
Self-Guiding Exploration for
Combinatorial Problems

Zangir Iklassov
MBZUAI

zangir.iklassov@mbzuai.ac.ae

Yali Du
King’s College London
yali.du@kcl.ac.uk

Farkhad Akimov
MBZUAI

farkhad.akimov@mbzuai.ac.ae

Martin Takáč
MBZUAI

martin.takac@mbzuai.ac.ae

Abstract

Large Language Models (LLMs) have become pivotal in addressing reasoning
tasks across diverse domains, including arithmetic, commonsense, and symbolic
reasoning. They utilize prompting techniques such as Exploration-of-Thought,
Decomposition, and Refinement to effectively navigate and solve intricate tasks.
Despite these advancements, the application of LLMs to Combinatorial Problems
(CPs), known for their NP-hardness and critical roles in logistics and resource
management remains underexplored. To address this gap, we introduce a novel
prompting strategy: Self-Guiding Exploration (SGE), designed to enhance the
performance of solving CPs. SGE operates autonomously, generating multiple
thought trajectories for each CP task. It then breaks these trajectories down into
actionable subtasks, executes them sequentially, and refines the results to ensure
optimal outcomes. We present our research as the first to apply LLMs to a broad
range of CPs and demonstrate that SGE outperforms existing prompting strategies
by over 27.84% in CP optimization performance. Additionally, SGE achieves
a 2.46% higher accuracy over the best existing results in other reasoning tasks
(arithmetic, commonsense, and symbolic).

1 Introduction

Large Language Models (LLMs) have emerged as powerful tools capable of executing reasoning tasks
across various domains, including arithmetic, commonsense, and symbolic reasoning [4, 33, 5, 27].
These models may leverage prompting techniques such as Exploration-of-Thought [39, 13, 42],
Decomposition [49, 12], and Refinement [19] to break down and solve various tasks in a step-by-
step manner. Recent research has been directed towards extending these techniques to tackle more
sophisticated optimization challenges [41]. Combinatorial problems (CPs) may represent a category
of these complex optimization tasks, associated with intricate computational challenges.

Combinatorial Problems are characterized by their NP-hardness and inherent complexity, which result
in an exponential growth in the number of potential solutions. This complexity presents substantial
challenges in the research [26, 25, 11, 10]. CPs are especially crucial in sectors that require efficient
logistics, planning, and scheduling. Currently, the dominant approach in these industries involves
metaheuristic methods. These methods combine various simple but fast heuristics to effectively
tackle CPs within specific constraints. Nonetheless, the effectiveness of these heuristics can vary
significantly depending on the CP task and its associated constraints, necessitating a customized
selection of heuristics to achieve optimal performance.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

In the meantime, research on exploring LLMs to solve CPs reveals substantial gaps. While recent
advancements indicate the effectiveness of LLMs in various reasoning tasks [38, 47, 32, 49], their
application to CPs has been minimal. The literature indicates that existing generative models can
address smaller instances of the Traveling Salesman Problem (TSP) [16, 23, 41]. However, as problem
sizes increase, existing prompting strategies begin to yield inadequate responses, underscoring the
need for more sophisticated prompting methods. Moreover, there is a notable scarcity of research
addressing other complex CPs, particularly the Vehicle Routing and Job Scheduling Problems, which
pose significant challenges in logistics, planning industries, and operations research.

In this work, we introduce a novel prompting strategy: self-guiding exploration (SGE), designed to
enhance the problem-solving process for CPs. This algorithm works as a combination of exploration-
of-thought, decomposition, and refinement prompting methods. The SGE approach autonomously
generates multiple thought trajectories for a given CP, each trajectory representing a specific heuristic
to tackle the given task. Each trajectory is then decomposed into subtasks, which are executed one by
one, and their outputs are refined and combined into a final solution. Unlike the task-specific prompts
utilized in other methods, SGE employs general-purpose prompts, allowing for the adaptive use of
specific heuristic solutions tailored to various CPs, such as the Hungarian heuristic for the assignment
problem and the Nearest Neighbor heuristic for the vehicle routing problem. Essentially, SGE acts as
a versatile metaheuristic capable of identifying, combining, and refining task-specific heuristics for
individual CP tasks.

