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ABSTRACT

Diffusion models have achieved state-of-the-art performance across diverse do-
mains, yet their application to molecular generation remains challenging. Unlike
many data types where values can tolerate slight variations, such as pixel inten-
sities in images, molecules are governed by strict geometric and chemical con-
straints: minor variations in the atomic coordinates of even a single atom can lead
to totally invalid or unstable molecules. These constraints give rise to highly con-
centrated data distributions, forming sharp probability peaks. Moreover, these
peaks are densely packed in configuration space: changing one atom’s type, along
with small but precise adjustments to its position and that of its neighbors, can
result in a distinct molecule, whereas images generally require much larger per-
turbations to change semantic meaning. This dense-concentrated structure makes
diffusion modeling fragile: because valid regions are narrow and tightly clustered,
even small deviations at intermediate timesteps can easily cross validity bound-
aries. Once entering the invalid regions, the generative process provides unreli-
able guidance, causing errors that accumulate over timesteps and drift generative
trajectories off-distribution, ultimately leading to irreparable structural violations.
To address this challenge, we formalize the notion of dense-concentrated structure
in molecular distributions and analyze how discrepancies at intermediate steps
propagate under reverse inference. Building on this insight, we propose DIST,
a plug-in corrective method that DIffuses and STeers the intermediate distribu-
tion, thereby realigning inference trajectories toward a valid molecular distribu-
tion. Our method is model-agnostic and can be integrated into a wide range of ex-
isting diffusion models, achieving significant improvements in performance while
reducing the computational cost to nearly half the standard number of timesteps.

1 INTRODUCTION

Generative models are probabilistic frameworks that aim to approximate an underlying data distri-
bution and generate new samples from the learned distribution. By providing a principled approach
to learning and sampling from complex, high-dimensional distributions, generative modeling has
emerged as a promising paradigm with broad implications for design automation, simulation, and
scientific discovery. Recently, diffusion models (DMs) (Ho et al.l [2020; [Song et al., [2021b) have
become a prominent generative paradigm due to their outstanding performance in natural image
synthesis and beyond (Song et al., [2020; Rombach et al., 2021} Watson et al., 2023). A DM con-
sists of a forward process and a reverse process. In the forward process, data samples are gradually
corrupted by a Markovian noise injection until they become indistinguishable from pure Gaussian
noise. The reverse process is parameterized by a neural network, which is trained to approximate the
time-reversed dynamics by iteratively denoising the corrupted states. At inference time, the model
generates new samples by simulating this learned reverse trajectory, reconstructing structured data
from pure noise. Recent work has extended DMs to 3D molecular generation (Hoogeboom et al.,
2022; |Xu et al., 2023). However, molecular data presents unique challenges that make direct appli-
cation of diffusion models less effective.

Specifically, 3D molecules are represented by continuous 3D atomic coordinates together with dis-
crete features such as atom types. Unlike images, where pixel intensities are only loosely correlated
and can tolerate a wide range of variations, molecules are governed by strict geometric and chem-
ical constraints, such that even small perturbations to atomic coordinates or atom types can result
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in completely invalid or unstable structures (Choi et al., |2025)). These constraints result in highly
concentrated data distributions with narrow probability peaks, where each peak represents a valid
and stable molecular configuration. Even slight displacements can shift the molecular configuration
off-peaks into regions of negligible probability, corresponding to invalid or unstable states (Rey-
mond et al., |2012; Martin & Caol 2015; Bohde et al.| 2025). Moreover, these peaks are densely
packed but clearly separated: changes in one atom’s type, along with small (densely packed) but
precise adjustments (well separated) to its position and that of its neighbors, can result in a dis-
tinct molecule. Overall, the molecular distribution exhibits an evident dense and concentrated
structure, where each probability peak corresponds to a chemically valid molecule, and the
regions between the peaks are of near-zero density. We provide an illustrative analogy to com-
pare the distribution and diffusion process of images with those of molecules in Fig. |1} to highlight
the consequences of such a dense and concentrated structure to the diffusion process. Notably, such
denseness breaks the clear supervision signal required for denoising, introduces learning difficulties,
and leads to errors that accumulate over time; and because of the concentration of the molecular dis-
tribution, such errors cannot be tolerated, ultimately resulting in invalid and unstable generations.

Under the same forward noising process, the peaks of molecular distributions quickly merge creat-
ing overlap regions where samples become indistinguishable. In contrast, image distributions exhibit
broader peaks that overlap smoothly and only at later stages. However, for the reverse process of
molecular diffusion, a critical problem arises: overlap regions create intersections or crossings of
generative trajectories which make the score field inherently ambiguous, where multiple plau-
sible directions coexist, but the model can only represent a single averaged vector. As a result, the
learned score is systematically inaccurate in these regions (Liu et al.}|[2022; |Lee et al., 2023} N1 et al.}
20235)). Because the peaks are thin, discretization error (Zhang et al., [2023)), model limitations, and
imperfect score estimation in overlap regions can push the reverse updates too far, placing samples
into low-density regions (see Fig. [T). The resulting discrepancy between the true data distribution
and the model distribution, caused by artificial inflation of probability mass in invalid regions, then
accumulates and propagates (Li & van der Schaar| 2023)), ultimately leading to irreversible structural
failures. We further analyze this phenomenon in Sec.[3.1]

To address this challenge, we focus on the unique nature of molecular data distributions. Since
chemically valid molecules occupy only the densely packed distribution peaks, which are con-
fined to narrow and well-separated regions of the representation space, we describe this property
as dense-concentrated structure (DC-structure), formally introduced in Definition @] in Sec .
This definition provides a quantitative handle on the geometry of molecular distributions and lays
the theoretical foundation for our analysis. Building on this, we show in Sec. [3.2] how such analy-
sis motivates a corrective method, DIST, which DIffuses the intermediate distribution and STeers
trajectories back toward valid high-density regions. DIST improves the stability and overall perfor-
mance of molecular generation, while also providing efficiency gains as an additional benefit.

In this work, our main contributions are:

* Observation. We are the first to highlight that molecular data distributions are highly
concentrated and dense that makes diffusion-based generative processes fragile.

* Theory. We formalize the notion of DC-structure in molecular distributions and analyze
its implications for the intermediate distributions during the diffusion process and error
propagation in reverse inference.

* Method. Building on this analysis, we design a plug-in corrective module, DIST, that can
be seamlessly integrated into diverse diffusion-based molecular generation methods.

* Performance. Extensive experiments on multiple benchmarks and backbones demonstrate
that DIST not only improves stability and overall performance, but also reduces computa-
tional cost to nearly half the standard number of timesteps.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Diffusion models (DMs) (Ho et al., |2020; Song et al., [2021b) are latent-variable generative models
that learn to transform Gaussian noise into data samples through a forward-reverse Markov chain.
Let & ~ p(x) denote a clean data sample, and let z; denote its progressively noised version at
timestep ¢ € {0,...,T}. Here T is the total number of timesteps, 5; € (0, 1) is a variance-schedule
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Figure 1: Diffusion process applied to pairs of images (left, obtained from |Preechakul et al.|(2022))
and molecules (right, extracted from QM9 (Ramakrishnan et al.,[2014)) under the same noise sched-
ule. Both pairs start from similar, yet distinct configurations, corresponding to two separate peaks
in the distribution. Compared with the image distribution, the molecular distribution is much denser
and more concentrated with narrower peaks. Under mild noise corruption at ¢ = 300, noisy im-
ages remain distinguishable, whereas noisy molecules quickly become indistinguishable due to the
denseness. Att = 0, small errors (indicated in purple) in the image distribution still land in regions
of relatively high density, corresponding to visually realistic images, whereas small errors in the
molecular distribution will drift the generated samples into regions of near-zero density between
two peaks due to concentration.

parameter, and we use the shorthand z;.7 = (21, ..., 2r). The forward process gradually corrupts
data by adding Gaussian noise'

p(zir | @) = HMIZH Pl 2) =N (V1= Bz, ). (D)

By composition, the margmal conditional distribution admits a closed form'
(2 |a:):./\/'(\/c_vta:, (1—a)l), HO‘S*H 1— By). )
s=1

