve the performance without using any
task-specific knowledge. Finally, we study the importance of streaming learning from the perspective of a
non-expert, i.e., cost in terms of time and money.
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4.1 Role of Domain-Agnostic Unlabeled Images

We first contrast our approach with FixMatch (Sohn et al., 2020) in Section 4.1.1. FixMatch is a recent state-
of-the-art semi-supervised learning approach that use unlabeled images from similar distributions as that of
the labeled data. We contrast FixMatch with our approach in a setup where data distribution of unlabeled
images differ from labeled examples, e.g., the unlabeled stream could be ImageNet-21K (Russakovsky et al.,
2015), YFCC100M (Thomee et al., 2016), or INaturalist (Van Horn et al., 2018). We then analyze the role
of domain-agnostic unlabeled images to improve task-specific image classification in Section 4.1.2. The data
distribution of unlabeled images dramatically differs from the labeled examples in this analysis. Finally,
we extend our analysis to pixel-level tasks such as surface-normal estimation and semantic segmentation in
Section 4.1.3.

4.1.1 Comparison with FixMatch, Sohn et al. (2020)

We use two fine-grained image classification tasks for this study: (1) Flowers-102 (Nilsback & Zisserman,
2008) with 10 labeled examples per class; and (2) CUB-200 (Welinder et al., 2010) with 30 labeled examples
per class. The backbone model used is ResNet-18. We conduct analysis in Table 1 where we use the default
hyperparameters from FixMatch (Sohn et al., 2020) for analysis.

In specific, we use SGD optimizer with momentum 0.9 and the default augmentation for all experiments
(except that FixMatch during training adopts both a strong and a weak (the default) version of image
augmentation, whereas our approach only uses the default augmentation). For FixMatch, we train using lr
0.03, a cosine learning rate scheduling, L2 weight decay 5e-4, batch size 256 (with labeled to unlabeled ratio
being 1:7) on 4 GPUs with a total of 80400 iterations. For our approach, we first train from scratch only
on the labeled samples with the same set of hyperparameters as in FixMatch (with all 256 samples in the
batch being labeled samples). From there we could already see that FixMatch sometimes does not match
this naive training strategy. Then for our StreamLearning approach, we generate the pseudo-labels on the
unlabeled set U1 and trained for another 80400 iterations with lr 0.1 (decay to 0.01 at 67000 iteration), L2
weight decay 1e-4, batch size 256 on 4 GPUs. Finally, we finetuned on the labeled samples for another 80400
iterations with lr 0.1 (decay to 0.01 at 67000 iteration), L2 weight decay 1e-4, batch size 256 on 4 GPUs.

Comparison with FixMatch

Task scratch
U = ImageNet U = YFCC100M U = INat2021

FixMatch U1 (ours) FixMatch U1 (ours) FixMatch U1 (ours)

Flowers-102 (Nilsback & Zisserman, 2008) 58.21 53.00 61.51 54.64 63.88 54.63 60.35
CUB-200 (Welinder et al., 2010) 44.24 51.24 60.58 49.19 59.77 45.91 54.69

Table 1: We contrast our approach with FixMatch (Sohn et al., 2020) on two fine-grained image classification
tasks. For unlabeled images, we use a million unlabeled images from either ImageNet (Russakovsky et al.,
2015) or YFCC100M (Thomee et al., 2016) for this experiment. The backbone model used is ResNet-18. Our
approach significantly outperforms FixMatch. We use the default hyperparameters from FixMatch (Sohn
et al., 2020).

4.1.2 Extreme-Task Differences

We use: (1) EuroSat (Helber et al., 2019) (satellite imagery) dataset for classifying satellite-captured images
into distinct regions; (2) ISIC2018 (Codella et al., 2019) (lesion diagnosis) for medical-image classification
of skin diseases; and (3) CropDiseases (Mohanty et al., 2016) dataset which is a crop-disease classification
task. We use 20 examples per class for each dataset and train the models from scratch. We provide details
about the dataset and training procedure in the Appendix A.1.

