

DIFFUSE AND STEER: CORRECTIVE SAMPLING FOR STABLE 3D MOLECULAR GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models have achieved state-of-the-art performance across diverse domains, yet their application to molecular generation remains challenging. Unlike many data types where values can tolerate slight variations, such as pixel intensities in images, molecules are governed by strict geometric and chemical constraints: minor variations in the atomic coordinates of even a single atom can lead to totally invalid or unstable molecules. These constraints give rise to *highly concentrated* data distributions, forming sharp probability peaks. Moreover, these peaks are *densely packed* in configuration space: changing one atom’s type, along with small but precise adjustments to its position and that of its neighbors, can result in a distinct molecule, whereas images generally require much larger perturbations to change semantic meaning. This dense-concentrated structure makes diffusion modeling fragile: because valid regions are narrow and tightly clustered, even small deviations at intermediate timesteps can easily cross validity boundaries. Once entering the invalid regions, the generative process provides unreliable guidance, causing errors that accumulate over timesteps and drift generative trajectories off-distribution, ultimately leading to irreparable structural violations. To address this challenge, we formalize the notion of dense-concentrated structure in molecular distributions and analyze how discrepancies at intermediate steps propagate under reverse inference. Building on this insight, we propose **DIST**, a plug-in corrective method that **Diffuses** and **STeers** the intermediate distribution, thereby realigning inference trajectories toward a valid molecular distribution. Our method is model-agnostic and can be integrated into a wide range of existing diffusion models, achieving significant improvements in performance while reducing the computational cost to nearly half the standard number of timesteps.

1 INTRODUCTION

Generative models are probabilistic frameworks that aim to approximate an underlying data distribution and generate new samples from the learned distribution. By providing a principled approach to learning and sampling from complex, high-dimensional distributions, generative modeling has emerged as a promising paradigm with broad implications for design automation, simulation, and scientific discovery. Recently, diffusion models (DMs) (Ho et al., 2020; Song et al., 2021b) have become a prominent generative paradigm due to their outstanding performance in natural image synthesis and beyond (Song et al., 2020; Rombach et al., 2021; Watson et al., 2023). A DM consists of a forward process and a reverse process. In the forward process, data samples are gradually corrupted by a Markovian noise injection until they become indistinguishable from pure Gaussian noise. The reverse process is parameterized by a neural network, which is trained to approximate the time-reversed dynamics by iteratively denoising the corrupted states. At inference time, the model generates new samples by simulating this learned reverse trajectory, reconstructing structured data from pure noise. Recent work has extended DMs to 3D molecular generation (Hoogeboom et al., 2022; Xu et al., 2023). However, molecular data presents unique challenges that make direct application of diffusion models less effective.

Specifically, 3D molecules are represented by continuous 3D atomic coordinates together with discrete features such as atom types. Unlike images, where pixel intensities are only loosely correlated and can tolerate a wide range of variations, molecules are governed by strict geometric and chemical constraints, such that even small perturbations to atomic coordinates or atom types can result

in completely invalid or unstable structures (Choi et al., 2025). These constraints result in highly concentrated data distributions with narrow probability peaks, where each peak represents a valid and stable molecular configuration. Even slight displacements can shift the molecular configuration off-peaks into regions of negligible probability, corresponding to invalid or unstable states (Reymond et al., 2012; Martin & Cao, 2015; Bohde et al., 2025). Moreover, these peaks are densely packed but clearly separated: changes in one atom’s type, along with small (densely packed) but precise adjustments (well separated) to its position and that of its neighbors, can result in a distinct molecule. **Overall, the molecular distribution exhibits an evident dense and concentrated structure, where each probability peak corresponds to a chemically valid molecule, and the regions between the peaks are of near-zero density.** We provide an illustrative analogy to compare the distribution and diffusion process of images with those of molecules in Fig. 1, to highlight the consequences of such a dense and concentrated structure to the diffusion process. Notably, such denseness breaks the clear supervision signal required for denoising, introduces learning difficulties, and leads to errors that accumulate over time; and because of the concentration of the molecular distribution, such errors cannot be tolerated, ultimately resulting in invalid and unstable generations.

Under the same forward noising process, the peaks of molecular distributions quickly merge creating overlap regions where samples become indistinguishable. In contrast, image distributions exhibit broader peaks that overlap smoothly and only at later stages. However, for the reverse process of molecular diffusion, a critical problem arises: **overlap regions create intersections or crossings of generative trajectories which make the score field inherently ambiguous**, where multiple plausible directions coexist, but the model can only represent a single *averaged* vector. As a result, the learned score is systematically inaccurate in these regions (Liu et al., 2022; Lee et al., 2023; Ni et al., 2025). Because the peaks are thin, discretization error (Zhang et al., 2023), model limitations, and imperfect score estimation in overlap regions can push the reverse updates too far, placing samples into low-density regions (see Fig. 1). The resulting discrepancy between the true data distribution and the model distribution, caused by artificial inflation of probability mass in invalid regions, then accumulates and propagates (Li & van der Schaar, 2023), ultimately leading to irreversible structural failures. We further analyze this phenomenon in Sec. 3.1.

To address this challenge, we focus on the unique nature of molecular data distributions. Since chemically valid molecules occupy only the densely packed distribution peaks, which are confined to narrow and well-separated regions of the representation space, we describe this property as *dense-concentrated structure (DC-structure)*, formally introduced in Definition 3.1 in Sec. 3.1. This definition provides a quantitative handle on the geometry of molecular distributions and lays the theoretical foundation for our analysis. Building on this, we show in Sec. 3.2 how such analysis motivates a corrective method, **DIST**, which **DIffuses** the intermediate distribution and **STeers** trajectories back toward valid high-density regions. DIST improves the stability and overall performance of molecular generation, while also providing efficiency gains as an additional benefit.

In this work, our main contributions are:

- **Observation.** We are the first to highlight that molecular data distributions are highly *concentrated* and *dense* that makes diffusion-based generative processes fragile.
- **Theory.** We formalize the notion of DC-structure in molecular distributions and analyze its implications for the intermediate distributions during the diffusion process and error propagation in reverse inference.
- **Method.** Building on this analysis, we design a plug-in corrective module, **DIST**, that can be seamlessly integrated into diverse diffusion-based molecular generation methods.
- **Performance.** Extensive experiments on multiple benchmarks and backbones demonstrate that DIST not only improves stability and overall performance, but also reduces computational cost to nearly half the standard number of timesteps.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Diffusion models (DMs) (Ho et al., 2020; Song et al., 2021b) are latent-variable generative models that learn to transform Gaussian noise into data samples through a forward–reverse Markov chain. Let $\mathbf{x} \sim p(\mathbf{x})$ denote a clean data sample, and let \mathbf{z}_t denote its progressively noised version at timestep $t \in \{0, \dots, T\}$. Here T is the total number of timesteps, $\beta_t \in (0, 1)$ is a variance-schedule

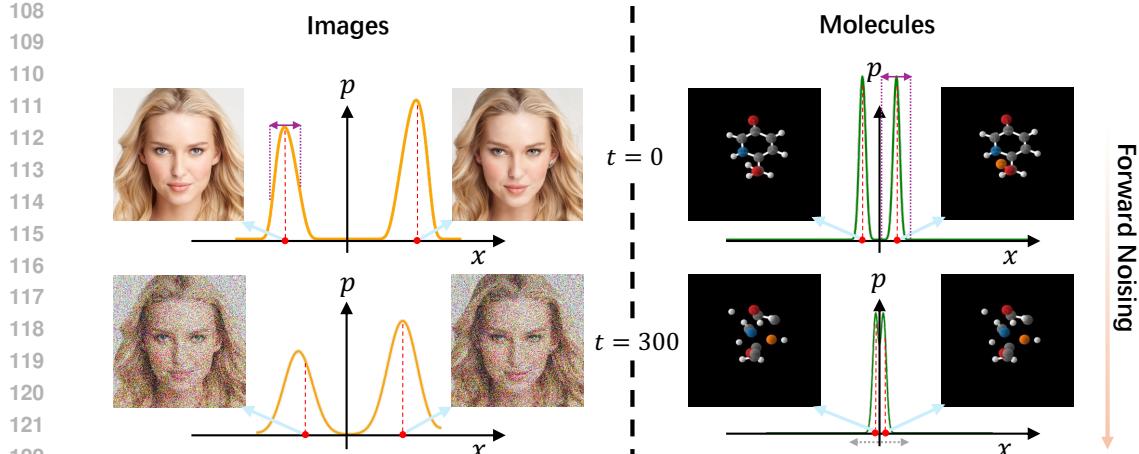


Figure 1: Diffusion process applied to pairs of images (left, obtained from Preechakul et al. (2022)) and molecules (right, extracted from QM9 (Ramakrishnan et al., 2014)) under the same noise schedule. Both pairs start from similar, yet distinct configurations, corresponding to two separate peaks in the distribution. Compared with the image distribution, the molecular distribution is much denser and more concentrated with narrower peaks. Under mild noise corruption at $t = 300$, noisy images remain distinguishable, whereas *noisy molecules quickly become indistinguishable due to the denseness*. At $t = 0$, small errors (indicated in purple) in the image distribution still land in regions of relatively high density, corresponding to visually realistic images, whereas *small errors in the molecular distribution will drift the generated samples into regions of near-zero density between two peaks due to concentration*.

parameter, and we use the shorthand $\mathbf{z}_{1:T} = (\mathbf{z}_1, \dots, \mathbf{z}_T)$. The forward process gradually corrupts data by adding Gaussian noise:

$$p(\mathbf{z}_{1:T} \mid \mathbf{x}) = \prod_{t=1}^T p(\mathbf{z}_t \mid \mathbf{z}_{t-1}), \quad p(\mathbf{z}_t \mid \mathbf{z}_{t-1}) = \mathcal{N}\left(\sqrt{1 - \beta_t} \mathbf{z}_{t-1}, \beta_t I\right). \quad (1)$$

By composition, the marginal conditional distribution admits a closed form:

$$p(\mathbf{z}_t \mid \mathbf{x}) = \mathcal{N}\left(\sqrt{\bar{\alpha}_t} \mathbf{x}, (1 - \bar{\alpha}_t)I\right), \quad \bar{\alpha}_t = \prod_{s=1}^t \alpha_s = \prod_{s=1}^t (1 - \beta_s). \quad (2)$$

Here $\alpha_s = 1 - \beta_s$ controls the noising pace (Ho et al., 2020; Nichol & Dhariwal, 2021b). The unconditional marginal at step t is then

$$p(\mathbf{z}_t) = \int p(\mathbf{x}) \mathcal{N}(\mathbf{z}_t \mid \sqrt{\bar{\alpha}_t} \mathbf{x}, (1 - \bar{\alpha}_t)I) d\mathbf{x}, \quad (3)$$

which interpolates between the data distribution $p(\mathbf{x})$ and the Gaussian prior $p(\mathbf{z}_T) \approx \mathcal{N}(0, I)$ (Albergotti et al., 2023). The reverse process reconstructs data from noise, factorized as $q_\theta(\mathbf{z}_{0:T}) = q(\mathbf{z}_T) \prod_{t=1}^T q_\theta(\mathbf{z}_{t-1} \mid \mathbf{z}_t)$, with transitions $q_\theta(\mathbf{z}_{t-1} \mid \mathbf{z}_t) = \mathcal{N}(\mu_\theta(\mathbf{z}_t, t), \rho_t^2 I)$, where μ_θ is predicted by a neural network and ρ_t is typically fixed. DMs are trained with the noise-prediction objective (Song et al., 2021b):

$$\mathcal{L}_{\text{DM}} = \mathbb{E}_{\mathbf{x}, \mathbf{\varepsilon}, t} [\|\mathbf{\varepsilon} - \mathbf{\varepsilon}_\theta(\mathbf{z}_t, t)\|^2], \quad \mathbf{z}_t = \sqrt{\bar{\alpha}_t} \mathbf{x} + \sqrt{1 - \bar{\alpha}_t} \mathbf{\varepsilon}, \quad \mathbf{\varepsilon} \sim \mathcal{N}(0, I). \quad (4)$$

The network $\mathbf{\varepsilon}_\theta$ can be interpreted as learning the score field $\nabla_{\mathbf{z}_t} \log p(\mathbf{z}_t)$ (Song et al., 2021a;b). New samples are generated by starting from pure Gaussian noise $\mathbf{z}_T \sim \mathcal{N}(0, I)$ and iteratively applying the reverse update:

$$\mathbf{z}_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(\mathbf{z}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \mathbf{\varepsilon}_\theta(\mathbf{z}_t, t) \right) + \rho_t \mathbf{\varepsilon}, \quad \mathbf{\varepsilon} \sim \mathcal{N}(0, I). \quad (5)$$

