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Abstract

Mathematical models of the real world are simpli-
fied representations of complex systems. A caveat
to using mathematical models is that predicted
causal effects and conditional independences may
not be robust under model extensions, limiting ap-
plicability of such models. In this work, we con-
sider conditions under which qualitative model pre-
dictions are preserved when two models are com-
bined. Under mild assumptions, we show how to
use the technique of causal ordering to efficiently
assess the robustness of qualitative model predic-
tions. We also characterize a large class of model
extensions that preserve qualitative model predic-
tions. For dynamical systems at equilibrium, we
demonstrate how novel insights help to select ap-
propriate model extensions and to reason about
the presence of feedback loops. We illustrate our
ideas with a viral infection model with immune
responses.

1 INTRODUCTION

A popular class of mathematical models that can repre-
sent uncertainty and causality are Structural Causal Models
(SCMs) [Pearl, 2009, Bongers et al., 2021]. However, there
are several interesting systems for which the causal relations
and Markov properties cannot be modelled by SCMs [Blom
et al., 2019]. The causal ordering algorithm, introduced by
Simon [1953], can be used to deduce the qualitative predic-
tions of mathematical models for these systems with regards
to the causal relations between the variables in the system,
and the probabilistic independence relations between the
variables [Blom et al., 2021]. In this paper, we take a closer
look at what happens to these predictions when two systems
are combined. Particularly, we give conditions under which
properties of the whole system can be understood in terms

of properties of its parts. We discuss how a holistic approach
towards causal modelling may result in novel insights when
we derive and test the predictions of systems for which new
properties emerge from the combination of its parts.

In the first part of the paper, we focus on the practical issue
of assessing whether qualitative model predictions are ro-
bust under model extensions. We revisit the observations of
De Boer [2012] who demonstrated that qualitative predic-
tions of a certain viral infection model change dramatically
when the model is extended with extra equations describing
simple immune responses. To assess the robustness of pre-
dicted causal relations or conditional independences under
such an alteration of the model, it is useful to characterize a
class of model extensions that lead to unaltered qualitative
model predictions. In this work, we propose the technique
of causal ordering [Simon, 1953] as an efficient method
to assess the robustness of qualitative causal predictions.
Under mild conditions, this allows us to characterize a large
class of model extensions that preserve qualitative causal
predictions. We also consider the class of models that are
obtained from the equilibrium equations of dynamical mod-
els where each variable is self-regulating. For this class, we
show that the predicted presence of causal relations and
absence of conditional independences is robust when the
model is extended with new equations.

Key aspects of the scientific method include generating a
model or hypothesis that explains a phenomenon, deriving
testable predictions from this model or hypothesis, and de-
signing an experiment to test these predictions in the real
world. The promise of causal discovery algorithms is that
they are able to learn causal relations from a combination
of background knowledge and data. The general idea of
many constraint-based approaches (e.g. PC or FCI and vari-
ants thereof [Spirtes et al., 2000, Zhang, 2008, Colombo
et al., 2012]) is to exploit information about conditional
independences in a probability distribution to construct
an equivalence class of graphs that encode certain aspects
of the probability distribution, and then draw conclusions
about the causal relations from the graphs. There is a large
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amount of literature concerning particular algorithms for
which the learned structure expresses causal relations under
various combinations of assumptions (e.g. linearity, causal
sufficiency, absence of feedback loops), see for example
[Richardson and Spirtes, 1999, Spirtes et al., 2000, Lacerda
et al., 2008, Zhang, 2008, Colombo et al., 2012, Hyttinen
et al., 2012, Forré and Mooij, 2018, Strobl, 2019, Mooij
and Claassen, 2020]. In the last part of this paper, our main
interest is in dynamical models with the property that di-
rected graphs representing relations between variables by
encoding the conditional independences of their equilibrium
distribution should not be interpreted causally at all. For the
case that a model for a subsystem is given, we present novel
insights that enable us to reject model extensions based on
conditional independences in equilibrium data of the subsys-
tem. We demonstrate how this approach allows us to reason
about the presence of variables that are not self-regulating
and feedback mechanisms that involve unobserved variables
from the equilibrium distribution of certain dynamical mod-
els.

1.1 CAUSAL ORDERING GRAPH

Here, we give a concise introduction to the technique of
causal ordering, introduced by Simon [1952].1 In short,
the causal ordering algorithm takes a set of equations as
input and returns a causal ordering graph that encodes
the effects of interventions and a Markov ordering graph
that implies conditional independences between variables
in the model [Theorem 17, Blom et al., 2021]. Compared
with the popular framework of structural causal models
[Pearl, 2009, Bongers et al., 2021], the distinction between
the causal ordering and Markov ordering graphs does not
provide new insights for acyclic models, but it results in non-
trivial conclusions for models with feedback, as suggested
in the discussion in Section 2.4 and explained in detail in
[Blom et al., 2021].