Here s = 1 — (3, controls the noising pace (Ho et al., [2020; Nichol & Dhariwall, 2021b). The
unconditional marginal at step ¢ is then

o) = [ o) N (a1 | Ve, (1- o)1) de, G)
which interpolates between the data distribution p(x) and the Gaussian prior p(z7) ~ N (0, I) (Al-
bergo et al., 2023). The reverse process reconstructs data from noise, factorized as qo(zo.7) =

q(zr) T1}—, qo(zi—1 | 2¢), with transitions ga(z¢—1 | 2:) = M(pe(2e,t), pP1), where pg is pre-
dicted by a neural network and p; is typically fixed. DMs are trained with the noise-prediction
objective (Song et al.,|2021b):

Lom =Egeiflle — ez, t)]7], zi=+vVaur+V1I—ae, e~N(0I). 4)

The network &y can be interpreted as learning the score field V, log p(z:) (Song et al., [2021agb).
New samples are generated by starting from pure Gaussian noise zp ~ AN (0, ) and iteratively
applying the reverse update:

Zt—1 = %ﬂt(zt — \/lﬁi—fi&t Eg(Zt,t)) —+ PtE€, g NN(O,I) (5)

2.2 DMS FOR MOLECULAR GENERATION

A 3D molecule with N atoms contains both continuous atomic coordinates and discrete atomic
features (Hong et all) 2024). The atomic coordinates are represented as = (x1,...,&ZN) €
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RN*3 where each x; denotes the coordinates of an atom in R3. The atomic features, such as
charges and atom types, are represented as h = (hy,...,hy) € RV*4 While the atomic features
are scalar quantities invariant to translations and rotations (SE(3)-transformations), the coordinates
transform equivariantly under these transformations (Thomas et al.| | 2018; [Hoogeboom et al., 2022}
Dumitrescu et al., 2024). However, arbitrary SE(3)-transformations of the coordinates can cause
issues for standard denoising networks, since a rotated or translated molecule may be perceived as an
entirely different sample. To overcome such issues, existing works often design SE(3)-equivariant
frameworks to ensure symmetry-awareness. Specifically, translations can be handled by subtracting
the centroid of atomic coordinates x to remove translational degrees of freedom (Garcia Satorras
et al.| 2021} [Xu et al., [2022). However, rotations are much complicated and often handled by using
carefully designed equivariant neural networks (Hoogeboom et al.l 2022} |Xu et al., 2023) or by
canonicalization (Ding & Hofmannl 2025; [Kaba et al., 2023; Rempe et al., 2020).

In addition, the hybrid discrete—continuous nature of molecular data (Dunn & Koes| [2024) intro-
duces unique challenges for generative modeling. Several recent works attempt to address the chal-
lenge by learning smoother latent representations (Xu et al., 2023} Ding & Hofmann, 2025} (Chen
et al., 2025} [Luo et al.l[2025). These approaches typically employ a VAE-based (Kingma & Welling,
2013) encoder-decoder framework, carrying out the diffusion process in a latent space rather than
directly on molecular coordinates and features. While this alleviates some modeling challenges,
latent-space methods introduce new sources of approximation error, and discrepancies remain be-
tween generated molecules and chemically valid structures. Importantly, the error introduced by
the learned score model (see equation [)) is ubiquitous and largely independent of architectural
choices (Song et al.l 2023} 2024} [Joshi et al., [2025); we observe such failures across GNN- and
Transformer-based models, as well as in both equivariant and non-equivariant molecular genera-
tion methods. Moreover, the discrepancy between the true data marginal distribution and the model
distribution grows as errors accumulate across timesteps.

This observation indicates that performance cannot be guaranteed solely by architectural
choices intended to simplify score-matching (Song et al.l 2021b). Instead, it highlights the ne-
cessity of correcting inference trajectories at intermediate timesteps in order to reduce distributional
discrepancies and thereby improve the stability and validity of generated molecules. Moreover, a de-
tailed discussion on the comparison of our work with corrective method is provided in Appendix

3 METHOD

In this section, we delve into three key questions: (1) How can the unique structure of molecular
distributions, constrained by chemical rules, be formally characterized? (2) What issues arise due
to this structure for 3D molecular diffusion models? (3) Can these issues be mitigated through cor-
rection? We answer the first two questions by formally investigating the DC-structure of molecular
distributions in Sec. Building on this insight, we propose DIST together with its theoretical
analysis in Sec.[3.2] which addresses the last question.

3.1 DENSE-CONCENTRATED STRUCTURE ISSUE

As illustrated in Fig.|1} molecular data distribution over the representation space exhibits an evident
DC-structure, where each peak corresponds to a chemically valid molecule, and regions between
the peaks are of near-zero density. This contrasts with images, where the pixel values can tolerate a
wide range of variations, resulting in wider peaks and smoother transitions. To rigorously capture
this phenomenon and further analyze its implications, we next formalize the DC-structure in
probabilistic terms. Consistent with Sec. [T|and prior work, we denote the true and model marginals
by p(z:) and gg(z:), respectively. Unless otherwise stated, all analysis in this work is carried out
under the molecular setting rather than the universal diffusion machinery. For notational simplicity,
we write the true marginal as p; and also omit the learnable parameter 6 and write the model marginal
as qz.

Definition 3.1 (Dense-concentrated Structure). There exist Ko centers {my}, a scale o, > 0,

a separation A > 0, and weights {wy, } such that, for the operative noise level t,

Ko
pe = Y wp N (mg, Si), Skt 2 021, [me —me|l > A (k #0),
k=1
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and for each k there exists some £ # k with ||my — my|| < O(A), and

Ko
pt<U B(mk,co*)> > 1=

k=1

for some ¢ > 0 and small §; € [0,1), where B(m,r) = {z € R? : ||z — m|| < 7} denotes the
Euclidean ball of radius r centered at m.

Under this definition, p; is a mixture of narrow peaks { B(my, co.)}yr separated by low-density
gaps. For molecular data, the parameter o is small, reflecting that each valid configuration is con-
centrated in a narrow neighborhood of configuration space. At moderate timesteps ¢, forward noising
smooths these peaks (see equation [2]and equation[3)) and creates overlap regions between them, thus
a sample z; may lie in the overlap, close to the midpoint between two peaks (see Fig.[I). In this
circumstance, the score field points outward, pushing z; toward the nearest peak with magnitude
IV logp(z:)|| ~ % (Song et al.L|2021b)), and the reverse update step based on equationis

|zt—1 — ztllact =~ Bt —- (6)
(T*

Because o, is small for molecules under Definition[3.1] this step can easily overshoot the distribution

radius co, and land in a low-density area:
A
By p > con = 2z ¢ UB(mk,ca*). @)

* k
The derivation and toy examples are provided in Appendix [C] In other words, when z; originates
from an overlap region created by forward noising, the reverse step is prone to push it across a thin
peak and into a low-density region. Subsequent denoising cannot recover from this drift. For images,
by contrast, peaks are broad (o is large) and can overlap smoothly, so the condition in equation [7]
is rarely triggered.