Our work makes following contributions. Firstly, we present a novel investigation into the appli-
cation of large language models for solving combinatorial problems. Secondly, we introduce a new
prompting strategy, SGE, that autonomosly generates thought trajectories, splits them into subtasks
and refines the answers. Thirdly, we demonstrate that SGE outperforms existing prompting strate-
gies such as Chain-of-Thought, Decomposition, and Self-Refinement, improving CP optimization
performance by 27.84%. Lastly, we validate the applicability of SGE across other reasoning tasks,
including arithmetic, commonsense, and symbolic tasks, where our method achieves a 2.46% higher
accuracy than the best existing results.

2 Related work

CP via classical approach. In classical research, combinatorial problems are predominantly tackled
using heuristic and metaheuristic methods specifically crafted for particular tasks. Notable examples
include the Ant-Colony Optimization and Tabu Search methods for addressing the Vehicle Routing
Problem [28, 8, 15], the Shortest Processing Time and Most Work Remaining Heuristics for Job
Scheduling Problems [30], and the Hungarian Algorithm for the Assignment Problem [1]. These
approaches are favored in industrial settings due to their simplicity and speed. However, they need to
be individually tailored to each task and its constraints’ setting. In contrast, exact solvers such as
Google-OR-Tools [9] offer general and precise solutions, but their applicability is often limited to
smaller-scale problems due to the inherent NP-hardness of combinatorial problems.

CP via learning-based approach. In AI literature, Reinforcement Learning (RL) has been a
prominent approach for tackling combinatorial problems since the 1990s [21, 20, 45, 7, 2]. The
integration of deep learning, particularly through innovations like Pointer Networks, has significantly
enhanced RL’s capability to handle more complex combinatorial tasks [35, 3]. Further advancements
involve the use of Transformer networks [6, 34, 14], with notable applications in solving the Vehicle
Routing Problem [25, 11]. Despite these advances, RL-based methods often still do not exceed the
performance of traditional heuristics, especially when scalability and accurate state representation are
required [36, 22, 44, 31].

CP with LLMs. Recent studies have leveraged large language models (LLMs), such as GPT-3.5
and GPT-4, to tackle combinatorial problems like the Traveling Salesman Problem using iterative
prompting, where solutions are refined incrementally [23, 41]. Other works employ LLMs to
autonomously generate executable code as novel heuristics for problems like the knapsack and
traveling salesman [29, 17, 43, 18]. This promising approach enhances task-specific heuristics,
potentially improving performance on specialized combinatorial tasks. In contrast, our focus is on
leveraging LLMs to directly solve combinatorial problems in a generalizable manner, enabling a
versatile approach applicable across a wide range of complex tasks.

2

Prompting strategies. The expressive capabilities of direct prompting in Large Language Models
are theoretically limited to the complexity class TC0 [24]. To effectively address combinatorial
problems with LLMs, sophisticated prompting strategies are required. One basic approach is the
Chain-of-Thought (CoT) prompting, introduced in [40], which encourages LLMs to articulate
intermediate "thoughts" that inform the generation of the final output. This technique has given rise
to advanced variations, including Self-consistency with CoT (CoT-SC), Tree-of-Thoughts (ToT), and
Graph-of-Thought methods [37, 42, 46]. Additionally, decomposition prompting strategies can be
employed [48, 12], since they simplify complex tasks into smaller, manageable subtasks via symbolic
programs or structured algorithms, thus improving the performance of LLMs. In our experiments, we
found these techniques to be insufficient, leading us to propose the Self-Guiding Exploration method
as a more effective solution for tackling combinatorial problem tasks.

3 Preliminaries

We provide an overview of combinatorial problems, highlighting their inherent complexity with
the classic example of the Traveling Salesman Problem (TSP) and an example of a combinatorial
problem formulation in a prompt for use by a Large Language Model (LLM).

Combinatorial problems. Combinatorial problems involve decision-making processes where the
goal is to assign binary decision variables x ∈ 0, 1 in order to optimize a cost function g(x1, ..., xn),
subject to task-specific constraints. A classic example of such a problem is the TSP. In the TSP, given
a list of n cities and the distances dij between cities i, j, the objective is to determine the shortest
possible route that visits each city exactly once and returns to the starting city. xij is used as the
action variable, indicating whether the route progresses from city i to city j. The cost function to
minimize in TSP is g(x) =

∑n
i=1

∑n
j=1 dijxij , under the condition that all cities visited exactly

once
∑n

i=1 xij = 1 and
∑n

j=1 xij = 1 for all i, j. Combinatorial problems are generally categorized
as NP-hard due to their inherent computational complexity. For instance, a TSP with n cities presents
(n−1)! possible routes, rendering the evaluation of all potential solutions impractical and exceedingly
time-consuming as n increases.