We consider models consisting of equations F that contain
endogenous variables V , independent exogenous random
variables W , and (constant, exogenous) parameters P . The
structure of equations and the endogenous variables that
appear in them can be represented by the associated bipar-
tite graph B = 〈V, F,E〉, where each endogenous variable
is associated with a distinct vertex in V , and each equa-
tion is associated with a distinct vertex in F . There is an
edge (v − f) ∈ E if and only if variable v ∈ V appears in
equation f ∈ F . The causal ordering algorithm constructs
a directed cluster graph 〈V, E〉, where V is a partition of
vertices V ∪ F into clusters and E is a set of directed edges
from vertices in V to clusters in V . Given a bipartite graph

1Actually, we consider an equivalent algorithm for causal or-
dering that was shown to be more computationally efficient by
[Nayak, 1995, Gonçalves and Porto, 2016]. For more details, see
[Blom et al., 2021].

B = 〈V, F,E〉 with a perfect matching2 M , the causal or-
dering algorithm proceeds with the following three steps
[Nayak, 1995, Blom et al., 2021]:

1. For v ∈ V , f ∈ F orient edges (v − f) as (v ← f)
when (v − f) ∈ M and as (v → f) otherwise; this
yields a directed graph G(B,M).

2. Find all strongly connected components
S1, S2, . . . , Sn of G(B,M). Let V be the set of
clusters Si ∪M(Si) for i ∈ {1, . . . , n}, where M(Si)
denotes the set of vertices that are matched to vertices
in Si in matching M .

3. Let cl(f) denote the cluster in V containing f . For each
(v → f) in G(B,M) such that v /∈ cl(f) add an edge
(v → cl(f)) to E .

Independent exogenous random variables and parameters
are then added as singleton clusters with edges towards the
clusters of the equations in which they appear. It has been
shown that the resulting directed cluster graph CO(B) =
〈V, E〉, which we refer to as the causal ordering graph, is
independent of the choice of perfect matching [Theorem
4, Blom et al., 2021]. Example 1 shows how the algorithm
works and a graphical illustration of the algorithm for a
more elaborate cyclic model can be found in Section A of
the Supplementary Material.

Example 1. Let V = {v1, v2}, W = {w1, w2}, and P =
{p1, p2} be index sets. Consider model equations f1 and
f2 with endogenous variables (Xv)v∈V , exogenous random
variables (Uw)w∈W and parameters (Cp)p∈P :

f1 : Cp1Xv1 − Uw1
= 0, (1)

f2 : Cp2Xv2 +Xv1 + Uw2
= 0. (2)

The bipartite graph B = 〈V, F,E〉 in Figure 1a, with
E = {(v1 − f1), (v1 − f2), (v2 − f2)} is a compact repre-
sentation of the model structure. This graph has a perfect
matching M = {(v1 − f1), (v2 − f2)}. By orienting edges
in B according to the rules in step 1 of the causal ordering
algorithm we obtain the directed graph 〈V ∪ F,Edir〉 with
Edir = {(f1 → v1), (f2 → v2), (v1 → f2)}. The clusters
C1 = {v1, f1} and C2 = {v2, f2} are added to V in step 2
of the algorithm, and the edge (v1 → C2) is added to E in
step 3. Finally, we add the parameters P and independent
exogenous random variables W as singleton clusters to V ,
and the edges (p1 → C1), (w1 → C1), (p2 → C2), and
(w2 → C2) to E . The resulting causal ordering graph is
given in Figure 1b. 4

2A perfect matching M is a subset of edges in a bipartite
graph so that every vertex is adjacent to exactly one edge in M . If
(v − f) ∈ M we say that v and f are matched in M . Note that
not every bipartite graph has a perfect matching; the theory can
be extended to bipartite graphs that have no perfect matching by
making use of maximal matchings instead [Blom et al., 2021].



Throughout this work, we will assume that models are
uniquely solvable with respect to the causal ordering graph,
which roughly means that for each cluster, the equations
in that cluster can be solved uniquely for the endogenous
variables in that cluster (see [Definition 14, Blom et al.,
2021] for details). A perfect intervention on a cluster that
contains equation vertices represents a model change where
the equations in the targeted cluster are replaced by equa-
tions that set the endogenous variables in that cluster equal
to constant values. A soft intervention targets an equation,
parameter, or exogenous variable, but does not affect which
variables appear in the equations. We say that there is a di-
rected path from a vertex x to a vertex y in a causal ordering
graph 〈V, E〉 if either cl(x) = cl(y) or there is a sequence
of clusters C1 = cl(x), C2, . . . , Ck−1, Ck = cl(y) so that
for all i ∈ {1, . . . , k − 1} there is a vertex zi ∈ Ci such
that (zi → Ci+1) ∈ E . It can be shown that (a) the presence
of a directed path from a cluster, equation, parameter, or
exogenous variable that is targeted by a soft intervention to-
wards a certain variable in the causal ordering graph implies
that the intervention has a generic effect on that variable,
and (b) if no such path exists there is no causal effect of
the intervention on that variable [Theorem 20, Blom et al.,
2021]. For a perfect intervention that targets a cluster in the
causal ordering graph, one can similarly read off its non-
effects and generic effects from the causal ordering graph
[Theorem 23, Blom et al., 2021].
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(a) Bipartite graph.
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(c) Markov ordering graph.