Table 2 shows the performance for the three different tasks. We achieve significant improvement for each
of them. We also show the performance of a pre-trained (using 1.2M labeled examples from ImageNet)
model on these datasets. Guo et al. (2020) suggested that fine-tuning a pre-trained model generally leads
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Task pre-trained scratch
U1 (ours)

ImageNet YFCC100M INat2021

East-SAT (Helber et al., 2019) 68.93 70.57 73.85 77.07 77.78
Lesion (Codella et al., 2019) 45.43 44.86 50.86 52.29 51.43
Crop (Mohanty et al., 2016) 94.68 87.49 90.86 91.46 90.41

Table 2: Extreme-Task Differences: We analyse tasks that operate on specialized data distributions.
We observe significant performance improvement despite the unlabeled streams of internet images being used
(ImageNet or YFCC100M). We also achieve performance competitive to the ImageNet-1k pre-trained model
(again, trained with a large amount of labels). We use ResNet-18 for all experiments in the table.

to best performances on these tasks. We observe that a simple random-gaussian initialization works as well
despite trained using only a few labeled examples. Crucially, we use unlabeled Internet images for learning
a better representation on classification tasks containing classes that are extremely different to real-world
object categories. Still, we see significant improvements.

4.1.3 Pixel Analysis

We extend our analysis to pixel-level prediction problems. We study surface-normal estimation using NYU-
v2 depth dataset (Silberman et al., 2012). We intentionally chose this task because there is a large domain
gap between NYU-v2 depth dataset and internet images of ImageNet-21k. We follow the setup of Bansal
et al. (Bansal et al., 2017; 2016) for surface normal estimation because: (1) they demonstrate training a
reasonable model from scratch; and (2) use the learned representation for downstream tasks. This allows
us to do a proper comparison with an established baseline and study the robustness of the models. Finally,
it allows us to verify if our approach holds for a different backbone-architecture (VGG-16 (Simonyan &
Zisserman, 2015) in this case).

Evaluation: We use 654 images from the test set of NYU-v2 depth dataset for evaluation. Following
Bansal et al. (2016), we compute six statistics over the angular error between the predicted normals and
depth-based normals to evaluate the performance – Mean, Median, RMSE, 11.25◦, 22.5◦, and 30◦ –
The first three criteria capture the mean, median, and RMSE of angular error, where lower is better. The
last three criteria capture the percentage of pixels within a given angular error, where higher is better.

Table 3 contrasts the performance of our approach with Bansal et al. (2016; 2017). They use a pre-trained
ImageNet classification model for initialization. In this work, we initialize a model from random gaussian
initialization (also known as scratch). The second-last row shows the performance when a model is trained
from scratch. We improve this model using a million unlabeled images. The last row shows the performance
after one iteration of our approach. We improve by 3-6% without any knowledge of surface normal estimation
task. Importantly, we outperform the pre-trained ImageNet initialization. This suggests that we should not
limit ourselves to pre-trained classification models that have access to large labeled datasets. We can design
better neural network architectures for a task using our approach.

Can we capture both local and global information without class-specific information? One may
suspect that a model initialized with the weights of pre-trained ImageNet classification model may capture
more local information as the pre-training consists of class labels. Table 4 contrast the performance of
two approaches on indoor scene furniture categories such as chair, sofa, and bed. The performance of our
model exceeds prior art for local objects as well. This suggests that we can capture both local and global
information quite well without class-specific information.
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Surface Normal Estimation (NYU Depthv2)

Approach Mean ↓ Median ↓ RMSE ↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑

Bansal et al. (2016) 19.8 12.0 28.2 47.9 70.0 77.8

Goyal et al. (2019) 22.4 13.1 - 44.6 67.4 75.1

init (scratch) 21.2 13.4 29.6 44.2 66.6 75.1
U1 (ours) 18.7 10.8 27.2 51.3 71.9 79.3

Table 3: We contrast the performance of our approach with Bansal et al. (2016; 2017), which is the state-
of-the-art given our setup. They use a pre-trained ImageNet classification model for initialization. In this
work, we initialize a model from random gaussian initialization. The third row shows the performance of a
scratch-initialized model. We improve this model using one million unlabeled images. The last row shows
the performance after one iteration of our approach. We improve by 3-6% without any domain-specific
knowledge about the surface normal estimation task. Importantly, we outperform the pre-trained ImageNet
initialization. We contrast our method with Goyal et al. (2019) (second-row), which use 100M unlabeled
images to train a generic representation via jigsaw puzzle (Noroozi & Favaro, 2016) using a ResNet-50
model. Our model trained from scratch competes with their best performing model. This analysis suggests
two things: (1) we can design better neural network architecture and does have to limit ourselves to pre-
trained classification models; and (2) Our approach can learn better models with two-orders less unlabeled
data as compared to Goyal et al. (2019).