Prompting combinatorial problems in LLMs. To use LLM for solving CP tasks, we define f as
the interface function of a generative LLM model, which accepts high-dimensional discrete input
tokens and generates outputs within the same token space (f : W 7→ W). For each combinatorial
problem task, the input Q to the LLM can be explicitly defined in a textual format. This description
delineates the specific goal alongside a list of variables tailored to the task at hand. For instance,
the objective of the Traveling Salesman Problem (TSP) can be textually articulated as "Find a route
that minimizes the total travel distance, visits each city exactly once, and starts and ends in the same
city." Subsequently, the variables, such as the distances between cities dij , are provided in a format
such as "The distance between city i and city j is [number]", laying out all necessary parameters
for the model to process and generate solutions. The model will then process this structured input
Q to produce the corresponding solution answer A, where both Q and A are within token space W ;
formally, A = f(Q). Given the inherent complexity of combinatorial problems, direct zero-shot
prompting f(Q) is insufficient. Consequently, we propose a self-guiding exploration algorithm that
employs metaheuristic-like strategies to effectively solve CP tasks.

4 Method

In this section, we introduce Self-Guiding Exploration (SGE) method and provide a detailed expla-
nation of its algorithm designed to tackle combinatorial problems. The method (Fig 1), inspired
by metaheuristic approaches, synthesizes multiple heuristic methods. It generates various thought
trajectories, with each trajectory representing a specific heuristic approach. These trajectories are then
integrated to form the final solution. To overcome the challenges of executing complex heuristics
through LLMs in one step, our algorithm utilizes a decomposition strategy. This approach breaks
down each trajectory into smaller, more manageable subtasks, enabling the solution to progress
through sequential, simpler steps. This general-purpose algorithm is tailored to adapt to a wide range
of combinatorial problems without the constraints of task-specific exemplars for few-shot solution
generation.

3

Figure 1: Self-Guiding Exploration. The generative model autonomously addresses a combinatorial
problem task Q through a five-phase process: (1) Exploration of N solution trajectories, where
each trajectory offers potential solutions; (2) Decomposition of these trajectories into K subtasks,
outlining specific steps for each method; (3) Resolution of each subtask, executing the outlined
steps; (4) Feedback and Refinement, where feedback is gathered and used to refine each subtask;
(5) Integration of all trajectories into a consolidated final solution A. Distinct from traditional
exploration/decomposition techniques, SGE(Q) functions entirely autonomously, eliminating the
reliance on task-specific queries or manually created thought exemplars. This independence makes it
universally applicable to all CP tasks without necessitating modifications.

Algorithm 1 Self-Guiding Exploration algorithm - SGE(·)
Require: query Q, model f , meta-prompts Z, maximum recursion depth D

1: QN = f(Q,Zexplore) ▷ Explore method trajectories
2: for iteration n ∈ 1, 2, . . . , N do
3: Qn

K = f(Q,Qn, Zdecomp) ▷ Decompose trajectory subtasks
4: for iteration k ∈ 1, 2, . . . ,K do
5: if f(Qn

k , Zcheck) then ▷ Check if subtask is simple
6: Tn

k = f(Q,Tn
k−1, Q

n
k) ▷ Execute subtask and get thought

7: else
8: Tn

k = SGE(Tn
k−1||Qn

k , f, Z) ▷ Recursive call of subtask
9: end if

10: Qn
kfeedback

= f(Q,Qn
k , T

n
k , Zfeedback) ▷ Get feedback query

11: Tn
k = f(Q,Tn

k , Q
n
kfeedback

) ▷ Refine thought
12: end for
13: end for
14: A = f(Q,T 1

K , ..., TN
K , Zintegrate) ▷ Get answer

4.1 Algorithm

The proposed method’s algorithm is segmented into five distinct phases, as outlined in Algorithm 1.
These phases include exploring thought trajectories, decomposing each trajectory into subtasks,
resolving each subtask to generate thoughts, obtaining feedback and refining the thoughts, and finally
integrating all thoughts to formulate the answer. Each thought here represents one completed subtask.