Figure 1: The bipartite graph in Figure 1a is a compact rep-
resentation of the model in Example 1. The corresponding
causal ordering graph and Markov ordering graph are given
in Figures 1b and 1c respectively. Exogenous variables are
denoted by dashed circles and parameters by black dots.

1.2 MARKOV ORDERING GRAPH

The causal ordering graph CO(B) = 〈V, E〉 of model equa-
tions F with endogenous variables V , exogenous random
variables W , parameters P , and bipartite graph B can be
used to construct the Markov ordering graph, which is a
DAG MO(B) = 〈V ∪W,E〉, with (x → y) ∈ E if and
only if (x→ cl(y)) ∈ E . The Markov ordering graph for the
model equations in Example 1 is given in Figure 1c. It has
been shown that, under the assumption of unique solvability
w.r.t. the causal ordering graph, d-separations in the Markov

ordering graph imply conditional independences between
the corresponding variables [Blom et al., 2021]. Henceforth,
we will assume that the probability distribution of the solu-
tion (Xv)v∈V to a set of model equations is faithful to the
Markov ordering graph. In other words, each conditional
independence in the distribution implies a d-separation in
the Markov ordering graph. Under the assumption that data
is generated from such a model, some causal discovery algo-
rithms, such as the PC algorithm [Spirtes et al., 2000], aim
to construct the Markov equivalence class of the Markov
ordering graph. In this work, we will specifically focus on
feedback models for which the Markov ordering graph of
the equilibrium distribution, and consequently the output of
many causal discovery algorithms, does not have a straight-
forward causal interpretation.

2 CAUSAL ORDERING FOR A VIRAL
INFECTION MODEL

This work was inspired by a viral infection model discussed
by De Boer [2012], who showed through explicit calcula-
tions that the predictions of the model are not robust under
addition of an immune response. This sheds doubt on the
correct interpretation of variables and parameters in the
model. For many systems it is intrinsically difficult to study
their behavior in detail. The use of simplified mathematical
models that capture key characteristics aids in the analysis
of certain properties of the system. The hope is that the
explanations inferred from model equations are legitimate
accounts of the true underlying system [De Boer, 2012]. In
reality, a modeler must take into account that the outcome
of these studies may be contingent on the specifics of the
model design. Here, we demonstrate how causal ordering
can be used as a scalable tool to assess the robustness of
model predictions without requiring explicit calculations.

2.1 VIRAL INFECTION WITHOUT IMMUNE
RESPONSE

Let Uσ be a production term for target cells, dT the death
rate for target cells, Uf the fraction of successful infections,
and Uδ the death rate of productively infected cells. Define
β = bp

c , where b is the infection rate, p the amount of virus
produced per infected cell, and c the clearance rate of viral
particles. The following first-order differential equations de-
scribe how the amount of target cells XT (t) and the amount
of infected cells XI(t) evolve over time [De Boer, 2012]:

ẊT (t) = Uσ − dTXT (t)− βXT (t)XI(t), (3)

ẊI(t) = (UfβXT (t)− Uδ)XI(t). (4)

Suppose that we want to use this simple viral infection
model to explain why the set-point viral load (i.e. the total
amount of virus circulating in the bloodstream) of chroni-
cally infected HIV-patients differs by several orders of mag-
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Figure 2: Graphical representations of the viral infection
model in equations (5) and (6). Vertices vi and wj corre-
spond to variables Xi and Uj , respectively. The causal or-
dering graph represents generic effects of interventions. The
d-separations in Figure 2c imply conditional independences.

nitude, as De Boer [2012] does. To analyze this problem
we look at the equilibrium equations that are implied by
equations (3) and (4):3

fT : Uσ − dTXT − βXTXI = 0, (5)

f+I : UfβXT − Uδ = 0. (6)

Throughout the remainder of this work we will use this
natural labelling of equilibrium equations, where the equa-
tion derived from the derivative Ẋi(t) is labelled fi. For
first-order differential equations that are written in canon-
ical form, Ẋi(t) = gi(X(t)), the natural labelling always
exists.

Suppose that Uσ , Uf and Uδ are independent exogenous ran-
dom variables taking values in R>0 and dT , β are strictly
positive parameters. The associated bipartite graph, causal
ordering graph, and Markov ordering graph are given in
Figure 2. The causal ordering graph tells us that soft inter-
ventions targeting Uσ, Uf , Uδ, dT , or β generically have
an effect on the equilibrium distribution of the amount of
infected cells XI . From here on, we say that the causal or-
dering graph of a model predicts the generic presence or
absence of causal effects. The Markov ordering graph shows
that vT andwσ are d-separated. This implies that the amount
of target cells XT should be independent of the production
rate Uσ when the system is at equilibrium. Henceforth, we
will say that the Markov ordering graph predicts the generic
presence or absence of conditional dependences.