Per-Object Surface Normal Estimation (NYU Depthv2)

Mean ↓ Median ↓ RMSE ↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑

chair
Bansal et al. (2016) 31.7 24.0 40.2 21.4 47.3 58.9
U1 (ours) 31.2 23.6 39.6 21.0 47.9 59.8

sofa
Bansal et al. (2016) 20.6 15.7 26.7 35.5 66.8 78.2
U1 (ours) 20.0 15.2 26.1 37.5 67.5 79.4

bed
Bansal et al. (2016) 19.3 13.1 26.6 44.0 70.2 80.0
U1 (ours) 18.4 12.3 25.5 46.5 72.7 81.7

Table 4: We contrast the performance of our approach with the model fine-tuned using ImageNet (with class
labels) on furniture categories, i.e. chair, sofa, and bed. Our approach outperforms prior art without any
class information.

The details of the model and training procedure used in these experiments are available in the Appendix A.2.
We have also provided analysis showing that we capture both local and global details without class-specific
information.

Can we improve scratch by training longer? It is natural to ask if we could improve the performance
by training a model from scratch for more iterations. Table 5 shows the performance of training the scratch
model for longer (until convergence). We observe that we do improve slightly over the model we use. However,
this improvement is negligible in comparisons to streaming learning.

Is it a robust representation? Bansal et al. (2017) has used the model trained for surface-normal
as an initialization for the task of semantic segmentation. We study if a better surface normal estimation
means better initialization for semantic segmentation. We use the training images from PASCAL VOC-
2012 (Everingham et al., 2010) for semantic segmentation, and additional labels collected on 8498 images
by (Hariharan et al., 2011) for this experiment. We evaluate the performance on the test set that required
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Approach Mean Median RMSE 11.25◦ 22.5◦ 30◦

Bansal et al. (2016) 19.8 12.0 28.2 47.9 70.0 77.8

init 21.2 13.4 29.6 44.2 66.6 75.1
init (until convergence) 20.4 12.6 28.7 46.3 68.2 76.4

U1 (ours) 18.7 10.8 27.2 51.3 71.9 79.3

Table 5: Can we improve scratch by training longer? It is natural to ask if we can get better
performance for training longer, crucially for a model trained from scratch. We observe that one can indeed
get a slightly better performance by training for a long time. However, this improvement is negligible
compared to ours.

submission on PASCAL web server (pas). We report results using the standard metrics of region intersection
over union (IoU) averaged over classes (higher is better). Refer to Appendix A.3 for details about training.

We show our findings in Table 6. We contrast the performance of surface-normal model trained from scratch
(as in (Bansal et al., 2017)) in the second row with our model in the third row. We observe a significant 2%
performance improvement. This means better surface normal estimation amounts to a better initialization
for semantic segmentation, and that we have a robust representation that can be used for down-stream tasks.

Can we improve semantic segmentation further? Can we still improve the performance of a task
when we start from a better initialization other than scratch? We contrast the performance of the methods
in the third row (init) to the fourth row (improvement in one-iteration). We observe another significant
2.7% improvement in IoU. This conveys that we can indeed apply our insights even when starting from
an initialization better than scratch. Finally, we observe that our approach has closed the gap between
ImageNet (with class labels) pre-trained model and a self-supervised model to 3.6%.

4.2 Streaming Learning

We now demonstrate streaming learning for well studied fine-grained image classification in Section 4.2.1
where many years of research and domain knowledge (such as better loss functions (Azuri & Weinshall, 2020;
Barz & Denzler, 2020), pre-trained models, or hyperparameter tuning) has helped in improving the results.
Here we show that streaming learning can reach close to that performance in few days without using any of
this knowledge. In these experiments, we randomly sample from 14M images of ImageNet-21K (Deng et al.,
2009) without ground truth labels as the unlabeled dataset.