Exploration. During the exploration stage, the model tackles the overarching problem Q by
engaging with exploration meta-prompt. This prompt Zexplore is structured as: "List all possible
methods to solve this problem. Return them separated by new lines." This prompt stimulates the
model to enumerate potential methodologies pertinent to Q. The sequence is then divided into
task-specific trajectories of queries Qn each incorporating a method to address Q:

QN = f(Q,Zexplore).

Decomposition. Following exploration, each trajectory query Qn is processed through the model
to break down the trajectory into actionable steps. The decomposition meta-prompt Zdecomp is
formulated as: "List all steps to use the method. Return them separated by new lines." This leads to

4

the generation of subtask queries that operationalize the trajectory method:

Qn
K = f(Q,Qn, Zdecomp).

Subtask resolution. Post-decomposition, the subtask queries Qn
K are each split into K individual

queries and processed by the model to generate thoughts. The model initially evaluates if the task is
easily solvable using the meta-prompt Zcheck: "Is this problem easily solvable? Return yes or no":
f(Qn

k , Zcheck). If the response is affirmative, the model executes the subtask query Qn
k to generate a

new thought:
Tn
k = f(Q,Tn

k−1, Q
n
k).

Otherwise, the model engages a recursive instance of the self-guiding exploration algorithm on Qn
k

instead of the main task Q to navigate and decompose the complex subtask, producing:

Tn
k = f(Q,Tn

k , Q
n
kfeedback

).

Feedback and refinement. In this stage, the model utilizes an additional meta-prompt Zfeedback

- "Give feedback to the proposed solution" - to generate feedback queries Qn
kfeedback

=

f(Q,Qn
k , T

n
k , Zfeedback). This guides the model in refining the initial responses through reeval-

uation and enhancement of the thoughts:

Tn
k = f(Q,Tn

k , Q
n
kfeedback

).

Integration. Upon completion of all trajectories and their associated subtasks, the model employs
a final meta-prompt Zintegrate - "Integrate all previous findings and provide the final answer" - to
amalgamate the last thoughts into a definitive solution answer:

A = f(Q,T 1
K , ...TN

K , Zintegrate).

SGE draws inspiration from metaheuristic methods used to solve combinatorial problem tasks.
Yet, due to its general-purpose nature and meta-prompts, it is also suitable for other tasks, beyond
CPs. Essentially, it integrates elements of exploration-of-thought, decomposition, and refinement
prompting strategies, but it does so without relying on task-specific prompts or solution exemplars.
For additional information on these prompting strategies, see Section A.1

5 Experiments

This section details the experimental setup and presents the results of our proposed method applied to
combinatorial problem tasks, as well as its performance on other reasoning tasks commonly explored
in LLM research.

5.1 Setup

CP tasks. The experiments were conducted on six combinatorial tasks: Assignment Problem,
Knapsack Problem, Bin Packing Problem, Traveling Salesman Problem, Vehicle Routing Problem,
and Job Scheduling Problem. The Assignment Problem, classified as P-complete, can be optimally
solved using the Hungarian Algorithm. In contrast, the other tasks are NP-hard and ordered by
increasing complexity. For a more detailed discussion of these CP tasks, refer to Section A.2.
We included five distinct problem sizes, involving 5, 10, 15, 20, and 30 elements (nodes) such
as cities in the TSP/VRP. To facilitate these experiments, a dataset was created, comprising 100
randomly generated instances for each problem size. These instances were characterized by uniformly
distributed variables, such as the positioning of cities in TSP/VRP or bin volume in the Bin Packing
Problem, over an interval from 0 to 100. The experiments utilized an NVIDIA A100 SXM 40GB
GPU, paired with two AMD EPYC 7742 CPUs (8 cores each) and 256GB RAM. Our implementation
is available online.1

1https://github.com/Zangir/LLM-for-CP

5

https://github.com/Zangir/LLM-for-CP

Table 1: Percentage performance improvement compared to IO on CP tasks using GPT-4 and
Gemini-1.5 models. CoT uses majority voting, with the number of candidates equal to the number of
thoughts produced by SGE. The metrics is quantified as percentage improvement in cost with respect
to IO solution (the bigger it is the better).

