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Abstract
Few-shot point cloud semantic segmentation ef-
fectively addresses data scarcity by identifying
unlabeled query samples through semantic pro-
totypes generated from a small set of labeled
support samples. However, pre-training-based
methods suffer from domain shifts and increased
training time. Additionally, existing methods
using DGCNN as the backbone have limited
geometric structure modeling capabilities and
struggle to bridge the categorical information
gap between query and support sets. To ad-
dress these challenges, we propose DyPolySeg, a
pre-training-free Dynamic Polynomial fitting net-
work for few-shot point cloud semantic segmenta-
tion. Specifically, we design a unified Dynamic
Polynomial Convolution (DyPolyConv) that ex-
tracts flat and detailed features of local geometry
through Low-order Convolution (LoConv) and
Dynamic High-order Convolution (DyHoConv),
complemented by Mamba Block for capturing
global context information. Furthermore, we pro-
pose a lightweight Prototype Completion Module
(PCM) that reduces structural differences through
self-enhancement and interactive enhancement
between query and support sets. Experiments
demonstrate that DyPolySeg achieves state-of-the-
art performance on S3DIS and ScanNet datasets.

1. Introduction
Point cloud semantic segmentation (Xu et al., 2024; Zhang
et al., 2023b; 2024b; He et al., 2024) serves as a fundamen-
tal task in 3D scene understanding, with critical applications
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Figure 1. Architectural comparison of representative few-shot
point cloud segmentation methods. (a) Conventional approaches
(Zhao et al., 2021b; He et al., 2023) rely on pre-trained DGCNN
backbones coupled with various prototype alignment modules. (b)
SegPN (Zhu et al., 2024) eliminates the need for pre-training but
suffers from limited representational capacity. (c) COSeg (An et al.,
2024) adopts a pre-trained Straight Transformer architecture and
processes 20,480 points to mitigate foreground information leak-
age. (d) Our proposed DyPolySeg innovatively models local struc-
tures through polynomial fitting and incorporates a lightweight
prototype completion module for enhanced performance.

spanning autonomous driving (Zhao et al., 2023; Chib &
Singh, 2023), robotics (Soori et al., 2023; Goel & Gupta,
2020), and augmented reality (Devagiri et al., 2022; Sereno
et al., 2020). Despite its significance, the acquisition of
large-scale annotated point cloud data(Jiang et al., 2023)
ŗemains a resource-intensive challenge, requiring substantial
human effort and time investment. This limitation signifi-
cantly constrains the practical deployment of deep learning
methods (Ning et al., 2024a; Wang et al., 2021; 2023; Ning
et al., 2024b; Yu et al., 2024) in real-world scenarios. To
address this fundamental challenge, researchers (Li et al.,
2024; Xiong et al., 2024) have increasingly turned to few-
shot learning approaches for point cloud segmentation tasks.

Few-shot point cloud semantic segmentation represents an
innovative paradigm that leverages semantic prototypes de-
rived from a limited set of labeled support samples to effec-
tively identify and segment unlabeled query samples. As
illustrated in Fig. 1(a), this field was pioneered by Zhao
et al. (Zhao et al., 2021b), who introduced the AttMPTI
method based on a pre-trained DGCNN (Wang et al., 2019).
Their groundbreaking work established a foundation that
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subsequent research has built upon, with various approaches
(Mao et al., 2022; Lai et al., 2022a; Zhu et al., 2023) pro-
gressively enhancing segmentation performance. While Zhu
et al. (Zhu et al., 2024) made significant strides with their
pre-training-free SegNN approach (Fig. 1(b)), their model’s
capability in local structure representation remains limited.
An et al. (An et al., 2024) proposed COSeg (Fig. 1(c)), intro-
ducing a novel approach to prevent foreground leakage by
expanding input points to 20,480 through uniform sampling.
However, this methodology can lead to suboptimal scenar-
ios where foreground information either becomes extremely
sparse or is entirely absent from the sampled points.

Current few-shot point cloud segmentation methods (Wang
et al., 2025b; Zhao et al., 2021b; Mao et al., 2022; Zhu et al.,
2023; 2024; He et al., 2023; An et al., 2024) face three criti-
cal challenges: First, pre-training on “seen” categories be-
fore fine-tuning on “unseen” ones increases computational
cost and leads to domain shifts. Second, using DGCNN
as backbone limits the model’s ability to capture complex
3D geometric structures, particularly crucial in few-shot
scenarios. Finally, the limited support samples fail to fully
represent category distributions, creating biased prototypes
that affect feature matching accuracy between query and
support sets.