4.2.1 Fine-Grained Image Classification

We first describe our experimental setup and then study this task using: (1) Flowers-102 (Nilsback &
Zisserman, 2008) that has 10 labeled examples per class; (2) CUB-200 (Welinder et al., 2010) that has 30
labeled examples per class; and (3) finally, we have also added analysis on a randomly sampled 20 examples
per class from ImageNet-1k (Russakovsky et al., 2015) (which we termed as TwentyI-1000). We use the
original validation set (Russakovsky et al., 2015) for this setup.

Model: We use the ResNet (He et al., 2016) model family as the hypothesis classes in Alg. 1, including
ResNet-18, ResNet-34, ResNet-50, ResNext-50, and ResNext-101 (Xie et al., 2017). The models are ranked
in an increasing order of model complexity. Model weights are randomly generated by He initialization (He
et al., 2015) (a random gaussian distribution) unless otherwise specified. We show in Appendix A.4 that
training deeper neural networks with few labeled examples is non-trivial.

Learning F from the labeled sample S: Given the low-shot training set, we use the cross entropy loss
to train the recognition model. We adopt the SGD optimizer with momentum 0.9 and a L2 weight decay of
0.0001. The initial learning rate is 0.1 for all experiments and other hyper-parameters (including number of
iterations and learning rate decay) can be found in Appendix A.4.
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Semantic Segmentation on VOC-2012

aero bike bird boat bottle bus car cat chair cow

scratch-init 62.3 26.8 41.4 34.9 44.8 72.2 59.5 56.0 16.2 49.9

normals-init 71.8 29.7 51.8 42.1 47.8 77.9 65.9 59.7 19.7 50.8

normalsStream-init 74.4 34.5 60.5 47.3 57.1 74.3 73.1 61.7 22.4 51.4
+one-iteration 82.2 35.1 62.0 47.4 62.1 76.6 74.1 62.7 23.9 49.9

Bansal et al. (2017) 79.0 33.5 69.4 51.7 66.8 79.3 75.8 72.4 25.1 57.8

table dog horse mbike person plant sheep sofa train tv bg IoU ↑

scratch-init 45.0 49.7 53.3 63.6 65.4 26.5 46.9 37.6 57.0 40.4 85.2 49.3

normals-init 45.9 55.0 59.1 68.2 69.3 32.5 54.3 42.1 60.8 43.8 87.6 54.1

normalsStream-init 36.4 52.0 60.9 68.5 69.1 37.6 58.0 34.3 64.3 50.2 90.0 56.1
+one-iteration 47.0 55.5 58.0 74.9 73.9 40.1 56.4 43.6 65.4 52.8 90.9 58.8

Bansal et al. (2017) 52.0 65.8 68.2 71.2 74.0 44.1 63.7 43.4 69.3 56.4 91.1 62.4

Table 6: The goal of this experiment is to study two things: (1) Can task-specific representations
learned on unlabeled streams generalize to other tasks? This allows us to study the robustness of
our learned representations. We consider the target task of semantic segmentation and the source task of
surface-normal estimation. Segmentation networks initialized with surface-normal networks already outper-
form random initialization (row2 vs row1), and further improve by 2% when initialized with stream-trained
networks (row3). (2) Can we still further improve the performance of a task when starting from
an initialization better than scratch? We then perform one additional iteration of stream learning
(row4 vs row3), resulting in another 2.7% improvement, closing the gap between ImageNet pre-training to
3.6%.

Learning F ′ from U with pseudo labels: Once we learn F , we use it to generate labels on a set of
randomly sampled images from ImageNet-21K dataset to get pseudo-labelled U . Then we randomly initialize
a new model F ′ as we do for F , then apply same network training for F ′ on U .

Finetuning F ′ on labeled sample S: After training F ′ on the pseudo-labeled U , we finetune F ′ on the
original low-shot training set with the same training procedure and hyper-parameters. We use this finetuned
model F ′ for test set evaluation.