GPT-4 Gemini-1.5

Task CoT Refine Decomp Ours CoT Refine Decomp Ours

Assignment 11.46 14.47 33.80 41.33 11.66 13.98 31.94 40.46
Knapsack 15.37 17.16 51.95 70.39 13.85 16.85 48.62 65.87
Bin Packing 14.06 17.12 39.57 74.72 11.89 15.43 35.74 67.63
Travelling Salesman 13.64 15.75 38.49 72.10 14.34 15.90 36.36 68.09
Vehicle Routing 14.27 16.94 36.73 71.92 11.88 15.13 33.59 68.02
Job Scheduling 13.84 16.37 38.20 75.33 13.41 15.75 36.36 67.89

Baselines. We utilized four baseline prompting methods: Input-Output (IO) Direct Prompting,
Chain-of-Thought Prompting, Self-Refine (Refine) Prompting, and Decomposition Prompting. The
Input-Output (IO) approach involves a single prompt where the model is asked to provide a solu-
tion directly, without complex prompting. In this approach, we generate N sample candidates by
repeatedly prompting the model with the same query Q, N times. The responses are then aggregated
through majority voting to identify the most common solution among the N outputs. We employ
the Self-Refine (Refine) method [19], which includes a feedback-refinement procedure that aligns
closely with phase four of SGE. Additionally, we use the zero-shot Chain-of-Thought method [13],
which is the basic technique among Exploration-of-Thought methods. Lastly, we implemented the
Decomposition method as described in [49]. In our experiments, these baseline methods were tested
across a range of five LLM models including GPT-4, GPT-3.5 by OpenAI, Gemini-1.5 by Google,
and the Llama-2 series from Meta, which includes models with 70 billion and 7 billion parameters.
We did not include prompting methods previously used in [16, 23, 41], as their prompting strategies
showed inferior results compared to the zero-shot Chain-of-Thought approach when tested with our
data.

Metrics. In our study, each method’s performance is evaluated relative to IO (Input-Output)
prompting. To quantify the improvement, we first measure the solution cost gio for each combinatorial
problem task using IO prompting (e.g., for the TSP, gio =

∑n
i=1

∑n
j=1 dijxij). We then calculate

the cost gmethod using alternative methods. The percentage improvement is computed as 100 ×
gio−gmethod

gio
. For problems of smaller sizes, we are able to obtain optimal solutions using the Google-

OR-Tools solver through a brute force approach. In such instances, we measure the cost of the
optimal solution gopt and determine the optimality gap as 100× gmethod−gopt

gopt
.

5.2 Results on CP tasks

To evaluate the general performance of SGE on combinatorial problems, we conducted experiments
comparing performance improvement to IO of SGE and CoT, Decomposition, and Refinement
baselines using GPT-4 and Gemini-1.5 LLM models. Table 1 gives the results on six combinatorial
problem tasks. The results analysis shows that the SGE method consistently outperforms CoT, Refine,
and Decomposition methods across all tasks. Notably, the magnitude of improvement escalates with
the increasing complexity of the problems, from polynomial to exponential. The margin with the
second-best method, Decomposition, ranges from 7.53% for the Assignment Problem to 37.13% for
the JSP. This trend suggests that the IO method may struggle with the computational demands of
NP-hard problems, where more sophisticated strategies like SGE provide significant advantages. For
a comprehensive view of all experimental results, see Section A.4.

To qualitatively evaluate the performance of the Exploration, Decomposition, and Refinement phases
of SGE method, we assessed the LLM outputs for each phase across five random instances of each
combinatorial problem task. Figure 2 illustrates an example of how our method addresses the TSP,
showcasing outputs during each of the three phases of SGE. In the Exploration phase, the first
box of Figure 2 displays how LLM f generates a list of potential algorithms suitable for solving

6

Example of Exploration of TSP

• Prompt: You are given a list of points with coordinates: (1): (0, 49); (2): (26, 41);
(3): (2, 29); (4): (49, 15); (5): (0, 23); We need to find the route that has a minimum
total length. List all possible methods to solve this problem. [Return conditions].

• Exploration Output:
– Nearest Neighbor Algorithm
– Christofides’ Algorithm
– Ant Colony Optimization
– Integer Linear Programming

Example of Decomposition of TSP

• Prompt: [Problem definition]. Nearest Neighbor Algorithm. List all steps to use the
method. [Return conditions].

• Decomposition Output:
– Select a Starting Point
– Find the Nearest Neighbor
– Update the Tour
– Repeat
– Return to the Starting Point

Example of Refinement of TSP

• Prompt: [Problem definition]. [Nearest Neighbor candidate solution]. Give feed-
back to the proposed solution.

