
VisCoder: Fine-Tuning LLMs for Executable Python
Visualization Code Generation

Anonymous ACL submission

Abstract001

Large language models (LLMs) often strug-002
gle with visualization tasks like plotting dia-003
grams, charts, where success depends on both004
code correctness and visual semantics. Exist-005
ing instruction-tuning datasets lack execution-006
grounded supervision and offer limited support007
for iterative code correction, resulting in frag-008
ile and unreliable plot generation. We present009
VisCode-200K, a large-scale instruction tun-010
ing dataset for Python-based visualization and011
self-correction. It contains over 200K examples012
from two sources: (1) validated plotting code013
from open-source repositories, paired with nat-014
ural language instructions and rendered plots;015
and (2) 45K multi-turn correction dialogues016
from Code-Feedback, enabling models to re-017
vise faulty code using runtime feedback. We018
fine-tune Qwen2.5-Coder-Instruct on VisCode-019
200K to create VisCoder, and evaluate it on020
PandasPlotBench. VisCoder significantly out-021
performs strong open-source baselines and ap-022
proaches the performance of proprietary mod-023
els like GPT-4o-mini. We further adopt a self-024
debug evaluation protocol to assess iterative025
repair, demonstrating the benefits of feedback-026
driven learning for executable, visually accu-027
rate code generation.028

1 Introduction029

Despite the growing capabilities of large language030

models (LLMs) in general-purpose code genera-031

tion (Chen et al., 2021; Guo et al., 2024), they032

continue to struggle with one of the most common033

and visually essential tasks in data analysis: gener-034

ating code that produces a valid and semantically035

meaningful plot. For example, given a tabular de-036

scription, models may generate code that appears037

syntactically correct and invokes the appropriate038

libraries (Dibia, 2023; Xie et al., 2024). But when039

executed, the result is often broken: exceptions are040

raised, plots render blank or malformed, or the vi-041

sual fails to reflect the intended semantics of the042

instruction (Chen et al., 2024; Yang et al., 2024; 043

Galimzyanov et al., 2024). 044

These failures are not incidental: they reflect 045

structural challenges in visualization code gener- 046

ation. Unlike standard text-to-code tasks, visual- 047

ization requires grounding across three modalities: 048

natural language (the user instruction), data struc- 049

ture (the tabular or other data input), and visual out- 050

put (the rendered chart). Execution correctness is 051

not binary; a script may run and still fail to convey 052

the intended meaning. Visualization libraries such 053

as matplotlib (Hunter, 2007), seaborn (Waskom, 054

2021), and plotly (Inc, 2015) further complicate 055

the task, with API idiosyncrasies and intricate bind- 056

ings between data, layout, and style. 057

Current instruction-tuning datasets do not meet 058

the demands of this setting. Most lack explicit 059

visual grounding, do not enforce runtime valida- 060

tion, and provide little to no supervision for re- 061

covery from failure. As a result, even advanced 062

open models like Qwen-Coder (Hui et al., 2024) 063

struggle with executable, semantically accurate vi- 064

sualization code, particularly when debugging is 065

required (Zheng et al., 2024). 066

To address these gaps, we introduce VisCode- 067

200K, a new instruction-tuning dataset for Python- 068

based visualization code generation and multi-turn 069

correction. VisCode-200K contains over 200K su- 070

pervised examples derived from two complemen- 071

tary data sources: 1) Executable visualization 072

code, extracted from open-source Python repos- 073

itories and filtered across widely-used plotting li- 074

braries, including matplotlib, seaborn and oth- 075

ers. All code samples are validated for runtime ex- 076

ecutability and paired with rendered plots. Natural 077

language instructions are generated using LLMs 078

conditioned on both the code and its output im- 079

age (Galimzyanov et al., 2024). 2) Multi-turn re- 080

vision dialogues, drawn from the Code-Feedback 081

dataset (Zheng et al., 2024), which contains re- 082

alistic interactions where models revise faulty 083

1

Python code based on runtime errors and follow-up084

prompts. While not visualization-specific, these085

traces provide essential supervision for teaching086

models to debug and recover from execution fail-087

ures. This dual-source construction enables train-088

ing for both single-shot generation and multi-round089

refinement, allowing models to generate code ini-090

tially and improve it iteratively through feedback.091

To demonstrate the effectiveness of VisCode-092

200K, we fine-tune Qwen2.5-Coder-Instruct (Hui093

et al., 2024) at both 3B and 7B scales to produce094

VisCoder, an open-source model tuned specifically095

for Python visualization tasks. We evaluate Vis-096

Coder on PandasPlotBench (Galimzyanov et al.,097

2024), a benchmark that assesses executable code098

generation from natural language and data previews099

across three plotting libraries. We also introduce100

a self-debug evaluation mode, in which models101

are given multiple rounds to revise failed outputs102

based on execution traces, simulating a realistic103

developer-style correction loop.104

Our experiments show that VisCoder substan-105

tially outperforms competitive open-source base-106

lines. VisCoder-3B and 7B achieve average exe-107

cution pass rate improvements of 19.6 and 14.5108

points over Qwen2.5-Coder. Under self-debug109

mode, it reaches over 90% execution pass rate110

on Matplotlib and Seaborn. Compared to propri-111

etary models, VisCoder-7B surpasses GPT-4o-mini112

on both Seaborn and Plotly under the default set-113

ting, and approaches GPT-4o performance on both114

libraries after self-debugging. At 3B scale, it out-115

performs GPT-4o-mini on Seaborn and narrows116

the gap in other libraries. These results demon-117

strate the impact of combining domain-specific in-118

struction tuning with feedback-driven correction119

for grounded visualization code generation.120

2 Related Work121

LLMs for Visualization Code Generation. Re-122

cent work has explored using large language mod-123

els to generate visualization code from natural lan-124

guage prompts. Benchmarks such as MatPlotAgent125

and VisEval (Yang et al., 2024; Chen et al., 2024)126

evaluate model performance on structured NL2VIS127

tasks with paired chart specifications and data pre-128

views, while PandasPlotBench (Galimzyanov et al.,129

2024) provides a curated benchmark for assess-130

ing executable visualization code generation across131

multiple plotting libraries. Plot2Code (Wu et al.,132

2024) investigates the reverse direction by gener-133

ating code from rendered plots, but it relies on 134

image-level inputs and bypasses the textual reason- 135

ing central to real-world data workflows. These 136

studies highlight persistent challenges in semantic 137

grounding, API correctness, and robustness across 138

different plotting tasks. Broader evaluations have 139

analyzed model behavior across visualization types 140

and libraries (Vázquez, 2024; Podo et al., 2024), 141

while specification-based approaches using Vega- 142

Lite (Xie et al., 2024) offer an alternate formulation 143

that lacks direct executability. Beyond evaluation, 144

systems like LIDA (Dibia, 2023) and VisPath (Seo 145

et al., 2025) incorporate summarization, code syn- 146

thesis, and feedback-driven refinement into end-to- 147

end pipelines. Related efforts have also extended 148

visual code generation to structured domains such 149

as parametric CAD modeling (Li et al., 2025) and 150

mathematical animation (Ku et al., 2025), where 151

outputs reflect domain-specific constraints rather 152

than general-purpose charting semantics. However, 153

most prior work lacks training data grounded in 154

execution outcomes and provides limited support 155

for iterative refinement. These limitations hinder 156

model reliability, especially when generating code 157

that must be both syntactically correct and seman- 158

tically faithful to the intended visualization. 159

Execution Feedback and Code Correction. Ex- 160

ecution feedback has been widely explored as a 161

supervisory signal for improving the reliability of 162

code generation. Prior work investigates using run- 163

time traces to guide post-hoc refinement (Jain et al., 164

2025; Chen et al., 2025; Tian et al., 2024; Zhang 165

and Yang, 2025), or integrates such signals into 166

training through reinforcement learning (Gehring 167

et al., 2024; Zeng et al., 2025). Other approaches 168

emphasize multi-turn correction, where models re- 169

vise faulty code using internal or external feed- 170

back (Madaan et al., 2023; Jiang et al., 2024; Zheng 171

et al., 2024; Ruiz et al., 2025), or simulate debug- 172

ging workflows with planning and agent collabora- 173

tion (Grishina et al., 2025; Li et al., 2024). In the 174

context of visualization, VisPath (Seo et al., 2025) 175

and MatPlotAgent (Yang et al., 2024) explore chart 176

refinement using visual feedback from rendered 177

outputs. Yet despite these advances, supervision 178

grounded in execution feedback or revision traces 179

has rarely been used to train models for visualiza- 180

tion code generation, where runtime validity and 181

semantic alignment remain central challenges. 182

2

Data Filtering1 Runtime Validation2 Instruction Gen.3
Filtered Code Block

Runnable Vis Code & Image

nbconvert
--allow-errors

Flase

Gen. images
validation

Code Data

Python Vis Code Block

Libs filter
code block
extraction

Libs filter
Matplotlib,
seaborn, ploty

Python Vis Code + Image

VisCode-200K

Split 5 parts desc.
Construct instruction

Merge Code-Feedback

Figure 1: Data construction pipeline for VisCode-200K. We extract and filter visualization code blocks from open-
source Python sources, validate their executability and plot rendering via Jupyter-based runtime checks, and generate
structured instructions paired with rendered plots. We integrate multi-turn correction data from Code-Feedback
during instruction construction to support iterative refinement.