To address these challenges, we propose DyPolySeg, an
innovative pre-training-free dynamic polynomial fitting net-
work. First, we introduce a unified Dynamic Polynomial
Convolution (DyPolyConv) that combines geometry-prior-
driven low-order convolution (LoConv) and dynamic high-
order convolution (DyHoConv) for local geometric feature
modeling. LoConv efficiently captures basic flat informa-
tion through position encoding, while DyHoConv adaptively
models complex local details through learned spatial priors,
integrating high-order convolution weights and power expo-
nents. Second, we incorporate Mamba Block to establish
a robust “local-global” structure through strategic stacking
of DyPolyConv and Mamba Block, effectively fusing lo-
cal geometric features with global semantic information.
Finally, we develop a lightweight stackable Prototype Com-
pletion Module (PCM) featuring Self-Enhancement Module
(SEM) and Interactive Enhancement Module (IEM): the
former learns feature distribution patterns within query and
support sets, while the latter refines prototype bias through
fine-grained feature correspondence. Multiple stacked PCM
modules enable gradual reduction of structural differences,
enhancing segmentation accuracy.

Our contributions are summarized as follows:

• We propose DyPolySeg, a novel framework that
achieves comprehensive scene understanding through
an innovative “local-global” structure constructed by
strategically integrating dynamic polynomial convolu-
tion and Mamba Block.

• We develop a unified Dynamic Polynomial Convolu-
tion (DyPolyConv) that precisely captures local geo-
metric structures through the synergistic combination
of low-order convolution (LoConv) and dynamic high-
order convolution (DyHoConv).

• We introduce an efficient Prototype Completion Mod-
ule (PCM) that effectively minimizes structural dif-
ferences through self-enhancement and interactive en-
hancement modules between query and support sets.

2. Related Works
2.1. Point Cloud Semantic Segmentation

Point cloud semantic segmentation (Wang et al., 2022a; Wu
et al., 2022; He & Ding, 2024; Zhang et al., 2024a; Wang
et al., 2022b) represents a fundamental task in 3D scene
understanding, focusing on assigning semantic labels to in-
dividual points within a point cloud. PointNet (Qi et al.,
2017a) pioneered this field by introducing direct point cloud
processing through shared MLPs and global max pooling,
though its capacity for local feature extraction remained lim-
ited. Subsequent research has primarily focused on enhanc-
ing local feature representation capabilities. PointNet++ (Qi
et al., 2017b) advanced the field by implementing hierarchi-
cal sampling and local feature aggregation, while DGCNN
(Wang et al., 2019) introduced the innovative EdgeConv op-
eration to capture point relationships through dynamically
constructed local graph structures.

Recent years have witnessed significant advancements
through three main approaches: Transformer-based architec-
tures (Zhao et al., 2021a; Lai et al., 2022b; Wang et al.,
2024), Mamba-based models (Liang et al., 2024b; Han
et al., 2024), and self-supervised pre-training strategies
(Chen et al., 2024; Pang et al., 2022). Point Transformer
(Zhao et al., 2021a) effectively leveraged self-attention
mechanisms to capture long-range dependencies, while
PointMamba (Liang et al., 2024b) innovatively employed
space-filling curves for efficient point tokenization and uti-
lized a non-hierarchical Mamba encoder as its backbone.
DAPT (Zhou et al., 2024) introduces a novel dynamic
adapter and seamlessly integrates with prompt tuning, sub-
stantially reduces training costs while achieving impressive
performance. PointGST (Liang et al., 2024a) innovatively
proposes fine-tuning in spectral domain, resulting in sig-
nificantly reduced training parameters and superior perfor-
mance across diverse point cloud tasks. PointGPT (Chen
et al., 2024) introduced a novel point cloud autoregressive
generation task for pre-training transformer models, achiev-
ing superior performance in downstream point cloud under-
standing tasks. While these approaches demonstrate impres-
sive performance in fully supervised scenarios(Shi et al.,
2023; Ning et al., 2023; Wang et al., 2025d;a;c; Fang et al.,
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2025), they heavily rely on large-scale annotated datasets
and struggle to generalize effectively to novel categories or
data-scarce environments.

2.2. Few-shot Point Cloud Semantic Segmentation

Few-shot point cloud semantic segmentation addresses the
challenge of learning semantic segmentation capabilities for
new categories with limited annotated data. AttMPTI (Zhao
et al., 2021b) established the foundation for this field by
achieving few-shot segmentation through multi-prototype
generation and label propagation. Subsequent research has
advanced along three primary directions: feature enhance-
ment, prototype optimization, and domain adaptation.

In the feature enhancement domain, BFG (Mao et al., 2022)
introduced bilateral feature globalization to improve per-
formance through feature interaction between support and
query sets, while SCAT (Zhang et al., 2023a) leveraged
hierarchical attention mechanisms to capture long-range
dependencies. For prototype optimization, PAP (He et al.,
2023) enhanced prototype representation through adaptive
prototype adaptation and projection strategies.

Recent works have introduced sophisticated approaches:
DLE (Li et al., 2024) incorporated structural information
for precise target region localization while minimizing back-
ground interference, utilizing intra-target similarities for
complete target segmentation. DENet (Xiong et al., 2024)
comprehensively addressed intra-class diversity and seman-
tic inconsistency through a bilateral mutual aggregation
module and consistency purification strategy. GPCPR (Wei
et al., 2024) innovatively leveraged LLM-generated content
and pseudo-query context to optimize prototypes, effectively
mitigating categorical information bias.