2.2 DMs FOR MOLECULAR GENERATION

A 3D molecule with N atoms contains both continuous atomic coordinates and discrete atomic features (Hong et al., 2024). The atomic coordinates are represented as $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N) \in$

162 $\mathbb{R}^{N \times 3}$, where each x_i denotes the coordinates of an atom in \mathbb{R}^3 . The atomic features, such as
 163 charges and atom types, are represented as $\mathbf{h} = (\mathbf{h}_1, \dots, \mathbf{h}_N) \in \mathbb{R}^{N \times d}$. While the atomic features
 164 are scalar quantities invariant to translations and rotations ($\mathbb{SE}(3)$ -transformations), the coordinates
 165 transform equivariantly under these transformations (Thomas et al., 2018; Hoogeboom et al., 2022;
 166 Dumitrescu et al., 2024). However, arbitrary $\mathbb{SE}(3)$ -transformations of the coordinates can cause
 167 issues for standard denoising networks, since a rotated or translated molecule may be perceived as an
 168 entirely different sample. To overcome such issues, existing works often design $\mathbb{SE}(3)$ -equivariant
 169 frameworks to ensure symmetry-awareness. Specifically, translations can be handled by subtracting
 170 the centroid of atomic coordinates \mathbf{x} to remove translational degrees of freedom (Garcia Satorras
 171 et al., 2021; Xu et al., 2022). However, rotations are much complicated and often handled by using
 172 carefully designed equivariant neural networks (Hoogeboom et al., 2022; Xu et al., 2023) or by
 173 canonicalization (Ding & Hofmann, 2025; Kaba et al., 2023; Rempe et al., 2020).
 174

175 In addition, the hybrid discrete-continuous nature of molecular data (Dunn & Koes, 2024) intro-
 176 duces unique challenges for generative modeling. Several recent works attempt to address the chal-
 177 lenge by learning smoother latent representations (Xu et al., 2023; Ding & Hofmann, 2025; Chen
 178 et al., 2025; Luo et al., 2025). These approaches typically employ a VAE-based (Kingma & Welling,
 179 2013) encoder-decoder framework, carrying out the diffusion process in a latent space rather than
 180 directly on molecular coordinates and features. While this alleviates some modeling challenges,
 181 latent-space methods introduce new sources of approximation error, and discrepancies remain be-
 182 tween generated molecules and chemically valid structures. Importantly, the error introduced by
 183 the learned score model (see equation 4) is ubiquitous and largely independent of architectural
 184 choices (Song et al., 2023; 2024; Joshi et al., 2025); we observe such failures across GNN- and
 185 Transformer-based models, as well as in both equivariant and non-equivariant molecular genera-
 186 tion methods. Moreover, the discrepancy between the true data marginal distribution and the model
 187 distribution grows as errors accumulate across timesteps.
 188

189 This observation indicates that **performance cannot be guaranteed solely by architectural**
 190 **choices** intended to simplify score-matching (Song et al., 2021b). Instead, it highlights the ne-
 191 cessity of correcting inference trajectories at intermediate timesteps in order to reduce distributional
 192 discrepancies and thereby improve the stability and validity of generated molecules. **Moreover, a de-
 193 tailed discussion on the comparison of our work with corrective method is provided in Appendix B.**
 194

3 METHOD

195 In this section, we delve into three key questions: (1) How can the unique structure of molecular
 196 distributions, constrained by chemical rules, be formally characterized? (2) What issues arise due
 197 to this structure for 3D molecular diffusion models? (3) Can these issues be mitigated through cor-
 198 rection? We answer the first two questions by formally investigating the DC-structure of molecular
 199 distributions in Sec. 3.1. Building on this insight, we propose DIST together with its theoretical
 200 analysis in Sec. 3.2, which addresses the last question.

3.1 DENSE-CONCENTRATED STRUCTURE ISSUE

201 As illustrated in Fig. 1, molecular data distribution over the representation space exhibits an evident
 202 DC-structure, where each peak corresponds to a chemically valid molecule, and regions between
 203 the peaks are of near-zero density. This contrasts with images, where the pixel values can tolerate a
 204 wide range of variations, resulting in wider peaks and smoother transitions. **To rigorously capture**
 205 **this phenomenon and further analyze its implications, we next formalize the DC-structure in**
 206 **probabilistic terms.** Consistent with Sec. 1 and prior work, we denote the true and model marginals
 207 by $p(\mathbf{z}_t)$ and $q_\theta(\mathbf{z}_t)$, respectively. Unless otherwise stated, all analysis in this work is carried out
 208 under the molecular setting rather than the universal diffusion machinery. For notational simplicity,
 209 we write the true marginal as p_t and also omit the learnable parameter θ and write the model marginal
 210 as q_t .

211 **Definition 3.1** (Dense-concentrated Structure). *There exist K_0 centers $\{m_k\}$, a scale $\sigma_* > 0$,
 212 a separation $\Delta > 0$, and weights $\{w_k\}$ such that, for the operative noise level t ,*

$$213 \quad p_t \simeq \sum_{k=1}^{K_0} w_k \mathcal{N}(m_k, \Sigma_{k,t}), \quad \Sigma_{k,t} \preceq \sigma_*^2 I, \quad \|m_k - m_\ell\| \geq \Delta \quad (k \neq \ell),$$

216 and for each k there exists some $\ell \neq k$ with $\|m_k - m_\ell\| \leq O(\Delta)$, and

$$218 \quad 219 \quad 220 \quad p_t \left(\bigcup_{k=1}^{K_0} B(m_k, c\sigma_*) \right) \geq 1 - \delta_t$$

221 for some $c > 0$ and small $\delta_t \in [0, 1)$, where $B(m, r) = \{x \in \mathbb{R}^d : \|x - m\| \leq r\}$ denotes the
222 Euclidean ball of radius r centered at m .

224 Under this definition, p_t is a mixture of narrow peaks $\{B(m_k, c\sigma_*)\}_{\forall k}$ separated by low-density
225 gaps. For molecular data, the parameter σ_* is small, reflecting that each valid configuration is con-
226 centrated in a narrow neighborhood of configuration space. At moderate timesteps t , forward noising
227 smooths these peaks (see equation 2 and equation 3) and creates overlap regions between them, thus
228 a sample z_t may lie in the overlap, close to the midpoint between two peaks (see Fig. 1). In this
229 circumstance, the score field points outward, pushing z_t toward the nearest peak with magnitude
230 $\|\nabla \log p(z_t)\| \sim \frac{\Delta}{\sigma_*^2}$ (Song et al., 2021b), and the reverse update step based on equation 5 is

$$231 \quad 232 \quad \|\mathbf{z}_{t-1} - \mathbf{z}_t\|_{\text{det}} \approx \beta_t \cdot \frac{\Delta}{\sigma_*^2}. \quad (6)$$

233 Because σ_* is small for molecules under Definition 3.1, this step can easily overshoot the distribution
234 radius $c\sigma_*$ and land in a low-density area:

$$235 \quad 236 \quad \beta_t \frac{\Delta}{\sigma_*^2} > c\sigma_* \implies \mathbf{z}_{t-1} \notin \bigcup_k B(m_k, c\sigma_*). \quad (7)$$

237 The derivation and toy examples are provided in Appendix C. In other words, when z_t originates
238 from an overlap region created by forward noising, the reverse step is prone to push it across a thin
239 peak and into a low-density region. Subsequent denoising cannot recover from this drift. For images,
240 by contrast, peaks are broad (σ_* is large) and can overlap smoothly, so the condition in equation 7
241 is rarely triggered.

242 Consequently, the overshoot mechanism in equation 7, which arises directly from the concentration
243 property in Definition 3.1, explains the fragility of reverse inference. The score field $\nabla \log p_t$ indeed
244 points *toward* high-density peaks; however, because molecular peaks are narrow, the reverse update
245 can step *past* the peak and cross the high-density into the opposite regions. **Once outside the dis-
246 tribution, subsequent updates are driven by the model score $\nabla \log q_t$ in a low-density region
247 where estimation and discretization errors are large (Zhang et al., 2023; Li & van der Schaar,
248 2023), leading to oscillation or further drift rather than reliable re-entry into the correct peak.**
249 Moreover, Cao et al. (2023) also analyzed this re-entry problem and demonstrated the benefits
250 of stochastic samplers, which further underscores the importance of trajectory correction in SDE
251 simulation. This phenomenon is more obvious in molecular generation due to the DC-structure,
252 and we provide a detailed comparison and explanation specific to molecules in Appendix D.

253 In practice, discrepancies between the true
254 marginal p_t and the model q_t accumulate
255 across timesteps, and low-density region ex-
256 cursions become effectively unrecoverable.
257 As shown in Table 1, inference quality de-
258 grades monotonically with t increasing, re-
259 reflecting the growing deviation between p_t
260 and q_t . This motivates the need for a correc-
261 tive mechanism at intermediate timesteps to
262 prevent off-distribution drift. An overview
263 of our proposed method, **DIffuse** and **STeer**
264 (**DIST**), is illustrated in Fig. 2, and we
265 formalize how DIST selectively realigns q_t
266 with p_t in Sec. 3.2.

Table 1: Effect of starting timestep t on sample quality. $t = 0$ uses clean data; $t = 1000$ starts from pure Gaussian noise (standard diffusion). Intermediate t forms $z_t \sim p(z_t | x)$, and then we run t reverse steps for generated results. The experiment setting follows EDM on QM9. Higher numbers are better. Please refer to Sec. 4.1 for further details.

t	Atom Sta (%)	Mol sta (%)	Valid (%)
0	99.0	95.2	97.7
100	99.0	92.7	96.4
300	98.9	89.1	95.5
500	98.7	86.2	94.3
1000	98.7	82.0	91.9

267 3.2 DIFFUSE AND STEER

268 As discussed in Sec. 3.1 above, the unique characteristics of the molecular data distribution lead
269 to severe inference and learning difficulties, such that the learned denoiser can be very inaccurate.

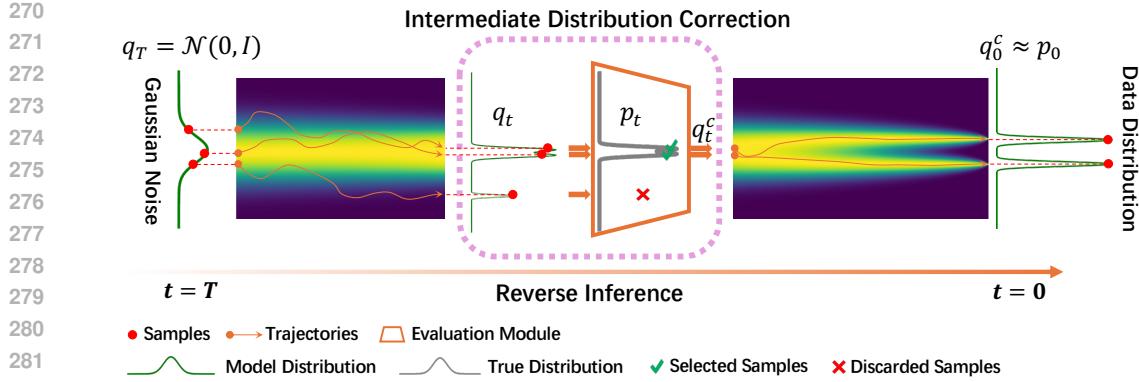


Figure 2: Illustration of **DIST**. In standard reverse inference, trajectories diffuse backward from Gaussian noise q_T toward the data distribution p_0 , but the model distribution q_t may drift away from the true distribution p_t due to the DC-structure of molecular data (see Sec. 3.1). At an intermediate timestep t , **DIST** steers q_t toward p_t via a correction module that evaluates discrepancies and discards invalid samples. The resulting corrected distribution q_t^c better approximates p_t , realigning trajectories and improving both stability and validity in the final generation.

As a result, the intermediate model distribution q_t often deviates from the true marginal distribution p_t . Moreover, during training, the diffusion model is trained on the true marginal distribution p_t from the dataset. In other words, the reverse process is implicitly learned under the assumption that the intermediate states follow the true marginals. Intuitively, when q_t drifts away from p_t , this will create a mismatch between the final distribution obtained by applying the reverse process to q_t and that obtained from p_t . Mathematically, we can show that this is true in Corollary 3.1 below.