3 VisCode-200K: A Python Visualization183

Instruction Tuning Dataset184

In this section, we present VisCode-200K, a super-185

vised instruction tuning dataset for Python-based186

visualization and feedback-driven code correction.187

It is designed to support robust code generation188

across diverse plotting libraries and to enable itera-189

tive refinement through multi-turn supervision.190

VisCode-200K integrates two complementary191

sources of supervision. The first consists of ex-192

ecutable visualization code extracted from open-193

source Python repositories, covering a wide range194

of real-world chart types, layouts, and plotting li-195

braries. All samples are filtered to ensure runtime196

validity and compatibility with standard Python197

environments, exposing models to diverse and re-198

alistic plotting practices. The second source com-199

prises multi-turn Python dialogues from the Code-200

Feedback dataset (Zheng et al., 2024), which offer201

supervision for revising faulty code in response to202

execution errors. While not specific to visualiza-203

tion, these interactions are critical for modeling re-204

alistic correction behaviors in iterative workflows.205

Figure 1 provides an overview of the VisCode-206

200K construction pipeline, which consists of code207

filtering, runtime validation, and structured instruc-208

tion generation. The following subsections detail209

each component.210

3.1 Code Extraction from Public Repositories211

To build a large corpus of executable Python vi-212

sualization code, we source data from two open213

datasets: the Python subset of stack-edu1 (Al-214

lal et al., 2025) and the chart/table partitions of215

CoSyn-400K2 (Yang et al., 2025; Deitke et al.,216

2024). From these corpora, we extract code that217

uses commonly adopted visualization libraries, in-218

1hf.co/datasets/HuggingFaceTB/stack-edu
2hf.co/datasets/allenai/CoSyn-400K

cluding matplotlib, seaborn and others, to en- 219

sure broad coverage of real-world plotting styles. 220

The construction pipeline consists of four stages: 221

library-based filtering, code block extraction, run- 222

time validation, and instruction generation. 223

Filtering and Code Block Extraction. For the 224

stack-edu source, which contains a large collec- 225

tion of Python code examples from educational 226

contexts, we begin by applying library-based filters 227

to identify approximately 1.7M samples that invoke 228

common Python visualization libs. Since most ex- 229

amples embed visualization logic within broader 230

program contexts, we use GPT-4o-mini (OpenAI, 231

2024a) to extract minimal, standalone plotting 232

blocks. During this process, we inject mock data to 233

replace missing inputs and ensure that each block 234

can be executed in isolation. This structural clean- 235

ing step yields code samples that reflect realistic 236

plotting usage while remaining compatible with our 237

runtime pipeline. After filtering and reconstruction, 238

we obtain roughly 1M candidate blocks. To bal- 239

ance library distribution, we retain all seaborn and 240

ohter samples and randomly subsample a matching 241

number of matplotlib examples, resulting in a 242

curated subset of 300K visualization blocks. 243

From CoSyn-400K, we extract 112K Python 244

code snippets that include calls to one of the tar- 245

get visualization libraries. CoSyn provides high- 246

quality synthetic plotting code spanning a wide 247

range of styles, with well-rendered outputs and 248

consistent structure. Unlike stack-edu, it stores 249

code and data separately, which requires recon- 250

struction to enable runtime execution. We synthe- 251

size runnable scripts by inserting inline annotations 252

such as column headers and the first data row to em- 253

ulate realistic pandas.read_csv loading. When 254

necessary, we append missing plotting function 255

calls to ensure that each script can execute fully 256

within a notebook environment. 257

3

https://huggingface.co/datasets/HuggingFaceTB/stack-edu
https://huggingface.co/datasets/allenai/CoSyn-400K

Runtime Validation. To verify executability, we258

run each code block in an isolated Jupyter environ-259

ment using nbconvert with allow-error=False.260

We enforce a timeout and terminate executions that261

hang or enter infinite loops using a simulated key-262

board interrupt. Only samples that run success-263

fully and generate a valid image file are retained.264

This step yields 105K validated plotting scripts265

from stack-edu and 50K from CoSyn-400K, each266

paired with its corresponding output image.267

Instruction Generation. To construct meaning-268

ful instructions for visualization code generation,269

we use GPT-4o (OpenAI, 2024b) to synthesize in-270

struction components based on each validated code271

block and its corresponding plot. This enables the272

model to incorporate both structural code features273

and visual semantics from the rendered image.274

Each instruction consists of five components: (1)275

a brief setup description specifying the program-276

ming language and visualization libraries used; (2)277

a data description summarizing the tabular input278

and column semantics; (3) a data block indicating279

the input table, either as mock data (for stack-edu)280

or a two-row preview (for CoSyn); (4) a high-level281

plot description outlining axes and structural lay-282

out; and (5) a style description capturing colors,283

grid layout, and other visual properties.284

For stack-edu samples, mock data is extracted285

directly from the code block, where it was inserted286

during preprocessing. For CoSyn, where data is287

stored separately, we construct a compact preview288

using the first two rows of the table. The five com-289

ponents are then assembled using a fixed template290

to form the final instruction:291

[Plot Description]292
[Setup]293
[Data Description]294
"The mock data shows below:" or "The295
first two rows of the data are shown296
below:"297
[Data]298
[Plot Style Description]299

This format enforces a consistent prompt struc-300

ture across both data sources, providing models301

with a clear description of the target plot as well as302

the data and style required to render it.303

3.2 Multi-turn Instruction-following304

Dialogues with Execution Feedback305

To train models with self-correction capabilities,306

we incorporate 45K multi-turn dialogues from307

the Code-Feedback3 dataset (Zheng et al., 2024).308

3hf.co/datasets/m-a-p/Code-Feedback

These dialogues involve Python-based tasks, in- 309

cluding user instructions, model-generated code, 310

and follow-up turns containing execution feedback 311

or revision prompts. 312

We begin with 56K Python dialogues and re- 313

move those with excessive length or turn count to 314

maintain consistency and reduce training complex- 315

ity. The resulting 45K samples span diverse Python 316

tasks with realistic correction behaviors. 317

While not specific to visualization, these dia- 318

logues offer valuable supervision for teaching mod- 319

els to revise faulty code based on runtime signals 320

and to reason over iterative interactions. We inte- 321

grate them into the instruction tuning corpus along- 322

side the single-turn samples from stack-edu and 323

CoSyn, enabling models to learn both initial gener- 324

ation and multi-turn refinement strategies. 325

4 Experiment Setup 326

Training Setup. We fine-tune Qwen2.5-Coder- 327

Instruct (Hui et al., 2024) at two parameter scales: 328

3B and 7B. This allows us to assess the general- 329

izability of VisCode-200K across different model 330

capacities. Both models are trained for 3 epochs 331

with a learning rate of 5× 10−6, a warm-up ratio 332

of 0.05, and a cosine learning rate scheduler. We 333

perform full-parameter tuning in bfloat16 precision 334

on 8×A100 GPUs with a total batch size of 128. 335

Evaluation Setup. We evaluate models using 336

PandasPlotBench (Galimzyanov et al., 2024), a 337

benchmark designed to assess the ability of lan- 338

guage models to generate executable and semanti- 339

cally accurate visualization code from tabular data 340

descriptions. It contains 175 tasks spanning three 341

widely used Python plotting libraries: matplotlib, 342

seaborn, and plotly. 343

Each task includes a natural language instruction 344

and a preview of the input DataFrame. The model 345

is expected to generate Python code that produces 346

a valid plot when executed according to the instruc- 347

tion. The benchmark reports three metrics: (1) 348

Incorrect Code Rate, the proportion of outputs that 349

fail to produce any plot; and two GPT-4o-judged 350

scores: (2) a task-based score measuring alignment 351

with the instruction, and (3) a visual score assessing 352

similarity to the reference plot. 353

Among these metrics, Incorrect Code Rate pro- 354

vides only a coarse signal of success. It indicates 355

whether a plot is rendered, but does not capture 356

execution errors if a figure is produced. As a result, 357

blank or semantically meaningless outputs—such 358

4

https://huggingface.co/datasets/m-a-p/Code-Feedback

as plots with only axes—may be misclassified as359

correct. To address this issue, we introduce an addi-360

tional metric: Execution Pass Rate, defined as the361

percentage of outputs that execute without error.362

Self-Debug Evaluation Mode. To evaluate a363

model’s ability to recover from failure, we extend364

the benchmark with a self-debug evaluation mode.365

In this setting, if the initial generation fails to ex-366

ecute or does not produce a valid plot, the model367

is allowed up to K rounds to iteratively revise its368

output based on accumulated feedback.369

At each round, only the tasks that remain un-370

solved from the previous attempt are reconsid-371

ered. The model receives a multi-turn prompt con-372

structed as a dialogue, including the original in-373

struction, its failed code response, and a follow-up374

message requesting correction based on the exe-375

cution error. Conditioned on this dialogue history,376

the model generates a revised version of the code.377

Tasks are considered successfully fixed if the gen-378

erated code executes without error and produces379

a valid plot. These tasks are excluded from subse-380

quent rounds.381

Algorithm 1 Self-Debug Evaluation Protocol
1: Let F0 be failed tasks from initial evaluation
2: for i = 1 to K do
3: for each task x in Fi−1 not yet fixed do
4: Fix x via feedback-driven prompting
5: Evaluate the result of the revised code
6: if successful then
7: Mark x as fixed & record output
8: else
9: Record x’s latest failed output

10: end if
11: end for
12: end for
13: Evaluate all tasks with final recorded outputs