3Since we are only interested in strictly positive solutions we
removed XI from the equilibrium equation fI : (UfβXT −
Uδ)XI = 0 to obtain f+

I .

2.2 VIRAL INFECTION WITH A SINGLE
IMMUNE RESPONSE

The viral infection model in equations (3) and (4) can be
extended with a simple immune response XE(t) by adding
the following dynamic and static equations:

ẊE(t) = (UaXI(t)− dE)XE(t), (7)
Xδ(t) = dI + UkXE(t), (8)

where Ua is an activation rate, dE and dI are turnover rates
and Uk is a mass-action killing rate [De Boer, 2012]. Note
that the exogenous random variable Uδ is now treated as an
endogenous variable Xδ(t) instead. We derive the follow-
ing equilibrium equations, using the natural labelling for
equation (7):4

f+E : UaXI − dE = 0, (9)
fδ : Xδ − dI − UkXE = 0, (10)

Henceforth, we will call the addition of equations F+ to F a
model extension. Notice that when two sets of equations are
combined, there may exist variables that were exogenous in
the submodel (i.e. the original model) but that are endoge-
nous within the whole model (i.e. the extended model). Gen-
erally, equations F+ may contain endogenous variables in
V and exogenous variables in W but they may also contain
additional endogenous variables V+, additional exogenous
variablesW+ and additional parameters P+. Parameters and
exogenous random variables that appear in equations F can
appear as endogenous variables in V+ and in the extended
model Fext = F ∪ F+. In that case, these variables are no
longer considered to be parameters or exogenous variables
within the extended model.
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Figure 3: Graphical representations of the viral infection
model with a single immune response. The presence or
absence of causal relations and d-connections implied by
the graphs in Figure 2 are not preserved if a single immune
response is added.

Suppose that Ua and Uk are independent exogenous random
variables taking values in R>0 and dE , dI are parameters

4Analogous to changing fI to f+
I for strictly positive solutions,

we will look at f+
E instead of fE .



taking value in R>0. The bipartite graph, causal ordering
graph, and Markov ordering graph associated with equations
(5), (6), (9), and (10) (with Xδ replacing Uδ) are given in
Figure 3.

The causal ordering graph in Figure 3c predicts a causal
effect of Uσ and dT on XT but not on XI . By comparing
with the predictions of the causal ordering graph in Figure 2b
(where we saw that soft interventions targeting Uσ and dT
generically do have an effect on XI ), we find that effects of
interventions targeting Uσ and dT are not robust under the
model extension.

The Markov ordering graph of the extended model in Fig-
ure 3b shows that wσ is d-connected to vT , and hence Uσ
andXT will be dependent at equilibrium for most parameter
choices. On the other hand, in the Markov ordering graph
of the viral infection model without immune response (Fig-
ure 2c), wσ and vT are d-separated, and hence, Uσ and XT

will be independent at equilibrium for any parameter choice
according to the viral infection model without immune re-
sponse. Therefore, the independence between Uσ and XT

is not robust under the model extension.

The systematic graphical procedure followed here easily
leads to the same causal conclusions as De Boer [2012]
obtained by explicitly solving the equilibrium equations. In
addition, it leads to predictions regarding the conditional
(in)dependences in the equilibrium distribution.

2.3 VIRAL INFECTION WITH MULTIPLE
IMMUNE RESPONSES

The following static and dynamical equations describe mul-
tiple immune responses:

ẊEi
(t) =

pEXEi
(t)UaiXI(t)

h+XEi
(t) + UaiXI(t)

− dEXEi
(t),

i = 1, 2, . . . , n

(11)

Xδ(t) = dI + Uk

n∑
i=1

UaiXEi
(t), (12)

where there are n immune responses, Uai is the avidity of
immune response i, pE is the maximum division rate, and h
is a saturation constant [De Boer, 2012]. For n = 2 we can
derive equilibrium equations fE1

, fE2
, and fδ using the nat-

ural labelling as we did for the equilibrium equations in the
previous section. Together with the equilibrium equations
(5) and (6) (with Xδ replacing Uδ) for the viral infection
model this is another extended model. The bipartite graph of
this extended model is given in Figure 4a, while the causal
ordering graph can be found in Figure 4b. By comparing
the directed paths in this causal ordering graph with that of
the original viral infection model (i.e. the model without
an immune response) in Figure 2b, it can be seen that the
predicted presence of causal relations is preserved under ex-
tension of the model with multiple immune responses, while

the predicted absence of causal relations is not. Similarly,
by comparing d-separations in the Markov ordering graphs
in Figure 2c with those in Figure 4c, we find that predicted
conditional dependences are preserved under the extensions,
while the predicted conditional independences are not.
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Figure 4: Graphical representations of the viral infection
model with multiple immune responses. The presence of
causal relations and d-connections in Figure 2 is preserved.