Streaming Schedule and Model Selection: We empirically observe that instead of training on en-
tire unlabeled set U , we can slice up U into a streaming collections Ut for better performance. In these
experiments, we use three iterations of our approach. We have 1M samples in U1 (the same images as in
ImageNet-1K ), 3M samples in U2, and 7M samples in U3. We initialize the task using a ResNet-18 model
(ResNet-18 gets competitive performance and requires less computational resources as shown in Table 10).
We use a ResNext-50 model as F ′ to train on U1 and U2, and a ResNext-101 model to train on U3. These
design decisions are based on empirical and pragmatic observations shown in Appendix A.5. Table 7 shows
continuous improvement for various image-classification tasks at every iteration when using a few-labeled
samples and training a model from scratch. We see similar trends for three different tasks. We are also
able to bridge the gap between the popularly used pre-trained model (initialized using 1.2M labeled exam-
ples (Russakovsky et al., 2015)) and a model trained from scratch without any extra domain knowledge or
dataset/task-specific assumption.

4.2.2 Why Streaming Learning?

We study different questions here to understand our system.
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Common Yellow-Throat

initialization

iteration-1

iteration-2

iteration-3

Figure 4: Improvement in Recognizing Birds via Streaming Learning: We qualitatively show
improvement in recognizing a common yellow-throat (shown in left from CUB-200 dataset (Welinder et al.,
2010)). At initialization, the trained model confuses common yellow-throat with hooded oriole, hooded
warbler, wilson rbler, yellow-breasted chat, and other similar looking birds. We get rid of false-positives with
every iteration. At the the end of the third iteration, there are no more false-positives.

Continuously Improving Image Classification

Task pre-trained init U1 U2 U3 ...

Flowers-102 89.12 45.56 54.19 65.25 72.79 ...
CUB-200 75.29 44.03 53.73 57.11 66.10 ...
TwentyI-1000 77.62 13.92 22.79 24.94 27.27 ...

Table 7: We continuously improve the performance for Flowers-102, CUB-200, and TwentyI-1000, as shown
by top-1 accuracy for each iteration. We achieve a large performance improvement for each iteration for all
the tasks. This is due to the combination of both increasing unlabeled dataset and model size. Without any
supervision, we can bridge the gap between an ImageNet-1k pre-trained model and a model trained from
scratch on Flowers-102 and CUB-200 dataset using a simple softmax loss.

What if we fix the model size in the iterations? We observe that using deeper model could lead to
faster improvement of the performance. For the TwentyI-1000 experiment in section 4.2.1, we perform an
ablative study by only training a ResNet-18 model, as shown in Table 8. We could still see the accuracy
improving with more unlabeled data, but increasing model capacity turns out to be more effective.

What if we train without streaming? Intuitively, more iterations with our algorithm should lead to
an increased performance. We verify this hypothesis by conducting another ablative study on TwentyI-1000
experiment in section 4.2.1. In Table 9, we compare the result the result of training with three iterations
(sequentially trained on U1,U2,U3) with that of a single iteration (that concatenated all three slices together).
Training on streams is more effective because improved performance on previous slices translates to more
accurate pseudo-labels on future slices.

Cost of Experiments: We now study the financial aspect of the streaming learning vs. single iteration
via computing the cost in terms of time and money. We are given 11M unlabeled images and there are two
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Figure 5: Improvement in Recognizing Flowers via Streaming Learning: We qualitatively show
improvement in recognizing a barbeton daisy (shown in left from Flowers-102 dataset (Nilsback & Zisserman,
2008)). At initialization, the trained model confuses barbeton daisy with primula, water lily, daffodil, sweet
william, and etc. With more iterations, the false positives become fewer.

What if we use ResNet-18 for all experiments?

Model init U1 U2 U3 ...

ResNet-18 only 13.92 19.61 21.22 22.13 ...
StreamLearning 13.92 22.79 24.94 27.27 ...

Table 8: We show that the top-1 validation accuracy on TwentyI-1000 for our StreamLearning approach
(row 2) for each iteration, which increases the model capacity from ResNet-18 (init) to ResNext-50 (U1 and
U2) to ResNext-101 (U3). With ResNet-18 only (row 1), the performance gain is much slower.

scenarios: (1) train without streaming (U1) using 11M images and ResNext-101; and (2) train in streams
(U1, U2, U3) of {1M, 3M, 7M} images using ResNext-50 for U1 and U2, and ResNext101 for U3. For U1, we
train F ′ from scratch for 30 epochs. For U2, we train F ′ from scratch for 20 epochs. For U3, we train F ′ from
scratch for 15 epochs. We could fit a batch of 256 images when using ResNext-50 on our 4 GPU machine.
The average batch time is 0.39sec. Similarly, we could fit a batch of 128 images when using ResNext-101.
The average batch time is 0.68sec. The total time for the first case (without streaming) is 486.96 hours
(roughly 20 days). On the contrary, the total time for the streaming learning is 193.03 hours (roughly 8
days). Even if we get similar performance in two scenarios, we can get a working model in less than half
time with streaming learning. A non-expert user can save roughly 1, 470 USD for a better performing model
(60% reduction in cost), assuming they are charged 5 USD per hour of computation (on AWS).