Recent architectural innovations include SegNN (Zhu et al.,
2024), which introduced both parameter-free and parame-
terized variants achieving competitive performance without
pre-training. COSeg (An et al., 2024) proposed a novel
approach to prevent foreground leakage by expanding in-
put points to 20,480, though this strategy can potentially
lead to sparse foreground representation or information loss.
TaylorSeg (Wang et al., 2025b), a pretraining-free network
for few-shot point cloud semantic segmentation, uses Tay-
lorConv, inspired by Taylor series, to fit local structures
as polynomials. It includes non-parametric TaylorSeg-NN
and parametric TaylorSeg-PN with an Adaptive Push-Pull
module to align feature distributions, achieving high perfor-
mance without pretraining.

3. Method
In this section, we first formalize the few-shot point cloud
semantic segmentation problem and establish its theoretical
foundations based on Taylor series and dynamic convolution.

We then present our Dynamic Polynomial Convolution (Dy-
PolyConv) with its design principles and theoretical guaran-
tees. Subsequently, we introduce our Prototype Completion
Module (PCM) and its innovative mechanisms. Finally, we
detail the complete DyPolySeg architecture (see 2).

3.1. Preliminary

3.1.1. PROBLEM DEFINITION

In few-shot point cloud semantic segmentation, we adopt an
episodic learning paradigm where the dataset is divided into
seen classes Cseen and unseen classes Cunseen. Each task is
formulated as an N-way K-shot problem with a support set
S = {(In,ks ,Mn,k

s )}N,K
n=1,k=1 and a query set Q = {Iiq}Hi=1.

Here, In,ks ∈ RT×(3+C) represents the k-th point cloud
sample of the n-th class in the support set, where T denotes
the number of points, 3 represents 3D coordinates (x, y, z),
and C indicates additional feature dimensions. Each support
sample is paired with a binary segmentation mask Mn,k

s ∈
RT×1. The query set contains H samples, where each
Iiq ∈ RT×(3+C) represents a point cloud to be segmented.
The objective is to leverage K labeled samples from N
classes in the support set S to segment query samples into
N target classes plus one background class.

3.1.2. TAYLOR SERIES

Taylor series (Rudin et al., 1964) serves as a fundamen-
tal mathematical tool that enables the representation of a
function through an infinite sum of terms derived from its
derivatives at a specific point. Formally, for a sufficiently
smooth function f(x), its Taylor series expansion at point
x0 is given by:

f(x) = f(x0) +

∞∑
n=1

f (n)(x0)

n!
(x− x0)

n, (1)

where f (n)(x0) denotes the n-th order derivative of func-
tion f(x) evaluated at point x0. This series enables accurate
local approximation of function values by leveraging in-
formation about the function’s derivatives at a single point,
making it particularly suitable for modeling complex geo-
metric structures in point clouds.

3.1.3. DYNAMIC CONVOLUTION

Traditional convolution operations with fixed kernels inher-
ently limit the model’s adaptability to diverse local struc-
tures. Dynamic convolution (Yang et al., 2019) overcomes
this limitation by introducing adaptive weight generation
based on input characteristics. In the context of point clouds,
dynamic convolution is formulated as:

gi = A({K(pi, pj)fj |pj ∈ Ni}), (2)
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Figure 2. Architectural overview of DyPolySeg. (a) Pipeline architecture: an embedding layer for point cloud representation, feature
extraction modules (FPS, DyPolyConv, DyHoConv, and Mamba Block), a Prototype Completion Module (PCM), and a segmentation
layer for query point clouds. (b) The DyPolyConv module combines attention-based weight generation with polynomial fitting for local
geometric feature extraction. (c) The Mamba Block architecture integrates linear transformations, selective kernel convolutions, and
normalization for global context modeling.

where gi represents the output feature, A denotes an ag-
gregation function (e.g., max pooling or summation), Ni

defines point pi’s local neighborhood, K(pi, pj) represents
dynamically generated convolution weights, and fj indi-
cates the input feature of neighborhood point pj .

The core innovation lies in the generation of convolution
weights K(pi, pj). These weights are computed dynami-
cally through a weighted combination of base matrices:

K(pi, pj) =

M∑
m=1

αm(pi, pj)Wm, (3)

where {Wm}Mm=1 denotes base weight matrices, αm(pi, pj)
represents combination coefficients generated by neural net-
works based on spatial relationships between pi and pj , and
M indicates the number of base matrices.

3.2. Dynamic Polynomial Convolution

Inspired by Taylor series (Rudin et al., 1964), we propose a
novel dynamic polynomial convolution (DyPolyConv) that
models local structures through multi-order point convolu-
tions, enabling accurate representation of complex geomet-

ric features. Our approach can be formulated as:

gi = φ(fi)︸ ︷︷ ︸
LoConv

+

L∑
l=1

βl · hl((fj − fi)
nl)︸ ︷︷ ︸

DyHoConv

, (4)

where φ denotes a shared MLP, βl represents attention coef-
ficients, L is the number of high-order convolutions, and nl

denotes the power exponent for the l-th convolution.