2.4 MARKOV ORDERING GRAPHS AND CAUSAL
INTERPRETATIONS

In [Blom et al., 2021], it was shown that the Markov order-
ing graph may not have a straightforward causal interpreta-
tion. Here, we illustrate for the viral infection models that
the Markov ordering graphs neither have a straightforward
causal interpretation at equilibrium in terms of soft inter-
ventions targeting parameters or equations nor in terms of
perfect interventions on variables in the dynamical model.
To see this, consider the Markov ordering graph in Fig-
ure 3b for the viral infection with a single immune response.
The edge (vI → vT ) cannot correspond to the effect of
a soft intervention targeting f+I , because the causal order-
ing graph in Figure 3c shows that there is no such effect.
Clearly, directed paths in the Markov ordering graph do
not necessarily represent the effects of soft interventions.
A natural way to model a perfect intervention targeting a
variable in the Markov ordering graph is to replace the (dif-
ferential) equation of that variable with an equation setting
that variable equal to a certain value in the underlying dy-



namical model [Mooij et al., 2013]. By explicitly solving
equilibrium equations it is easy to check that replacing f+E
with an equation setting XE equal to a constant generically
changes the equilibrium distributions of all four variables
XE , Xδ, XT , XI . Since there are no directed paths from
vE to any of vδ, vT , vI in the Markov ordering graph in
Figure 3b, the effects of this perfect intervention would not
have been predicted by the Markov ordering graph, if it
were interpreted causally. Therefore, contrary to the causal
ordering graph, the Markov ordering graph does not have a
causal interpretation in terms of soft or perfect interventions
on the underlying dynamical model.

3 ROBUST CAUSAL PREDICTIONS
UNDER MODEL EXTENSIONS

One way to gauge the robustness of model predictions is
to check to what extent they depend on the model design.
The example of a viral infection with different immune re-
sponses in the previous section indicates that qualitative
causal predictions entailed by the causal ordering graph of a
mathematical model may strongly depend on the particulars
of the model. Both the implied presence or absence of causal
relations at equilibrium and the implied presence or absence
of conditional independences at equilibrium may change
under certain model extensions. Under what conditions are
these qualitative predictions preserved under model exten-
sions? In this section, we characterize a large class of model
extensions under which qualitative equilibrium predictions
are preserved.

Theorem 1 gives a sufficient condition on model extensions
under which the predicted generic presence of causal rela-
tions and predicted generic presence of conditional depen-
dences at equilibrium is preserved. The proof is given in
Section C of the Supplementary Material.

Theorem 1. Consider model equations F containing en-
dogenous variables V with bipartite graph B. Suppose F
is extended with equations F+ containing endogenous vari-
ables in V ∪ V+, where V+ contains endogenous variables
that are added by the model extension (which may include
parameters or exogenous variables that appear in F and
become endogenous in the extended model). Let Bext be
the bipartite graph associated with Fext = F ∪ F+ and
Vext = V ∪V+, and B+ the bipartite graph associated with
the extension F+ and V+, where variables in V appearing
in F+ are treated as exogenous variables (i.e. they are not
added as vertices in B+). If B and B+ both have a perfect
matching then:

1. Bext has a perfect matching,

2. ancestral relations in CO(B) are also present in
CO(Bext),

3. d-connections in MO(B) are also present in
MO(Bext).

vT vI vE vδ

fT f+I f+E fδ

(a) Single response.

vT vI vE1 vE2 vδ

fT f+I fE1 fE2 fδ

(b) Multiple responses.

Figure 5: The solid lines indicate the bipartite graphs B+
associated with the single immune response extension (5a)
and the multiple immune response extension (5b). Com-
bined with the dotted lines, one obtains the bipartite graphs
Bext for the complete models.

This result characterizes a large set of extensions under
which the implied causal effects and conditional depen-
dences of a model are preserved. Consider again the equi-
librium behavior of the viral infection models in Section 2.
We already showed explicitly that the extension of the viral
infection model with multiple immune responses preserved
the predicted presence of causal relations and conditional
dependences, but with the help of Theorem 1 we only would
have needed to check whether the bipartite graph in Fig-
ure 5b has a perfect matching to arrive at the same con-
clusion. The bipartite graph for the extension with a sin-
gle immune response in Figure 5a does not have a perfect
matching and hence the conditions of Theorem 1 do not
hold. Recall that this model extension did not preserve the
predicted presence of causal relations.

The theorem below gives a stronger condition under which
(conditional) independence relations and the absence of
causal relations that are implied by a model are also pre-
dicted by the extended model. The proof is provided in the
supplement.