We set K = 3 for all experiments. After the382

final round of self-debug, each task is evaluated383

based on its recorded final output, which is either384

the successfully revised version from an earlier385

round or the last failed attempt if no fix was found.386

The resulting outputs are scored using the same387

evaluation pipeline as in the default setting. The388

full procedure is summarized in Algorithm 1.389

This iterative process simulates a developer-style390

debugging loop and enables systematic evalua-391

tion of the model’s ability to recover from failure392

through multi-round code correction.393

5 Main Results 394

We present the main experimental results on Pan- 395

dasPlotBench, including overall model compar- 396

isons, performance under the self-debug evaluation 397

protocol, error type analysis, and a training data 398

ablation study. 399

5.1 Overall Model Comparison 400

We evaluate VisCoder models against both pro- 401

prietary and open-source language models to as- 402

sess executable visualization performance across 403

scales and libraries. The proprietary group in- 404

cludes GPT-4o (OpenAI, 2024b), the strongest 405

model in the original PandasPlotBench benchmark, 406

and its lightweight variant GPT-4o-mini (OpenAI, 407

2024a). Among open-source baselines, we com- 408

pare LLaMA-3.2-3B, LLaMA-3.1-8B (Grattafiori 409

et al., 2024), Qwen2.5-Instruct, and Qwen2.5- 410

Coder-Instruct (Team, 2024; Hui et al., 2024), eval- 411

uated at both 3B and 7B scales. VisCoder models 412

are trained on VisCode-200K and fine-tuned using 413

the same instruction tuning setup. 414

Table 1 summarizes model performance across 415

the three plotting libraries. The following analysis 416

focuses on execution success, task alignment, and 417

visual fidelity, highlighting VisCoder’s comparative 418

strengths and remaining challenges. 419

Proprietary Models Remain Stronger. Propri- 420

etary models outperform open-source models by 421

a wide margin across all plotting libraries. GPT- 422

4o achieves the highest execution pass rates and 423

the strongest judge-based scores, followed by its 424

lightweight variant GPT-4o-mini. These results 425

indicate more reliable execution and better se- 426

mantic alignment with task instructions, particu- 427

larly in complex visualization settings. In contrast, 428

open-source models such as LLaMA and Qwen2.5- 429

Instruct consistently underperform across all met- 430

rics. This reinforces the gap between proprietary 431

and open-source systems on execution-sensitive 432

and semantically grounded code generation. 433

Plotly Presents Harder Challenge. Perfor- 434

mance differs across plotting libraries. While 435

most models perform reliably on matplotlib and 436

seaborn, results on plotly are markedly lower, 437

especially for open-source models. Execution 438

pass rates often fall below 35%, and task and vi- 439

sual scores drop accordingly. Generated plots fre- 440

quently fail to reflect the intended semantics or pro- 441

duce complete visuals. This suggests that plotly’s 442

5

Model
Matplotlib Seaborn Plotly

Exec
Pass

Mean Good(≥75) Exec
Pass

Mean Good(≥75) Exec
Pass

Mean Good(≥75)
vis task vis task vis task vis task vis task vis task

GPT-4o 94.9 75 90 67% 93% 83.4 65 78 59% 80% 77.7 55 68 50% 70%
GPT-4o + Self Debug 99.4 77 93 69% 96% 92.6 69 84 63% 86% 97.7 68 84 61% 83%
GPT-4o-mini 88.6 68 86 59% 86% 62.3 45 57 41% 57% 69.1 48 52 42% 51%
GPT-4o-mini + Self Debug 97.7 72 92 65% 94% 72.0 47 60 43% 61% 97.7 62 71 51% 67%

∼ 3B Scale

Llama-3.2-3B-Ins. 65.1 43 60 34% 55% 30.9 18 24 14% 21% 13.1 8 8 7% 8%
Qwen-2.5-3B-Ins. 74.3 55 68 49% 66% 58.3 43 58 33% 51% 30.9 19 23 17% 21%
Qwen-2.5-Coder-3B-Ins. 71.4 56 72 50% 69% 58.3 44 55 36% 51% 27.4 17 19 17% 18%

VisCoder-3B 81.7 60 69 53% 69% 73.7 48 65 38% 61% 60.6 38 45 32% 44%
VisCoder-3B + Self Debug 85.1 60 70 53% 69% 78.3 48 66 37% 62% 64.6 40 48 34% 47%

∼ 7B Scale

Llama-3.1-8B-Ins. 81.1 61 76 51% 74% 65.7 51 64 45% 63% 30.9 21 22 20% 21%
Qwen2.5-7B-Ins. 77.1 64 76 53% 75% 66.3 51 63 46% 62% 56.0 38 42 31% 40%
Qwen2.5-Coder-7B-Ins. 78.3 63 76 58% 75% 68.6 51 63 40% 62% 48.0 29 34 24% 31%

VisCoder-7B 87.4 66 78 60% 80% 76.6 57 70 50% 68% 74.3 48 60 41% 61%
VisCoder-7B + Self Debug 91.4 67 81 62% 83% 90.3 62 77 51% 75% 81.7 51 65 44% 65%

Table 1: Performance of selected models on the PandasPlotBench benchmark. For each model, we report (1)
execution pass rate (Exec Pass), (2) mean visual and task scores (Mean), and (3) the proportion of samples scoring
at least 75 (Good). The best-performing model in each scale is shown in bold, and the second best is underlined.

verbose syntax and less represented API structure443

pose greater challenges for current models.444

VisCoder Closes the Open-Source Gap. Vis-445

Coder models consistently outperform their un-446

tuned Qwen2.5-Coder baselines across all libraries.447

At 3B, VisCoder improves both execution suc-448

cess and semantic alignment, with larger gains449

on plotly and seaborn, where baseline gener-450

ations often fail to capture visual intent. At451

7B, VisCoder outperforms GPT-4o-mini on both452

seaborn and plotly, while remaining slightly be-453

hind on matplotlib. These results demonstrate454

that domain-specific instruction tuning improves455

functional reliability and output fidelity, especially456

in libraries with more complex plotting structures.457

Self-Debug Further Boosts Performance. GPT-458

4o demonstrates strong self-debugging ability,459

reaching near-perfect execution pass rates after460

multiple rounds of correction. VisCoder mod-461

els also improve substantially under this protocol.462

VisCoder-7B surpasses 90% execution success on463

both matplotlib and seaborn, with especially464

large gains on the latter. Task and visual scores465

improve consistently across rounds. These results466

show that VisCoder can generalize from its training467

data to refine failed outputs over multiple attempts,468

even without task-specific debugging supervision.469

5.2 Self-Debug Evaluation Results 470

To analyze the dynamics of self-debugging, we 471

track execution pass rates over multiple correction 472

rounds by evaluating GPT-4o and GPT-4o-mini as 473

proprietary baselines, alongside VisCoder models 474

at 3B and 7B scales. To isolate the effects of in- 475

struction tuning, we also include untuned Qwen2.5- 476

Coder models at matching sizes. Figure 2 shows 477

execution pass rates from the initial generation (At- 478

tempt 0) through three rounds of self-debugging 479

(Attempts 1–3), presented separately for each plot- 480

ting library. Detailed breakdown of pass rates per 481

model and library is provided in Appendix B. 482

Self-debug is broadly effective. Execution pass 483

rates increase steadily over self-debug rounds for 484

most models and libraries, indicating the overall 485

effectiveness of the protocol. The first attempt typi- 486

cally yields the largest improvement, with smaller 487

gains in subsequent rounds. This pattern suggests 488

that a simple retry mechanism informed by execu- 489

tion feedback can recover a substantial portion of 490

initial failures. 491

VisCoder yields stable behavior. Compared to 492

their Qwen2.5-Coder baselines, VisCoder models 493

show smaller per-round gains in execution pass 494

rate but consistently achieve higher final perfor- 495

mance. This suggests that VisCoder tends to gener- 496

ate stronger initial outputs and applies more stable 497

corrections across rounds. The effect is most pro- 498

6

Self-Debugging Round (Attempt Number)

60

70

80

90

100

0 1 2 3

VisCoder-7B Qwen2.5-Coder-7B-Ins. VisCoder-3B Qwen2.5-Coder-3B-Ins. GPT-4o GPT-4o-mini

60

70

80

90

100

0 1 2 3

(a) Matplotlib

50

60

70

80

90

100

0 1 2 3

(b) Seaborn

20

40

60

80

100

0 1 2 3

(c) Plotly

Figure 2: Execution pass rate across self-debug rounds (Attempt 0–3), shown separately for three plotting libraries.
Attempt 0 corresponds to the default output, while Attempts 1–3 represent subsequent correction rounds. Model
groups are color-coded, with solid and dashed lines used to distinguish paired models. VisCoder models improve
consistently across rounds, with VisCoder-7B gradually closing the gap to GPT-4o on seaborn. Y-axis ranges are
scaled per subplot to match library-specific score distributions.

nounced with VisCoder-7B on seaborn, where exe-499

cution rates increase steadily and approach GPT-4o500

by the final attempt.501

Failures remain across models. Even the502

strongest model GPT-4o does not reach perfect503

execution rates after self-debugging. On seaborn,504

its performance plateaus after three rounds, leaving505

a non-trivial portion of failures unresolved. In con-506

trast, VisCoder-3B stands out among small-scale507

models. It surpasses GPT-4o-mini on seaborn508

and performs competitively across other libraries.509

Meanwhile, we observe that smaller models tend to510

reach their performance ceiling more quickly, ex-511

hibiting smoother but more limited improvements512

across rounds.513

5.3 Error Analysis514

To examine the error recovery behavior of515

VisCoder-7B, we analyze how execution error516

counts transition before and after self-debugging.517

Table 2 summarizes four representative error types,518

grouped by plotting library. A detailed break-519

down by model and debug round is provided in520

Appendix C.521

Error Type Matplotlib Seaborn Plotly

AttributeError 5 → 2 15 → 2 5 → 1
TypeError 7 → 5 8 → 4 3 → 1

KeyError 1 → 1 0 → 0 1 → 1
ValueError 4 → 5 8 → 7 29 → 23

Table 2: Execution error count transitions for VisCoder-
7B across four representative error types, segmented by
plotting library. Each value shows the transition from
the initial to the post-debugging error count (X → Y).