5 Discussion

We present a simple and intuitive approach to semi-supervised learning on (potentially) infinite streams of
unlabeled data. Our approach integrates insights from different bodies of work including self-training (Du
et al., 2020; Wei et al., 2020), pseudo-labelling (Lee, 2013; Arazo et al., 2020; Iscen et al., 2019), contin-
ual/iterated learning (Kirby, 2001; Kirby et al., 2014; Thrun, 1996; 1998; Silver et al., 2013), and few-shot
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What if we train without streaming?

Model init U1 U2 U3 ...

NoStreaming 13.92 23.77 – – –
StreamLearning 13.92 22.79 24.94 27.27 ...

Table 9: We show that the top-1 validation accuracy on TwentyI-1000 for our StreamLearning approach
(row 2) for each iteration, which increases the model capacity from ResNet-18 (init) to ResNext-50 (U1 and
U2) to ResNext-101 (U3). This result is compared to training with a single iteration, i.e, NoStreaming,
that use ResNext-101 but with all the data.

learning (Li et al., 2019; Guo et al., 2020). We demonstrate a number of surprising conclusions: (1) Unlabeled
domain-agnostic internet streams can be used to significantly improve models for specialized tasks and data
domains, including surface normal prediction, semantic segmentation, and few-shot fine-grained image clas-
sification spanning diverse domains including medical, satellite, and agricultural imagery. In this work, we
use unlabeled images from curated ImageNet-21k (Deng et al., 2009) and uncurated YFCC-100M (Thomee
et al., 2016). We see more performance improvement as the unlabeled stream becomes more diverse. (2)
Continual learning on streams can be initialized with very impoverished models trained (from scratch) on
tens of labeled examples. This is in contrast with much work in semi-supervised learning that requires a good
model for initialization. (3) Contrary to popular approaches in semi-supervised learning that make use of
massive compute resources for storing and processing data, streaming learning requires modest computational
infrastructure since it naturally breaks up massive datasets into slices that are manageable for processing.
From this perspective, continual learning on streams can help democratize research and development for
scalable, lifelong ML.
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A Appendix

A.1 Extreme-Task Differences

Dataset: We randomly sample a 20-shot training set for each of the three datasets we present in the paper.
For datasets without a test set, we curated a validation set by taking 10% of all samples from each category.
Some of these datasets can be extremely different from natural images, and here we rank them in order of
their similarity to natural images:

1. CropDiseases (Mohanty et al., 2016). Natural images but specialized in agricultural industry. It
has 38 categories representing diseases for different types of crops.

2. EuroSat (Helber et al., 2019). Colored satellite images that are less similar to natural images as
there is no perspective distortion. There is 10 categories representing the type of scenes, e.g., Forest,
Highway, and etc.

3. ISIC2018 (Codella et al., 2019). Medical images for lesion recognition. There is no perspective
distortion and no longer contains natural scenes. There are 7 classes representing different lesion.
Because the dataset is highly unbalanced, we create a balanced test set by randomly sampling 50
images from each class.
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Training details: We use ResNet-18 only for all experiments on the 3 cross-domain datasets, in order
to isolate the effect of data. We also only do one iteration of our approach, but still we see substantial
improvement. The unlabeled set U1 is still the unlabeled version of Imagenet-1K dataset. We intentionally
do this in order to contrast with the performance by finetuning an ImageNet-pretrained model with is
pretrained using the same images but with additional 1.2M labels. We use SGD optimizer with momentum
0.9 and a L2 weight decay of 0.0001.

Learning F from the labeled sample S: For all these cross-domain few-shot datasets, we start with an
initial learning rate of 0.1 while decaying it by a factor of 10 every 1500 epochs, and train for 4000 epochs.

Learning F ′ from U with pseudo labels: For U1, we train F ′ from scratch for 30 epochs starting from
learning rate 0.1, and decay it to 0.01 after 25 epochs.