The high-order convolution operation hl is defined as:

h((fj − fi)
n) = A(T (fi, fj)|pj ∈ N (pi)), (5)

with transformation function:

T (fi, fj) =

(
ωj · (fj − fi)

|ωj · (fj − fi)|

)s

· |ωj · (fj − fi)|n , (6)

where | · | denotes element-wise absolute value, s ∈ {0, 1}
controls the sign function, and n is a learnable parameter.

Our transformation function T (·) exhibits remarkable gen-
erality. It reduces to an Affine basis function (ABF) (Rosen-
blatt, 1958) when s = 1, n = 1, and fi = 0:

T =

(
ωj · fj
|ωj · fj |

)1

· |ωj · fj |1 = ωj · fj , (7)
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Furthermore, it becomes a radial basis function (RBF)
(Moody & Darken, 1989) when s = 0 and n = 2:

T = (fj − fi)
2 =

(
ωj · (fj − fi)

|ωj · (fj − fi)|

)0

· |ωj · (fj − fi)|2.

(8)

3.3. Improving Dynamic Polynomial Convolution

While our basic Dynamic Polynomial Convolution frame-
work provides a solid foundation for capturing complex
local geometric structures, practical applications require bal-
ancing expressive power with computational efficiency. To
address limitations in our initial formulation, we enhance
model performance through three complementary optimiza-
tion strategies:

3.3.1. ENHANCED LOW-ORDER CONVOLUTION

The original low-order convolution primarily focuses on
center point features and cannot effectively capture compre-
hensive local structural information. We extend the func-
tionality by incorporating neighboring point information:

gL = A(φ(fj)|pj ∈ N (pi)), (9)

where gL represents the enhanced output features, A denotes
max pooling, and φ is a shared MLP. This improvement
enables the model to observe the entire local region’s feature
distribution, providing richer contextual information.

3.3.2. EXPLICIT STRUCTURE INTEGRATION

To enhance spatial relationship perception, we explicitly
integrate geometric relationships through comprehensive
spatial features:

hj = [pi, pj , pj − pi, ∥pi, pj∥] ∈ R10, (10)

where hj contains center point coordinates, neighborhood
coordinates, relative displacement, and Euclidean distance.
These features generate three key adaptive parameters:

ωj = hjVh, (11)

βl =
exp(hjVl)∑L
t=1 exp(hjVt)

, (12)

s =

{
1, if σ(hjVs) > 0.5

0, otherwise
, (13)

where Vh,Vl,Vs ∈ R10×Cout are learnable transforma-
tion matrices. The learnable parameter s enables automatic
switching between affine and radial basis function behaviors
based on local geometric context, significantly enhancing
adaptability to different geometric shapes.

3.3.3. COMPUTATIONAL EFFICIENCY OPTIMIZATION

To address computational burden and numerical instability
from exponential operations, we employ logarithmic space
transformation:

T (fi, fj) = sgn(fi, fj)s ·n · log(|ωj · (fj−fi)|+ϵ), (14)

where ϵ = 10−6 prevents numerical instability. This trans-
formation reduces computational complexity from O(n2) to
O(n log n) while improving numerical stability and mem-
ory efficiency, making it suitable for large-scale point cloud
processing.

3.4. Prototype Completion Module

Few-shot point cloud segmentation faces a critical chal-
lenge: limited semantic information in support sets and
class discrepancies between support and query sets affect
semantic matching accuracy, leading to incorrect segmen-
tation results. To address this problem, we propose a
lightweight stackable Prototype Completion Module (PCM)
that aims to effectively reduce the feature gap between sup-
port and query sets while maintaining computational effi-
ciency. PCM comprises two complementary components:
Self-Enhancement Module (SEM) and Interactive Enhance-
ment Module (IEM).

First, we obtain rough prototype features V through sup-
port set features and support set masks. Then, we extract
representative scene features from support and query sets
through max pooling:

Fq = MaxPool(Q), Fs = MaxPool(S), (15)

where Fq ∈ RD×C and Fs ∈ RD×C represent the pooled
features of query set Q and support set S respectively, D de-
notes the pooled feature dimension (typically much smaller
than the original point count), and C represents the number
of feature channels. This step significantly reduces memory
consumption while preserving global semantic information,
providing computationally efficient representations for sub-
sequent cross-set feature comparisons.

3.4.1. SELF-ENHANCEMENT MODULE

SEM is designed to enhance prototype representational
power by exploring intra-set feature distributions, reducing
intra-set class diversity. It achieves this goal by computing
auto-correlation matrices:

Gq = F⊤
q Fq, Gs = F⊤

s Fs, (16)

where Gq,Gs ∈ RC×C are the auto-correlation matrices
for query and support sets respectively, capturing relation-
ships between feature channels within each set. These ma-
trices reveal internal structural patterns in the feature space
that can be used to improve prototype discriminability.