Effective Recovery from Structural Errors. 522

VisCoder-7B demonstrates strong self-correction 523

ability on shallow, structural errors. AttributeEr- 524

rors in Seaborn are reduced from 15 to 2, and Type- 525

Errors in Plotly from 3 to 1. These failures typ- 526

ically result from incorrect method calls, invalid 527

argument types, or simple syntax mistakes, and are 528

often accompanied by clear diagnostic messages. 529

As illustrated in Figure 4 and Figure 6, VisCoder 530

can reliably correct such cases using runtime feed- 531

back, frequently producing valid plots on retry. 532

Persistent Failures in Semantic Execution Er- 533

rors. Semantic execution errors such as KeyEr- 534

ror and ValueError remain difficult to resolve (Fig- 535

ure 8). On Plotly, ValueErrors decrease from 29 to 536

23 across three rounds of correction, but a substan- 537

tial number still remain. Meanwhile, KeyErrors 538

show no improvement, remaining at 1 throughout. 539

These failures are often caused by invalid trace con- 540

figurations or mismatched array lengths and typi- 541

cally require reasoning over the input data structure. 542

However, the model does not dynamically reassess 543

the DataFrame during self-debug, leading to re- 544

tries that rely on faulty assumptions. Compared to 545

structural errors, semantic failures are less local- 546

ized and more difficult to resolve through symbolic 547

correction alone. 548

5.4 Training Data Ablation 549

We assess the contribution of each training data 550

source in VisCode-200K through a controlled ab- 551

lation study, including two reference points: the 552

model trained on the full VisCode-200K dataset 553

and the untuned Qwen2.5-Coder-7B-Instruct base- 554

line. Separate Qwen2.5-Coder-7B models are fine- 555

tuned on subsets from stack-edu, CoSyn-400K, 556

and Code-Feedback, using the same instruction 557

7

tuning setup as the full configuration. All mod-558

els are evaluated on PandasPlotBench under both559

default and self-debug modes. Table 3 shows exe-560

cution pass rates across the three plotting libraries.561

Model Self-Debug Matplotlib Seaborn Plotly

Qwen2.5-Coder-7B-Ins
✗ 78.3 68.6 48.0
✔ 83.4 86.3 71.4

+ Stack-Edu-105K
✗ 66.3 55.4 49.7
✔ 72.0 69.7 61.1

+ CoSyn-50K*
✗ 0.0 0.0 5.7
✔ 0.0 0.0 6.3

+ Code-Feedback-45K
✗ 88.0 44.0 62.9
✔ 90.9 59.4 77.7

+ VisCode-200K
✗ 87.4 76.6 74.3
✔ 91.4 90.3 81.7

Table 3: Execution pass rates of Qwen2.5-Coder-7B
models trained on individual subsets of VisCode-200K.
Each model is evaluated across three libraries under
both default (✗) and self-debug (✔) modes.

Stack-Edu provides moderate generalization.562

Using the subset from stack-edu results in mod-563

est gains over the baseline in plotly under the564

default setting (+1.7), but leads to significant drops565

on matplotlib and seaborn (–12.0 and –13.2).566

Self-debug improves pass rates across all libraries567

compared to their respective defaults, yet all scores568

remain below the untuned baseline. These re-569

sults suggest that while stack-edu offers broad task570

coverage, it lacks the structural supervision and571

feedback-guided correction patterns needed for ro-572

bust generalization.573

CoSyn fails to generalize. The subset from574

CoSyn-400K fails to support effective instruction575

tuning for this task. Execution pass rates remain576

near zero across all libraries, and self-debug yields577

no meaningful improvement. Generated outputs of-578

ten exhibit decoding instability, including repeated579

sequences, empty completions, or irrelevant boiler-580

plate. A key reason is the homogeneous structure581

of the source data: all samples follow a fixed for-582

mat consisting of imports, function definitions, and583

single function calls, which severely limits struc-584

tural diversity during training. Combined with the585

synthetic and non-executable nature of the exam-586

ples, this makes the single CoSyn subset ill-suited587

for executable visualization code generation.588

Code-Feedback enhances structure but lacks589

breadth. The subset from Code-Feedback im-590

proves execution reliability on matplotlib and591

plotly in the default setting, outperforming the592

baseline by 9.7 and 14.9 points, respectively. These593

gains suggest that examples grounded in execu- 594

tion feedback help the model generate structurally 595

valid and complete code. However, performance on 596

seaborn remains low (44.0), and gains on plotly 597

are limited compared to the full model. This re- 598

flects the general-purpose nature of the source data, 599

which is not designed for visualization and lacks 600

the task-specific grounding needed for broader 601

transfer. Self-debug improves pass rates across 602

libraries, but overall performance remains below 603

that achieved with our full VisCode-200K dataset. 604

Full data offers complementary gains. The full 605

VisCode-200K dataset yields the most consistent 606

execution improvements across all plotting libraries 607

and evaluation modes. Its performance under self- 608

debug is particularly robust, with high pass rates 609

maintained across structurally diverse tasks. These 610

results reinforce the importance of domain-specific 611

instruction tuning and multi-turn correction data 612

for building reliable visualization-capable models. 613

6 Conclusion 614

In conclusion, VisCode-200K provides a large- 615

scale instruction tuning dataset for Python visu- 616

alization code generation, combining executable 617

plotting examples with multi-turn correction dia- 618

logues grounded in runtime feedback. To validate 619

its effectiveness, we evaluate VisCoder models on 620

PandasPlotBench using the default setting. Addi- 621

tionally, We propose a self-debug protocol to simu- 622

late realistic correction workflows and assess model 623

performance in this extended evaluation mode. 624

Experiments show that VisCoder substantially 625

outperforms strong open-source baselines across 626

execution and alignment metrics, and narrows 627

the gap to proprietary models like GPT-4o-mini. 628

Gains are particularly pronounced in settings that 629

involve complex visualization structures, such 630

as Plotly, and iterative correction through self- 631

debugging. Ablation studies further demonstrate 632

that structurally diverse, executable training data 633

and feedback-driven supervision contribute to more 634

robust performance across plotting libraries. 635

Looking forward, this work reinforces the im- 636

portance of domain-specific instruction tuning 637

and multi-turn correction supervision for building 638

robust and semantically grounded visualization- 639

capable models. Future extensions may explore 640

broader plotting libraries, richer correction supervi- 641

sion, and evaluation methods that measure models’ 642

abilities to recover from execution errors. 643

8

Limitations644

Although VisCoder substantially improves visual-645

ization code generation, its scope is currently lim-646

ited to Python, leaving visualization tasks involv-647

ing other programming languages such as R and648

JavaScript unexplored. Even within Python, per-649

formance on Plotly remains comparatively weaker650

due to its verbose syntax and complex API struc-651

ture, frequently causing semantic execution errors652

that the existing self-debugging routine struggles653

to address. Furthermore, our evaluation relies on654

the default automatic judge model adopted from655

prior studies, without an independent analysis of656

its potential biases or reliability.657

References658

Loubna Ben Allal, Anton Lozhkov, Elie Bak-659
ouch, Gabriel Martín Blázquez, Guilherme Penedo,660
Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček,661
Agustín Piqueres Lajarín, Vaibhav Srivastav, Joshua662
Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clé-663
mentine Fourrier, Ben Burtenshaw, Hugo Larcher,664
Haojun Zhao, Cyril Zakka, Mathieu Morlon, and 3665
others. 2025. Smollm2: When smol goes big – data-666
centric training of a small language model.667

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,668
Henrique Ponde De Oliveira Pinto, Jared Kaplan,669
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg670
Brockman, and 1 others. 2021. Evaluating large671
language models trained on code. ArXiv preprint,672
abs/2107.03374.673

Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and674
Yuqing Yang. 2024. Viseval: A benchmark for data675
visualization in the era of large language models.676
IEEE Transactions on Visualization and Computer677
Graphics.678

Xiancai Chen, Zhengwei Tao, Kechi Zhang, Changzhi679
Zhou, Wanli Gu, Yuanpeng He, Mengdi Zhang, Xun-680
liang Cai, Haiyan Zhao, and Zhi Jin. 2025. Revisit681
self-debugging with self-generated tests for code gen-682
eration. ArXiv preprint, abs/2501.12793.683

Matt Deitke, Christopher Clark, Sangho Lee, Rohun684
Tripathi, Yue Yang, Jae Sung Park, Mohammadreza685
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini,686
and 1 others. 2024. Molmo and pixmo: Open weights687
and open data for state-of-the-art multimodal models.688
ArXiv preprint, abs/2409.17146.689

Victor Dibia. 2023. Lida: A tool for automatic gen-690
eration of grammar-agnostic visualizations and in-691
fographics using large language models. ArXiv692
preprint, abs/2303.02927.693

Timur Galimzyanov, Sergey Titov, Yaroslav Golubev,694
and Egor Bogomolov. 2024. Drawing pandas: A695

benchmark for llms in generating plotting code. 696
ArXiv preprint, abs/2412.02764. 697

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard 698
Mella, Quentin Carbonneaux, Taco Cohen, and 699
Gabriel Synnaeve. 2024. Rlef: Grounding code llms 700
in execution feedback with reinforcement learning. 701
ArXiv preprint, abs/2410.02089. 702

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 703
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 704
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 705
Alex Vaughan, and 1 others. 2024. The llama 3 herd 706
of models. ArXiv preprint, abs/2407.21783. 707

Anastasiia Grishina, Vadim Liventsev, Aki Härmä, and 708
Leon Moonen. 2025. Fully autonomous program- 709
ming using iterative multi-agent debugging with large 710
language models. ACM Transactions on Evolution- 711
ary Learning, 5(1):1–37. 712

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 713
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 714
Yu Wu, YK Li, and 1 others. 2024. Deepseek- 715
coder: When the large language model meets 716
programming–the rise of code intelligence. ArXiv 717
preprint, abs/2401.14196. 718

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, 719
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun 720
Zhang, Bowen Yu, Kai Dang, and 1 others. 2024. 721
Qwen2. 5-coder technical report. ArXiv preprint, 722
abs/2409.12186. 723

John D Hunter. 2007. Matplotlib: A 2d graphics en- 724
vironment. Computing in science & engineering, 725
9(03):90–95. 726

Plotly Technologies Inc. 2015. Collaborative data sci- 727
ence. Montreal: Plotly Technologies Inc Montral, 728
376. 729

Arnav Kumar Jain, Gonzalo Gonzalez-Pumariega, 730
Wayne Chen, Alexander M Rush, Wenting Zhao, and 731
Sanjiban Choudhury. 2025. Multi-turn code gener- 732
ation through single-step rewards. ArXiv preprint, 733
abs/2502.20380. 734

Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou, 735
Soneya Hossain, Baishakhi Ray, Varun Kumar, Xi- 736
aofei Ma, and Anoop Deoras. 2024. Ledex: Training 737
llms to better self-debug and explain code. Advances 738
in Neural Information Processing Systems, 37:35517– 739
35543. 740

Max Ku, Thomas Chong, Jonathan Leung, Krish Shah, 741
Alvin Yu, and Wenhu Chen. 2025. Theoremexplaina- 742
gent: Towards multimodal explanations for llm theo- 743
rem understanding. ArXiv preprint, abs/2502.19400. 744

Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, 745
Guichun Zhou, and Xiangdong Zhou. 2025. Cad- 746
llama: Leveraging large language models for 747
computer-aided design parametric 3d model genera- 748
tion. ArXiv preprint, abs/2505.04481. 749

9

https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2501.12793
https://arxiv.org/abs/2501.12793
https://arxiv.org/abs/2501.12793
https://arxiv.org/abs/2501.12793
https://arxiv.org/abs/2501.12793
https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2303.02927
https://arxiv.org/abs/2303.02927
https://arxiv.org/abs/2303.02927
https://arxiv.org/abs/2303.02927
https://arxiv.org/abs/2303.02927
https://arxiv.org/abs/2412.02764
https://arxiv.org/abs/2412.02764
https://arxiv.org/abs/2412.02764
https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2502.20380
https://arxiv.org/abs/2502.20380
https://arxiv.org/abs/2502.20380
https://arxiv.org/abs/2502.19400
https://arxiv.org/abs/2502.19400
https://arxiv.org/abs/2502.19400
https://arxiv.org/abs/2502.19400
https://arxiv.org/abs/2502.19400
https://arxiv.org/abs/2505.04481
https://arxiv.org/abs/2505.04481
https://arxiv.org/abs/2505.04481
https://arxiv.org/abs/2505.04481
https://arxiv.org/abs/2505.04481
https://arxiv.org/abs/2505.04481
https://arxiv.org/abs/2505.04481

Jierui Li, Hung Le, Yingbo Zhou, Caiming Xiong,750
Silvio Savarese, and Doyen Sahoo. 2024. Code-751
tree: Agent-guided tree search for code genera-752
tion with large language models. ArXiv preprint,753
abs/2411.04329.754

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler755
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,756
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,757
and 1 others. 2023. Self-refine: Iterative refinement758
with self-feedback. Advances in Neural Information759
Processing Systems, 36:46534–46594.760

OpenAI. 2024a. Gpt-4o mini: advancing cost-efficient761
intelligence. https://openai.com/index/gpt-4o-mini-762
advancing-cost-efficient-intelligence/.763

OpenAI. 2024b. Hello gpt4-o.764
https://openai.com/index/hello-gpt-4o/.765

Luca Podo, Muhammad Ishmal, and Marco Angelini.766
2024. Vi (e) va llm! a conceptual stack for evaluating767
and interpreting generative ai-based visualizations.768
ArXiv preprint, abs/2402.02167.769

Fernando Vallecillos Ruiz, Max Hort, and Leon Moonen.770
2025. The art of repair: Optimizing iterative program771
repair with instruction-tuned models. ArXiv preprint,772
abs/2505.02931.773

Wonduk Seo, Seungyong Lee, Daye Kang, Zonghao774
Yuan, and Seunghyun Lee. 2025. Vispath: Auto-775
mated visualization code synthesis via multi-path776
reasoning and feedback-driven optimization. ArXiv777
preprint, abs/2502.11140.778

Qwen Team. 2024. Qwen2.5: A party of foundation779
models.780

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai781
Lin, Yinxu Pan, Yesai Wu, Haotian Hui, Weichuan782
Liu, Zhiyuan Liu, and 1 others. 2024. Debugbench:783
Evaluating debugging capability of large language784
models. ArXiv preprint, abs/2401.04621.785

Pere-Pau Vázquez. 2024. Are llms ready for visualiza-786
tion?787

Michael L Waskom. 2021. Seaborn: statistical data788
visualization. Journal of Open Source Software,789
6(60):3021.790

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang,791
Zhixuan Liang, Zeyu Lu, Ying Shan, and Ping Luo.792
2024. Plot2code: A comprehensive benchmark for793
evaluating multi-modal large language models in794
code generation from scientific plots. ArXiv preprint,795
abs/2405.07990.796

Liwenhan Xie, Chengbo Zheng, Haijun Xia, Huamin797
Qu, and Chen Zhu-Tian. 2024. Waitgpt: Monitoring798
and steering conversational llm agent in data analysis799
with on-the-fly code visualization. In Proceedings of800
the 37th Annual ACM Symposium on User Interface801
Software and Technology, pages 1–14.802

Yue Yang, Ajay Patel, Matt Deitke, Tanmay Gupta, Luca 803
Weihs, Andrew Head, Mark Yatskar, Chris Callison- 804
Burch, Ranjay Krishna, Aniruddha Kembhavi, and 1 805
others. 2025. Scaling text-rich image understanding 806
via code-guided synthetic multimodal data genera- 807
tion. ArXiv preprint, abs/2502.14846. 808

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, 809
Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan, 810
Pengyuan Liu, Dong Yu, and 1 others. 2024. Mat- 811
plotagent: Method and evaluation for llm-based 812
agentic scientific data visualization. ArXiv preprint, 813
abs/2402.11453. 814

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xi- 815
aotong Chen, and Wenhu Chen. 2025. Acecoder: Ac- 816
ing coder rl via automated test-case synthesis. ArXiv 817
preprint, abs/2502.01718. 818

Xuanyu Zhang and Qing Yang. 2025. Extracting the 819
essence and discarding the dross: Enhancing code 820
generation with contrastive execution feedback. In 821
Proceedings of the 31st International Conference on 822
Computational Linguistics, pages 10569–10575. 823

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, 824
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang 825
Yue. 2024. Opencodeinterpreter: Integrating code 826
generation with execution and refinement. ArXiv 827
preprint, abs/2402.14658. 828

10

https://arxiv.org/abs/2411.04329
https://arxiv.org/abs/2411.04329
https://arxiv.org/abs/2411.04329
https://arxiv.org/abs/2411.04329
https://arxiv.org/abs/2411.04329
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2402.02167
https://arxiv.org/abs/2402.02167
https://arxiv.org/abs/2402.02167
https://arxiv.org/abs/2505.02931
https://arxiv.org/abs/2505.02931
https://arxiv.org/abs/2505.02931
https://arxiv.org/abs/2502.11140
https://arxiv.org/abs/2502.11140
https://arxiv.org/abs/2502.11140
https://arxiv.org/abs/2502.11140
https://arxiv.org/abs/2502.11140
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2403.06158
https://arxiv.org/abs/2403.06158
https://arxiv.org/abs/2403.06158
https://arxiv.org/abs/2405.07990
https://arxiv.org/abs/2405.07990
https://arxiv.org/abs/2405.07990
https://arxiv.org/abs/2405.07990
https://arxiv.org/abs/2405.07990
https://arxiv.org/abs/2502.14846
https://arxiv.org/abs/2502.14846
https://arxiv.org/abs/2502.14846
https://arxiv.org/abs/2502.14846
https://arxiv.org/abs/2502.14846
https://arxiv.org/abs/2402.11453
https://arxiv.org/abs/2402.11453
https://arxiv.org/abs/2402.11453
https://arxiv.org/abs/2402.11453
https://arxiv.org/abs/2402.11453
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2402.14658

Table of Contents in Appendix 829

A Prompts Used for Dataset Construction 12 830

B Breakdown Results in Self-Debug Mode Evaluation 13 831

B.1 Matplotlib . 13 832

B.2 Seaborn . 13 833

B.3 Plotly . 14 834

C Breakdown Results by Error Type 15 835

C.1 VisCoder Series . 15 836

C.2 GPT Series . 16 837

C.3 Qwen2.5 Series . 17 838

C.4 LLaMA Series . 19 839

D Case Study 20 840

D.1 Matplotlib: Successful Generation . 20 841

D.2 Matplotlib: Self-Debug Recovery . 21 842

D.3 Seaborn: Successful Generation . 22 843

D.4 Seaborn: Self-Debug Recovery . 23 844

D.5 Plotly: Successful Generation . 24 845

D.6 Plotly: Self-Debug Recovery . 25 846

E Ethics and Reproducibility Statements 26 847

E.1 Potential Risks . 26 848

E.2 Discuss the License for Artifacts . 26 849

E.3 Artifact Use Consistent With Intended Use . 26 850

E.4 Data Contains Personally Identifying Info or Offensive Content 26 851

E.5 Documentation of Artifacts . 26 852

E.6 Parameters for Packages . 26 853

E.7 AI Assistants in Research or Writing . 26 854

11

A Prompts Used for Dataset Construction855

In this section, we present the system prompts used during the construction of VisCode-200K. These856

prompts guide the automatic extraction of standalone visualization code from mixed-context sources, and857

support the generation of structured natural language instructions aligned with rendered plots.858

Code Extraction Prompt

Model: GPT-4o-mini

You are a Python code extraction agent.

Given a Python code snippet and the used library, your task is to extract a self-contained and runnable Python code
block that demonstrates how the specified library is actually used in the original code.
Use mock data where needed (e.g., pandas DataFrame, NumPy arrays), but keep it minimal and logically aligned with
the original usage. Retain any important structure, function calls, or plotting styles that reflect meaningful usage of the
library.
- Do not include ‘plt.close()‘ or similar calls.
- If the library is only imported but never used, or if there is insufficient information to construct a meaningful runnable
code block, return "null" (a literal string).
- Return only the Python code block enclosed in triple backticks like this: “‘python ... “‘, with nothing else.

Used Library: {used_libs}
Code: {code}

859

Instruction Generation Prompt: stack-edu

Model: GPT-4o

Write the general TASK to write a code for plotting the given mock data.

The code with mock data is given below, and the result of the generated plot image is given at the end.

Split task into five parts:
1. Setup (describe programming language and libraries required to generate the plot).
2. Data Description (some short description of the mock data).
3. Data Generation (the data-generation lines copied verbatim).
4. Plot Description (describe the structural layout of the plot, without referencing libraries or function names. Begin
with “Generate...” or “Create...”).
5. Plot Style Description (describe the visual styling aspects of the plot, without referencing libraries or function).

CODE: {code}

Each part of the task must start on a new line, numbered 1 through 5. Use plain text only. Do not include
any markdown symbols.

860

Instruction Generation Prompt: CosyN-400K

Model: GPT-4o

Write the general TASK to write a code for plotting the given data.

The top two rows of the data are included in the code comments, showing the CSV structure, and the result
of the generated plot image is given at the end.