Finetuning F ′ on the labeled sample S: We use the same training procedure when finetuning F ′ on
S.

A.2 Surface Normal Estimation

Model and hyperparameters: We use the PixelNet model from (Bansal et al., 2017) for surface normal
estimation. This network architecture consists of a VGG-16 style architecture (Simonyan & Zisserman,
2015) and a multi-layer perceptron (MLP) on top of it for pixel-level prediction. There are 13 convolutional
layers and three fully connected (fc) layers in VGG-16 architecture. The first two fcs are transformed to
convolutional filters following Long et al. (2015). We denote these transformed fc layers of VGG-16 as conv-6
and conv-7. All the layers are denoted as {11, 12, 21, 22, 31, 32, 33, 41, 42, 43, 51, 52, 53, 6, 7}. We use
hypercolumn features from conv-{12, 22, 33, 43, 53, 7}. An MLP is used over hypercolumn features with
3-fully connected layers of size 4, 096 followed by ReLU (Krizhevsky et al., 2012) activations, where the last
layer outputs predictions for 3 outputs (nx, ny, nz) with a euclidean loss for regression. Finally, we use
batch normalization (Ioffe & Szegedy, 2015) with each convolutional layer when training from scratch for
faster convergence. More details about the architecture/model can be obtained from Bansal et al. (2017).

Learning F from the labeled sample S: We use the above model, initialize it with a random gaussian
distribution, and train it for NYU-v2 depth dataset (Silberman et al., 2012). The initial learning rate is set
to 0.001, and it drops by a factor of 10 at step of 50, 000. The model is trained for 60, 000 iterations. We
use all the parameters from Bansal et al. (2017), and have kept them fixed for our experiments to avoid any
bias due to hyperparameter tuning.

Learning F ′ from U with pseudo labels: We use F trained above to psuedo-label 1M images, and use
it to learn a F ′ initialized with random gaussian distribution and follows the same training procedure as F .

Finetuning F ′ on the labeled sample S: Finally, we finetune F ′ on S for surface normal estimation.
The initial learning rate is set to 0.001, and it drops by a factor of 10 at step of 50, 000.

We qualitatively show improvement in estimating surface normal from a single 2D image in Figure 6.

A.3 Semantic Segmentation

We follow Bansal et al. (2017) for this experiment. The initial learning rate is set to 0.001, and it drops by
a factor of 10 at step of 100, 000. The model is fine-tuned for 160, 000 iterations.

We follow the approach similar to surface normal estimation. We use the trained model on a million unlabeled
images, and train a new model from scratch for segmentation. We used a batch-size of 5. The initial learning
rate is also set to 0.001, and it drops by a factor of 10 at step of 250, 000. The model is trained for 300, 000
iterations. We then fine-tune this model using PASCAL dataset.

A.4 Fine-Grained Image Classification

Datasets: We create few-shot versions of various popular image classification datasets for training. They
are:
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(a).	2D	image	 (b).	Kinect	 (c).	ImageNet	Labels	 (d).	Scratch	 (e).	g+FT	(a) 2D Image (b) Kinect (c) Bansal et al. (d) scratch (e) ours

Figure 6: Surface Normal Estimation: For a given single 2D image (shown in (a)), we contrast the
performance of various models. Shown in (c) are the results from prior work Bansal et al. (2016; 2017) using
a model pretrained with ImageNet-1K labels; (d) shows a model trained from scratch starting from random
gaussian initialization; and finally (e) shows the result of our StreamLearning approach. The influence of
unlabeled data can be gauged by improvements from (d) to (e). By utilizing diverse unlabeled data, we
can get better performance without any additional supervision. For reference, we also show ground truth
normals from kinect in (b).
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1. Flowers-102 (Nilsback & Zisserman, 2008). We train on the 10-shot versions of Flowers by ran-
domly sampling 10 images per category from the training set. We report the top-1 accuracy on the
test set for the 102 flower categories.

2. CUB-200 (Welinder et al., 2010). We take 30 training examples per category from the Caltech
UCSD Bird dataset and report the top-1 accuracy on the test set for the 200 birds categories.