Corollary 3.1 (TV-contraction Step). *Let $K_{t \rightarrow 0}$ be the ideal reverse Markov kernel, which can be intuitively understood as the perfect diffusion model with the true score functions; in other words, when the ideal reverse Markov kernel is applied to the true marginal distribution, we obtain the true data distribution $p_0 = K_{t \rightarrow 0} p_t$. Then, for any probability measure q_t , there exists a TV-contraction coefficient $\kappa \in [0, 1]$ such that*

$$\|q_0 - p_0\|_{\text{TV}} = \|K_{t \rightarrow 0} q_t - K_{t \rightarrow 0} p_t\|_{\text{TV}} \leq \kappa \|q_t - p_t\|_{\text{TV}}, \quad (8)$$

where if q_t is the intermediate model distribution, q_0 can be understood as the final model distribution obtained by applying the perfect diffusion model on q_t .

The proof and explanation are deferred to the Appendix E.1. Specifically, Corollary 3.1 reveals that if the intermediate model distribution q_t is closer to the true marginal distribution p_t , the final model distribution q_0 is closer to the true data distribution p_0 that we aim to obtain. Therefore, to achieve high-quality generation despite the difficulties posed by the molecular data distribution, our goal is to obtain an improved intermediate distribution q_t^c that remains closer to the true marginal p_t rather than blindly using the model distribution. To achieve this goal, we propose **DIST** (Diffuse and Steer), a corrective sampling approach for 3D molecular diffusion. Specifically, we perform the reverse process normally as in the standard diffusion pipelines; however, we incorporate an additional correction step to steer the intermediate distribution q_t toward a “corrected” version q_t^c closer to the true marginal p_t . An overview of **DIST** is provided in Fig. 2.

We now present the details of **DIST** concretely. Building on Definition 3.1, which states that the distribution p_t concentrates around a finite number of peaks separated by low-density regions, we next introduce a finer partition of the support into small neighborhoods. Specifically, we divide the space into radius- r batches $\{B_j\}_{j=1}^J$, which can be regarded as local regions within or around the peaks, each carrying probability mass

$$\pi_j := p_t(B_j), \quad \hat{\pi}_j := q_t(B_j),$$

together with the conditional distributions $p_{t|j}$ and $q_{t|j}$ restricted to each batch B_j .

Each batch j is further associated with a model-side pilot score $s_j \in \mathbb{R}$ (e.g., round-trip residual, self-consistency, ensemble variance, or chemistry-based penalty), which reflects whether the region

324 is consistent with the true marginal distribution or potentially invalid. Given a threshold τ , we select
 325 batches whose scores fall below τ :

$$326 \quad 327 \quad J^*(\tau) := \{ j : s_j \leq \tau \}.$$

328 We then measure how much probability mass remains after this selection by defining

$$329 \quad 330 \quad \alpha(\tau) := \sum_{j \in J^*(\tau)} \pi_j, \quad \beta(\tau) := \sum_{j \in J^*(\tau)} \hat{\pi}_j.$$

332 Here, $\alpha(\tau)$ represents the *true coverage*, i.e., the portion of the ground-truth distribution preserved
 333 by the selection, while $\beta(\tau)$ denotes the *model coverage*, i.e., the portion of the model distribution
 334 retained. Smaller thresholds τ restrict the selection to batches that are more likely to correspond
 335 to valid regions, reducing coverage; larger thresholds broaden the selection and capture more mass,
 336 but at the cost of admitting regions inconsistent with the true distribution. The selected model
 337 distribution at threshold τ is then given by

$$338 \quad 339 \quad q_t^c(\tau) := \sum_{j \in J^*(\tau)} \tilde{\pi}_j q_{t|j}, \quad \tilde{\pi}_j = \frac{\hat{\pi}_j}{\sum_{k \in J^*(\tau)} \hat{\pi}_k}. \quad (9)$$

341 Intuitively, q_t consists of both samples consistent with p_t , lying within valid regions, and samples
 342 that fall outside. The corrected distribution q_t^c acts as a filtered version of q_t , removing invalid
 343 batches in order to improve approximation of the true distribution. The following proposition estab-
 344 lishes a quantitative error bound that illustrates the effectiveness of DIST.

345 **Proposition 3.1** (Selective Reverse Error Bound). *Under the DC-structure in Definition 3.1
 346 and the batch construction described above, for any threshold τ the deviation between the
 347 selectively corrected reverse distribution $K_{t \rightarrow 0} q_t^c(\tau)$ and the true distribution $p = K_{t \rightarrow 0} p_t$
 348 admits an upper bound of the form*

$$349 \quad 350 \quad \|K_{t \rightarrow 0} q_t^c(\tau) - p\|_{\text{TV}} \leq f(\alpha(\tau), \beta(\tau), (\pi_j, \hat{\pi}_j)_{j \in J^*(\tau)}), \quad \sup_{j \in J^*(\tau)} \text{TV}(q_{t|j}, p_{t|j}),$$

352 where $f(\cdot)$ is an explicit function of the true coverage $\alpha(\tau)$, the model coverage $\beta(\tau)$, the
 353 selected batch weights, and the conditional discrepancies. The exact form of $f(\cdot)$ is provided
 354 in Appendix E.2.

355 The proof and explanation are provided in Appendix E.2. This error bound provides a theoretical
 356 guarantee for DIST; that is, **selective correction ensures that q_t^c is steered toward convergence
 357 with the true distribution p at intermediate timestep t , stabilizing the sampling trajectory.**

358 **Corrective Sampling** We now describe how the corrected distribution q_t^c is achieved in the reverse
 359 inference procedure (see Fig. 2). At a given intermediate timestep t , DIST constructs a candidate
 360 pool by reverse-simulating a small set of samples from Gaussian noise at T . Each candidate is du-
 361 plicated and perturbed with a sufficiently small amount of noise to form batches $\{B_j\}_{j=1}^J$, which
 362 collectively follow the model distribution q_t and remain within the prescribed radius- r constraint
 363 (see Definition 3.1). To evaluate whether these batches $\{B_j\}_{j=1}^J$ are consistent with the true distri-
 364 bution p_t , DIST runs a full reverse inference on a pilot subset $\{B_j^{\text{sub}} \mid B_j^{\text{sub}} \in B_j\}_{j=1}^J$ drawn from
 365 each batch. This pilot inference provides an empirical assessment of how well the current model
 366 trajectory aligns with p_t , and serves as a diagnostic of potential drift away from the true distribu-
 367 tion. Based on the pilot outcomes $s_j \in \mathbb{R}$, DIST applies a filter $\tilde{\pi}_j$ to each batch using a universal
 368 threshold τ , obtaining a corrected distribution $q_t^c(\tau)$ (see equation 9) that better approximates p_t . In
 369 effect, q_t^c concentrates the reverse trajectories around valid molecular peaks. Beyond improved ap-
 370 proximation quality, DIST also provides an efficiency advantage by reducing unnecessary inference
 371 on invalid regions, as demonstrated in Sec. 4.3.

373 4 EXPERIMENTS

374 4.1 SETUPS

376 **Datasets** Following prior work (Hoogeboom et al., 2022; Xu et al., 2023; Song et al., 2024),
 377 we evaluate DIST on two widely used datasets in molecular generation: QM9 (Ramakrishnan
 et al., 2014) and GEOM-Drugs (Axelrod & Gómez-Bombarelli, 2022). QM9 contains 130K small

378
 379 Table 2: Results for atom stability, molecule stability, validity, and validity \times uniqueness. Higher
 380 values indicate better performance. Check Sec. 4.1 for experimental setup details. All models
 381 combined with DIST surpass their original counterparts, and the improved results are shown in
 382 **bold**. Global best results are underlined.

# Metrics	QM9				GEOM-Drugs	
	Atom Sta (%)	Mol Sta (%)	Valid (%)	Valid \times Unique (%)	Atom Sta (%)	Valid (%)
Data	99.0	95.2	97.7	97.7	86.5	99.9
ENF	85.0	4.9	40.2	39.4	-	-
G-SchNet	95.7	68.1	85.5	80.3	-	-
EDM	98.7	82.0	91.9	90.7	81.3	92.6
EDM+DIST	<u>99.2\pm0.0</u>	<u>89.9\pm0.3</u>	<u>96.9\pm0.2</u>	<u>94.1\pm0.3</u>	82.2	96.0
GeoLDM	98.9	89.4	93.8	92.7	84.4	99.3
GeoLDM+DIST	<u>99.4\pm0.0</u>	<u>93.4\pm0.3</u>	<u>96.3\pm0.2</u>	<u>93.1\pm0.2</u>	85.4	99.7
RADM	98.5	87.3	94.1	91.7	85.0	99.3
RADM+DIST	<u>99.1\pm0.0</u>	<u>91.4\pm0.3</u>	<u>96.2\pm0.1</u>	<u>92.3\pm0.4</u>	86.0	99.8

393
 394 molecules, restricted to at most 9 heavy atoms (29 atoms including hydrogen atoms). We follow
 395 the standard partition from Hoogeboom et al. (2022), with 100K molecules for training, 18K for
 396 validation, and 13K for testing. GEOM-Drugs is substantially larger, comprising 420K molecules
 397 with an average of 44.4 atoms and up to 181 atoms. Following Hoogeboom et al. (2022), we retain
 398 the 30 lowest-energy conformations for each molecule.

399 **Metrics** Consistent with prior work, we evaluate generated molecules using the following metrics:
 400 atom stability, molecule stability, validity, and validity \times uniqueness (Simonovsky & Komodakis,
 401 2018; Garcia Satorras et al., 2021). *Atom Stability*: the percentage of atoms whose number of bonds
 402 matches their valence (e.g., H:1, C:4, O:2). *Molecule Stability*: the percentage of molecules in which
 403 all atoms are stable. *Validity*: the percentage of molecules satisfying valence rules for all atoms.
 404 *Uniqueness*: the percentage of molecules that are distinct from one another. Note for GEOM-Drugs,
 405 following prior work, we omit the stability and uniqueness metrics, since they are consistently close
 406 0% and 100%, respectively, for all evaluated methods including the baseline methods.

407 **Baselines** We employ several representative state-of-the-art diffusion models for 3D molec-
 408 ular generation, including EDM (Hoogeboom et al., 2022), GeoLDM (Xu et al., 2023), and
 409 RADM_{DiT-B} (Ding & Hofmann, 2025), as backbone models for our proposed DIST and compare
 410 with the original without DIST. These backbone diffusion models cover a range of model types, in-
 411 cluding GNN-based or Transformer-based, equivariant and non-equivariant, and those operating in
 412 regular space and latent space. In addition, we include comparisons with well-known non-diffusion-
 413 based models, such as ENF (Garcia Satorras et al., 2021) and G-SchNet (Gebauer et al., 2019). The
 414 results of backbone models and baseline methods are directly obtained from their original work.

415 **Implementation Details** To demonstrate the plug-in capability of our DIST and ensure fair com-
 416 parison, for all backbone models, we strictly use the officially released model weights without alter-
 417 ing any hyperparameters or settings for noise schedule, encoder-decoder configurations, and dataset
 418 partition. For detailed settings of DIST, please refer to Appendix F.

420 4.2 MAIN RESULTS AND ANALYSIS

421 To evaluate the performance of each model on QM9 and GEOM-Drug, following prior work, we
 422 generate 10,000 3D molecules using each model. The main results are summarized in Table 2. For
 423 QM9 dataset, we report averages over three runs together with standard deviations. Across both
 424 datasets and all metrics, every backbone model combined with DIST consistently outperforms its
 425 original counterpart. The improvements are significant and universal: **all bold numbers in Table 2**
 426 **indicate that DIST significantly improves the quality of generated molecules, with particularly**
 427 **large margins observed on the most critical stability metrics.** In addition, methods based on our
 428 DIST set the new state-of-the-art for molecular generation on both QM9 and GEOM-Drug datasets.