Consequently, the overshoot mechanism in equation[7} which arises directly from the concentration
property in Definition 3.1} explains the fragility of reverse inference. The score field V log p; indeed
points toward high-density peaks; however, because molecular peaks are narrow, the reverse update
can step past the peak and cross the high-density into the opposite regions. Once outside the dis-
tribution, subsequent updates are driven by the model score V log ¢; in a low-density region
where estimation and discretization errors are large (Zhang et al.,|2023; |Li & van der Schaar,
2023), leading to oscillation or further drift rather than reliable re-entry into the correct peak.
Moreover, |Cao et al.| (2023)) also analyzed this re-entry problem and demonstrated the benefits
of stochastic samplers, which further underscores the importance of trajectory correction in SDE
simulation. This phenomenon is more obvious in molecular generation due to the DC-structure,
and we provide a detailed comparison and explanation specific to molecules in Appendix

In practice, discrepancies between the true Table 1: Effect of starting timestep ¢ on sample qual-
marginal p; and the model ¢; accumulate ity. ¢ = 0 uses clean data; ¢ = 1000 starts from pure
across timesteps, and low-density region ex- Gaussian noise (standard diffusion). Intermediate ¢
cursions become effectively unrecoverable. forms z; ~ p(z: | x), and then we run ¢ reverse
As shown in Table [T} inference quality de- steps for generated results. The experiment setting
grades monotonically with ¢ increasing, re- follows EDM on QM9. Higher numbers are better.
flecting the growing deviation between p; Please refer to Sec. .l for further details.

apd qt. This.motiva}tes the n;ed fpr a correc- ¢ Atom Sta (%) Mol sta (%)  Valid (%)
tive mechanism at intermediate timesteps to

prevent off-distribution drift. An overview 0 99.0 95.2 97.7
of our proposed method, DIffuse and STeer 100 99.0 92.7 96.4
(DIST), is illustrated in Fig. 2] and we 300 98.9 89.1 95.5
formalize how DIST selectively realigns ¢; 500 98.7 86.2 94.3
with p; in Sec.[3.2} 1000 98.7 82.0 91.9

3.2 DIFFUSE AND STEER

As discussed in Sec. @ above, the unique characteristics of the molecular data distribution lead
to severe inference and learning difficulties, such that the learned denoiser can be very inaccurate.
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Figure 2: Illustration of DIST. In standard reverse inference, trajectories diffuse backward from
Gaussian noise gy toward the data distribution pg, but the model distribution ¢; may drift away from
the true distribution p; due to the DC-structure of molecular data (see Sec.[3.I). At an intermedi-
ate timestep t, DIST steers ¢; toward p; via a correction module that evaluates discrepancies and
discards invalid samples. The resulting corrected distribution g better approximates p;, realigning
trajectories and improving both stability and validity in the final generation.

As a result, the intermediate model distribution ¢, often deviates from the true marginal distribution

pt. Moreover, during training, the diffusion model is trained on the true marginal distribution p;

from the dataset. In other words, the reverse process is implicitly learned under the assumption that

the intermediate states follow the true marginals. Intuitively, when ¢, drifts away from p;, this will

create a mismatch between the final distribution obtained by applying the reverse process to ¢; and

that obtained from p;. Mathematically, we can show that this is true in Corollary [3.1]below.
Corollary 3.1 (TV—contraction Step). Let K;_,q be the ideal reverse Markov kernel, which can
be intuitively understood as the perfect diffusion model with the true score functions, in other
words, when the ideal reverse Markov kernel is applied to the true marginal distribution, we
obtain the true data distribution py = Ki_,op:. Then, for any probability measure q;, there
exists a TV—contraction coefficient k € [0, 1] such that

llao — poll vy = | Ko — Kimsopi|l oy < 5 llae — 2t s ®)

where if q; is the intermediate model distribution, qo can be understood as the final model
distribution obtained by applying the perfect diffusion model on g;.

The proof and explanation are deferred to the Appendix Specifically, Corollary 3.1 reveals
that if the intermediate model distribution ¢; is closer to the true marginal distribution p;,
the final model distribution ¢, is closer to the true data distribution p, that we aim to obtain.
Therefore, to achieve high-quality generation despite the difficulties posed by the molecular data
distribution, our goal is to obtain an improved intermediate distribution ¢ that remains closer
to the true marginal p; rather than blindly using the model distribution. To achieve this goal,
we propose DIST (DIffuse and STeer), a corrective sampling approach for 3D molecular diffusion.
Specifically, we perform the reverse process normally as in the standard diffusion pipelines; how-
ever, we incorporate an additional correction step to steer the intermediate distribution ¢; toward a
“corrected” version ¢f closer to the true marginal p;. An overview of DIST is provided in Fig.[2]

We now present the details of DIST concretely. Building on Definition 3.1 which states that the
distribution p; concentrates around a finite number of peaks separated by low-density regions, we
next introduce a finer partition of the support into small neighborhoods. Specifically, we divide the
space into radius-r batches {B;} 3-]:1, which can be regarded as local regions within or around the
peaks, each carrying probability mass

T =p(Bj), 7= aq(Bj),
together with the conditional distributions p|; and g;; restricted to each batch B;.

Each batch j is further associated with a model-side pilot score s; € R (e.g., round-trip residual,
self-consistency, ensemble variance, or chemistry-based penalty), which reflects whether the region
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is consistent with the true marginal distribution or potentially invalid. Given a threshold 7, we select
batches whose scores fall below 7:

J(r):={j:s; <7}

We then measure how much probability mass remains after this selection by defining

Z T Z 7).

JjeEJ* (1) JEJ* (1)

Here, a(7) represents the true coverage, i.e., the portion of the ground-truth distribution preserved
by the selection, while 5(7) denotes the model coverage, i.e., the portion of the model distribution
retained. Smaller thresholds 7 restrict the selection to batches that are more likely to correspond
to valid regions, reducing coverage; larger thresholds broaden the selection and capture more mass,
but at the cost of admitting regions inconsistent with the true distribution. The selected model
distribution at threshold 7 is then given by

Sr) =Y Fiaqy,  f= e ©)

jeJ*(r) ZkEJ*(T) Tk

Intuitively, ¢; consists of both samples consistent with p;, lying within valid regions, and samples
that fall outside. The corrected distribution g; acts as a filtered version of g, removing invalid
batches in order to improve approximation of the true distribution. The following proposition estab-
lishes a quantitative error bound that illustrates the effectiveness of DIST.

Proposition 3.1 (Selective Reverse Error Bound). Under the DC-structure in Definition [3.1]
and the batch construction described above, for any threshold T the deviation between the
selectively corrected reverse distribution K;_,0q5(7) and the true distribution p = K;_,op:
admits an upper bound of the form

||Kt~>0qt p”TV = f( ( ) 5(7)7 (Fj’ﬁj)jGJ*(T)7 ] S}lf() )Tv(qt\japﬂj))y
JjeJ (1
where f(-) is an explicit function of the true coverage o(t), the model coverage [3(7), the
selected batch weights, and the conditional discrepancies. The exact form of f(-) is provided

in Appendix[E2]

The proof and explanation are provided in Appendix [E.2] This error bound provides a theoretical
guarantee for DIST; that is, selective correction ensures that g; is steered toward convergence
with the true distribution p at intermediate timestep ¢, stabilizing the sampling trajectory.

Corrective Sampling We now describe how the corrected distribution gy is achieved in the reverse
inference procedure (see Fig.[2). At a given intermediate timestep ¢, DIST constructs a candidate
pool by reverse-simulating a small set of samples from Gaussian noise at 7'. Each candidate is du-
plicated and perturbed with a sufficiently small amount of noise to form batches {B;}7 5—1, Which
collectively follow the model distribution g; and remain within the prescribed radius-r constraint
(see Definition . To evaluate whether these batches {B; } 3’:1 are consistent with the true distri-

bution p;, DIST runs a full reverse inference on a pilot subset {Bj“b | Bj“b € B; }3]:1 drawn from
each batch. This pilot inference provides an empirical assessment of how well the current model
trajectory aligns with p;, and serves as a diagnostic of potential drift away from the true distribu-
tion. Based on the pilot outcomes s; € R, DIST applies a filter 77; to each batch using a universal
threshold 7, obtaining a corrected distribution ¢f(7) (see equation [9) that better approximates p;. In
effect, gi concentrates the reverse trajectories around valid molecular peaks. Beyond improved ap-
proximation quality, DIST also provides an efficiency advantage by reducing unnecessary inference
on invalid regions, as demonstrated in Sec.

4 EXPERIMENTS
4.1 SETUPS

Datasets Following prior work (Hoogeboom et al.l [2022; Xu et all [2023; [Song et al.| |2024),
we evaluate DIST on two widely used datasets in molecular generation: QM9 (Ramakrishnan
et al., 2014) and GEOM-Drugs (Axelrod & Gomez-Bombarelli, [2022). QM9 contains 130K small
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Table 2: Results for atom stability, molecule stability, validity, and validity x uniqueness. Higher
values indicate better performance. Check Sec. [d.1] for experimental setup details. All models
combined with DIST surpass their original counterparts, and the improved results are shown in
bold. Global best results are underlined.