• Refinement Output:
– Choose two edges
– Remove these edges and reconnect the two paths that were created in such a

way that the new connections do not cross over each other.
– Check if the new tour has a shorter distance than the previous tour. If it does,

keep the change. Otherwise, revert to the previous tour.
– Repeat this process until no improvements can be made.

Figure 2: Example of SGE inference across the Exploration, Decomposition, and Refinement phases
for the Traveling Salesman Problem. The figure displays three boxes, each illustrating the prompt
structure and corresponding example output for each phase.

the TSP, such as heuristic approaches like Nearest Neighbor, metaheuristic techniques like Ant
Colony, and Mixed Integer Linear Programming (MILP) method. This phase adapts to different
combinatorial problems by suggesting tailored algorithms, like the Hungarian algorithm for the
Assignment problem, Greedy algorithms for the Knapsack problem, and Clustering methods for
the Vehicle Routing Problem (VRP). Each list of algorithms forms the foundation for generating
diverse candidate solutions tailored to each specific problem. The Decomposition phase, depicted
in the second box of Figure 2, breaks down each identified algorithm into specific subtasks. This
example shows the decomposition of the Nearest Neighbor algorithm for the TSP, where the initial
subtasks are simple enough for direct processing by model f . However, more complex tasks, such
as loops, undergo further decomposition using SGE in a recursive manner, with computational or
programming tasks being handled using Python within models like GPT-4 and Gemini-1.5 equipped
with a Code Interpreter. Finally, the Refinement phase, illustrated in the third box of Figure 2, focuses
on enhancing the candidate solutions developed in the previous stage. This example pertains to
refining a solution derived from the Nearest Neighbor algorithm for the TSP by implementing the
2-opt algorithm. Renowned for its effectiveness in TSP and VRP contexts, the 2-opt algorithm
optimizes the initial solution to find locally optimal solutions within a specific neighborhood, thus
improving the overall quality of the candidate solutions. This example shows that SGE method adapts
its approach to suit different combinatorial problems, finding a special set of heuristics for each task.

Effect of problem size on SGE performance. To evaluate the effect of problem size on SGE
performance, we conducted experiments on all six tasks with input sizes of 5, 8, 12, 15, and 20
nodes using the GPT-4 model. Figure 3 gives the results of these experiments. The results analysis
shows that generally, an increase in problem complexity, as determined by the size of the problem
input, negatively influences performance improvement; larger problem sizes result in diminished
performance improvement of the SGE method compared to IO. Specifically, tasks with 20 input
nodes consistently exhibit lower performance improvements relative to the IO method than tasks with
5 input nodes. However, when comparing less disparate sizes, such as 8 and 12 nodes, the differential
impact on performance is less pronounced and can occasionally be positive.

7

Table 2: Optimality gap of prompting methods using LLaMA-2-70B. The results are represented as
performance percentage difference compared to optimal solutions (the smaller it is, the better).

Size Method Assignment Knapsack Bin Packing TSP VRP JSP

5
N

O
D

E
S IO 45.45 90.10 108.2 100.3 102.0 105.3

CoT 39.33 66.88 78.24 81.15 78.17 79.41
Refine 36.42 61.98 77.40 71.62 72.49 71.72

Decomp 14.66 21.56 40.00 43.62 40.65 44.15
Ours 2.500 8.050 9.060 8.27 11.92 9.300

8
N

O
D

E
S IO 46.84 103.5 112.8 116.9 116.3 108.2

CoT 39.70 73.84 85.08 89.01 89.48 85.21
Refine 37.32 72.62 86.25 85.59 83.31 78.43

Decomp 18.49 26.43 52.73 53.48 54.43 49.81
Ours 8.290 14.88 20.95 15.19 19.65 21.26

12
N

O
D

E
S IO 49.11 101.5 120.7 121.6 118.5 117.6

CoT 41.70 79.33 93.84 86.84 90.05 89.29
Refine 40.35 77.09 82.23 88.57 88.40 87.02

Decomp 21.12 35.82 55.40 57.51 59.19 56.01
Ours 11.26 16.82 22.38 16.12 24.00 22.86

Figure 3: Effect of Problem Size on Performance Improvement relative to the IO solution using
gpt-4 w/ code interpreter. The analysis spans problem instances of varying sizes, systematically
presented from the smallest to the largest, specifically ranging from n = 5 to n = 20 nodes. Results
are organized to highlight the impact of increasing problem complexity on the effectiveness of the
solution.