429 Notably, the margins of improvement observed before and after applying our method highlight
 430 the generality of DC-structure issue. Across GNN-based equivariant EDM (Hoogeboom et al.,
 431 2022), GeoLDM (Xu et al., 2023) and Transformer-based non-equivariant RADM (Ding & Hof-
 432 mann, 2025), where GeoLDM and RADM perform in latent space, the issue remains consistently

432 evident. This observation cautions against relying solely on architectural choices. Our experimental
 433 results confirm that, as a plug-in component, DIST effectively steers inference trajectories and thus
 434 mitigates distributional discrepancies in the sampling process, providing a valuable complement to
 435 architectural innovations to improve 3D molecular generation quality.
 436

437 4.3 EFFICIENCY ANALYSIS

438 Since the batches $\{B_j\}_{j=1}^J$ are created by duplication and perturbation, DIST requires only $\frac{T-t}{|B|}$
 439 expected timesteps per inference from T (1000 is adopted in backbone models) to t , where $|B|$ is
 440 the batch size. For example, setting $t = 300$ with $|B| = 100$, each accepted batch after threshold
 441 filtering requires only $307 (\frac{1000-300}{100} + 300)$ steps instead of the 1000 steps as used in standard
 442 counterparts. A detailed comparison of efficiency is provided in Table 3, which shows DIST can
 443 substantially reduce the overall timestep by nearly **half** compared to baselines, while significantly
 444 improving the generation quality as shown in Table 2. We also provide a detailed quantification of
 445 the expected computational cost of our DIST in Appendix G.1.
 446

447 4.4 ABLATION STUDY

448 The number of pilot samples drawn from each batch
 449 plays a critical role. A larger set of pilot samples
 450 provides a more accurate representation of the model
 451 distribution q_t , and leads to a better corrected distri-
 452 bution q_t^c by DIST. However, increasing the number
 453 of pilot samples also leads to higher computational
 454 costs. In practice, we may choose a pilot set size that
 455 is sufficiently representative while remaining compu-
 456 tationally affordable. We conduct an ablation study to
 457 compare the final sample quality and computational
 458 costs under different numbers of pilot samples, with
 459 results reported in Table 4. As expected, increas-
 460 ing the number of pilot samples improves the quality
 461 of generated molecules monotonically. At the same
 462 time, computational costs (measured by the number
 463 of time steps) also increase monotonically. Nevertheless, even under a relatively small budget (30,
 464 50, 100), DIST still demonstrates superior performance, significantly improving the original EDM
 465 in both sample quality and computational efficiency. **Moreover, we also constructed the ablation**
 466 **study on hyperparameters, including batch score threshold, intermediate timestep, and perturbation**
 467 **intensity, as shown in Appendix H.**

Table 3: Average number of timesteps required for a full inference procedure. The values are computed from the total timestep consumption needed to generate 10,000 molecules, corresponding to the experiments in Table 2. All baseline methods use the standard 1000-step schedule, whereas DIST significantly reduces the computational cost.

Methods	QM9	GEOM-Drugs
EDM+DIST	556.1	503.3
GeoLDM+DIST	416.9	636.7
RADM+DIST	413.7	438.8
Baselines	1000	1000

Table 4: Ablation study for varying pilot subset sizes using EDM+DIST on QM9 with a fixed batch size of 100. We report the generation performance and the average number of timesteps.

Size	Atom Sta (%)	Mol Sta (%)	Valid (%)	Valid×Unique (%)	Timesteps
30	99.2	89.5	96.7	94.3	428.3
50	99.2	89.9	96.9	94.1	556.1
100	99.3	90.5	97.3	94.9	644.7

477 5 CONCLUSION AND FUTURE WORK

478 In this work, we investigated the unique challenge of applying diffusion models to molecular gener-
 479 ation. Molecular data are confined to concentrated regions of the representation space, with chem-
 480 ically valid structures corresponding to densely packed sharp peaks separated by regions of near-
 481 zero density. This DC-structure makes diffusion modeling fragile, since small errors at interme-
 482 diate timesteps are amplified, causing generative trajectories to drift off-distribution and accumulate
 483 irreparable structural violations. To address this issue, we proposed DIST, which is a selective cor-
 484 rection method that filters and rescales intermediate distributions, steering the inference trajectories
 485 toward valid molecular peaks. DIST is model-agnostic and can be integrated into a wide range of

486 diffusion-based molecular generators. We also provided both theoretical analysis and experimen-
487 tal results to demonstrate that our method consistently improves the performance across multiple
488 architectures for molecular generation, while nearly halving the inference cost.
489

490 Looking forward, our work opens several promising directions. First, as a general and principled
491 framework, DIST can be extended to other data domains with a similar distribution structure. **An**
492 **intriguing question is whether the DIST framework can be adapted to protein generation, although**
493 **this constitutes a fundamentally different and substantially more complex task.** Second, adaptive
494 selection or other strategies for filtering may further improve correction efficiency. Finally, while our
495 study focuses on diffusion models, the DC-structure issue is not exclusive to them. Exploring anal-
496 ogous corrective strategies in alternative generative paradigms, such as normalizing flows (Rezende
497 & Mohamed, 2015), autoregressive models (Li et al., 2024), or energy-based frameworks (Du &
498 Mordatch, 2019), may broaden the impact of our approach and provide a unifying principle for
499 modeling highly constrained distributions.
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541
ETHICS STATEMENT

542 This work adheres to general ethical principles of scientific research. Our goal is to contribute
 543 to society and scientific progress by improving generative modeling for molecular data. We have
 544 carefully considered possible harms: our method is purely methodological and does not involve
 545 sensitive personal data, human subjects, or confidential information. All experiments rely on pub-
 546 licly available molecular datasets, and no privacy concerns arise. We believe our work will benefit
 547 the community as a complementary tool for advancing generative modeling, without introducing
 548 foreseeable risks of discrimination or misuse beyond the general risks associated with generative
 549 models.

550
551
REPRODUCIBILITY STATEMENT
552

553 All theoretical results are stated with explicit assumptions, and complete proofs are provided in
 554 Appendix E.1 and Appendix E.2. The datasets used in our experiments (QM9 and GEOM-Drugs)
 555 are publicly available, and we describe all preprocessing steps in Sec. 4.1. After acceptance, we will
 556 publicly release the code and provide detailed guidance to facilitate reproduction of all results.

557
558
REFERENCES

559 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
 560 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

561 Simon Axelrod and Rafael Gómez-Bombarelli. Geom, energy-annotated molecular conformations
 562 for property prediction and molecular generation. *Scientific Data*, 9(1):185, 2022. doi: 10.1038/
 563 s41597-022-01288-4. URL <https://doi.org/10.1038/s41597-022-01288-4>.

564 Montgomery Bohde, Mrunali Manjrekar, Runzhong Wang, Shuiwang Ji, and Connor W Co-
 565 ley. Diffmms: Diffusion generation of molecules conditioned on mass spectra. *arXiv preprint*
 566 *arXiv:2502.09571*, 2025.

567 Yu Cao, Jingrun Chen, Yixin Luo, and Xiang Zhou. Exploring the optimal choice for generative
 568 processes in diffusion models: Ordinary vs stochastic differential equations. *Advances in Neural*
 569 *Information Processing Systems*, 36:33420–33468, 2023.

570 Zitao Chen, Yinjun Jia, Zitong Tian, Wei-Ying Ma, and Yanyan Lan. Manipulating 3d molecules in
 571 a fixed-dimensional se (3)-equivariant latent space. *arXiv preprint arXiv:2506.00771*, 2025.

572 Seungyeon Choi, Hwanhee Kim, Chihyun Park, Dahyeon Lee, Seungyong Lee, Yoonju Kim, Hy-
 573 oungjoon Park, Sein Kwon, Youngwan Jo, and Sanghyun Park. Controllable 3d molecular gen-
 574 eration for structure-based drug design through bayesian flow networks and gradient integration.
 575 *arXiv preprint arXiv:2508.21468*, 2025.

576 Yuhui Ding and Thomas Hofmann. Scalable non-equivariant 3d molecule generation via rotational
 577 alignment. *arXiv preprint arXiv:2506.10186*, 2025.

578 Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. *Advances*
 579 *in neural information processing systems*, 32, 2019.

580 Alexandru Dumitrescu, Dani Korppela, Markus Heinonen, Yogesh Verma, Valerii Iakovlev, Vikas
 581 Garg, and Harri Lähdesmäki. E (3)-equivariant models cannot learn chirality: Field-based molec-
 582 ular generation. *arXiv preprint arXiv:2402.15864*, 2024.

583 Ian Dunn and David Ryan Koes. Mixed continuous and categorical flow matching for 3d de novo
 584 molecule generation. *ArXiv*, pp. arXiv–2404, 2024.

585 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
 586 models. *arXiv preprint arXiv:2410.12557*, 2024.

587 Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E (n)
 588 equivariant normalizing flows. *Advances in Neural Information Processing Systems*, 34:4181–
 589 4192, 2021.

594 Niklas Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted generation of 3d point
 595 sets for the targeted discovery of molecules. *Advances in neural information processing systems*,
 596 32, 2019.

597 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *arXiv preprint*
 598 *arxiv:2006.11239*, 2020.

600 Haokai Hong, Wanyu Lin, and Kay Chen Tan. Accelerating 3d molecule generation via jointly
 601 geometric optimal transport. *arXiv preprint arXiv:2405.15252*, 2024.

602 Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
 603 sion for molecule generation in 3d. In *International conference on machine learning*, pp. 8867–
 604 8887. PMLR, 2022.

605 Chaitanya K Joshi, Xiang Fu, Yi-Lun Liao, Vahe Gharakhanyan, Benjamin Kurt Miller, Anuroop
 606 Sriram, and Zachary W Ulissi. All-atom diffusion transformers: Unified generative modelling of
 607 molecules and materials. *arXiv preprint arXiv:2503.03965*, 2025.

608 Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
 609 Equivariance with learned canonicalization functions. In *International Conference on Machine*
 610 *Learning*, pp. 15546–15566. PMLR, 2023.

611 Joowon Kim, Ziseok Lee, Donghyeon Cho, Sanghyun Jo, Yeonsung Jung, Kyungsu Kim, and Eunho
 612 Yang. Early timestep zero-shot candidate selection for instruction-guided image editing. In
 613 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 18844–18854,
 614 2025.

615 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 616 *arXiv:1312.6114*, 2013.

617 Sangyun Lee, Beomsu Kim, and Jong Chul Ye. Minimizing trajectory curvature of ode-based gen-
 618 erative models. In *International Conference on Machine Learning*, pp. 18957–18973. PMLR,
 619 2023.

620 Mingxiao Li, Tingyu Qu, Ruicong Yao, Wei Sun, and Marie-Francine Moens. Alleviating ex-
 621 posure bias in diffusion models through sampling with shifted time steps. *arXiv preprint*
 622 *arXiv:2305.15583*, 2023.

623 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
 624 generation without vector quantization. *Advances in Neural Information Processing Systems*, 37:
 625 56424–56445, 2024.

626 Yangming Li and Mihaela van der Schaar. On error propagation of diffusion models. *arXiv preprint*
 627 *arXiv:2308.05021*, 2023.

628 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 629 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

630 Yanchen Luo, Zhiyuan Liu, Yi Zhao, Sihang Li, Hengxing Cai, Kenji Kawaguchi, Tat-Seng Chua,
 631 Yang Zhang, and Xiang Wang. Towards unified and lossless latent space for 3d molecular latent
 632 diffusion modeling. *arXiv preprint arXiv:2503.15567*, 2025.

633 Eric Martin and Eddie Cao. Euclidean chemical spaces from molecular fingerprints: Hamming
 634 distance and hempel’s ravens. *Journal of computer-aided molecular design*, 29(5):387–395, 2015.

635 Yuyan Ni, Shikun Feng, Haohan Chi, Bowen Zheng, Huan-ang Gao, Wei-Ying Ma, Zhi-Ming Ma,
 636 and Yanyan Lan. Straight-line diffusion model for efficient 3d molecular generation. *arXiv*
 637 *preprint arXiv:2503.02918*, 2025.

638 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 639 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021a.

640 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 641 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021b.

648 Mang Ning, Mingxiao Li, Jianlin Su, Albert Ali Salah, and Itir Onal Ertugrul. Elucidating the
 649 exposure bias in diffusion models. *arXiv preprint arXiv:2308.15321*, 2023.

650

651 Pinelopi Papalampidi, Olivia Wiles, Ira Ktena, Aleksandar Shtedritski, Emanuele Bugliarello, Ivana
 652 Kajic, Isabela Albuquerque, and Aida Nematzadeh. Dynamic classifier-free diffusion guidance
 653 via online feedback. *arXiv preprint arXiv:2509.16131*, 2025.

654 Konpat Preechakul, Nattanat Chathee, Suttisak Wizadwongs, and Supasorn Suwajanakorn. Dif-
 655 fusion autoencoders: Toward a meaningful and decodable representation. In *Proceedings of the*
 656 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 10619–10629, 2022.

657

658 Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quan-
 659 tum chemistry structures and properties of 134 kilo molecules. *Scientific Data*, 1(1):140022,
 660 2014. doi: 10.1038/sdata.2014.22. URL <https://doi.org/10.1038/sdata.2014.22>.