QM9 GEOM-Drugs

# Metrics Atom Sta (%) Mol Sta (%) Valid (%) ValidxUnique (%) | Atom Sta (%) Valid (%)
Data \ 99.0 95.2 97.7 97.7 \ 86.5 99.9
ENF 85.0 4.9 40.2 39.4 - -
G-SchNet 95.7 68.1 85.5 80.3 - -
EDM 98.7 82.0 91.9 90.7 81.3 92.6
EDM+DIST 99.24+0.0 89.9+0.3 96.9+0.2 94.1+0.3 82.2 96.0
GeoLDM 98.9 89.4 93.8 92.7 84.4 99.3
GeoLDM+DIST 99.44+0.0 93.4+0.3 96.3+0.2 93.1+0.2 85.4 99.7
RADM 98.5 87.3 9.1 91.7 85.0 99.3
RADM+DIST 99.1+0.0 91.4+0.3 96.2+0.1 92.3+0.4 86.0 99.8

molecules, restricted to at most 9 heavy atoms (29 atoms including hydrogen atoms). We follow
the standard partition from [Hoogeboom et al.| (2022), with 100K molecules for training, 18K for
validation, and 13K for testing. GEOM-Drugs is substantially larger, comprising 420K molecules
with an average of 44.4 atoms and up to 181 atoms. Following|Hoogeboom et al.| (2022)), we retain
the 30 lowest-energy conformations for each molecule.

Metrics Consistent with prior work, we evaluate generated molecules using the following metrics:
atom stability, molecule stability, validity, and validity xuniqueness (Simonovsky & Komodakis,
2018 |Garcia Satorras et al.,2021). Afom Stability: the percentage of atoms whose number of bonds
matches their valence (e.g., H:1, C:4, O:2). Molecule Stability: the percentage of molecules in which
all atoms are stable. Validity: the percentage of molecules satisfying valence rules for all atoms.
Uniqueness: the percentage of molecules that are distinct from one another. Note for GEOM-Drugs,
following prior work, we omit the stability and uniqueness metrics, since they are consistently close
0% and 100%, respectively, for all evaluated methods including the baseline methods.

Baselines We employ several representative state-of-the-art diffusion models for 3D molec-
ular generation, including EDM (Hoogeboom et al.| [2022), GeoLDM (Xu et al.| [2023), and
RADMp;rp (Ding & Hofmann, [2025)), as backbone models for our proposed DIST and compare
with the original without DIST. These backbone diffusion models cover a range of model types, in-
cluding GNN-based or Transformer-based, equivariant and non-equivariant, and those operating in
regular space and latent space. In addition, we include comparisons with well-known non-diffusion-
based models, such as ENF (Garcia Satorras et al., 2021)) and G-SchNet (Gebauer et al.,[2019). The
results of backbone models and baseline methods are directly obtained from their original work.

Implementation Details To demonstrate the plug-in capability of our DIST and ensure fair com-
parison, for all backbone models, we strictly use the officially released model weights without alter-
ing any hyperparameters or settings for noise schedule, encoder-decoder configurations, and dataset
partition. For detailed settings of DIST, please refer to Appendix [F]

4.2 MAIN RESULTS AND ANALYSIS

To evaluate the performance of each model on QM9 and GEOM-Drug, following prior work, we
generate 10,000 3D molecules using each model. The main results are summarized in Table[2] For
QMO dataset, we report averages over three runs together with standard deviations. Across both
datasets and all metrics, every backbone model combined with DIST consistently outperforms its
original counterpart. The improvements are significant and universal: all bold numbers in Table 2]
indicate that DIST significantly improves the quality of generated molecules, with particularly
large margins observed on the most critical stability metrics. In addition, methods based on our
DIST set the new state-of-the-art for molecular generation on both QM9 and GEOM-Drug datasets.

Notably, the margins of improvement observed before and after applying our method highlight
the generality of DC-structure issue. Across GNN-based equivariant EDM (Hoogeboom et al.,
2022), GeoLDM (Xu et al., 2023 and Transformer-based non-equivariant RADM (Ding & Hof-
mann, 2025), where GeoLDM and RADM perform in latent space, the issue remains consistently
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evident. This observation cautions against relying solely on architectural choices. Our experimental
results confirm that, as a plug-in component, DIST effectively steers inference trajectories and thus
mitigates distributional discrepancies in the sampling process, providing a valuable complement to
architectural innovations to improve 3D molecular generation quality.

4.3 EFFICIENCY ANALYSIS

Since the batches {B; }5]:1 are created by duplication and perturbation, DIST requires only %

expected timesteps per inference from 7' (1000 is adopted in backbone models) to ¢, where | B] is
the batch size. For example, setting ¢ = 300 with |B| = 100, each accepted batch after threshold
filtering requires only 307 (% + 300) steps instead of the 1000 steps as used in standard
counterparts. A detailed comparison of efficiency is provided in Table [3] which shows DIST can
substantially reduce the overall timestep by nearly half compared to baselines, while significantly
improving the generation quality as shown in Table 2| We also provide a detailed quantification of

the expected computational cost of our DIST in Appendix [G.I]

4.4 ABLATION STUDY

The number of pilot samples drawn from each batch Table 3: Average number of timesteps re-
plays a critical role. A larger set of pilot samples quired for a full inference procedure. The
provides a more accurate representation of the model values are computed from the total timestep
distribution ¢;, and leads to a better corrected distri- consumption needed to generate 10,000
bution ¢f by DIST. However, increasing the number molecules, corresponding to the experi-
of pilot samples also leads to higher computational ments in Table 2l All baseline methods use
costs. In practice, we may choose a pilot set size that the standard 1000-step schedule, whereas
is sufficiently representative while remaining compu- DIST significantly reduces the computa-
tationally affordable. We conduct an ablation study to tional cost.

compare the final sample quality and computational Methods QM9 GEOM-Drugs
costs under dlffell"ent numbers of pilot samplgs, with EDM+DIST 556.1 5033
results reported in Table As expected, increas- GeoLLDM4DIST  416.9 636.7
ing the number of pilot samples improves the quality RADM4+DIST 4137 438.8
of generated molecules monotonically. At the same Baselines 1000 1000

time, computational costs (measured by the number
of time steps) also increase monotonically. Nevertheless, even under a relatively small budget (30,
50, 100), DIST still demonstrates superior performance, significantly improving the original EDM
in both sample quality and computational efficiency. Moreover, we also constructed the ablation
study on hyperparameters, including batch score threshold, intermediate timestep, and perturbation
intensity, as shown in Appendix [H]

Table 4: Ablation study for varying pilot subset sizes using EDM+DIST on QM9 with a fixed batch
size of 100. We report the generation performance and the average number of timesteps.

Size \ Atom Sta (%) Mol Sta (%) Valid (%) ValidxUnique (%) \ Timesteps

30 99.2 89.5 96.7 943 428.3
50 99.2 89.9 96.9 94.1 556.1
100 99.3 90.5 97.3 94.9 644.7

5 CONCLUSION AND FUTURE WORK

In this work, we investigated the unique challenge of applying diffusion models to molecular gener-
ation. Molecular data are confined to concentrated regions of the representation space, with chem-
ically valid structures corresponding to densely packed sharp peaks separated by regions of near-
zero density. This DC-structure makes diffusion modeling fragile, since small errors at intermedi-
ate timesteps are amplified, causing generative trajectories to drift off-distribution and accumulate
irreparable structural violations. To address this issue, we proposed DIST, which is a selective cor-
rection method that filters and rescales intermediate distributions, steering the inference trajectories
toward valid molecular peaks. DIST is model-agnostic and can be integrated into a wide range of
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diffusion-based molecular generators. We also provided both theoretical analysis and experimen-
tal results to demonstrate that our method consistently improves the performance across multiple
architectures for molecular generation, while nearly halving the inference cost.