Figure 4: Effect of Model Choice on Performance Improvement relative to the IO solution.

8

Table 3: Results for reasoning tasks using gpt-4 with a code interpreter are presented as accuracies
on benchmark test sets.

Method Arithmetic Commonsense Symbolic Avg.
AQUA GSM8K SVAMP ASDiv StrategyQA CSQA ARC LastLetter

IO Prompting 67.30 87.04 88.34 90.10 78.40 81.14 87.52 81.98 82.73

CoT Prompting 69.57 89.76 91.58 93.32 81.16 84.15 90.80 85.18 85.69
Refine Prompting 69.68 89.80 91.00 93.10 81.26 83.50 91.09 84.82 85.53
Decomp Prompting 69.99 91.85 92.16 94.08 82.08 84.88 91.76 85.64 86.43

Ours 74.63 97.35 98.16 97.24 83.49 85.68 93.28 86.96 89.60

Table 4: Performance vs efficiency of prompting methods using gpt-4 w/ code interpreter. The
results are represented as performance percentage improvement compared to IO solution and number
of model f calls.

Method Performance Improvement Function Calls

CoT 13.77 58.32
Refine 16.30 58.32
Decomp 39.79 31.04
Ours 67.63 58.32

Gap between SGE performance and the global optimum. To evaluate the gap between SGE
solutions and global optimum solutions, we conducted experiments on small problem sizes involving
5, 8, and 12 nodes, utilizing the brute force method via Google-OR-Tools to determine the global
optimum. Figure 2 provides the results of these experiments in terms of the percentage gap between
the performance of SGE and optimal solutions. The results analysis shows that generally, the SGE
method exhibits a smaller optimality gap across all tasks when compared to baseline methods. This
advantage is particularly pronounced for more complex problems such as Bin Packing, TSP, VRP,
and JSP. For instance, SGE achieves a 12.16% smaller optimality gap on the Assignment task than
the next best Decomposition method and a 34.85% smaller gap on the JSP.

Effect of LLM selection on SGE performance. To evaluate the impact of model selection on SGE
performance, we conducted experiments comparing different models, including GPT-4, Gemini-1.5,
GPT-3.5, Llama-2-70b, and Llama-2-7b models. Figure 4 provides the results of these experiments.
The results analysis shows that GPT-4 and Gemini-1.5 demonstrate significantly better performance
compared to other models across all tasks. A notable feature of both models is the integration of a
Code Interpreter (CI) tool, which appears crucial for combinatorial problem tasks as it enables the
models to execute generated code and evaluate solution performance directly. In contrast, models
lacking a CI tool, such as GPT-3.5, Llama-2-70b, and Llama-2-7b, exhibit poorer outcomes, with
GPT-3.5 slightly outperforming the Llama models. The comparison between Llama models indicates
that the size of the model with 70 billion versus 7 billion parameters does not significantly influence
performance. This suggests that model size alone does not guarantee substantial performance
improvements in combinatorial tasks.

Trade-off between performance and cost in SGE. To evaluate the cost-effectiveness of different
methods, we conducted experiments to compare the average performance improvement per method
against the average number of LLM calls utilized to solve each combinatorial problem instance.
Table 4 gives the results of these experiments, where the number of function calls in CoT and Refine
methods was explicitly controlled to make them equal to SGE function calls. The results analysis
shows that the SGE method achieves a 27.84% better performance compared to the Decomposition
method but requires 87.89% more function calls. Thus, while SGE offers superior performance,
it does so at a marginally higher operational cost. Therefore, the application of this method is
particularly justified in scenarios where performance gains are prioritized over cost efficiency.

9

5.3 Results on reasoning tasks

To evaluate the versatility of SGE in handling different types of tasks, we conducted experiments
across eight datasets commonly referenced in LLM research, categorized into three distinct task
types: arithmetic, commonsense reasoning, and symbolic reasoning. Table 3 gives the results
of these experiments, with each dataset comprising train and test splits where SGE and baseline
methods were applied to the test splits. The results analysis shows that the SGE method demonstrates
incremental but consistently superior performance across all task categories. Notably, the method
shows particular strength in arithmetic tasks, where it achieves an average improvement of 4.83%,
compared to 1.24% in commonsense reasoning tasks and 1.32% in symbolic reasoning tasks. This
demonstrates the method’s applicability and effectiveness across a diverse range of tasks, extending
beyond combinatorial problems.