661 Davis Rempe, Tolga Birdal, Yongheng Zhao, Zan Gojcic, Srinath Sridhar, and Leonidas J Guibas.
 662 Caspr: Learning canonical spatiotemporal point cloud representations. *Advances in neural infor-
 663 mation processing systems*, 33:13688–13701, 2020.

664

665 Jean-Louis Reymond, Lars Ruddigkeit, Lorenz Blum, and Ruud Van Deursen. The enumeration
 666 of chemical space. *Wiley Interdisciplinary Reviews: Computational Molecular Science*, 2(5):
 667 717–733, 2012.

668 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *Interna-
 669 tional conference on machine learning*, pp. 1530–1538. PMLR, 2015.

670

671 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 672 resolution image synthesis with latent diffusion models, 2021.

673

674 Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
 675 variational autoencoders. In *International conference on artificial neural networks*, pp. 412–422.
 Springer, 2018.

676

677 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
 678 *arXiv:2010.02502*, October 2020. URL <https://arxiv.org/abs/2010.02502>.

679

680 Kiwhan Song, Jaeyeon Kim, Sitan Chen, Yilun Du, Sham Kakade, and Vincent Sitzmann. Selective
 681 underfitting in diffusion models. *arXiv preprint arXiv:2510.01378*, 2025.

682

683 Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
 684 score-based diffusion models. *Advances in neural information processing systems*, 34:1415–
 1428, 2021a.

685

686 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 687 Poole. Score-based generative modeling through stochastic differential equations. In *Interna-
 688 tional Conference on Learning Representations*, 2021b. URL [https://openreview.net/
 689 forum?id=PxTIG12RRHS](https://openreview.net/forum?id=PxTIG12RRHS).

690

691 Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,
 692 and Wei-Ying Ma. Equivariant flow matching with hybrid probability transport for 3d molecule
 693 generation. *Advances in Neural Information Processing Systems*, 36:549–568, 2023.

694

695 Yuxuan Song, Jingjing Gong, Hao Zhou, Mingyue Zheng, Jingjing Liu, and Wei-Ying Ma. Unified
 696 generative modeling of 3d molecules with bayesian flow networks. In *The Twelfth International
 697 Conference on Learning Representations*, 2024.

698

699 Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
 700 Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
 701 clouds. *arXiv preprint arXiv:1802.08219*, 2018.

702

703 Zekun Wang, Mingyang Yi, Shuchen Xue, Zhenguo Li, Ming Liu, Bing Qin, and Zhi-Ming Ma.
 704 Improved diffusion-based generative model with better adversarial robustness. *arXiv preprint
 705 arXiv:2502.17099*, 2025.

702 Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
 703 Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
 704 Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
 705 Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
 706 Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
 707 Baek, and David Baker. De novo design of protein structure and function with rfdiffusion. *Nature*,
 708 620(7976):1089–1100, 2023. doi: 10.1038/s41586-023-06415-8.

709 Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger. In-
 710 equalities for the l_1 deviation of the empirical distribution. *Hewlett-Packard Labs, Tech. Rep*, pp.
 711 125, 2003.

712 Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
 713 metric diffusion model for molecular conformation generation. *arXiv preprint arXiv:2203.02923*,
 714 2022.

715 Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
 716 diffusion models for 3d molecule generation. In *International Conference on Machine Learning*,
 717 pp. 38592–38610. PMLR, 2023.

718 Junyu Zhang, Daochang Liu, Shichao Zhang, and Chang Xu. Contrastive sampling chains in diffu-
 719 sion models. *Advances in Neural Information Processing Systems*, 36:73524–73542, 2023.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
757758 LLMs are used solely to assist with grammar checking and improving writing fluency. All obser-
759 vations, ideas, methodologies, and contributions in this paper are developed entirely by the authors.
760 Any content generated with the help of LLMs is created under detailed author instructions and thor-
761oughly verified by the authors before inclusion.
762763 B COMPARISON WITH RELATED METHODS
764765 In this section, we present a focused comparison between DIST and analogous works in both theo-
766 retical formulation and corrective sampling techniques.
767768 One innovation of DIST lies in modeling the molecular distribution within the diffusion process as a
769 DC-structure (Definition 3.1). This idea is conceptually related to the notion of a supervision region
770 introduced in the recent work (Song et al., 2025). However, that work interprets the phenomenon
771 mainly as a factor affecting the generalization ability of diffusion trajectories, without addressing
772 its impact on constrained and complex data types such as molecular structures, nor proposing any
773 corrective mechanism. In contrast, DIST explicitly quantifies and mitigates this issue through a
774 theoretically grounded correction process.
775776 To the best of our knowledge, there is currently **no existing corrective method that directly steers**
777 **intermediate distributions in diffusion-based molecular generation**. Two recent studies in the
778 text-to-image domain, Dynamic CFG (Papalampidi et al., 2025) and ELECT (Kim et al., 2025),
779 adopt selective sampling strategies that are loosely related to our idea. Dynamic CFG performs
780 a greedy search to select the scale that maximizes evaluation scores at each step, while ELECT
781 selects the best candidate from a pool at an intermediate timestep and denoises it as the final output.
782 However, both works focus on sample-level quality refinement rather than distributional correction,
783 lack theoretical grounding, and incur additional computational overhead due to repeated candidate
784 discarding.
785786 A separate line of recent work investigates exposure-bias effects in diffusion models (Ning et al.,
787 2023; Wang et al., 2025; Li et al., 2023). These methods primarily analyze the general training–inference
788 mismatch issue that arises during denoising: they study how prediction errors
789 accumulate across reverse steps and how to make individual transitions more stable. Such analyses
790 focus on *local transition dynamics*, such as characterizing variance inflation from prediction (Ning
791 et al., 2023), identifying consistent neighborhoods of training samples (Wang et al., 2025), or aligning
792 adjacent timesteps to reduce mismatch (Li et al., 2023). In contrast, DIST is motivated from
793 a *distribution-level* perspective. Rather than attributing instability to step-wise prediction errors
794 alone, DIST formalizes the dense-concentrated structure of molecular data and identifies it as a funda-
795 mental source of fragility in molecular diffusion. The theoretical results of DIST therefore target
796 *global distributional correctness*: by correcting the intermediate model distribution, DIST provides
797 guarantees on the quality of the final distribution at $t = 0$. Methodologically, exposure-bias ap-
798 proaches typically require modified training objectives, adversarial components, or adjusted sam-
799 pling schedules, whereas DIST introduces a *training-free, plug-in selective correction module* that
800 can be applied directly at inference time and achieves NFE-level efficiency gains without altering
801 the backbone model.
802803 In summary, corrective methods for diffusion generation remain an emerging and promising research
804 direction. DIST contributes to this direction by: (1) introducing the first corrective module tailored
805 for molecular diffusion generation; (2) establishing a solid theoretical foundation for it; and (3)
806 incorporating an explicitly designed efficiency strategy that yields consistent improvements in both
807 generative performance and computational cost over existing baselines.
808

809 C OVERTSHOOT MECHANISM

810 In this section, we provide the derivation of overshoot mechanism in Appendix C.1 and toy examples
811 for it in Appendix C.2.
812

813 C.1 UPDATE ISSUE

We justify the scaling of score magnitude in the overlap region and reverse update length in equation 6 and equation 7 of the main text. Under the DC-structure (see Definition 3.1),

$$p_t \simeq \sum_{k=1}^{K_0} w_k \mathcal{N}(m_k, \Sigma_{k,t}), \quad \Sigma_{k,t} \preceq \sigma_*^2 I, \quad \|m_k - m_\ell\| \geq \Delta \quad (k \neq \ell),$$

and define the responsibilities

$$\gamma_k(\mathbf{z}_t) = \frac{w_k \mathcal{N}(\mathbf{z}_t; m_k, \sigma_*^2 I)}{\sum_j w_j \mathcal{N}(\mathbf{z}_t; m_j, \sigma_*^2 I)}.$$

Then

$$\nabla \log p(\mathbf{z}_t) = \frac{1}{\sigma_*^2} \left(\sum_k \gamma_k(\mathbf{z}_t) m_k - \mathbf{z}_t \right).$$

In a region where \mathbf{z}_t is influenced mainly by one or two nearby peaks, the mixture score $\nabla \log p(\mathbf{z}_t)$ has the same order of magnitude as the score of the dominant Gaussian components. By Definition 3.1, different peaks are separated by at least Δ , so along directions between two centers m_k and m_ℓ we have $\|\mathbf{z}_t - m_k\| = \Theta(\Delta)$ in the overlap region visualized in Fig. 1. Hence, up to a constant factor,

$$\|\nabla \log p(\mathbf{z}_t)\| \sim \frac{\Delta}{\sigma_*^2}, \quad (10)$$

which is the scaling used in the main text. And based on the reverse update step used in main text (see equation 5), the deterministic displacement satisfies

$$\|\mathbf{z}_{t-1} - \mathbf{z}_t\|_{\text{det}} \approx \beta_t \|\nabla \log p(\mathbf{z}_t)\|.$$

The detailed derivation is provided in Appendix C.3. Combining with equation 10, we derive $\|\mathbf{z}_{t-1} - \mathbf{z}_t\|_{\text{det}} \approx \beta_t \cdot \frac{\Delta}{\sigma_*^2}$. As the radius (see Definition 3.1) is only $c\sigma_*$, when the update step satisfies $\beta_t \frac{\Delta}{\sigma_*^2} > c\sigma_*$ may result in overshooting the distribution $\mathbf{z}_{t-1} \notin \bigcup_k B(m_k, c\sigma_*)$.

C.2 TOY EXAMPLES

To further illustrate the effect of DC-structure (see Definition 3.1) on diffusion sampling, we provide two controlled toy experiments based on Mixture-of-Gaussians (MoG): one in 2D and one in 1D. In each case, we construct *two distributions under identical diffusion settings* (same noise schedule, network architecture, optimizer, and sampling steps): (i) a smooth MoG with well-separated modes, and (ii) a DC-structured MoG with narrow and closely packed peaks. Brighter colors in the heatmaps correspond to higher density regions.

2D MoG: Effect of DC-structure. The DC-structured MoG ('Narrow multi-peak MoG' in Fig. 3) contains sharply concentrated peaks placed in close proximity, mimicking the clustered geometric modes observed in molecular data. As shown in Fig. 3, under identical diffusion parameters, sampling from this DC-structured distribution exhibits noticeably poorer behavior: a substantial portion of generated samples drift into low-density regions. This demonstrates that DC-structure imposes additional instability on the reverse diffusion process, even in simple synthetic settings.

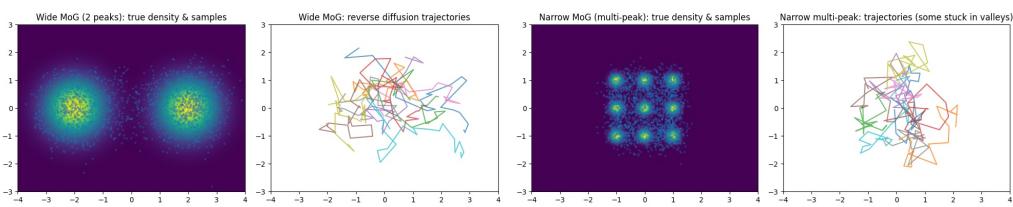


Figure 3: 2D Mixture-of-Gaussians examples. Left: smooth MoG. Right: DC-structured MoG.

1D MoG: Overshoot phenomenon. The 1D DC-structured MoG ('Sharp 4-peak mixture' in Fig. 4) contains four narrow peaks in close proximity. As illustrated in Fig. 4, at intermediate timesteps (around 25%–50% of the reverse process before generated results), some trajectories

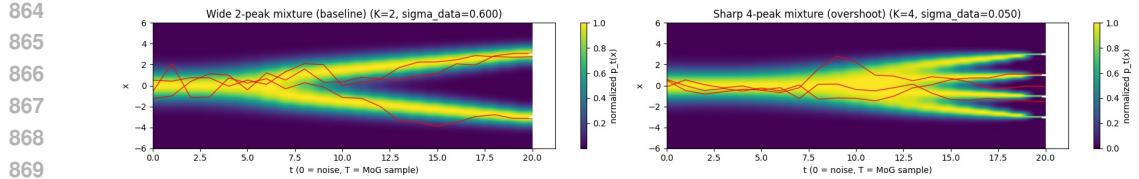


Figure 4: 1D Mixture-of-Gaussians examples. Left: smooth MoG. Right: DC-structured MoG exhibiting overshoot.

overshoot: they cross peak regions and fall into low-density regions, ultimately producing invalid samples. This behavior aligns with the overshoot mechanism analyzed in Sec. 3.1.