Split task into four parts:
1. Setup (describe programming language and libraries required to generate the plot).
2. Data Description (some short description of the given data).
3. Plot Description (describe the structural layout of the plot, without referencing libraries or function names. Begin
with “Generate...” or “Create...”).
4. Plot Style Description (describe the visual styling aspects of the plot, without referencing libraries or function).

CODE: {code}

Each part of the task must start on a new line, numbered 1 through 4. Use plain text only. Do not include
any markdown symbols.

861

12

B Breakdown Results in Self-Debug Mode Evaluation 862

In this section, we provide a breakdown of model performance under the self-debug setting. For each 863

visualization library, we report execution pass rates across up to three rounds of automatic correction, 864

grouped by model series. 865

B.1 Matplotlib 866

Model Normal Self-Debug Attempt
Round 1 Round 2 Round 3

GPT-4o 94.9 97.7 99.4 99.4
GPT-4o-mini 88.6 96.6 97.7 97.7

Llama-3.2-3B-Instruct 65.1 76.6 80.0 81.7
Qwen2.5-3B-Instruct 74.3 79.4 82.9 84.6
Qwen2.5-Coder-3B-Instruct 71.4 74.9 76.6 76.6
VisCoder-3B 81.7 83.4 85.1 85.1

Llama-3.1-8B-Instruct 81.1 89.7 92.6 93.7
Qwen2.5-7B-Instruct 77.1 83.4 88.0 89.7
Qwen2.5-Coder-7B-Instruct 78.3 82.9 83.4 83.4
VisCoder-7B 87.4 90.9 91.4 91.4

Table 4: Execution pass rates (%) on Matplotlib tasks under the normal and self-debug settings. Models that fail
initially are allowed up to three rounds of automatic correction.

[Back to Appendix Contents]

B.2 Seaborn 867

Model Normal Self-Debug Attempt
Round 1 Round 2 Round 3

GPT-4o 83.4 90.3 92.6 92.6
GPT-4o-mini 62.3 69.1 70.9 72.0

Llama-3.2-3B-Instruct 30.9 64.6 72.0 74.9
Qwen2.5-3B-Instruct 58.3 64.0 73.7 75.4
Qwen2.5-Coder-3B-Instruct 58.3 65.7 68.0 68.0
VisCoder-3B 73.7 77.7 78.3 78.3

Llama-3.1-8B-Instruct 65.7 78.9 84.6 90.3
Qwen2.5-7B-Instruct 66.3 79.4 85.7 89.7
Qwen2.5-Coder-7B-Instruct 68.6 82.3 84.6 86.3
VisCoder-7B 76.6 86.9 89.7 90.3

Table 5: Execution pass rates (%) on Seaborn tasks under the normal and self-debug settings. All models undergo
up to three rounds of automatic correction after initial failure.

[Back to Appendix Contents]

13

B.3 Plotly868

Model Normal Self-Debug Attempt
Round 1 Round 2 Round 3

GPT-4o 77.7 92.0 95.4 97.7
GPT-4o-mini 69.1 88.0 96.0 97.7

Llama-3.2-3B-Instruct 13.1 20.6 24.0 28.0
Qwen2.5-3B-Instruct 30.9 36.0 42.3 48.0
Qwen2.5-Coder-3B-Instruct 27.4 34.9 36.0 36.0
VisCoder-3B 60.6 64.6 64.6 64.6

Llama-3.1-8B-Instruct 30.9 43.4 53.7 58.3
Qwen2.5-7B-Instruct 56.0 66.3 72.6 77.1
Qwen2.5-Coder-7B-Instruct 48.0 57.7 68.6 71.4
VisCoder-7B 74.3 80.0 81.7 81.7

Table 6: Execution pass rates (%) on Plotly tasks under the normal and self-debug settings. All models undergo up
to three rounds of automatic correction after initial failure.

[Back to Appendix Contents]

14

C Breakdown Results by Error Type 869

In this section, we provide a detailed breakdown of execution error types across model families, plotting 870

libraries, and self-debugging rounds. For each model series, we report the number of Python exceptions 871

observed under default execution and across up to three rounds of automatic correction. 872

C.1 VisCoder Series 873

Error Type Matplotlib Seaborn Plotly
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AttributeError 5 2 2 2 15 3 2 2 5 1 1 1
AxisError - - - - 1 1 1 1 - - - -
ImportError 1 0 0 0 1 0 0 0 - - - -
IndexError 1 0 0 0 - - - - 1 1 1 1
KeyError 1 2 1 1 - - - - 0 1 1 2
KeyboardInterrupt 1 1 1 1 2 1 1 1 1 1 1 1
NameError - - - - 5 4 2 1 - - - -
OSError 1 1 1 1 1 1 1 1 1 1 1 1
SyntaxError 1 0 0 0 - - - - 5 3 2 2
TypeError 7 5 5 5 8 5 4 4 3 1 1 1
ValueError 4 5 5 5 8 8 7 7 29 26 24 23

Total Errors 22 16 15 15 41 23 18 17 45 35 32 32

Table 7: Distribution of execution errors for VisCoder-7B across Matplotlib, Seaborn, and Plotly. Each column
shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type Matplotlib Seaborn Plotly
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AttributeError 7 3 2 2 20 10 10 9 4 4 3 2
ImportError - - - - - - - - 1 1 1 0
IndexError 2 2 2 2 4 3 3 3 1 1 1 1
KeyError 2 3 3 3 3 4 4 4 - - - -
KeyboardInterrupt 0 0 1 4 2 2 2 3 5 4 4 29
NameError 0 1 0 0 1 1 1 2 0 2 0 0
OSError - - - - 1 1 1 1 - - - -
SyntaxError 3 3 2 0 1 1 1 0 8 6 6 1
TypeError 5 5 4 4 2 4 3 3 9 6 6 6
ValueError 13 12 12 11 12 13 13 13 41 38 41 23

Total Errors 32 29 26 26 46 39 38 38 69 62 62 62

Table 8: Distribution of execution errors for VisCoder-3B across Matplotlib, Seaborn, and Plotly. Each column
shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

15

C.2 GPT Series874

Error Type Matplotlib Seaborn Plotly
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AttributeError - - - - - - - - 4 1 0 0
Exception - - - - 1 0 0 0 1 0 0 0
IndexError 1 0 0 0 1 1 0 0 - - - -
KeyError - - - - - - - - 1 1 0 0
KeyboardInterrupt - - - - - - - - 2 1 2 2
ModuleNotFoundError 1 0 0 0 1 0 0 0 - - - -
NameError - - - - 14 12 13 13 2 0 0 0
RuntimeError - - - - 1 0 0 0 - - - -
SyntaxError - - - - - - - - 2 0 0 0
TypeError 2 1 0 0 6 1 0 0 3 1 1 0
ValueError 5 3 1 1 5 3 0 0 24 10 5 2

Total Errors 9 4 1 1 29 17 13 13 39 14 8 4

Table 9: Distribution of execution errors for GPT-4o across Matplotlib, Seaborn, and Plotly. Each column shows
error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type Matplotlib Seaborn Plotly
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AttributeError 3 0 0 0 2 0 0 0 13 2 0 0
Exception 1 0 0 0 2 0 1 0 1 1 1 1
FileNotFoundError 1 0 0 0 1 1 0 0 - - - -
ImportError 1 0 0 0 - - - - - - - -
IndexError 0 1 1 1 1 1 1 1 0 2 1 1
KeyError 2 1 0 0 1 1 0 0 - - - -
KeyboardInterrupt - - - - 1 0 0 0 1 0 0 0
ModuleNotFoundError 1 0 0 0 - - - - 2 0 0 0
NameError 1 0 0 0 43 48 47 47 11 0 0 0
TypeError 1 1 1 0 4 1 0 0 5 1 1 0
ValueError 9 3 2 3 11 2 2 1 21 15 4 2

Total Errors 20 6 4 4 66 54 51 49 54 21 7 4

Table 10: Distribution of execution errors for GPT-4o-mini across Matplotlib, Seaborn, and Plotly. Each column
shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

16

C.3 Qwen2.5 Series 875

Error Type Matplotlib Seaborn Plotly
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AttributeError 12 9 9 9 17 8 7 7 8 5 3 3
FileNotFoundError - - - - 0 1 1 1 - - - -
ImportError 1 0 0 0 - - - - - - - -
IndexError 1 1 1 1 1 0 0 0 1 1 1 1
KeyError 3 4 3 3 2 1 1 1 14 17 0 0
KeyboardInterrupt 1 1 1 1 1 2 2 2 2 1 1 1
ModuleNotFoundError - - - - - - - - 0 1 1 1
NameError 1 0 0 0 17 8 5 3 - - - -
SyntaxError - - - - - - - - 6 4 7 5
TypeError 9 7 7 7 8 5 4 4 7 1 1 1
ValueError 10 8 8 8 9 6 7 6 53 44 41 38

Total Errors 38 30 29 29 55 31 27 24 91 74 55 50

Table 11: Distribution of execution errors for Qwen2.5-Coder-7B-Instruct across Matplotlib, Seaborn, and Plotly.
Each column shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type Matplotlib Seaborn Plotly
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AttributeError 10 7 7 3 14 4 5 2 9 7 4 3
FileNotFoundError 1 0 0 0 - - - - - - - -
ImportError - - - - 0 1 0 0 - - - -
IndexError - - - - 2 3 1 1 - - - -
KeyError 2 1 1 1 3 0 0 0 - - - -
KeyboardInterrupt - - - - 0 1 0 0 1 1 2 2
ModuleNotFoundError - - - - 1 1 0 0 - - - -
NameError 1 1 0 0 13 8 6 4 10 11 9 10
RecursionError 1 1 1 1 - - - - - - - -
OSError - - - - 1 1 1 1 - - - -
RuntimeError - - - - 1 1 1 0 - - - -
SyntaxError 1 0 0 0 1 1 0 0 4 1 2 1
TypeError 12 5 3 4 8 4 2 1 2 1 2 1
ValueError 12 14 9 9 15 11 9 9 51 38 29 23

Total Errors 40 29 21 18 59 36 25 18 77 59 48 40

Table 12: Distribution of execution errors for Qwen2.5-7B-Instruct across Matplotlib, Seaborn, and Plotly. Each
column shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