Looking forward, our work opens several promising directions. First, as a general and principled
framework, DIST can be extended to other data domains with a similar distribution structure. An
intriguing question is whether the DIST framework can be adapted to protein generation, although
this constitutes a fundamentally different and substantially more complex task. Second, adaptive
selection or other strategies for filtering may further improve correction efficiency. Finally, while our
study focuses on diffusion models, the DC-structure issue is not exclusive to them. Exploring anal-
ogous corrective strategies in alternative generative paradigms, such as normalizing flows (Rezende
& Mohamed, 2015)), autoregressive models (Li et al.l [2024), or energy-based frameworks (Du &
Mordatchl 2019), may broaden the impact of our approach and provide a unifying principle for
modeling highly constrained distributions.

10
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ETHICS STATEMENT

This work adheres to general ethical principles of scientific research. Our goal is to contribute
to society and scientific progress by improving generative modeling for molecular data. We have
carefully considered possible harms: our method is purely methodological and does not involve
sensitive personal data, human subjects, or confidential information. All experiments rely on pub-
licly available molecular datasets, and no privacy concerns arise. We believe our work will benefit
the community as a complementary tool for advancing generative modeling, without introducing
foreseeable risks of discrimination or misuse beyond the general risks associated with generative
models.

REPRODUCIBILITY STATEMENT

All theoretical results are stated with explicit assumptions, and complete proofs are provided in
Appendix and Appendix [E.2] The datasets used in our experiments (QM9 and GEOM-Drugs)
are publicly available, and we describe all preprocessing steps in Sec.[d.1] After acceptance, we will
publicly release the code and provide detailed guidance to facilitate reproduction of all results.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used solely to assist with grammar checking and improving writing fluency. All obser-
vations, ideas, methodologies, and contributions in this paper are developed entirely by the authors.
Any content generated with the help of LLMs is created under detailed author instructions and thor-
oughly verified by the authors before inclusion.

B COMPARISON WITH RELATED METHODS

In this section, we present a focused comparison between DIST and analogous works in both theo-
retical formulation and corrective sampling techniques.

One innovation of DIST lies in modeling the molecular distribution within the diffusion process as a
DC-structure (Definition[3.I). This idea is conceptually related to the notion of a supervision region
introduced in the recent work [2025). However, that work interprets the phenomenon
mainly as a factor affecting the generalization ability of diffusion trajectories, without addressing
its impact on constrained and complex data types such as molecular structures, nor proposing any
corrective mechanism. In contrast, DIST explicitly quantifies and mitigates this issue through a
theoretically grounded correction process.

To the best of our knowledge, there is currently no existing corrective method that directly steers
intermediate distributions in diffusion-based molecular generation. Two recent studies in the
text-to-image domain, Dynamic CFG (Papalampidi et al} 2025) and ELECT [2025),
adopt selective sampling strategies that are loosely related to our idea. Dynamic CFG performs
a greedy search to select the scale that maximizes evaluation scores at each step, while ELECT
selects the best candidate from a pool at an intermediate timestep and denoises it as the final output.
However, both works focus on sample-level quality refinement rather than distributional correction,
lack theoretical grounding, and incur additional computational overhead due to repeated candidate
discarding.

A separate line of recent work investigates exposure-bias effects in diffusion models
[2023} [Wang et all 2023} [Li et al} 2023). These methods primarily analyze the general train-
ing—inference mismatch issue that arises during denoising: they study how prediction errors ac-
cumulate across reverse steps and how to make individual transitions more stable. Such analyses
focus on local transition dynamics, such as characterizing variance inflation from prediction
[2023), identifying consistent neighborhoods of training samples [2025), or align-
ing adjacent timesteps to reduce mismatch [2023). In contrast, DIST is motivated from
a distribution-level perspective. Rather than attributing instability to step-wise prediction errors
alone, DIST formalizes the dense-concentrated structure of molecular data and identifies it as a fun-
damental source of fragility in molecular diffusion. The theoretical results of DIST therefore target
global distributional correctness: by correcting the intermediate model distribution, DIST provides
guarantees on the quality of the final distribution at ¢ = 0. Methodologically, exposure-bias ap-
proaches typically require modified training objectives, adversarial components, or adjusted sam-
pling schedules, whereas DIST introduces a training-free, plug-in selective correction module that
can be applied directly at inference time and achieves NFE-level efficiency gains without altering
the backbone model.

In summary, corrective methods for diffusion generation remain an emerging and promising research
direction. DIST contributes to this direction by: (1) introducing the first corrective module tailored
for molecular diffusion generation; (2) establishing a solid theoretical foundation for it; and (3)
incorporating an explicitly designed efficiency strategy that yields consistent improvements in both
generative performance and computational cost over existing baselines.

C OVERSHOOT MECHANISM
In this section, we provide the derivation of overshoot mechanism in Appendix[C.I]and toy examples
for it in Appendix[C.2

C.1 UPDATE ISSUE
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We justify the scaling of score magnitude in the overlap region and reverse update length in equa-
tion[6]and equation[7] of the main text. Under the DC-structure (see Definition [3.1)),
Ko
J = Zwk/\[(m/kazk,t)» Spt =021, lmi —mel| > A (k # 1),
k=1
and define the responsibilities

(2) wi N (z¢;my, 021)
Z = .
Teizt S wi N(zg;my, 021)

J

Then 1
Vlogp(z) = ﬁ(;mmmk - 2).

In a region where z; is influenced mainly by one or two nearby peaks, the mixture score V log p(z;)
has the same order of magnitude as the score of the dominant Gaussian components. By Defini-
tion[3.1} different peaks are separated by at least A, so along directions between two centers m;, and
myg we have ||z, — my|| = ©(A) in the overlap region visualized in Fig.[I} Hence, up to a constant
factor,

A
[V1ogp(z:)l| ~ pex (10)

which is the scaling used in the main text. And based on the reverse update step used in main text
(see equation[5)), the deterministic displacement satisfies

|ze—1 — 2¢l|aet = B [|V1ogp(zy)]|-

The detailed derivation is provided in Appendix [C.3] Combining with equation [T0] we derive
|zi—1 — 2ztl|laet ~ Bt - U%. As the radius (see Definition is only co,, when the update

step satisfies 3, % > co, may result in overshooting the distribution z;,_; ¢ (J, B(mx, coy).

C.2 Toy EXAMPLES

To further illustrate the effect of DC-structure (see Definition[3.1)) on diffusion sampling, we provide
two controlled toy experiments based on Mixture-of-Gaussians (MoG): one in 2D and one in 1D.
In each case, we construct two distributions under identical diffusion settings (same noise schedule,
network architecture, optimizer, and sampling steps): (i) a smooth MoG with well-separated modes,
and (ii) a DC-structured MoG with narrow and closely packed peaks. Brighter colors in the heatmaps
correspond to higher density regions.

2D MoG: Effect of DC-structure. The DC-structured MoG (‘Narrow multi-peak MoG’ in Fig.[3)
contains sharply concentrated peaks placed in close proximity, mimicking the clustered geometric
modes observed in molecular data. As shown in Fig. 3] under identical diffusion parameters, sam-
pling from this DC-structured distribution exhibits noticeably poorer behavior: a substantial portion
of generated samples drift into low-density regions. This demonstrates that DC-structure imposes
additional instability on the reverse diffusion process, even in simple synthetic settings.

Wide MG (2 peaks): true density & samples

Wide MoG: reverse diffusion trajectories , Narrow MoG (multi-peak): true density & samples _ _ Narrow malti-peak: trajectories (some stuck in valleys)

Figure 3: 2D Mixture-of-Gaussians examples. Left: smooth MoG. Right: DC-structured MoG.

1D MoG: Overshoot phenomenon. The 1D DC-structured MoG (‘Sharp 4-peak mixture’ in
Fig. @) contains four narrow peaks in close proximity. As illustrated in Fig. [d] at intermediate
timesteps (around 25%-50% of the reverse process before generated results), some trajectories
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normalized p_t(x)
x

75 100 125 15.0
t(0 = noise, T = MoG sample) (0 = noise, T = MoG sample)

7.5 10.0 125

Figure 4: 1D Mixture-of-Gaussians examples. Left: smooth MoG. Right: DC-structured MoG
exhibiting overshoot.

overshoot: they cross peak regions and fall into low-density regions, ultimately producing invalid
samples. This behavior aligns with the overshoot mechanism analyzed in Sec.[3.1]

These synthetic experiments empirically support our theoretical analysis: DC-structured distribu-
tions are significantly more fragile under diffusion sampling, consistently exhibiting drift, overshoot,
and degraded sample quality. This behavior directly parallels challenges found in molecular diffu-
sion models and further motivates the formulation of DIST as a corrective sampling framework for
DC-structured data.