3. TwentyI-1000 (Russakovsky et al., 2015) (ILSVRC 2012 Challenge) with 1000 classes. Specially,
we train on a 20-shot version of ImageNet-1K. We report the top-1 validation set accuracy on the
1000 classes as commonly done in literature (Xie et al., 2020b).

Model and hyperparameters: We experiment with the ResNet (He et al., 2016) model family, including
ResNet-18, ResNet-34, ResNet-50, ResNext-50, and ResNext-101 (Xie et al., 2017). The models are ranked
in an increasing order of model complexity. The initial model weights are randomly generated by He ini-
tialization (He et al., 2015), which is the PyTorch default initialization scheme. For all image classification
experiments, we adopt the SGD optimizer with momentum 0.9 and a L2 weight decay of 0.0001. We use an
initial learning rate of 0.1 for both finetuning on S and training on U .

Learning F from the labeled sample S: For Flowers-102 (10-shot), we decay the learning rate by a
factor of 10 every 100 epochs, and train for a total of 250 epochs. For CUB-200 (30-shot), we decay the
learning rate by a factor of 10 every 30 epochs, and train for 90 epochs. For TwentyI-1000, we decay the
learning rate by a factor of 10 every 60 epochs, and train for a total of 150 epochs.

Streaming Schedule: We simulate an infinite unlabeled stream U by randomly sampling images from
ImageNet-21K. In practice, we slice the data into a streaming collections Ut. We have 1M samples in U1,
3M samples in U2, and 7M samples in U3. We intentionally make U1 the unlabeled version of Imagenet-1K
dataset for comparison with other works that use the labeled version of Imagenet-1K.

Model Selection: We initialize the task using a ResNet-18 model because it achieved great generalization
performance when training from scratch compared to deeper models and only costs modest number of
parameters. We use a ResNext-50 model as F ′ to train on U1 and U2, and a ResNext-101 model to train on
U3. These design decisions are based on empirical and pragmatic observations we provided in Appendix A.5.

Learning F ′ from U with pseudo labels: For U1, we train F ′ from scratch for 30 epochs starting from
learning rate 0.1, and decay it to 0.01 after 25 epochs. For U2, we train F ′ from scratch for 20 epochs and
decay the learning rate to 0.01 after 15 epochs. For U3, we train F ′ from scratch for 15 epochs and decay
the learning rate to 0.01 after 10 epochs.

Finetuning F ′ on the labeled sample S: We use the same training procedure when finetuning F ′ on
S.

A.5 Ablative Analysis

We study different questions here to understand the working of our system.

What is the performance of models trained from scratch? We show performance of various
models when trained from scratch in Table 10. We observe that training deeper neural networks from
random initialization with few labeled examples is indeed non-trivial. Therefore, our approach helps deeper
networks generalize better in such few shot settings.

Why do we use ResNext-50 for U1 and U2? We show in Table 11 that ResNext-50 outperforms
ResNet-18 in first iteration to justify the model decision of our stream learning approach. Note that this
is not saying ResNext-50 is the best performing model among all possible choices. For instance, ResNext-
101 slightly outperforms ResNext-50 (around 1% improvement) on the first two iterations, but we still use
ResNext-50 for U1 and U2 for pragmatic reasons (faster to train and save more memory). In practice, one
can trade off generalization performance and training speed by select the most suitable model size just like
what we did in this paper.
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One-stage models trained from scratch

Model Flowers-102 CUB-200 TwentyI-1000

Resnet-18 45.49 44.03 13.92
Resnet-34 42.64 44.17 14.23
Resnet-50 20.82 21.73 12.93
Resnext-50 31.34 28.37 11.87
Resnext-101 34.18 32.31 13.35

Table 10: We show performance of various models when trained from scratch. It is non-trivial to train a
deep neural network with a few labeled examples as shown in this analysis. Despite increasing the capacity
of the models and training them for longer, we do not observe any performance improvement.

Performance after U1: ResNet-18 or ResNext-50?

Model CUB-200 Flowers-102 TwentyI-1000

ResNet-18 51.35 47.50 19.61
ResNext-50 53.73 54.19 22.79

Table 11: We show that the top-1 validation accuracy on all fine-grained classification datasets with our
approach after the first iteration (U1 with 1M unlabeled images) training with ResNet-18 or ResNext-50.
We can see that ResNext-50 consistently outperforms ResNet-18 across all tasks.
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