Theorem 2. Let F , F+, Fext, V , V+, Vext, B, B+, and
Bext be as in Theorem 1. If B and B+ both have perfect
matchings and no vertex in V+ is adjacent to a vertex in F
in Bext then:5

1. ancestral relations absent in CO(B) are also absent in
CO(Bext),

2. d-connections absent in MO(B) are also absent in
MO(Bext).

Together with Theorem 1, this result characterizes a large
class of model extensions under which all qualitative model
predictions are preserved. Consider again the equilibrium
models for the viral infection in Section 2. The bipartite
graph for the extension with a single immune response in
Figure 5a does not have a perfect matching. In the bipar-
tite graph associated with the viral infection model with

5A vertex in V+ is considered adjacent to F in Bext if it corre-
sponds with one of the exogenous random variables or parameters
in F that become endogenous in the model extension.



multiple immune responses in Figure 4a, the additional en-
dogenous variable vδ is adjacent to fI . Neither of the model
extensions satisfies the conditions of Theorem 2. We already
demonstrated that neither of the model extensions preserves
all qualitative model predictions. An example of a model
extension that does satisfy the conditions in Theorem 1 and
2 is an acyclic structural causal model that is extended with
another acyclic structural causal model such that the ad-
ditional variables are non-ancestors of the original ones.
Together, Theorem 1 and 2, can be used to understand when
the causal and Markov properties of a composite system can
be understood by studying the corresponding properties of
its components.

4 SELECTION OF MODEL EXTENSIONS

So far, we have considered methods to assess the robust-
ness of qualitative model predictions. In this section we
will show how this idea results in novel opportunities re-
garding causal discovery. In particular, if we assume that
the systems that we observe are part of a larger partially
observed system, then we can use the methods in this paper
to reason about causal mechanisms of unobserved variables.
Consider, for example, the viral infection model for which
we have demonstrated that extensions with different immune
responses imply different (conditional) independences be-
tween variables in the original model. The Markov order-
ing graphs in Figures 2c, 3b, and 4c imply the following
(in)dependences:

Viral infection model (In)dependences
without immune response Uσ ⊥⊥ XT , Uσ 6⊥⊥ XI

with single immune response Uσ 6⊥⊥ XT , Uσ ⊥⊥ XI

with multiple immune responses Uσ 6⊥⊥ XT , Uσ 6⊥⊥ XI

Given a model for variables XT and XI only, we can re-
ject certain model extensions based on the observed (con-
ditional) independences for variables XT , XI , and Uσ in
data sampled from the distribution of the combined system—
provided that we assume faithfulness and the correctness
of the model of the original subsystem. Using this holistic
modelling approach, we can reason about properties of an
unknown model extension without observing the new mech-
anisms or variables. In the remainder of this section, we
further discuss how this idea can be applied to equilibrium
data of dynamical systems.

4.1 REASONING ABOUT SELF-REGULATING
VARIABLES

We say that a variable in a set of first-order differential equa-
tions in canonical form is self-regulating if it can be solved
uniquely from the equilibrium equation that is constructed
from its derivative. For example, in the system of first-
order ODEs (3–4), XT is self-regulating if βXI + dT 6= 0,
whereas XI is not self-regulating.

For models in which every variable is self-regulating there
exists a perfect matching where each variable vi is matched
to its associated equilibrium equation fi according to the
natural labelling, for more details see Lemma 1 in the sup-
plement. Interestingly, the Markov ordering graph for the
equilibrium equations of such a model always has a causal
interpretation. By construction of the causal ordering graph
from the bipartite graph and the perfect matching provided
by the natural labelling, we know that a vertex vi always
appears in a cluster with fi in the causal ordering graph. The
presence or absence of directed paths in the Markov order-
ing graph can then easily be associated with the presence
or absence of directed paths in the causal ordering graph.
Consequently, the Markov ordering graph can be interpreted
in terms of both soft interventions targeting equations and
perfect interventions that set variables equal to a constant
by replacement of the associated dynamical and equilibrium
equations.6

For models in which every variable is self-regulating, it
follows immediately from Theorem 1 that the presence of
ancestral relations and d-connections is robust under dy-
namical model extensions in which each variable is self-
regulating, as is stated more formally in Corollary 1 below.

Corollary 1. Consider a first-order dynamical model in
canonical form for endogenous variables V and an exten-
sion consisting of canonical first-order differential equa-
tions for additional endogenous variables V+. Let F and
Fext = F ∪F+ be the equilibrium equations of the original
and extended model respectively. If all variables in V ∪ V+
are self-regulating, then statements 2 and 3 of Theorem 1
hold.