5



DyPolySeg: Taylor Series-Inspired Dynamic Polynomial Fitting Network for Few-shot Point Cloud Semantic Segmentation

SEM subsequently generates attention-based enhanced pro-
totypes:

Aq = σ(UqGq)/
√
D, As = σ(UsGs)/

√
D, (17)

Vself = ϕ1(Aq ⊙V) + ϕ1(As ⊙V), (18)

where Uq,Us ∈ RC×C are learnable weight matrices used
to transform auto-correlation matrices into attention weights,
σ denotes the Sigmoid function,

√
D is a normalization

factor, Aq,As ∈ RC×C are attention weight matrices, ⊙
represents element-wise multiplication, ϕ1 is a transforma-
tion function, V ∈ R(N+1)×C represents initial prototype
features (including prototypes for N target classes and 1
background class), and Vself represents the self-enhanced
prototype features.

This design enables the model to learn feature distribution
patterns within each set and use them to guide prototype
enhancement, reducing intra-set class diversity.

3.4.2. INTERACTIVE ENHANCEMENT MODULE

While SEM focuses on intra-set feature enhancement, IEM
concentrates on eliminating domain gaps by modeling con-
sistency and differences between support and query sets.
IEM first computes cross-set correlation matrices:

C = (F⊤
q Fs)/

√
D, (19)

where C ∈ RC×C represents correlations between query
and support set features, and

√
D is a normalization factor.

This matrix captures shared information and differences
between the two sets, providing important reference for
subsequent prototype refinement.

IEM leverages this cross-set correlation information to en-
rich prototype semantics:

Ainter = ϕ2(AcV), Ac = softmax(C), (20)

where Ac ∈ RC×C is the cross-set correlation matrix nor-
malized through softmax, ϕ2 is a transformation function,
and Ainter represents interactive enhancement-based proto-
type features. This step enables the model to learn shared
patterns between support and query sets, helping prototypes
adapt to feature distributions across different domains.

The final refined prototypes are obtained through residual
connections:

Vout = Vself +Ainter +V, (21)

where Vout ∈ R(N+1)×C represents the final prototype fea-
tures by PCM. The residual connection design ensures loss-
less information transmission, avoiding feature degradation
problems while facilitating gradient backpropagation.

The design of the PCM module allows it to be stacked in
multiple layers, forming a progressive prototype refinement

process. Each PCM layer can further reduce structural differ-
ences between support and query sets, improving prototype
quality.

3.5. DyPolySeg Overview

As shown in Figure 2, we propose DyPolySeg, formulating
few-shot point cloud semantic segmentation as a dual opti-
mization problem that combines local structure modeling
with prototype matching.

Our framework adopts an encoder-decoder architecture. The
encoder consists of stacked “local-global” blocks that in-
tegrate DyPolyConv for local structural feature extraction
and Mamba blocks for global context modeling. The de-
coder progressively recovers point cloud resolution through
inverse interpolation. A lightweight Prototype Completion
Module bridges the semantic gap between support and query
sets by generating discriminative prototypes for both target
classes and background. The final segmentation is obtained
by computing similarities between query point features and
the refined prototypes.

4. Experiments
4.1. Datasets and Evaluation Metrics

Our experiments utilize three distinct point cloud datasets.

The S3DIS dataset (Armeni et al., 2016) encompasses RGB
point clouds collected from 272 rooms distributed across 6
indoor environments, with points categorized into 13 seman-
tic labels (12 categories and clutter). Following established
protocols (Zhao et al., 2021b), we process each scene into
1m × 1m blocks, extracting 2048 points per block, yielding
7547 blocks in total.

For additional validation, we employ the ScanNet
dataset (Dai et al., 2017), comprising 1513 scanned in-
door scenes. The dataset features comprehensive point-
wise annotations across 20 semantic categories, excluding
unannotated regions. Our preprocessing pipeline (Zhao
et al., 2021b) generates 36350 blocks, maintaining consis-
tent 2048-point sampling per block.

To evaluate classification capabilities, we incorporate
ScanObjectNN (Uy et al., 2019), a real-world point cloud
dataset that surpasses ModelNet40 in complexity through
its inclusion of background elements and occlusion effects.
This collection encompasses 2902 objects across 15 cate-
gories, with our evaluation focusing on its most challenging
variant (PB T50 RS).

Evaluation Metrics. we adopt the standard mean Intersec-
tion over Union (mIoU) metric across all categories.
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Table 1. Few-shot Results (%) on S3DIS. Si denotes the split i is used for testing. Avg is their average mIoU.