17

Error Type Matplotlib Seaborn Plotly
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AssertionError 1 1 1 1 - - - - - - - -
AttributeError 14 9 8 8 32 23 21 21 31 13 12 11
FileNotFoundError 2 1 1 1 - - - - - - - -
IndexError 3 3 3 3 4 4 4 4 - - - -
KeyError 1 1 1 1 3 1 1 1 1 2 1 1
KeyboardInterrupt 1 1 1 3 1 0 0 1 2 2 5 36
NameError - - - - 6 1 0 0 1 2 1 2
SyntaxError 3 4 3 1 0 1 1 0 13 16 13 3
TypeError 11 10 10 10 7 9 9 9 37 23 25 24
ValueError 14 14 13 13 20 21 20 20 42 56 55 35

Total Errors 50 44 41 41 73 60 56 56 127 114 112 112

Table 13: Distribution of execution errors for Qwen2.5-Coder-3B-Instruct across Matplotlib, Seaborn, and Plotly.
Each column shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type Matplotlib Seaborn Plotly
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AttributeError 11 9 4 4 29 19 13 11 32 20 13 8
FileNotFoundError 1 0 0 0 6 6 5 5 - - - -
ImportError 1 1 1 1 - - - - - - - -
IndexError - - - - 1 1 0 1 0 0 0 1
KeyError 4 3 2 1 4 2 1 1 2 2 2 2
KeyboardInterrupt 2 2 2 3 2 1 2 2 1 1 2 36
NameError 2 1 1 1 2 0 0 1 1 1 3 2
NotImplementedError 1 0 1 0 - - - - - - - -
RuntimeError 1 1 1 1 1 1 1 1 - - - -
SyntaxError 2 1 1 2 3 3 0 0 14 15 13 3
TypeError 11 8 5 4 10 11 6 4 18 15 11 5
ValueError 9 10 12 10 15 19 18 17 53 58 57 34

Total Errors 45 36 30 27 73 63 46 43 121 112 101 91

Table 14: Distribution of execution errors for Qwen2.5-3B-Instruct across Matplotlib, Seaborn, and Plotly. Each
column shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

18

C.4 LLaMA Series 876

Error Type Matplotlib Seaborn Plotly
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AttributeError 10 3 1 1 21 6 8 3 27 20 10 9
FileNotFoundError 1 0 0 0 2 3 0 0 - - - -
IndexError 0 1 1 0 2 1 0 0 2 0 3 2
KeyError 1 1 2 2 1 1 2 1 2 2 3 2
KeyboardInterrupt - - - - 0 4 1 2 - - - -
NameError 1 0 1 0 5 6 5 2 1 2 1 1
RuntimeError - - - - 3 1 0 0 - - - -
SyntaxError 1 1 1 0 0 1 1 0 19 16 12 7
TypeError 5 5 4 3 7 5 3 2 27 19 13 4
ValueError 14 7 3 4 19 10 7 6 43 40 38 38

Total Errors 33 18 13 10 60 38 27 16 121 99 80 63

Table 15: Distribution of execution errors for Llama-3.1-8B-Instruct across Matplotlib, Seaborn, and Plotly. Each
column shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type Matplotlib Seaborn Plotly
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AttributeError 11 7 6 4 28 15 13 11 44 17 11 7
FileNotFoundError 2 0 0 0 4 1 0 0 - - - -
IndexError 2 1 1 2 1 0 0 0 0 0 0 1
KeyError 1 4 1 1 2 3 2 1 1 1 1 1
KeyboardInterrupt 1 1 1 2 1 2 2 2 0 1 1 2
NameError 1 0 0 0 44 9 3 0 4 1 0 0
SyntaxError 3 2 1 0 5 3 3 2 21 24 22 24
TypeError 22 10 10 8 16 12 11 13 47 41 40 36
UFuncTypeError - - - - - - - - 1 1 1 1
ValueError 18 16 15 15 20 17 15 15 34 53 57 54

Total Errors 61 41 35 32 121 62 49 44 152 139 133 126

Table 16: Distribution of execution errors for Llama-3.2-3B-Instruct across Matplotlib, Seaborn, and Plotly. Each
column shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

19

D Case Study877

In this section, we present a set of representative examples from VisCoder-7B to illustrate model behavior878

across the three visualization libraries.879

D.1 Matplotlib: Successful Generation880

VisCoder-7B: Matplotlib

ID : 11
Task: The code should generate a visual representation of the DataFrame as an image plot. Each
cell of the plot corresponds to a value in the DataFrame, with different colors representing
different data values. A color bar should be added to the right of the plot to act as a legend,
indicating the data value corresponding to each color.
Style: The plot will have a color gradient where colors change according to the values
represented. The color bar on the right will help in gauging the data values based on the color
shades shown in the plot. Elements like axis visibility, color palette, and layout specifications will
be controlled to enhance visual clarity and appeal.

Generated Code:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

Load the dataframe
df = pd.read_csv("dataset/data-11.csv")

Create the plot
plt.imshow(df, cmap='viridis', aspect='auto')

Add colorbar
plt.colorbar()

Show the plot
plt.show()

Error: null

Rendered Ground Truth

Figure 3: Example of a successful generation in Matplotlib (ID: 11). The model generates code that executes
successfully and produces a plot consistent with the ground truth.

[Back to Appendix Contents]

20

D.2 Matplotlib: Self-Debug Recovery 881

VisCoder-7B: Matplotlib

ID : 37
Task: Create a grid of four separate plots (2x2 layout), where each plot will visualize the matrix
from the DataFrame. The visualization should reflect the presence or absence of significant
values in the matrix, possibly using differing precision and depiction settings across plots to
highlight different aspects. Each matrix plot should be customizable in terms of how the data
entries are visualized (e.g., adjusting precision or marker size) to allow a nuanced examination
of the numerical data.
Style: Apply specific style adjustments to each subplot for clear differentiation. One plot should
use standard settings, another with adjusted precision, one with both adjusted precision and
marker size, and one more with customized marker size. These variations will aid in better
understanding the spread and concentration of significant values in the DataFrame's matrix by
altering the granularity and scaling of visual indicators. Adjust axes and tick settings as
necessary for optimal clarity and presentation aesthetics. Choose style settings such as color or
marker types to enhance legibility and analytical utility.

Normal Generated Code
import pandas as pd
import … …
Load the dataframe
… …
fig, axs = plt.subplots(2, 2, figsize=(10, 8))

axs[0, 0].matshow(df, fignum=False)
axs[0, 0].set_title('Standard Matshow') axs[0,
1].matshow(df.round(2), fignum=False)
axs[0, 1].set_title('Matshow with Precision 2’)

axs[1, 0].matshow(df.round(3), fignum=False, cmap='viridis')
axs[1, 0].set_title('Matshow with Precision 3 and Custom Marker
Size’)

axs[1, 1].matshow(df, fignum=False, cmap='coolwarm', vmin=-2,
vmax=2)
axs[1, 1].set_title('Matshow with Custom Marker Size and Color
Map’)

plt.tight_layout()
plt.show()

Nomal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code
… …
axs[0, 0].matshow(df)
axs[0, 0].set_title('Standard
Matshow’)

axs[0, 1].matshow(df.round(2))
axs[0, 1].set_title('Matshow
with Precision 2’)

axs[1, 0].matshow(df.round(3),
cmap='viridis')
axs[1, 0].set_title('Matshow
with Precision 3 and Custom
Marker Size’)

axs[1, 1].matshow(df,
cmap='coolwarm', vmin=-2,
vmax=2)
axs[1, 1].set_title('Matshow
with Custom Marker Size and
Color Map’)
… …

AttributeError: AxesImage.set() got an unexpected keyword argument 'fignum'

Figure 4: Example of a failed generation in Matplotlib (ID: 37), where the initial code raises a AttributeError and
is resolved in the first round of self-debug, resulting in a corrected plot that matches the intended semantics.

[Back to Appendix Contents]

21

D.3 Seaborn: Successful Generation882

VisCoder-7B: Seaborn

ID : 20
Task: The plot should consist of two subplots arranged vertically. The top plot should be a
simple line plot illustrating how the 'Signal' varies over 'Time'. The bottom plot should be a
spectrogram representing the frequency content of the 'Signal' over 'Time'. The spectrogram plot
should use a specific frequency analysis window and overlap parameter.
Style: The top plot should have clear, labelled axes indicating the units of 'Time' and 'Signal'. It
should display the full range of the data. The bottom spectrogram plot should include axes
indicating time and frequency, with frequency on the vertical axis extending to the adequate
range based on the sampling rate used in spectrogram computation. Both plots should share the
same horizontal 'Time' axis for easy comparison. Colormaps, axis labels, and layout
configurations should enhance clarity and understanding of data representation.

Generated Code:
import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

Load the dataframe
pd.read_csv("dataset/data-36.csv")
fig, (ax1, ax2) = plt.subplots(2, 1,
sharex=True, figsize=(10, 8))

Line plot
sns.lineplot(x='Time', y='Signal',
data=df, ax=ax1)
ax1.set_title('Signal over Time')
ax1.set_xlabel('Time (s)')

ax1.set_ylabel('Signal')

Spectrogram
window = signal.windows.tukey(1024)
f, t, Sxx =
signal.spectrogram(df['Signal'],
fs=1/0.0005, window=window, nperseg=1024,
noverlap=512)
im = ax2.imshow(np.log(Sxx),
aspect='auto', extent=[t.min(), t.max(),
f.min(), f.max()],

origin='lower',
cmap='viridis')
ax2.set_title('Spectrogram')
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Frequency (Hz)')

plt.tight_layout()
plt.show()

Error: null

Rendered Ground Truth

Figure 5: Example of a successful generation in Seaborn (ID: 20). The model generates code that executes
successfully and produces a plot consistent with the ground truth.