Corollary 1 characterizes a class of models under which cer-
tain qualitative predictions for the equilibrium distribution
are robust, but the result can also be interpreted from a dif-
ferent angle. Suppose that we have equilibrium data that is
generated by an extended dynamical model with equilibrium
equations Fext, but we only have a partial model consist-
ing of equations in F for a subset V ⊆ Vext = V ∪ V+
of variables that appear in Fext = F ∪ F+. If we would
find conditional independences between variables in V that
do not correspond to d-separations in the Markov ordering
graph of the partial model, this does not necessarily mean
that the model equations are wrong. It could also be the case,
for example, that we are wrong to assume that the system
can be studied in a reductionist manner and that the model
should be extended. Furthermore, under the assumption
that data is generated from the equilibrium distribution of a
dynamical model, Corollary 1 tells us that conditional inde-
pendences in the data that are not predicted by the equations

6Dynamical systems with only self-regulating variables were
also considered in [Mooij et al., 2013], where it was shown that
their equilibria can be modelled as structural causal models without
self-cycles.



of a partial model imply the presence of variables that are
not self-regulating, if we assume faithfulness. This shows
that, given a model for a subsystem, we can reason about
the properties of unobserved and unknown variables in the
whole system. We will showcase an example for this type
of reasoning in Section 4.3.

4.2 REASONING ABOUT FEEDBACK LOOPS

We say that an extension of a dynamical model introduces
a new feedback loop with the original dynamical model
when there is feedback in the extended dynamical model
that involves variables in both the original model and the
model extension. To make this definition more precise,
consider the set Enat of edges (vi − fi) that are associ-
ated with the natural labelling of the equilibrium equations
of the extended dynamical model. The feedback loops in
the dynamical model coincide with cycles in the directed
graph G(Bnat,Mnat) that is obtained by applying step 1
of the causal ordering algorithm to the bipartite graph
Bnat = 〈Vext, Fext, Eext ∪ Enat〉 using the perfect match-
ing Mnat = Enat.7 The following theorem can be used to
reason about the presence of partially unobserved feedback
loops given a model and observations for a subsystem.

Theorem 3. Consider a first-order dynamical model in
canonical form for endogenous variables V and an exten-
sion consisting of canonical first-order differential equations
for additional endogenous variables V+. Let F and Fext =
F ∪ F+ be the equilibrium equations of the original and
extended model respectively. LetB = 〈V, F,E〉 be the bipar-
tite graph associated with F and Bext = 〈Vext, Fext, Eext〉
the bipartite graph associated with Fext. Assume that B and
Bext both have perfect matchings. If the model extension
does not introduce a new feedback loop with the original
dynamical model, then d-connections in MO(B) are also
present in MO(Bext).

Theorem 3 characterizes a class of model extensions under
which certain qualitative model predictions are robust, but
it also shows how we can reason about the existence of
unobserved feedback loops. To be more precise, it shows
that, given a submodel for a subsystem, the presence of
conditional independences that are not predicted by the sub-
model imply the existence of an unobserved feedback loop,
if we assume faithfulness. If, for example, we assume that
the viral infection model without an immune response is
a submodel of the system that is described by the strictly
positive equilibrium solutions of the viral infection model

7Note that a feedback loop in the dynamical model does not
imply a feedback loop in the equilibrium equations as well. For
example, there is feedback in the dynamical equations (3), (4), but
there is no feedback in the causal ordering graph of the equilibrium
equations in Figure 2b nor in the directed graph that is constructed
in step 1 of the causal ordering algorithm.

with a single immune response, then we would observe an
independence between Uσ and XI that is not predicted by
the model equations of the submodel. Theorem 3 would then
imply that there is an unobserved feedback loop. Indeed, it
can be seen from equations (3), (4), (7), (8) that there is an
unobserved feedback loop from XI(t) to XE(t) to Xδ(t)
and back to XI(t), while the Markov ordering graphs in
Figures 2c and 3b imply that Uσ and XI are dependent in
the original model and independent in the extended model.
We consider the use of existing structure learning algorithms
for the detection of feedback loops in models with variables
that are not self-regulating from a combination of back-
ground knowledge and observational equilibrium data to be
an interesting topic for future work.

4.3 EXAMPLE: SIGNALING CASCADE MODEL

We will illustrate the ideas about detecting non-self-
regulating variables and feedback loops by means of an
example of a mathematical model for a dynamical system
consisting of a signaling cascade of phosphorylated pro-
teins. The model is a simplified version of that of [Shin
et al., 2009], where we omitted the feedback mechanism
through RAF Kinase Inhibitor Protein (RKIP) [Blom and
Mooij, 2021]. The details of this model can be found in
Section B of the Supplementary Material.

We denote the concentrations of active (phosphorylated)
RAS, RAF, MEK, and ERK proteins, respectively, byXs(t),
Xr(t), Xm(t), and Xe(t), and denote by I(t) an external
stimulus or perturbation. The dynamics is modeled by dif-
ferential equations (6*), (7*), (8*), and (10*) in Section B
of the Supplementary Material. The full model consists of
a signaling pathway that goes from I(t) to Xs(t) to Xr(t)
to Xm(t) to Xe(t), with negative feedback from Xe(t) on
Xs(t). At equilibrium, we assume the exogenous input sig-
nal I(t) = I to have a constant (possibly random) value, and
let fs, fr, fm, and fe represent the equilibrium equations
(11*), (12*), (13*), and (14*) respectively.