These synthetic experiments empirically support our theoretical analysis: *DC-structured distributions are significantly more fragile under diffusion sampling*, consistently exhibiting drift, overshoot, and degraded sample quality. This behavior directly parallels challenges found in molecular diffusion models and further motivates the formulation of DIST as a corrective sampling framework for DC-structured data.

C.3 DETERMINISTIC DISPLACEMENT

In order to analyze the overshoot behavior induced by the DC-structure of $p(z_t)$, it is necessary to isolate the *deterministic displacement* of the reverse update in equation 5. The stochastic noise term is not included in this analysis, because an additive Gaussian perturbation can move a trajectory in an arbitrary direction and therefore obscures the geometric effect we seek to characterize. Our interest is in the model-induced geometric drift of the reverse process, not in the random diffusive fluctuations. For this reason, we study the deterministic quantity $\|z_{t-1} - z_t\|_{\text{det}}$, which captures the intrinsic drift responsible for overshoot, and we provide a detailed derivation below.

Isolate the deterministic displacement of the reverse DDPM update used in equation 5:

$$z_{t-1} = \frac{1}{\sqrt{1-\beta_t}} \left(z_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \varepsilon_\theta(z_t, t) \right).$$

Subtracting z_t and regrouping terms gives

$$\begin{aligned} z_{t-1} - z_t &= \frac{1}{\sqrt{1-\beta_t}} z_t - \frac{\beta_t}{\sqrt{1-\beta_t}\sqrt{1-\bar{\alpha}_t}} \varepsilon_\theta(z_t, t) - z_t \\ &= \underbrace{\left(\frac{1}{\sqrt{1-\beta_t}} - 1 \right)}_{A_t} z_t - \underbrace{\frac{\beta_t}{\sqrt{1-\beta_t}\sqrt{1-\bar{\alpha}_t}}}_{B_t} \varepsilon_\theta(z_t, t). \end{aligned}$$

Thus the coefficients in front of z_t and the score term are, respectively,

$$A_t = \frac{1}{\sqrt{1-\beta_t}} - 1 = \frac{1 - \sqrt{1-\beta_t}}{\sqrt{1-\beta_t}}, \quad B_t = \frac{\beta_t}{\sqrt{1-\beta_t}\sqrt{1-\bar{\alpha}_t}}.$$

EDM (Hoogeboom et al., 2022) and subsequent works (Xu et al., 2023; Ding & Hofmann, 2025) adopt the cosine noise schedule (Nichol & Dhariwal, 2021a), under which $\beta_{300} \approx 1.6 \times 10^{-3}$. This confirms that β_t remains very small at moderate timesteps.

Relative scale of z_t and ε_θ . During training, under the forward process (see equation 4), both z_0 and ε have $O(1)$ variance. Thus for typical samples

$$\|z_t\| \asymp \|\varepsilon\| \asymp \|\varepsilon_\theta(z_t, t)\|,$$

since the DDPM noise-prediction objective ensures that $\varepsilon_\theta(z_t, t)$ matches the distribution of ε . Hence

$$\|A_t z_t\| \asymp |A_t|, \quad \|B_t \varepsilon_\theta(z_t, t)\| \asymp |B_t|.$$

918 **Asymptotic dominance of the score-driven transport term.** A Taylor expansion gives
 919

$$920 \quad A_t = \frac{\beta_t}{2} + O(\beta_t^2), \quad \frac{1}{\sqrt{1 - \bar{\alpha}_t}} = 1 + O(\beta_t),$$

922 so

$$923 \quad B_t = \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} (1 + O(\beta_t)) \asymp \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}}.$$

925 Therefore

$$926 \quad \frac{\|A_t z_t\|}{\|B_t \varepsilon_\theta(z_t, t)\|} \asymp \frac{|A_t|}{|B_t|} = \frac{\frac{\beta_t}{2} + O(\beta_t^2)}{\beta_t / \sqrt{1 - \bar{\alpha}_t}} = \frac{1}{2} \sqrt{1 - \bar{\alpha}_t} + O(\beta_t).$$

929 Since $1 - \bar{\alpha}_t \rightarrow 0$ as $t \rightarrow 0$, we obtain the limit

$$930 \quad \lim_{t \rightarrow 0} \frac{\|A_t z_t\|}{\|B_t \varepsilon_\theta(z_t, t)\|} = 0,$$

933 i.e. the Gaussian contraction drift is asymptotically negligible compared to the score-driven transport
 934 term at a moderate t .

935 **Final approximation.** Using the identity

$$937 \quad \nabla \log p(z_t) = -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_\theta(z_t, t),$$

940 the $1/\sqrt{1 - \bar{\alpha}_t}$ factor is absorbed into the score parameterization, so that $B_t \varepsilon_\theta$ becomes a coefficient
 941 of order β_t in front of $\nabla \log p(z_t)$. Thus the deterministic displacement satisfies

$$942 \quad \|z_{t-1} - z_t\|_{\text{det}} \approx \beta_t \|\nabla \log p(z_t)\|,$$

944 with the Gaussian contraction drift $A_t z_t$ being strictly lower order in the small-step regime.

946 D SUPPLEMENTARY EXPERIMENTS

948 The experiment shown in Table 5 is designed to illustrate how stochastic correction in diffusion
 949 sampling interacts with the DC-structure of molecular data. In molecular distributions characterized
 950 by densely packed and sharply concentrated peaks (Sec. 3.1), even small prediction errors can cause
 951 sampling trajectories to drift into low-density regions. SDE-based samplers such as DDPM (Ho
 952 et al., 2020) introduce random perturbations that help trajectories re-enter valid high-density regions,
 953 effectively compensating for such errors (Cao et al., 2023). In contrast, ODE-based samplers like
 954 DDIM (Song et al., 2020) are fully deterministic, lacking this corrective mechanism and thus being
 955 more susceptible to error accumulation when the distribution is highly concentrated.

956 To test this hypothesis, we compare the generation behavior of molecular data (with DC-structure)
 957 and image data (with smoother distributions) under both DDIM and DDPM sampling. As shown
 958 in Table 5, **DDIM consistently outperforms DDPM in image generation (CIFAR10)**, whereas
 959 **the opposite trend appears for molecular generation (QM9)**, where **DDPM yields substantially**
 960 **higher molecule stability across all timestep settings**. These results indicate that the stochasticity
 961 in DDPM sampling mitigates overshoot and helps realign trajectories with valid molecular peaks.
 962 This finding supports our theoretical analysis in Sec. 3.1, which identified DC-structure as a key
 963 factor causing fragility in reverse inference, and it further motivates the design of our proposed
 964 DIST method, which explicitly corrects intermediate distributions to achieve similar stabilization
 965 effects in a principled manner.

966 E PROOFS

968 Here we provide the proofs of Corollary 3.1 and Proposition 3.1.

970 E.1 COROLLARY 3.1

971 We first give the preliminary knowledge about the following corollary then derive the proof.

972 **Table 5:** Comparison between CIFAR10 image generation (measured by FID) and QM9 molecular
973 generation (measured by molecule stability) under DDIM (Song et al., 2020) and DDPM (Ho et al.,
974 2020) sampling. Results are reported for different numbers of timesteps S . Lower is better for FID,
975 higher is better for stability. CIFAR10 numbers are taken from the original DDIM paper (Song et al.,
976 2020), and QM9 experiments follow the setup of EDM (Hoogeboom et al., 2022). The better values
977 are shown in **bold**.

S	CIFAR10 FID ↓					QM9 Molecule Stability (%) ↑				
	10	20	50	100	1000	10	20	50	100	1000
DDIM	13.36	6.84	4.67	4.16	4.04	9.6	37.4	57.0	63.0	65.9
DDPM	41.07	18.36	8.01	5.78	4.73	12.4	50.9	74.1	77.9	82.0

984 **Total Variation (TV) distance** For two probability measures μ, ν on a measurable space (X, \mathcal{F}) ,
985 the *total variation distance* is defined by

$$\|\mu - \nu\|_{\text{TV}} := \sup_{A \in \mathcal{F}} |\mu(A) - \nu(A)|.$$

988 Equivalently, by the Hahn–Jordan decomposition, it admits the dual characterization

$$\|\mu - \nu\|_{\text{TV}} = \frac{1}{2} \sup_{\|f\|_{\infty} \leq 1} \left| \int_X f d\mu - \int_X f d\nu \right|,$$

992 where the supremum is over all measurable test functions f with $\|f\|_{\infty} \leq 1$.

994 **Contraction under Markov kernels** Let K be a Markov kernel, i.e. $K(x, \cdot)$ is a probability mea-
995 sure for each $x \in X$, and $x \mapsto K(x, A)$ is measurable for each $A \in \mathcal{F}$. For a probability measure
996 μ , define the pushforward

$$(K\mu)(A) := \int_X K(x, A) \mu(dx), \quad A \in \mathcal{F}.$$

1000 For a bounded measurable function $f : X \rightarrow \mathbb{R}$, define

$$(Kf)(x) := \int_X f(y) K(x, dy).$$

1004 Note that $|Kf(x)| \leq \|f\|_{\infty}$, hence $\|Kf\|_{\infty} \leq \|f\|_{\infty}$.

1006 **Corollary 3.1** (TV–contraction Step). *Let $K_{t \rightarrow 0}$ be the ideal reverse Markov kernel, which can
1007 be intuitively understood as the perfect diffusion model with the true score functions; in other
1008 words, when the ideal reverse Markov kernel is applied to the true marginal distribution, we
1009 obtain the true data distribution $p_0 = K_{t \rightarrow 0} p_t$. Then, for any probability measure q_t , there
1010 exists a TV–contraction coefficient $\kappa \in [0, 1]$ such that*

$$\|q_0 - p_0\|_{\text{TV}} = \|K_{t \rightarrow 0} q_t - K_{t \rightarrow 0} p_t\|_{\text{TV}} \leq \kappa \|q_t - p_t\|_{\text{TV}}, \quad (8)$$

1012 where if q_t is the intermediate model distribution, q_0 can be understood as the final model
1013 distribution obtained by applying the perfect diffusion model on q_t .

1015 *Proof.* For any two probability measures μ, ν ,

$$\|K\mu - K\nu\|_{\text{TV}} \leq \|\mu - \nu\|_{\text{TV}},$$

1018 let $\Delta := \mu - \nu$. Use the dual characterization of TV and Fubini’s theorem,

$$\begin{aligned} \|K\mu - K\nu\|_{\text{TV}} &= \frac{1}{2} \sup_{\|f\|_{\infty} \leq 1} \left| \int f d(K\Delta) \right| \\ &= \frac{1}{2} \sup_{\|f\|_{\infty} \leq 1} \left| \int (Kf)(x) d\Delta(x) \right| \\ &\leq \frac{1}{2} \sup_{\|g\|_{\infty} \leq 1} \left| \int g(x) d\Delta(x) \right| = \|\mu - \nu\|_{\text{TV}}, \end{aligned}$$

1026 where we set $g = Kf$, which still satisfies $\|g\|_\infty \leq 1$. Let $K := K_{t \rightarrow 0}$ and $p := Kp_t$. Applying
 1027 the above inequality to q_t, p_t gives
 1028

$$1029 \|Kq_t - Kp_t\|_{\text{TV}} \leq \|q_t - p_t\|_{\text{TV}}.$$

1030 Thus, we obtain a contraction $\kappa \in [0, 1]$. □
 1031

1032 To sharpen this to a **stricter** inequality, we introduce the Dobrushin (TV) coefficient:
 1033

$$1034 \delta(K) := \sup_{x, x'} \|K(x, \cdot) - K(x', \cdot)\|_{\text{TV}} = 1 - \inf_{x, x'} \int \min\{K(x, dy), K(x', dy)\}.$$

1035 Then for all probability measures μ, ν ,

$$1036 \|K\mu - K\nu\|_{\text{TV}} \leq \delta(K) \|\mu - \nu\|_{\text{TV}}.$$

1037 Because in reverse diffusion $K_{t \rightarrow 0}(x, dy) = \mathcal{N}(y; \mu_t(x), \Sigma_t) dy$ has continuous Gaussian densities
 1038 with full support, the overlap integral satisfies
 1039

$$1040 \int \min\{K(x, dy), K(x', dy)\} > 0,$$

1041 which implies $\delta(K) < 1$. Consequently,
 1042

$$1043 \|K\mu - K\nu\|_{\text{TV}} < \|\mu - \nu\|_{\text{TV}}, \quad \kappa < 1.$$

1044 E.2 PROPOSITION 3.1

1045 Fix a threshold τ and follow Sec. 3.2, then we have
 1046

$$1047 J^* := J^*(\tau), \quad A_\tau := \bigcup_{j \in J^*} B_j, \quad \alpha := \alpha(\tau) = p_t(A_\tau), \quad \beta := \beta(\tau) = q_t(A_\tau).$$

1048 Recall the selected mixtures and weights
 1049

$$1050 q_t^c = \sum_{j \in J^*} \tilde{\pi}_j q_{t|j}, \quad \tilde{\pi}_j = \frac{\hat{\pi}_j}{\beta}, \quad p_t^c = \sum_{j \in J^*} \bar{\pi}_j p_{t|j}, \quad \bar{\pi}_j = \frac{\pi_j}{\alpha}.$$

1051 **Proposition 3.1** (Selective Reverse Error Bound). *Under the DC-structure in Definition 3.1
 1052 and the batch construction described above, for any threshold τ the deviation between the
 1053 selectively corrected reverse distribution $K_{t \rightarrow 0}q_t^c(\tau)$ and the true distribution $p = K_{t \rightarrow 0}p_t$
 1054 admits an upper bound of the form*

$$1055 \|K_{t \rightarrow 0}q_t^c(\tau) - p\|_{\text{TV}} \leq f(\alpha(\tau), \beta(\tau), (\pi_j, \hat{\pi}_j)_{j \in J^*(\tau)}), \quad \sup_{j \in J^*(\tau)} \text{TV}(q_{t|j}, p_{t|j}),$$

1056 where $f(\cdot)$ is an explicit function of the true coverage $\alpha(\tau)$, the model coverage $\beta(\tau)$, the
 1057 selected batch weights, and the conditional discrepancies. The exact form of $f(\cdot)$ is provided
 1058 in Appendix E.2.