C.3 DETERMINISTIC DISPLACEMENT

In order to analyze the overshoot behavior induced by the DC-structure of p(z;), it is necessary to
isolate the deterministic displacement of the reverse update in equation[5] The stochastic noise term
is not included in this analysis, because an additive Gaussian perturbation can move a trajectory
in an arbitrary direction and therefore obscures the geometric effect we seek to characterize. Our
interest is in the model-induced geometric drift of the reverse process, not in the random diffusive
fluctuations. For this reason, we study the deterministic quantity ||z;—1 — 2¢||qet, Which captures the
intrinsic drift responsible for overshoot, and we provide a detailed derivation below.

Isolate the deterministic displacement of the reverse DDPM update used in equation B}

I S
) VI=8 N V1 —qy

Subtracting z; and regrouping terms gives

Eg(zt,t)).

_ 1 B Bt
TG T A a

Zy_1 — 24 (z¢,t) — 2

= #fl)z f¢e Z,t).
(\/ﬁ VTGV - o(z0:1)
Ay B;

Thus the coefficients in front of z; and the score term are, respectively,

L VTR B

_vlfﬂt_ VI=35 VI=Bi/T—a

EDM (Hoogeboom et all [2022)) and subsequent works (Xu et al.} 2023} [Ding & Hofmann] [2023])
adopt the cosine noise schedule (Nichol & Dhariwall 2021a)), under which B399 ~ 1.6 x 10~3. This
confirms that /3; remains very small at moderate timesteps.

Ay

Relative scale of z; and 9. During training, under the forward process (see equation @), both z,
and € have O(1) variance. Thus for typical samples

1zl = llell = llea (2, D),

since the DDPM noise-prediction objective ensures that e¢(z;,t) matches the distribution of &.
Hence

| Asze]| < |Aql, | Bigo(2zt,t)|| < | B
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Asymptotic dominance of the score-driven transport term. A Taylor expansion gives

_b > 1
At— 2+O( t)) m71+0(6t)a
SO 5 /8
N -t
Therefore

[ Avze|| 4] Z+o0p}) 1 _
T T R T = S /= 1 — O .
[Bieaern 0] = 1B~ Bijvi—a 2V %+ 0@

Since 1 — &; — 0 ast — 0, we obtain the limit

A
lim —Aezll o
P28 [ Bueo (e D)

i.e. the Gaussian contraction drift is asymptotically negligible compared to the score-driven transport
term at a moderate ¢.

Final approximation. Using the identity

1
Vilogp(zi) = ——=¢€p(24,1),

gp( t) m 9( ty )
the 1/4/1 — a; factor is absorbed into the score parameterization, so that Biey becomes a coefficient
of order f; in front of V log p(z;). Thus the deterministic displacement satisfies

1Ze-1 = Ztllaee = B [[V1ogp(z4)]|,

with the Gaussian contraction drift A;z; being strictly lower order in the small-step regime.

D SUPPLEMENTARY EXPERIMENTS

The experiment shown in Table [3] is designed to illustrate how stochastic correction in diffusion
sampling interacts with the DC-structure of molecular data. In molecular distributions characterized
by densely packed and sharply concentrated peaks (Sec.[3.1), even small prediction errors can cause
sampling trajectories to drift into low-density regions. SDE-based samplers such as DDPM (Ho|
[2020) introduce random perturbations that help trajectories re-enter valid high-density regions,
effectively compensating for such errors [2023). In contrast, ODE-based samplers like
DDIM are fully deterministic, lacking this corrective mechanism and thus being
more susceptible to error accumulation when the distribution is highly concentrated.

To test this hypothesis, we compare the generation behavior of molecular data (with DC-structure)
and image data (with smoother distributions) under both DDIM and DDPM sampling. As shown
in Table 5] DDIM consistently outperforms DDPM in image generation (CIFAR10), whereas
the opposite trend appears for molecular generation (QM9), where DDPM yields substantially
higher molecule stability across all timestep settings. These results indicate that the stochasticity
in DDPM sampling mitigates overshoot and helps realign trajectories with valid molecular peaks.
This finding supports our theoretical analysis in Sec. [3.I} which identified DC-structure as a key
factor causing fragility in reverse inference, and it further motivates the design of our proposed
DIST method, which explicitly corrects intermediate distributions to achieve similar stabilization
effects in a principled manner.

E PROOFS
Here we provide the proofs of Corollary 3.T]and Proposition [3.1]
E.1 COROLLARY 3.1

We first give the preliminary knowledge about the following corollary then derive the proof.
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Table 5: Comparison between CIFAR10 image generation (measured by FID) and QM9 molecular
generation (measured by molecule stability) under DDIM and DDPM
2020) sampling. Results are reported for different numbers of timesteps S. Lower is better for FID,
higher is better for stability. CIFAR10 numbers are taken from the original DDIM paper (Song et al.|
[2020), and QM9 experiments follow the setup of EDM (Hoogeboom et al|[2022). The better values
are shown in bold.

CIFARI10 FID | QM9 Molecule Stability (%) T
S 10 20 50 100 1000 | 10 20 50 100 1000

DDIM | 13.36 6.84 4.67 4.16 4.04 | 96 374 570 630 659
DDPM | 41.07 1836 8.01 578 473 | 124 509 741 719 82.0

Total Variation (TV) distance For two probability measures x, v on a measurable space (X, F),
the total variation distance is defined by

e = vllry == sup |p(A) = v(A)].
AeF

Equivalently, by the Hahn—Jordan decomposition, it admits the dual characterization

l-vive=4 sw | [ sdu- [ sal
Ifllee <1 X X

where the supremum is over all measurable test functions f with || f]|oc < 1.

Contraction under Markov kernels Let K be a Markov kernel, i.e. K (x, -) is a probability mea-
sure for each z € X, and x — K(x, A) is measurable for each A € F. For a probability measure
1, define the pushforward

(Kp)(A) := /X K(x,A) p(dx), AeF.

For a bounded measurable function f : X — R, define
(KD = [ 1) K.y

Note that [ K f ()] < [|.f||oo, hence [ K floo < [ f]oo-

Corollary 3.1 (TV—contraction Step). Let K;_,q be the ideal reverse Markov kernel, which can
be intuitively understood as the perfect diffusion model with the true score functions; in other
words, when the ideal reverse Markov kernel is applied to the true marginal distribution, we
obtain the true data distribution py = Ki_op:. Then, for any probability measure q;, there
exists a TV—contraction coefficient x € [0, 1] such that

llao = poll vy = | Km0 — Kemsopi |y < 5 || — 2t s ®)

where if q; is the intermediate model distribution, qo can be understood as the final model
distribution obtained by applying the perfect diffusion model on gq;.

Proof. For any two probability measures p, v,
[Kp—Kv|rv < |lp=vlrv,
let A := p — v. Use the dual characterization of TV and Fubini’s theorem,

Ky —Kvllry =1 sup /fd(KA)]
[flleo<1

—1 sw | [N @) @)

I flloo<1

<} swp | [ g@)as@)] =l -l

llglleo<1
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where we set g = K f, which still satisfies ||g]|cc < 1. Let K := K; o and p := Kp;. Applying
the above inequality to q:, p; gives

|Kq: — Kpe|ltv < |lgs — pel| v

Thus, we obtain a contraction € [0, 1]. O

To sharpen this to a stricter inequality, we introduce the Dobrushin (TV) coefficient:
§(K) = sup||K(z,) — K(2',-)[[rv = 1~ inf /min{K(:L',dy), K(2',dy)}.

Then for all probability measures p, v,
[1Kp = Kv|rv < 0(K) [l = vy

Because in reverse diffusion K;_,o(z, dy) = N (y; (), X¢) dy has continuous Gaussian densities
with full support, the overlap integral satisfies

/Inin{K(m,dy),K(;U/,dy)} > 0,

which implies 0(K) < 1. Consequently,

|Kp— Kv|ry < ||w— vy, k< 1.