Methods Param.
2-way 3-way

1-shot 5-shot 1-shot 5-shot
S0 S1 Avg S0 S1 Avg S0 S1 Avg S0 S1 Avg

DGCNN (Wang et al., 2019) 0.62 M 36.34 38.79 37.57 56.49 56.99 56.74 30.05 32.19 31.12 46.88 47.57 47.23
ProtoNet (Snell et al., 2017) 0.27 M 48.39 49.98 49.19 57.34 63.22 60.28 40.81 45.07 42.94 49.05 53.42 51.24
MPTI (Zhao et al., 2021b) 0.29 M 52.27 51.48 51.88 58.93 60.56 59.75 44.27 46.92 45.60 51.74 48.57 50.16
AttMPTI (Zhao et al., 2021b) 0.37 M 53.77 55.94 54.86 61.67 67.02 64.35 45.18 49.27 47.23 54.92 56.79 55.86
BFG (Mao et al., 2022) - 55.60 55.98 55.79 63.71 66.62 65.17 46.18 48.36 47.27 55.05 57.80 56.43
2CBR (Zhu et al., 2023) 0.35 M 55.89 61.99 58.94 63.55 67.51 65.53 46.51 53.91 50.21 55.51 58.07 56.79
PAP3D (He et al., 2023) 2.45 M 59.45 66.08 62.76 65.40 70.30 67.85 48.99 56.57 52.78 61.27 60.81 61.04
Seg-PN(Zhu et al., 2024) 0.24 M 64.84 67.98 66.41 67.63 71.48 69.56 59.11 60.42 59.77 59.48 64.72 62.10
DyPolySeg 2.64 M 72.02 73.82 72.92 75.99 75.32 75.66 64.54 67.93 66.24 65.61 70.22 67.92
Improvement - +7.18 +5.84 +6.51 +8.36 +3.84 +6.10 +5.43 +7.51 +6.47 +6.13 +5.50 +5.82

4.2. Implementation Details

We implement DyPolySeg using PyTorch on an NVIDIA
RTX 4090 GPU. For model configuration, we use k-NN
with 16 nearest neighbors in DyPolyConv, set max pooling
stride to 32 in PCM, and stack three basic blocks combin-
ing DyPolyConv and Mamba Block for the encoder. Our
experiments focus on N -way K-shot settings (N ∈ {2, 3},
K ∈ {1, 5}) with 100 test episodes.

For training, we divide dataset classes into seen and un-
seen subsets, constructing episodes with randomly selected
support and query samples. We use cross-entropy loss and
AdamW optimizer with learning rate 0.001, halved every
7000 iterations. Data augmentation includes random rota-
tion, translation, and point jittering for improved robustness.

4.3. Comparison with Existing Methods

To evaluate our method, we conduct comparisons with
state-of-the-art approaches including DGCNN (Wang et al.,
2019), ProtoNet (Snell et al., 2017), MPTI (Zhao et al.,
2021b), AttMPTI (Zhao et al., 2021b), BFG (Mao et al.,
2022), 2CBR (Zhu et al., 2023), PAP3D (He et al., 2023),
and Seg-PN (Zhu et al., 2024).

As shown in Table 1, experimental results on the S3DIS
dataset demonstrate the significant performance advantages
of our proposed DyPolySeg across various few-shot set-
tings. In the 2-way 1-shot scenario, our method achieves
72.92% mIoU, substantially outperforming the previous
state-of-the-art method Seg-PN (66.41%) by 6.51%. The
performance gains become more pronounced in the 5-shot
settings, where DyPolySeg achieves 75.66% mIoU in the
2-way scenario, surpassing Seg-PN (69.56%) by 6.10%. In
the more challenging 3-way settings, our method continues
to demonstrate exceptional performance - achieving 66.24%
mIoU in the 1-shot scenario and 67.92% in the 5-shot set-
ting, outperforming Seg-PN by significant margins of 6.47%
and 5.82% respectively. These consistent improvements

validate the effectiveness of our proposed modules.

Results on ScanNet Dataset. As shown in Table 2, ex-
perimental results on ScanNet dataset further validate the
exceptional performance of DyPolySeg. In the 2-way 1-shot
setting, our method achieves 71.89% mIoU, significantly
outperforming Seg-PN (63.74%) by 8.15%. This improve-
ment demonstrates our method’s robust capability with lim-
ited labeled samples. In the 2-way 5-shot scenario, DyPoly-
Seg achieves 72.46% mIoU, surpassing Seg-PN (68.07%)
by 4.39%. The performance remains strong in more chal-
lenging 3-way settings, where DyPolySeg reaches 69.45%
mIoU in 1-shot and 69.18% in 5-shot configurations, ex-
ceeding Seg-PN by 5.87% and 3.58% respectively. These
consistent improvements across different settings further
validate the effectiveness of our approach.

4.4. Ablation experiments

4.4.1. IMPACT OF DIFFERENT MODULES

Table 3 demonstrates the critical contributions of each mod-
ule in our DyPolySeg framework. The model with only
LoConv achieves a modest average mIoU of 48.68%, while
introducing DyHoConv improves performance to 50.25%,
highlighting its potential in capturing local geometric fea-
tures. Adding the Mamba Block further enhances perfor-
mance to 53.28% mIoU, showing its effectiveness in cap-
turing global context. Notably, incorporating PCM dramat-
ically boosts performance to 70.48% mIoU, revealing its
crucial role in bridging semantic information gaps between
support and query sets. The optimal performance of 72.92%
mIoU is achieved when all modules are combined, validat-
ing the synergistic effect of our complete architecture.