1059 *Proof.* Conditioning p_t on A_τ drops exactly $1 - \alpha$ true mass, hence **coverage term** is
 1060

$$1061 \|p_t^c - p_t\|_{\text{TV}} = 1 - \alpha. \quad (11)$$

1062 Add and subtract $\sum_{j \in J^*} \tilde{\pi}_j p_{t|j}$ and use the triangle inequality to obtain **selected-region term**:

$$1063 \|q_t^c - p_t^c\|_{\text{TV}} \leq \underbrace{\left\| \sum_{j \in J^*} \tilde{\pi}_j (q_{t|j} - p_{t|j}) \right\|_{\text{TV}}}_{\text{component error}} + \underbrace{\left\| \sum_{j \in J^*} (\tilde{\pi}_j - \bar{\pi}_j) p_{t|j} \right\|_{\text{TV}}}_{\text{weight mismatch}}. \quad (12)$$

1080 For the **component term**, TV is convex:
 1081

$$1082 \quad \left\| \sum_j \tilde{\pi}_j (q_{t|j} - p_{t|j}) \right\|_{\text{TV}} \leq \sum_j \tilde{\pi}_j \|q_{t|j} - p_{t|j}\|_{\text{TV}}. \quad (13)$$

1085 Now separate the shared and unshared parts of the two distributions. Let $c_j := \min\{\tilde{\pi}_j, \bar{\pi}_j\}$ and
 1086 write $\tilde{\pi}_j = c_j + r_j$, $\bar{\pi}_j = c_j + s_j$ with $r_j, s_j \geq 0$ and $\sum_j r_j = \sum_j s_j = \frac{1}{2} \sum_j |\tilde{\pi}_j - \bar{\pi}_j|$. Then
 1087

$$1088 \quad \sum_j \tilde{\pi}_j (q_{t|j} - p_{t|j}) = \sum_j c_j (q_{t|j} - p_{t|j}) + \sum_j r_j q_{t|j} - \sum_j s_j p_{t|j}.$$

1090 Using convexity,
 1091

$$1092 \quad \left\| \sum_j \tilde{\pi}_j (q_{t|j} - p_{t|j}) \right\|_{\text{TV}} \leq \sum_j c_j \|q_{t|j} - p_{t|j}\|_{\text{TV}} + \frac{1}{2} \sum_j |\tilde{\pi}_j - \bar{\pi}_j|. \quad (14)$$

1094 For the weight term in equation 12, because $\sum_j (\tilde{\pi}_j - \bar{\pi}_j) = 0$,
 1095

$$1096 \quad \left\| \sum_{j \in J^*} (\tilde{\pi}_j - \bar{\pi}_j) p_{t|j} \right\|_{\text{TV}} \leq \frac{1}{2} \sum_{j \in J^*} |\tilde{\pi}_j - \bar{\pi}_j|. \quad (15)$$

1099 Combining equation 14 and equation 15, and noting $\sum_j c_j \leq 1$, gives
 1100

$$1101 \quad \|q_t^c - p_t^c\|_{\text{TV}} \leq \sup_{j \in J^*} \|q_{t|j} - p_{t|j}\|_{\text{TV}} + \|\tilde{\pi} - \bar{\pi}\|_1. \quad (16)$$

1103 Renormalize the weights,
 1104

$$1105 \quad \|\tilde{\pi} - \bar{\pi}\|_1 = \sum_{j \in J^*} \left| \frac{\hat{\pi}_j}{\beta} - \frac{\pi_j}{\alpha} \right| = \frac{1}{\alpha\beta} \sum_{j \in J^*} |\alpha\hat{\pi}_j - \beta\pi_j|$$

$$1106 \quad = \frac{1}{\alpha\beta} \sum_{j \in J^*} |\alpha(\hat{\pi}_j - \pi_j) + (\alpha - \beta)\pi_j| \leq \frac{1}{\alpha\beta} \left(\alpha \sum_{j \in J^*} |\hat{\pi}_j - \pi_j| + |\alpha - \beta| \sum_{j \in J^*} \pi_j \right)$$

$$1107 \quad = \frac{\|\hat{\pi} - \pi\|_1}{\beta} + \frac{|\alpha - \beta|}{\beta} \leq \frac{2\|\hat{\pi} - \pi\|_1}{\beta} \leq \frac{2\|\hat{\pi} - \pi\|_1}{\min\{\alpha, \beta\}}. \quad (17)$$

1113 By symmetry (swapping α, β) we get $\|\tilde{\pi} - \bar{\pi}\|_1 \leq 2\|\hat{\pi} - \pi\|_1/\alpha$, so equation 17 is the uniform
 1114 bound.
 1115

1116 By the triangle inequality with equation 11 and equation 16, the final discrepancy at timestep t

$$1117 \quad \|q_t^c - p_t\|_{\text{TV}} \leq (1 - \alpha) + \|\tilde{\pi} - \bar{\pi}\|_1 + \sup_{j \in J^*} \|q_{t|j} - p_{t|j}\|_{\text{TV}}.$$

1119 Using equation 17 we obtain the safe bound
 1120

$$1121 \quad \|q_t^c - p_t\|_{\text{TV}} \leq (1 - \alpha) + \frac{2\|\hat{\pi} - \pi\|_1}{\min\{\alpha, \beta\}} + \sup_{j \in J^*} \|q_{t|j} - p_{t|j}\|_{\text{TV}}. \quad (18)$$

1123 Let $K_{t \rightarrow 0}$ be the ideal reverse kernel and $p := K_{t \rightarrow 0}p_t$. By Appendix E.1 there exists $\kappa \in [0, 1]$
 1124 such that
 1125

$$1126 \quad \|K_{t \rightarrow 0}\mu - K_{t \rightarrow 0}\nu\|_{\text{TV}} \leq \kappa \|\mu - \nu\|_{\text{TV}} \quad \forall \mu, \nu. \quad (19)$$

1127 Taking $\mu = q_t^c$ and $\nu = p_t$ and combining with equation 18 gives the form of $f(\cdot)$ by:
 1128

$$1129 \quad \|K_{t \rightarrow 0}q_t^c - p\|_{\text{TV}} \leq \kappa \left[(1 - \alpha) + \frac{2\|\hat{\pi} - \pi\|_1}{\min\{\alpha, \beta\}} \right]. \quad (20)$$

1131 \square

1132 Please refer to Appendix E.3 for further details about the confidence bound and estimation error of
 1133 α and β .

1134
1135

E.3 CONFIDENCE BOUND

1136 Even though the intermediate distributions are intractable, some quantities mentioned in Ap-
1137 pendix E.2 can be empirically estimated from available samples of both the forward and reverse
1138 diffusion processes, and their estimation errors can be rigorously bounded. In diffusion models we
1139 can draw i.i.d. samples z_t from p_t and z'_t from q_t , we estimate

1140
1141
$$\hat{\alpha}(\tau) = \frac{1}{n_p} \sum_{i=1}^{n_p} \mathbf{1}\{z_t^{(i)} \in A_\tau\}, \quad \hat{\beta}(\tau) = \frac{1}{n_q} \sum_{i=1}^{n_q} \mathbf{1}\{z_t'^{(i)} \in A_\tau\}.$$

1142

1143 And by Hoeffding's inequality,
1144

1145
$$\mathbb{P}(|\hat{\alpha} - \alpha| \leq \epsilon_\alpha) \geq 1 - \delta_\alpha, \quad \epsilon_\alpha = \sqrt{\frac{\log(2/\delta_\alpha)}{2n_p}},$$

1146

1147 and similarly for $\hat{\beta}$. We define lower confidence bounds
1148

1149
$$\alpha_L = \max\{\hat{\alpha} - \epsilon_\alpha, 0\}, \quad \beta_L = \max\{\hat{\beta} - \epsilon_\beta, 0\}.$$

1150 A multinomial L_1 concentration inequality (Weissman et al., 2003) provides
1151

1152
$$\Pr(\|\hat{\pi} - \pi\|_1 \geq \epsilon) \leq (2^K - 2) e^{-m\epsilon^2/2},$$

1153

1154 where $K = |J^*(\tau)|$ and m is the number of samples used to estimate π . Hence, with probability at
1155 least $1 - \delta_\pi$,

1156
$$\|\hat{\pi} - \pi\|_1 \leq \sqrt{\frac{2 \log((2^K - 2)/\delta_\pi)}{m}}.$$

1157

1158 Substituting these empirical bounds into equation equation 20 yields the **finite-sample selective**
1159 **reverse error bound**:

1160
1161
$$\|K_{t \rightarrow 0} q_t^c(\tau) - p\|_{\text{TV}} \leq \kappa \left[(1 - \alpha_L) + \frac{2U(n_p, \delta_\pi)}{\min\{\alpha_L, \beta_L\}} + \sup_{j \in J^*(\tau)} \text{TV}(q_{t|j}, p_{t|j}) \right],$$

1162

1163 where

1164
$$U(n_p, \delta_\pi) = \sqrt{\frac{2 \log((2^K - 2)/\delta_\pi)}{n_p}}.$$

1165

1166 This bound holds with probability at least $1 - (\delta_\alpha + \delta_\beta + \delta_\pi)$. All terms are **computable from**
1167 **samples**: α_L, β_L from empirical coverage and $U(n_p, \delta_\pi)$ from batch counts.
11681169 F SETTINGS OF DIST
11701171 DIST is applied at an intermediate timestep t to correct the distribution q_t . Concretely, when applied
1172 to EDM (Hoogeboom et al., 2022) and GeoLDM (Xu et al., 2023), DIST firstly denoises samples
1173 from $t = 1000$ to $t = 300^1$, then duplicates and perturbs each sample 100 times to form batches
1174 $\{B_j\}_{j=1}^J$ under a radius- r constraint. From each batch, half of the elements are randomly selected
1175 as pilot subsets $\{B_j^{\text{sub}} \mid B_j^{\text{sub}} \in B_j\}_{j=1}^J$, and pilot outcomes $s_j \in \mathbb{R}$ are evaluated based on the
1176 stability and validity of the final generated molecules. When applied to RADM (Ding & Hofmann,
1177 2025), the settings are the same except for: the pilot subsets on QM9, which are fixed as 30% of the
1178 batch size; and the first-stage denoising on GEOM-Drugs, which terminates at $t = 200$.
11791180 G EFFICIENCY QUANTIFICATION OF DIST
11811182 G.1 THEORETICAL Timestep EFFICIENCY
11831184 In this section, we quantify the expected computational cost of the DIST. Let T denote the total
1185 number of timesteps in standard inference, and let $t < T$ be the intermediate timestep at which
1186 we form the candidate pool. Each candidate is then duplicated into batches of size $|B|$, and only
1187¹All three baselines use a total of $T = 1000$ timesteps.