E.2 PROPOSITION 3.1
Fix a threshold 7 and follow Sec.[3.2} then we have
J =T (1), A;:= U B, a:=ao(r)=p(A;), B:=0(1)=q(A:).
jeJ*
Recall the selected mixtures and weights

c __ ~ ~ T c __ = - Ty
qy = T4, T3 = Ea b: = T Pt|js T3 = — -
jerr jerr

Proposition 3.1 (Selective Reverse Error Bound). Under the DC-structure in Definition [3.]|
and the batch construction described above, for any threshold T the deviation between the
selectively corrected reverse distribution K;_,oq5(T) and the true distribution p = K;_,op:
admits an upper bound of the form

||Kt~>0q§(7—) _p”TV < f(a(T)aB(T), (ﬂ-jaﬁ—j)jGJ*(T)v ) sup TV(Qt|japt|j))7
€J*(7)
JjeJ*(r

where f(-) is an explicit function of the true coverage o(T), the model coverage B(T), the
selected batch weights, and the conditional discrepancies. The exact form of f(-) is provided

in Appendix[E2]
Proof. Conditioning p; on A, drops exactly 1 — « true mass, hence coverage term is
1Pf = pellrv =1 -« (11)
Add and subtract ) e 7jpy); and use the triangle inequality to obtain selected-region term:

(12)

H%¢#ﬂhv§H§:ﬁﬂ%u—PWﬂL +H§:ﬁv—ﬁﬁmu‘
Vo Ve N

jeJg*

component error weight mismatch
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For the component term, TV is convex:

H Zﬁj (G114 —Pt|j)HTV < Zﬁj lge15 — pejllTv- (13)
J J

Now separate the shared and unshared parts of the two distributions. Let ¢; := min{7;,7;} and
write 7~Tj =c¢;j+7rjTj=¢Cj+S; with rj,Sj > (0 and Zj’/‘j = Zj S; = %ZJ |7"~l'] — ﬁj|. Then

Zﬁj (a7 — pij) = Z ¢ (qej — pejj) + erqt|j - Zsjpt\j'
j j j j

Using convexity,

HZWJ Qtlj — Pr)5)

‘ < ZCJ lge5 — pejjllmv + sz 7). (14)

For the weight term in equation[12} because ) (7; — ;) =0,

| > G = mwa TVS%Z |7 — 7. (15)
eJ*

jeI*

Combining equation|T4|and equation|[15] and noting 3= ; ¢; < 1, gives

lg; — pillrv < sup laey; — pojllry + 17 — 71 (16)
jeJ*

Renormalize the weights,

o T

|7 — 7l = Z e Z ‘omj 5773’
jEJT* A @ ﬁ jeJ*
= LS latiy -+ @l < S0 X - mltla-a T
jeJ* JjeJ* jeJ*

=l =Bl _ 2l -l _ 2] -l
B CAE B ~ min{a, B}
By symmetry (swapping «, ) we get |7 — 7|1 < 2||# — 7||1/c, so equation [[7]is the uniform
bound.

a7

By the triangle inequality with equation|[TT]and equation[I6] the final discrepancy at timestep ¢
lg; —pellrv < (1 —a) + |7 =7l + sup lge); — peijllov
JjeJ*

Using equation[T7) we obtain the safe bound
2|7 — 7l

¢ — < (1-—
||qt ptHTV = ( Oé) t mln{a,ﬂ}

+ SUP ||Qt|g pt|jHTV- (18)

Let K;_, be the ideal reverse kernel and p := K;_,op;. By Appendix there exists k € [0, 1]
such that

[ Kisop — Kisovllry < kllp—viTv Vi, v (19)
Taking i = ¢f and v = p; and combining with equation gives the form of f(-) b
2|7 =7l

min{«, 5} 20)

HKt—>0q§ _pHTV S K (1 - O[) +

O

Please refer to Appendix [E3]for further details about the confidence bound and estimation error of
« and .
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E.3 CONFIDENCE BOUND

Even though the intermediate distributions are intractable, some quantities mentioned in Ap-
pendix [E2] can be empirically estimated from available samples of both the forward and reverse
diffusion processes, and their estimation errors can be rigorously bounded. In diffusion models we
can draw i.i.d. samples z; from p; and z; from ¢;, we estimate

Np g

ar=— A e A}, Bln= S 1Y e A,

n,
Pi=1 9 =1

And by Hoeffding’s inequality,

~ _  /log(2/éa)
P(la — o] <€) > 1 —0da, €a—\/%7

and similarly for B We define lower confidence bounds
ar = max{a — €,,0}, Br = max{gf €3,0}.

A multinomial L; concentration inequality (Weissman et al.} [2003)) provides

PI‘(H% — 7TH1 Z 6) S (2K o 2) eiméz/Q’
where K = |J*(7)| and m is the number of samples used to estimate 7. Hence, with probability at
least 1 — 6,

A 2log((2K —2)/65,
i =l < ¢ B((2" ~2)/0)

Substituting these empirical bounds into equation equation 20] yields the finite-sample selective
reverse error bound:

¢ QU(nP(sﬂ')
i)l < 1)+ 00 o TG

where
U(ny, 0z) = 210g((2" =2)/6x)

Np

This bound holds with probability at least 1 — (d, + dg + d,). All terms are computable from
samples: o, 51, from empirical coverage and U (np, ) from batch counts.

F SETTINGS OF DIST

DIST is applied at an intermediate timestep ¢ to correct the distribution ¢,. Concretely, when applied
to EDM (Hoogeboom et al., 2022) and GeoLDM 2023), DIST firstly denoises samples
from ¢ = 1000 to t = 3OCH, then duplicates and perturbs each sample 100 times to form batches
{B;} le under a radius-r constraint. From each batch, half of the elements are randomly selected
as pilot subsets {B5"" | B5"> € B;}7_,, and pilot outcomes s; € R are evaluated based on the
stability and validity of the final generated molecules. When applied to RADM (Ding & Hofmann,
[2025), the settings are the same except for: the pilot subsets on QM9, which are fixed as 30% of the
batch size; and the first-stage denoising on GEOM-Drugs, which terminates at ¢ = 200.

G EFFICIENCY QUANTIFICATION OF DIST

G.1 THEORETICAL TIMESTEP EFFICIENCY

In this section, we quantify the expected computational cost of the DIST. Let T" denote the total
number of timesteps in standard inference, and let ¢ < 7' be the intermediate timestep at which
we form the candidate pool. Each candidate is then duplicated into batches of size |B|, and only

'All three baselines use a total of 7' = 1000 timesteps.
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a fraction 7 are retained after pilot evaluation, which incurs an additional cost Cpior per sample.
Analytically, the expected cost for a valid sample will be:

Eleost] = (£ — 1) [ %5 + Coiner| + [Tt +1]- @1)

The first term accounts for the discarded forward propagation and evaluation of discarded batches,
while the second term corresponds to the trajectory for selected batches requiring full reverse infer-
ence from ¢ to 0. We now refine the cost expression by modeling the pilot evaluation as proportional
to the selection timestep. Specifically, we set

Bsub
Cpilot:7t7 V= | |B| |7

where ~y denotes the proportion of elements in a batch used for pilot evaluation (see Sec. [3.2).
Substituting this into the expected cost gives

(22)

Tt
Efeost] = (17 + Tl)t T (23)
C C

Importantly, the expected cost depends on 7., which is correlated with the final generation quality.
However, in practice, the total cost is usually much smaller than 7". For example, in the EDM+DIST
experiment on QM9 (as shown in Table Q), the settings are 7' = 1000, | B| = 100, and v = 0.5. The
empirical estimate of r. is near 0.39, leading to an empirical cost of 556.1 steps on average.

Please refer to Appendix [G.2]for detailed implementation of DIST and end-to-end wall-clock usage
for efficiency.

G.2 WALL-CLOCK EFFICIENCY

In this section, we provide a pseudocode implementation of DIST and measure its end-to-end time
efficiency using wall-clock runtime. All experiments are conducted on a single NVIDIA RTX A6000
GPU with CUDA 12.4. To ensure a fair comparison and remain consistent with prior work
[boom et al] 2022} [Xu et all 2023} [Ding & Hofmann| [2025), we follow the standard setting of
generating 10,000 molecules with a fixed batch size of 100 (see Sec. f.1).