[Back to Appendix Contents]

22

D.4 Seaborn: Self-Debug Recovery 883

VisCoder-7B: Seaborn

ID : 104
Task: Create a set of four 2D histograms showing the distribution of two variables from the
dataframe, arranged in a 2x2 grid format. The first plot should display the data using linear
normalization. The subsequent plots should apply a power law normalization with varying
gamma values to demonstrate how the distribution visualization changes with different scaling
parameters.
Style: Title each subplot to reflect the type of normalization applied (e.g., "Linear normalization"
and "Power law (γ=x)"). Adjust the layout to ensure clear spacing and non-overlapping elements
among the subplots. Use a consistent color map across all plots to facilitate visual comparison.

Normal Generated Code
import seaborn as sns
from matplotlib.colors import PowerNorm, LogNorm
import … …
df = pd.read_csv("dataset/data-104.csv")

Create a 2x2 grid of 2D histograms
fig, axes = plt.subplots(2, 2, figsize=(10, 10))

First plot: Linear normalization
sns.histplot(data=df, x='X', y='Y', ax=axes[0, 0], bins=50,
cmap='viridis')
axes[0, 0].set_title('Linear normalization')

Second plot: Power law normalization with gamma=0.5
sns.histplot(data=df, x='X', y='Y', ax=axes[0, 1], bins=50,
norm_hist=True, cmap='viridis',

norm=PowerNorm(gamma=0.5))
axes[0, 1].set_title('Power law (γ=0.5)')

Third plot: Power law normalization with gamma=1
sns.histplot(data=df, x='X', y='Y', ax=axes[1, 0], bins=50,
norm_hist=True, cmap='viridis',

norm=PowerNorm(gamma=1))
axes[1, 0].set_title('Power law (γ=1)')

Fourth plot: Power law normalization with gamma=2
sns.histplot(data=df, x='X', y='Y', ax=axes[1, 1], bins=50,
norm_hist=True, cmap='viridis',

norm=PowerNorm(gamma=2))
axes[1, 1].set_title('Power law (γ=2)')

Adjust layout and show the plot
plt.tight_layout()
plt.show()

Nomal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code
… …
sns.histplot(data=df, x='X',
y='Y', ax=axes[0, 0], bins=50,
cmap='viridis')
axes[0, 0].set_title('Linear
normalization’)

sns.histplot(data=df, x='X',
y='Y', ax=axes[0, 1], bins=50,
cmap='viridis',

weights=np.power(
df['Y'], 0.5))
axes[0, 1].set_title('Power
law (γ=0.5)’)

sns.histplot(data=df, x='X',
y='Y', ax=axes[1, 0], bins=50,
cmap='viridis',

weights=np.power(
df['Y'], 1))
axes[1, 0].set_title('Power
law (γ=1)’)

sns.histplot(data=df, x='X',
y='Y', ax=axes[1, 1], bins=50,
cmap='viridis',

weights=np.power(
df['Y'], 2))
axes[1, 1].set_title('Power
law (γ=2)')
… …

AttributeError: QuadMesh.set() got an unexpected keyword argument 'norm_hist'

Figure 6: Example of a failed generation in Seaborn (ID: 104), where the initial code raises a AttributeError and
is resolved in the Third round of self-debug, resulting in a corrected plot that matches the intended semantics.

[Back to Appendix Contents]

23

D.5 Plotly: Successful Generation884

VisCoder-7B: Plotly

ID : 4
Task: Construct a figure divided into four subplots arranged in a 2x2 grid. Each subplot should
display a line plot of one of the dataframe columns against its index. Overlay a smaller inset plot
within each main subplot, focusing on a specific area of the line plot, using a contrasting color to
distinguish it from the main plot. Each subplot should have its corresponding column label as
the title.
Style: For the main plots in each subplot, use a consistent color (e.g., blue) and style for the lines.
The insets should additionally feature a contrasting color (e.g., red) for the lines but without tick
labels to maintain clarity and focus on the data representation. Adjust the layout to ensure that
all elements are well-spaced and visually appealing.

Error: null

Rendered Ground Truth

Generated Code:
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
df = pd.read_csv("dataset/data-4.csv")

Create the figure with subplots
fig = make_subplots(rows=2, cols=2, subplot_titles=("A", "B", "C", "D"))

Define the columns to plot
columns = ['A', 'B', 'C', 'D']

Loop through the columns and create the plots
for i, col in enumerate(columns):

row = i // 2 + 1
col_num = i % 2 + 1

Main plot
fig.add_trace(go.Scatter(x=df.index, y=df[col], name=col), row=row, col=col_num)

Inset plot
fig.add_trace(go.Scatter(x=df.index[:10], y=df[col][:10], name=col,

line=dict(color='rgba(255, 0, 0, 0.5)')), row=row, col=col_num)
Update axes
fig.update_xaxes(title_text="Index", row=row, col=col_num)
fig.update_yaxes(title_text=col, row=row, col=col_num)

Update layout
fig.update_layout(height=800, width=1000, title_text="Subplots with Insets")

Show the figure
fig.show()

Figure 7: Example of a successful generation in Plotly (ID: 4). The model generates code that executes successfully
and produces a plot consistent with the ground truth.

[Back to Appendix Contents]

24

D.6 Plotly: Self-Debug Recovery 885

VisCoder-7B: Plotly

ID : 15
Task: velop a plot using a polar projection within a rectangular grid. The plot will map the
'Theta' values against 'R' values from the DataFrame. This will require transforming the angular
data from degrees to radians and setting up a polar coordinate system in a rectangular plot area.
Labels will be added to specific axes to indicate both angular and radial measurements.
Style: The style of the plot should include a grid to enhance readability, with the background
consisting of concentric circles and radial lines to represent the angles. Axis labels should be
formatted to indicate angles in degrees and radial distances. Display limits for the x and y axes
should be explicitly set to frame the plot area properly, ensuring all data points are visible
within the defined boundary of the plot. The overall aspect ratio should be adjusted to maintain
proportional scaling between axes.

Normal Generated Code
import pandas as pd
import plotly.graph_objects as go
df = pd.read_csv("dataset/data-15.csv")

Convert Theta from degrees to radians
df['Theta'] = df['Theta'] * (3.141592653589793 / 180)

Create the polar plot
fig = go.Figure(go.Scatterpolar(

r=df['R'],
theta=df['Theta'],
mode='markers',
marker=dict(size=10, color='blue')

))

Update layout
fig.update_layout(

polar=dict(
radialaxis=dict(visible=True, range=[0, 10]),
angularaxis=dict(visible=True, tickformat='.1f',

tickformatstop=dict(value='.1f'))
),
showlegend=False,
width=600,
height=600,
margin=dict(l=80, r=80, t=100, b=80)

)
Show the plot
fig.show()

Nomal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code
… …
Create the polar plot
fig =
go.Figure(go.Scatterpolar(

r=df['R'],
theta=df['Theta'],
mode='markers',
marker=dict(size=10,

color='blue')
))

Update layout
fig.update_layout(

polar=dict(
radialaxis=dict(visibl

e=True, range=[0, 10]),
angularaxis=dict(visib

le=True, tickformat='.1f')
),
showlegend=False,
width=600,
height=600,
margin=dict(l=80, r=80,

t=100, b=80)
)
… …

ValueError: Invalid property specified for object of type plotly.graph_objs.layout.polar.AngularAxis:
'tickformatstop'

No Image
Rendered

Figure 8: Example of a failed generation in Plotly (ID: 15), where the initial code raises a ValueError and is
resolved in the Second round of self-debug, resulting in a corrected plot that matches the intended semantics.

[Back to Appendix Contents]

25

E Ethics and Reproducibility Statements886

E.1 Potential Risks887

This work focuses on training and evaluating large language models to generate Python visualization code.888

While outputs are validated for executability, there remains a potential risk of generating misleading or889

malformed plots, particularly in cases of silent failures. No personal, sensitive, or user-generated content890

is involved.891

E.2 Discuss the License for Artifacts892

All released artifacts are provided under permissive licenses suitable for academic research. License terms893

permit use, modification, and redistribution in accordance with each license’s conditions.894

E.3 Artifact Use Consistent With Intended Use895

All external datasets and software components were used in accordance with their original license896

agreements and intended purposes. Derived artifacts are intended solely for research and educational use,897

and are not authorized for commercial deployment or redistribution.898

E.4 Data Contains Personally Identifying Info or Offensive Content899

All data was either synthetically generated or obtained from public sources. Automated filters and manual900

review were applied to ensure that no samples contain personally identifying information or offensive901

content. All instructions and tables are free of references to real individuals, groups, or sensitive contexts.902

E.5 Documentation of Artifacts903

All released artifacts are accompanied by documentation describing their structure, content format,904

intended use, and evaluation methodology. Sufficient metadata and usage instructions are provided to905

support inspection, reproduction, and downstream research use.906

E.6 Parameters for Packages907

All external packages used during training and evaluation were applied in accordance with standard908

practices. Default parameters were used unless otherwise specified. Any deviations from default settings909

are documented in the accompanying implementation materials.910

E.7 AI Assistants in Research or Writing911

Used ChatGPT to capture grammar errors in the manuscript.912

26

	Introduction
	Related Work
	VisCode-200K: A Python Visualization Instruction Tuning Dataset
	Code Extraction from Public Repositories
	Multi-turn Instruction-following Dialogues with Execution Feedback

	Experiment Setup
	Main Results
	Overall Model Comparison
	Self-Debug Evaluation Results
	Error Analysis
	Training Data Ablation

	Conclusion
	Prompts Used for Dataset Construction
	Breakdown Results in Self-Debug Mode Evaluation
	Matplotlib
	Seaborn
	Plotly

	Breakdown Results by Error Type
	VisCoder Series
	GPT Series
	Qwen2.5 Series
	LLaMA Series

	Case Study
	Matplotlib: Successful Generation
	Matplotlib: Self-Debug Recovery
	Seaborn: Successful Generation
	Seaborn: Self-Debug Recovery
	Plotly: Successful Generation
	Plotly: Self-Debug Recovery

	Ethics and Reproducibility Statements
	Potential Risks
	Discuss the License for Artifacts
	Artifact Use Consistent With Intended Use
	Data Contains Personally Identifying Info or Offensive Content
	Documentation of Artifacts
	Parameters for Packages
	AI Assistants in Research or Writing