Suppose now that the system is only partially modelled by
treating the ERK concentration Xe(t) as a latent exoge-
nous variable in the submodel for the RAS, RAF and MEK
concentrations (Xs(t), Xr(t), and Xm(t), respectively) de-
fined by equations (6*), (7*), and (8*). The complete model
(including the differential equation (10*) that models the dy-
namics of ERK) can then be seen as a model extension
of the submodel for RAS, RAF and MEK. Application
of the causal ordering technique to the submodel (with
V = {vs, vr, vm} and F = {fs, fr, fm}) results in the
Markov ordering graph in Figure 6a. Assuming faithfulness,
the d-connections in this graph indicate that the equilibrium
distributions for Xs, Xr and Xm all depend on the input
signal I . Let us assume that we have observed data that is
generated from the full model. The Markov ordering graph
for the extended model (with V + = {ve}, F+ = {fe}) is



displayed in Figure 6b, and implies that the equilibrium dis-
tributions for Xs, Xr and Xm are independent of the input
signal I . Thus, what appears to be a faithfulness violation
from the submodel perspective is explained by the Markov
property of the extended model. In this case, the holistic
modeling approach that allows for feedback through addi-
tional unobserved endogenous variables is needed, while
the more common reductionistic assumption of treating all
unobserved causes as exogenous to the observed variables
will fail.

According to Corollary 1 and Theorem 3, the discrepancy
between the observed and predicted conditional indepen-
dences implies the presence of a non-selfregulating variable
and an unobserved dynamical feedback loop (provided that
we assume faithfulness). This is in agreement with the fact
that the dynamic variable Xe(t) is not self-regulating and
that there is a feedback loop in the extended dynamical
model. Remarkably, we can infer the presence of feedback
in this way without explicitly modelling or even observing
Xe(t).

vs vr vm

ws wr wm

I

(a) MO(B).

ve vs vr vm

ws wr wm we

I

(b) MO(Bext).

Figure 6: Markov ordering graphs for the partial model
(left) and the full model (right) of the RAS-RAF-MEK-ERK
protein signaling cascade model.

5 DISCUSSION AND CONCLUSION

In this work we revisited several models of viral infections
and immune responses. In our treatment of these models
we closely followed the approach in De Boer [2012] and
therefore we only considered strictly positive solutions. If
we would have modelled all solutions then, for example,
we would have considered the equilibrium equation fI :
(UfβXT − Uδ)XI = 0 instead of f+I in equation (6). In
that case, we would have obtained the causal ordering graph
in Figure 7 instead of that in Figure 2b. Clearly, the model
predictions of the causal ordering graph for the positive
solutions in Figure 2b are more informative. The choice of
only modelling strictly positive solutions depends on the
application.

In many application domains mathematical models are used
to predict the equilibrium behavior of complex systems.
An important issue is that (causal and Markov) predictions
may strongly depend on the specifics of the model design.
We revisited an example of a viral infection model [De
Boer, 2012], in which implied causal relations and condi-
tional independences change dramatically when equations,
describing immune reactions, are added. Analysis of this

vT vI

fT fI

σ

dT

f

δ

β

Figure 7: Causal ordering graph for positive and non-
positive solutions of the viral infection model.

behavior through explicit calculations is neither insightful
nor scalable. We showed how the technique of causal or-
dering can be used to efficiently analyze the robustness of
implied causal effects and conditional independences under
certain solvability assumptions. Using key insights provided
by this approach we characterized large classes of model
extensions under which predicted causal relations and con-
ditional independences are robust. We hope that the results
presented in this paper provide a step towards bringing the
world of causal modeling and reasoning closer to practical
applications.

Our results for the characterization of the robustness of
model extensions can also be used to reason about the prop-
erties of models that are the combination of two submodels.
This way, we can study systems whose causal and Markov
properties can be understood in a reductionistic manner by
considering the properties of its parts. When the proper-
ties of the whole model differ from those of its parts, a
holistic modelling approach is required. For models of the
equilibrium distribution of dynamical systems, we proved
that extensions of dynamical models where each variable
is self-regulating preserve the predicted presence of causal
effects and d-connections in the original model. Based on
those insights, we proposed a novel approach to model se-
lection, where information about conditional independences
can be used in combination with model equations to reason
about possible model extensions or the presence of feedback
mechanisms. For dynamical models with feedback, the out-
put of structure learning algorithms does not always have a
causal interpretation in terms of soft or perfect interventions
for the equilibrium distribution. We have shown that in dy-
namical systems where each variable is self-regulating the
identifiable directed edges in the learned graph do express
causal relations between variables.
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