1188 a fraction r_c are retained after pilot evaluation, which incurs an additional cost C_{pilot} per sample.
 1189 Analytically, the expected cost for a valid sample will be:
 1190

$$1191 \mathbb{E}[\text{cost}] = \left(\frac{1}{r_c} - 1 \right) \left[\frac{T-t}{|B|} + C_{\text{pilot}} \right] + \left[\frac{T-t}{|B|} + t \right]. \quad (21)$$

1193 The first term accounts for the discarded forward propagation and evaluation of discarded batches,
 1194 while the second term corresponds to the trajectory for selected batches requiring full reverse infer-
 1195 ence from t to 0. We now refine the cost expression by modeling the pilot evaluation as proportional
 1196 to the selection timestep. Specifically, we set
 1197

$$1198 C_{\text{pilot}} = \gamma t, \quad \gamma = \frac{|B^{\text{sub}}|}{|B|}, \quad (22)$$

1199 where γ denotes the proportion of elements in a batch used for pilot evaluation (see Sec. 3.2).
 1200 Substituting this into the expected cost gives
 1201

$$1202 \mathbb{E}[\text{cost}] = \left(1 - \gamma + \frac{\gamma}{r_c} \right) t + \frac{T-t}{|B| r_c}. \quad (23)$$

1204 Importantly, the expected cost depends on r_c , which is correlated with the final generation quality.
 1205 However, in practice, the total cost is usually much smaller than T . For example, in the EDM+DIST
 1206 experiment on QM9 (as shown in Table 2), the settings are $T = 1000$, $|B| = 100$, and $\gamma = 0.5$. The
 1207 empirical estimate of r_c is near 0.39, leading to an empirical cost of 556.1 steps on average.
 1208

1209 Please refer to Appendix G.2 for detailed implementation of DIST and end-to-end wall-clock usage
 1210 for efficiency.
 1211
 1212

1213 G.2 WALL-CLOCK EFFICIENCY

1215 In this section, we provide a pseudocode implementation of DIST and measure its end-to-end time
 1216 efficiency using wall-clock runtime. All experiments are conducted on a single NVIDIA RTX A6000
 1217 GPU with CUDA 12.4. To ensure a fair comparison and remain consistent with prior work (Hooge-
 1218 boom et al., 2022; Xu et al., 2023; Ding & Hofmann, 2025), we follow the standard setting of
 1219 generating 10,000 molecules with a fixed batch size of 100 (see Sec. 4.1).

1220 To better explain the efficiency mechanism and justify the reproducibility of DIST, we present the
 1221 pseudocode in Algorithm 1. For consistency with the theoretical foundation in Sec. 3.2 and to
 1222 illustrate the parallelism of the data flow, the inference is performed in a batch-wise manner. In
 1223 existing works (Hoogeboom et al., 2022; Song et al., 2024; Xu et al., 2023; Ding & Hofmann, 2025),
 1224 diffusion models generate molecules batch by batch, whereas DIST introduces a novel efficient
 1225 paradigm that constructs an intermediate model distribution and explicitly evaluates its deviation
 1226 from the true distribution. This selective correction is the source of the computational savings.

1227 The iterative Markovian denoising procedure is the main bottleneck for speeding up inference in
 1228 diffusion models (Frans et al., 2024), so the consumption of GPU-intensive timesteps is a key quanti-
 1229 ty to consider. In addition to the timestep-based analysis in Table 3 and Appendix G.1, we also
 1230 report the end-to-end wall-clock runtime for DIST combined with the baseline models. As shown
 1231 in Table 6, DIST consistently improves the efficiency of the backbone methods, in line with the
 1232 timestep-based results in Table 3 and the theoretical analysis in Appendix G.1.

1233 We would like to clarify that **DIST is designed as a corrective sampling method for stabilizing**
 1234 **molecular generation, with its efficiency improvement being an advantageous side effect.** As
 1235 such, DIST is not directly comparable to diffusion-model acceleration techniques.
 1236
 1237

1238 H SUPPLEMENTARY ABLATION STUDY

1240 This section provides additional ablation studies for the hyperparameters of DIST, including the
 1241 batch score threshold τ , the intermediate timestep t , and the perturbation intensity used in the
 radius- r assumption, each introduced in Sec. 3.2. For each ablation experiment, we vary only a

1242 **Algorithm 1** Diffuse and Steer (DIST)
1243 **Inputs:** neural network ε_θ , target number N , intermediate timestep t^* , threshold τ , pilot size
1244 $|B^{\text{sub}}|$, pilot score module Eval
1245 **Output:** set of generated molecules \mathbf{S}
1246 Initialize $\mathbf{S} \leftarrow \emptyset$
1247 Sample initial noise batch $\{\mathbf{z}_T\} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
1248 **while** $|\mathbf{S}| < N$ **do**
1249 **for** $t = T, T-1, \dots, t^*+1$ **do**
1250 Sample $\{\varepsilon\} = \{(\varepsilon_x, \varepsilon_h)\} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
1251 Subtract center of mass from ε_x
1252 $\{\mathbf{z}_{t-1}\} \leftarrow \frac{1}{\sqrt{1-\beta_t}} \left(\{\mathbf{z}_t\} - \frac{\beta_t}{\sqrt{1-\alpha_t}} \varepsilon_\theta(\{\mathbf{z}_t\}, t) \right) + \rho_t \{\varepsilon\}$
1253 **end for**
1254 Duplicate and perturb $\{\mathbf{z}_{t^*}\}$ to obtain $\{\mathbf{z}_{t^*}^{(r)}\}$ {within radius r }
1255 Select pilot subset $\{\mathbf{z}_{t^*}^{\text{sub},(r)}\}$ of size $|B^{\text{sub}}|$
1256 $\{s\}, \{\mathbf{z}_0^{\text{sub},(r)}\} \leftarrow \text{Eval}(\{\mathbf{z}_{t^*}^{\text{sub},(r)}\})$
1257 $\mathbf{S} \leftarrow \mathbf{S} \cup \{\mathbf{z}_0^{\text{sub},(r)} \mid s > \tau\}$
1258 Define remaining high-score batch at t^* : $\{\mathbf{z}_{t^*}^{\text{rest},(r)}\} \leftarrow \{\mathbf{z}_{t^*}^{(r)} \mid s > \tau\} \setminus \{\mathbf{z}_{t^*}^{\text{sub},(r)}\}$
1259 **for** $t = t^*, t^*-1, \dots, 1$ **do**
1260 Sample $\{\varepsilon\} = \{(\varepsilon_x, \varepsilon_h)\} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
1261 Subtract center of mass from ε_x
1262 $\{\mathbf{z}_{t-1}^{\text{rest},(r)}\} \leftarrow \frac{1}{\sqrt{1-\beta_t}} \left(\{\mathbf{z}_t^{\text{rest},(r)}\} - \frac{\beta_t}{\sqrt{1-\alpha_t}} \varepsilon_\theta(\{\mathbf{z}_t^{\text{rest},(r)}\}, t) \right) + \rho_t \{\varepsilon\}$
1263 **end for**
1264 $\mathbf{S} \leftarrow \mathbf{S} \cup \{\mathbf{z}_0^{\text{rest},(r)}\}$
1265 **end while**
1266
1267
1268

Table 6: Wall-clock end-to-end consumption of different sampling strategies for generating 10,000 molecules on QM9. The experimental setting is identical to Table 2, using a fixed batch size of 100 and an intermediate timestep $t = 300$. ‘Count’ indicates how many attempts are required to produce 10,000 molecules (e.g., running inference with batch size 100 for 100 iterations). For models without DIST, the stages ‘Diffuse’ and ‘Steer’ correspond to the standard inference procedures $T \rightarrow t$ and $t \rightarrow 0$, respectively. The ‘Total’ column is reported in minutes and seconds (mm:ss.ss). The better strategy and its total wall-clock consumption are highlighted in **bold**.

Model	Diffuse		Duplication		Pilot Evaluation		Steer		Total ↓
	Time (s)	Count	Time (s)	Count	Time (s)	Count	Time (s)	Count	
EDM	60.935	100	–	–	–	–	26.115	100	145:07.11
EDM+DIST	60.933	3	0.0009	258	27.0525	129	26.115	50	82:59.45
GeoLDM	58.1163	100	–	–	–	–	25.0704	100	138:39.72
GeoLDM+DIST	58.1163	3	0.0008	220	25.9830	110	25.0705	50	71:26.91
RADM	26.4737	100	–	–	–	–	11.3250	100	62:60.53
RADM+DIST	26.4742	3	0.0008	219	11.9224	66	11.4118	70	27:47.10

1284 single hyperparameter of DIST while keeping all other settings fixed to the configuration of DIST
1285 strengthened EDM Hoogeboom et al. (2022) as described in Sec. 4. This ensures that every sub-
1286 experiment isolates the effect of one hyperparameter change.

1287 As discussed in Sec. 3.2, DIST operates purely as an inference-time corrective module and does not
1288 require retraining or modification of the backbone diffusion model. Because inference is substan-
1289 tially cheaper than training (e.g., in DDPM (Ho et al., 2020), training takes 10.6 hours on 8 V100
1290 GPUs while generating 256 CIFAR10 samples takes only 17 seconds), **hyperparameter search is**
1291 **lightweight in practice**. Importantly, the results below show that DIST performs **consistently well**
1292 **across a broad range of hyperparameters**, indicating that the method is not overly sensitive to
1293 tuning.

1294
1295 **H.1 BATCH SCORE THRESHOLD**

Given a threshold τ , DIST selects batches according to whether their pilot scores exceed this value, which determines the coverage of both the true distribution and the model distribution. Larger thresholds restrict selection to batches that are more likely to correspond to valid high-density regions, whereas smaller thresholds broaden the selected region and capture more mass, while at the cost of admitting samples that deviate from the true distribution (see Sec. 3.2).

The results are reported in Table 7. Although a larger τ improves stability metrics, the admissible region becomes overly constrained and may harm overall performance. Moreover, the retained ratio r_c (see Appendix G.1) drops from 71% to 32%, indicating that a larger portion of batches is discarded, which in turn reduces the sampling efficiency. Across all tested values, DIST consistently outperforms the EDM (Hoogeboom et al., 2022), demonstrating robustness to the choice of τ .

Table 7: Ablation on batch score threshold τ for molecule stability on QM9.

τ	Atom Sta (%)	Mol Sta (%)	Valid (%)	Valid \times Unique (%)
EDM	98.7	82.0	91.9	90.7
0.82	98.9	87.8	95.4	92.4
0.84	99.1	88.2	96.6	93.9
0.86	99.2	89.9	96.9	94.1
0.88	99.2	90.2	96.8	93.2

H.2 INTERMEDIATE Timestep

The intermediate timestep t determines when the corrective selection is applied. If t is too large, forward noise destroys the DC-structure; if too small, the candidate pool does not adequately represent the intermediate distribution (see Sec. 3.2).

As shown in Table 8, smaller t values correct the distribution later in the reverse chain, improving stability metrics, while excessively small values may reduce uniqueness due to extended diffusing. Even without intentional tuning, tested t values yield strong improvements over the EDM baseline, indicating that DIST remains effective across a broad range.

Table 8: Ablation on intermediate timestep t on QM9.

t	Atom Sta (%)	Mol Sta (%)	Valid (%)	Valid \times Unique (%)
EDM	98.7	82.0	91.9	90.7
200	99.2	90.2	96.8	92.5
300	99.2	89.9	96.9	94.1
400	99.2	89.7	96.0	94.0
500	99.1	89.3	95.4	92.1

H.3 PERTURBATION INTENSITY

Following Definition 3.1 and the discussion in Sec. 3.2, the space is partitioned into radius- r batches $\{B_j\}_{j=1}^J$, each serving as a local region around peaks. After obtaining the candidate pool at timestep t , these batches are optionally perturbed with Gaussian noise of scale λ .

Table 9 shows that DIST is highly robust to a small perturbation intensity: tested λ values produce strong performance, and even $\lambda = 0$ (pure duplication without perturbation) already offers substantial improvements. This indicates that DIST does not rely on fine-grained tuning of perturbation intensity.

Table 9: Ablation on perturbation intensity λ on QM9.

λ	Atom Sta (%)	Mol Sta (%)	Valid (%)	Valid \times Unique (%)
EDM	98.7	82.0	91.9	90.7
0	99.2	89.9	96.9	94.1
0.05	99.2	89.7	95.9	93.1
0.1	99.1	90.1	95.9	92.8
0.2	99.3	90.3	96.2	92.7