4.4.2. IMPACT OF DIFFERENT NUMBERS OF ENCODER
LAYERS

As shown in Figure 3, while Seg-NN and Seg-PN show
modest improvements with increasing depth, DyPolySeg
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Table 2. Few-shot Results (%) on ScanNet. Si denotes the split i is used for testing. Avg is their average mIoU.

Methods Param.
2-way 3-way

1-shot 5-shot 1-shot 5-shot
S0 S1 Avg S0 S1 Avg S0 S1 Avg S0 S1 Avg

DGCNN (Wang et al., 2019) 1.43 M 31.55 28.94 30.25 42.71 37.24 39.98 23.99 19.10 21.55 34.93 28.10 31.52
ProtoNet (Snell et al., 2017) 0.27 M 33.92 30.95 32.44 45.34 42.01 43.68 28.47 26.13 27.30 37.36 34.98 36.17
MPTI (Zhao et al., 2021b) 0.29 M 39.27 36.14 37.71 46.90 43.59 45.25 29.96 27.26 28.61 38.14 34.36 36.25
AttMPTI (Zhao et al., 2021b) 0.37 M 42.55 40.83 41.69 54.00 50.32 52.16 35.23 30.72 32.98 46.74 40.80 43.77
BFG (Mao et al., 2022) - 42.15 40.52 41.34 51.23 49.39 50.31 34.12 31.98 33.05 46.25 41.38 43.82
2CBR (Zhu et al., 2023) 0.35 M 50.73 47.66 49.20 52.35 47.14 49.75 47.00 46.36 46.68 45.06 39.47 42.27
PAP3D (He et al., 2023) 2.45 M 57.08 55.94 56.51 64.55 59.64 62.10 55.27 55.60 55.44 59.02 53.16 56.09
Seg-PN (Zhu et al., 2024) 0.24 M 63.15 64.32 63.74 67.08 69.05 68.07 61.80 65.34 63.57 62.94 68.26 65.60
DyPolySeg 2.64 M 71.05 72.73 71.89 71.25 73.66 72.46 67.65 71.24 69.45 68.73 69.62 69.18
Improvement - +7.90 +8.41 +8.15 +4.17 +4.61 +4.39 +5.85 +5.90 +5.87 +5.79 +1.36 +3.58

Table 3. Effect of different modules on S3DIS under 2-way-1-shot
settings on the S0 and S1 split.

LoConv DyHoConv Mamba PCM S0 S1 Avg

✓ ✗ ✗ ✗ 47.32 50.05 48.68
✗ ✓ ✗ ✗ 48.64 51.86 50.25
✓ ✓ ✗ ✗ 49.75 52.97 51.36
✓ ✓ ✓ ✗ 52.21 54.35 53.28
✓ ✓ ✗ ✓ 70.12 70.84 70.48
✓ ✓ ✓ ✓ 72.02 73.82 72.92
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Figure 3. Performance comparison with varying encoder layers
under 2-way-1-shot setting on S3DIS dataset.

demonstrates substantial and consistent performance gains.
Starting from 36.4% mIoU with one layer, our method pro-
gressively improves to 58.4%, 65.1%, and peaks at 72.02%
with four encoder layers. The performance plateaus beyond
four layers, suggesting an optimal balance between model
capacity and complexity.

4.4.3. ABLATION STUDY OF DYHOCONV

As shown in Table 4, our model demonstrates consistent
improvement with increasing number of HoConvs. Starting
from a single convolution (69.33% mIoU in 2-way, 63.79%
in 3-way), we observe progressive gains: a 0.44% increase

Table 4. Effect of increasing HoConv numbers in DyHoConv mod-
ule. Results (%) are reported on S3DIS dataset

Number
2-way-1-shot 3-way-1-shot

S0 S1 Avg S0 S1 Avg

1 68.76 69.89 69.33 62.11 65.46 63.79
2 69.47 70.07 69.77 62.66 65.95 64.31
4 70.28 71.13 70.71 63.45 66.54 65.00
6 71.14 72.06 71.60 64.01 67.17 65.59
8 72.02 73.82 72.92 64.54 67.93 66.24

Table 5. Effect of different composition of PCM on S3DIS under
2/3-way-1-shot settings on the S0 and S1 split.

SEM IEM
2-way-1-shot 3-way-1-shot

S0 S1 Avg S0 S1 Avg

✗ ✗ 49.17 52.32 50.75 43.34 46.12 44.73
✓ ✗ 70.15 71.03 70.59 63.67 68.42 66.05
✗ ✓ 68.44 71.66 70.05 62.74 67.35 65.05
✓ ✓ 72.02 73.82 72.92 64.54 67.93 66.24

with two convolutions, a 1.38% improvement with four con-
volutions, and reaching 71.60% mIoU with six convolutions
in the 2-way setting. The optimal performance is achieved
with eight HoConvs, yielding 72.92% mIoU for 2-way and
66.24% for 3-way settings. This trend indicates that ad-
ditional HoConvs enhance the capture of local geometric
features, while the diminishing returns suggest eight layers
as an optimal configuration.