To better explain the efficiency mechanism and justify the reproducibility of DIST, we present the
pseudocode in Algorithm [I] For consistency with the theoretical foundation in Sec. 3.2] and to
illustrate the parallelism of the data flow, the inference is performed in a batch-wise manner. In
existing works (Hoogeboom et al[2022} [Song et al.} 2024} [Xu et al.| 2023} [Ding & Hofmannl|,[2025)),
diffusion models generate molecules batch by batch, whereas DIST introduces a novel efficient
paradigm that constructs an intermediate model distribution and explicitly evaluates its deviation
from the true distribution. This selective correction is the source of the computational savings.

The iterative Markovian denoising procedure is the main bottleneck for speeding up inference in
diffusion models [2024)), so the consumption of GPU-intensive timesteps is a key quan-
tity to consider. In addition to the timestep-based analysis in Table 3] and Appendix [G.I] we also
report the end-to-end wall-clock runtime for DIST combined with the baseline models. As shown
in Table [} DIST consistently improves the efficiency of the backbone methods, in line with the
timestep-based results in Table [3]and the theoretical analysis in Appendix [G.1]

We would like to clarify that DIST is designed as a corrective sampling method for stabilizing
molecular generation, with its efficiency improvement being an advantageous side effect. As
such, DIST is not directly comparable to diffusion-model acceleration techniques.

H SUPPLEMENTARY ABLATION STUDY

This section provides additional ablation studies for the hyperparameters of DIST, including the
batch score threshold 7, the intermediate timestep ¢, and the perturbation intensity used in the
radius-r assumption, each introduced in Sec.[3:2} For each ablation experiment, we vary only a
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Algorithm 1 Diffuse and Steer (DIST)
Inputs: neural network ey, target number N, intermediate timestep t*, threshold 7, pilot size
| BsUP|, pilot score module Eval
Output: set of generated molecules S
Initialize S < 0
Sample initial noise batch {z7} ~ N (0, I)
while [S| < N do
fort=T.T—1,...,t* +1do
Sample {E} - {(&:Ia Eh)} ~ N(OvI)
Subtract center of mass from ET
{21} i ({2} = A eo{z1,0) + pide}
end for
Duplicate and perturb {2} to obtain {zt*)} {within radius r}
Select pilot subset {250 of size | B
{s}, {zgub } — Evaul({zbub )})
S« Su{z™" s> 7}
Define remaining high-score batch at £*: {z}s*" (r)} — {zt(f) |s>7}\ {zsub (r)}
fort=t*t*—1,...,1do
Sample {e} = {(s-::,,, en)} ~N(0,I)
Subtract center of mass from €z
250} ¢ o () = e o010 + pile}
end for
S« S U {z=""}
end while

Table 6: Wall-clock end-to-end consumption of different sampling strategies for generating 10,000
molecules on QM9. The experimental setting is identical to Table 2} using a fixed batch size of 100
and an intermediate timestep t = 300. ‘Count’ indicates how many attempts are required to produce
10,000 molecules (e.g., running inference with batch size 100 for 100 iterations). For models without
DIST, the stages ‘Diffuse’ and ‘Steer’ correspond to the standard inference procedures 7' — ¢ and
t — 0, respectively. The ‘Total’ column is reported in minutes and seconds (mm:ss.ss). The
better strategy and its total wall-clock consumption are highlighted in bold.

Model Diffuse Duplication Pilot Evaluation Steer Total |
Time (s) Count Time(s) Count Time(s) Count Time (s) Count

EDM 60.935 100 - - - - 26.115 100 145:07.11

EDM+DIST 60.933 3 0.0009 258 27.0525 129 26.115 50 82:59.45

GeoLDM 58.1163 100 - - - - 25.0704 100 138:39.72

GeoLDM+DIST 58.1163 3 0.0008 220 259830 110 25.0705 50 71:26.91

RADM 26.4737 100 - - — — 11.3250 100 62:60.53

RADM+DIST 26.4742 3 0.0008 219 11.9224 66 11.4118 70 27:47.10

single hyperparameter of DIST while keeping all other settings fixed to the configuration of DIST
strengthened EDM [Hoogeboom et al] (2022)) as described in Sec.[d This ensures that every sub-
experiment isolates the effect of one hyperparameter change.

As discussed in Sec.[3.2} DIST operates purely as an inference-time corrective module and does not
require retraining or modification of the backbone diffusion model. Because inference is substan-
tially cheaper than training (e.g., in DDPM [2020), training takes 10.6 hours on 8 V100
GPUs while generating 256 CIFAR10 samples takes only 17 seconds), hyperparameter search is
lightweight in practice. Importantly, the results below show that DIST performs consistently well
across a broad range of hyperparameters, indicating that the method is not overly sensitive to
tuning.

H.1 BATCH SCORE THRESHOLD
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Given a threshold 7, DIST selects batches according to whether their pilot scores exceed this value,
which determines the coverage of both the true distribution and the model distribution. Larger
thresholds restrict selection to batches that are more likely to correspond to valid high-density re-
gions, whereas smaller thresholds broaden the selected region and capture more mass, while at the
cost of admitting samples that deviate from the true distribution (see Sec. [3.2).

The results are reported in Table[7] Although a larger 7 improves stability metrics, the admissible

region becomes overly constrained and may harm overall performance. Moreover, the retained

ratio 7. (see Appendix [G.I) drops from 71% to 32%, indicating that a larger portion of batches is

discarded, which in turn reduces the sampling efficiency. Across all tested values, DIST consistently

outperforms the EDM (Hoogeboom et al} [2022)), demonstrating robustness to the choice of 7.
Table 7: Ablation on batch score threshold 7 for molecule stability on QMO9.

T \Atom Sta (%) Mol Sta (%) Valid (%) ValidxUnique (%)

EDM | 98.7 82.0 91.9 90.7
0.82 98.9 87.8 95.4 92.4
0.84 99.1 88.2 96.6 93.9
0.86 99.2 89.9 96.9 94.1
0.88 99.2 90.2 96.8 93.2

H.2 INTERMEDIATE TIMESTEP

The intermediate timestep ¢ determines when the corrective selection is applied. If ¢ is too large, for-
ward noise destroys the DC-structure; if too small, the candidate pool does not adequately represent
the intermediate distribution (see Sec.[3.2).

As shown in Table [8] smaller ¢ values correct the distribution later in the reverse chain, improving
stability metrics, while excessively small values may reduce uniqueness due to extended diffusing.
Even without intentional tuning, tested ¢ values yield strong improvements over the EDM baseline,
indicating that DIST remains effective across a broad range.

Table 8: Ablation on intermediate timestep ¢ on QM9.

t \Atom Sta (%) Mol Sta (%) Valid (%) ValidxUnique (%)

EDM | 98.7 82.0 91.9 90.7
200 99.2 90.2 96.8 92.5
300 99.2 89.9 96.9 94.1
400 99.2 89.7 96.0 94.0
500 99.1 89.3 95.4 92.1

H.3 PERTURBATION INTENSITY

Following Definition[3-T]and the discussion in Sec.[3.2] the space is partitioned into radius-r batches
{B;} ,jJ:1 , each serving as a local region around peaks. After obtaining the candidate pool at timestep
t, these batches are optionally perturbed with Gaussian noise of scale .

Table [0 shows that DIST is highly robust to a small perturbation intensity: tested A values produce
strong performance, and even A = 0 (pure duplication without perturbation) already offers substan-
tial improvements. This indicates that DIST does not rely on fine-grained tuning of perturbation
intensity.

Table 9: Ablation on perturbation intensity A on QMO9.

A \Atom Sta (%) Mol Sta (%) Valid (%) ValidxUnique (%)

EDM | 98.7 82.0 91.9 90.7
0 99.2 89.9 96.9 94.1
0.05 99.2 89.7 95.9 93.1
0.1 99.1 90.1 95.9 92.8
0.2 99.3 90.3 96.2 92.7
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