4.4.4. ABLATION STUDY OF PCM

As shown in Table 5, removing both SEM and IEM mod-
ules causes significant performance degradation, with mIoU
dropping to 50.75% and 44.73% for 2-way and 3-way set-
tings respectively. Each individual module demonstrates
substantial effectiveness: SEM alone achieves 70.59% and
66.05% mIoU, while IEM alone reaches 70.05% and 65.05%
mIoU in 2-way and 3-way settings. The combination of both
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Table 6. Effect of the number of PCM. We report the results (%)
under 2/3-way-1-shot settings on S3DIS datasets.

Number
2-way-1-shot 3-way-1-shot

S0 S1 Avg S0 S1 Avg

0 49.17 52.32 50.75 43.34 46.12 44.73
1 68.42 70.18 69.30 61.47 66.89 64.18
2 72.02 73.82 72.92 64.54 67.93 66.24
3 70.02 71.24 70.63 64.32 67.24 65.78

modules yields optimal performance with 72.92% mIoU in
2-way and 66.24% in 3-way settings, validating the syner-
gistic effect of our SEM and IEM design.

4.4.5. IMPACT OF NUMBER OF PCM

As shown in Table 6, without any PCM, the model’s perfor-
mance is significantly low, with an average mIoU of 50.75%
in 2-way and 44.73% in 3-way settings. Introducing a single
PCM dramatically improves performance to 69.30% and
64.18%, respectively. The optimal performance is achieved
with 2 PCM layers, reaching 72.92% mIoU in the 2-way set-
ting and 66.24% in the 3-way setting. Interestingly, adding
a third PCM slightly reduces performance to 70.63% and
65.78%, suggesting that two layers represent the optimal
balance for prototype refinement. This indicates that while
initial prototype completion significantly enhances feature
representation, excessive stacking may introduce unneces-
sary complexity or feature redundancy.

Table 7. The accuracy (%) of DyPolySeg on ScanObjectNN. “-”
means unknown.

Methods Venue Accuracy (%)

PointNet (Qi et al., 2017a) CVPR2017 68.2

PointNet++ (Qi et al., 2017b) NIPS2017 77.9

DGCNN (Wang et al., 2019) ACM TOG2019 78.1

Point-BERT (Yu et al., 2022) CVPR2022 83.1

Point-MAE (Pang et al., 2022) ECCV2022 85.2

PointMLP (Ma et al., 2022) ICLR2022 85.4

RespSurf-U (Ran et al., 2022) CVPR2022 86.0

PointNeXt-S (Qian et al., 2022) NIPS2022 87.7

Point-PN (Zhang et al., 2023c) CVPR2023 87.1

PCM (Zhang et al., 2024c) AAAI2025 88.1

PointMamba (Liang et al., 2024b) NeurIPS2024 89.3

DyPolySeg (our) ICML2025 90.8

4.5. Other Point Cloud Understanding Tasks

As shown in Table 7, DyPolySeg achieves 90.8% accuracy
on ScanObjectNN with only 2.64M parameters, demon-
strating competitive performance against recent methods
like PCM (34.2M) and Mamba3D (16.9M). This efficiency

(a) Point-BERT (b) DyPolySeg

Figure 4. t-SNE visualization comparing the feature spaces of
Point-BERT and DyPolySeg on the ScanObjectNN.

validates the effectiveness of our architecture design.

Visualization in Figure 3 compares feature distributions
between Point-BERT (Yu et al., 2022) and DyPolySeg on
ScanObjectNN dataset. Our method achieves more compact
within-class clustering and clearer between-class separation,
indicating superior shape-aware representation learning.

5. Conclusion
In this paper, we present DyPolySeg, a novel framework for
few-shot point cloud semantic segmentation. Our method
addresses two critical challenges through: (1) a dynamic
polynomial fitting network with DyPolyConv for effective
local geometric modeling, and (2) a lightweight Prototype
Completion Module (PCM) for enhanced prototype rep-
resentation. The integration of DyPolyConv and Mamba
Block in an encoder-decoder architecture enables compre-
hensive capture of both local geometric details and global
semantic context. Extensive experiments demonstrate that
DyPolySeg not only advances the state-of-the-art in few-
shot point cloud segmentation but also provides valuable
insights for future 3D vision research.

Impact Statement
The proposed DyPolySeg framework advances few-shot
point cloud semantic segmentation, contributing to robust
and efficient 3D scene understanding. This technology
has broad applications in autonomous navigation, assistive
robotics, and augmented reality, potentially accelerating
their deployment for societal benefit.

While promising, we acknowledge potential privacy con-
cerns regarding point cloud data usage and the need to
address potential biases in training data that could affect
different populations. We encourage the research commu-
nity to proactively consider these broader impacts in future
developments.
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