6 Conclusion

This study has explored the application of Large Language Models to combinatorial problems, a
category of tasks known for their NP-hardness. Our research introduced a ’Self-Guiding Exploration’
prompting strategy that effectively utilizes the inherent strengths of LLMs. By generating multiple
thought trajectories tailored to various CPs and autonomously decomposing them into manageable
subtasks. Our findings confirm that SGE outperforms existing strategies, improving optimization
performance by 27.84% and achieving a 2.46% higher accuracy in reasoning tasks. Notably, SGE
shows a 34.85% smaller gap with the global optimum on complex tasks like the Job Sheduling
Problem compared to baseline methods. These results underline the potential of advanced LLM
strategies in complex problem-solving scenarios, suggesting that the right techniques can enhance the
utility of LLMs in critical logistics and resource management applications.

Despite the performance improvements demonstrated by the SGE, several limitations have emerged
that merit attention. Firstly, SGE performance depends on the choice of language model. Secondly,
the operational costs associated with SGE are notably higher; it requires 87.89% more function calls
than the Decomposition method. These issues present clear avenues for future research. Enhancing
SGE’s computational efficiency while maintaining its high performance could broaden its applicability
and make it a more practical choice for a wider range of problems.

10

References
[1] Samuel Kwame Amponsah, Dominic Otoo, Said Salhi, and Ebenezer Quayson. Proposed

heuristic method for solving assignment problems. American Journal of Operations Research,
06:436–441, 01 2016. doi: 10.4236/ajor.2016.66040.

[2] M Emin Aydin and Ercan Öztemel. Dynamic job-shop scheduling using reinforcement learning
agents. Robotics and Autonomous Systems, 33(2-3):169–178, 2000.

[3] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023. URL http://jmlr.org/papers/v24/22-1144.html.

[6] Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. In International conference on the
integration of constraint programming, artificial intelligence, and operations research, pages
170–181. Springer, 2018.

[7] Thomas Gabel and Martin Riedmiller. Adaptive reactive job-shop scheduling with reinforcement
learning agents. International Journal of Information Technology and Intelligent Computing,
24(4):14–18, 2008.

[8] Rajeev Kumar Goel, Raman Maini, and Sandhya Bansal. Vehicle routing problem with time
windows having stochastic customers demands and stochastic service times: Modelling and
solution. J. Comput. Sci., 34:1–10, 2019.

[9] Google. Or-tools, 2023. URL https://developers.google.com/optimization.

[10] Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal Ochoa de Retana, and Martin Takác. On
the study of curriculum learning for inferring dispatching policies on the job shop scheduling.
In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, pages 5350–5358. ijcai.org, 2023.
doi: 10.24963/IJCAI.2023/594. URL https://doi.org/10.24963/ijcai.2023/594.

[11] Zangir Iklassov, Ikboljon Sobirov, Ruben Solozabal, and Martin Takác. Reinforcement learning
approach to stochastic vehicle routing problem with correlated demands. IEEE Access, 11:
87958–87969, 2023. doi: 10.1109/ACCESS.2023.3306076. URL https://doi.org/10.
1109/ACCESS.2023.3306076.

11

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://jmlr.org/papers/v24/22-1144.html
https://developers.google.com/optimization
https://doi.org/10.24963/ijcai.2023/594
https://doi.org/10.1109/ACCESS.2023.3306076
https://doi.org/10.1109/ACCESS.2023.3306076

[12] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks.
arXiv preprint arXiv:2210.02406, 2022.

[13] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. Large language models are zero-shot reasoners. In NeurIPS,
2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html.

[14] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475, 2018.

[15] Guoming Li and Junhua Li. An improved tabu search algorithm for the stochastic vehicle
routing problem with soft time windows. IEEE Access, 8:158115–158124, 2020.

[16] Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and
Qingfu Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using
large language mode, 2024.

[17] Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and
Qingfu Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using
large language model, 2024. URL https://arxiv.org/abs/2401.02051.

[18] Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language
models as evolutionary optimizers, 2024. URL https://arxiv.org/abs/2310.19046.

[19] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe,
Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad
Majumder, Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. ArXiv preprint, abs/2303.17651, 2023. URL https://arxiv.
org/abs/2303.17651.

[20] Sridhar Mahadevan and Georgios Theocharous. Optimizing production manufacturing using
reinforcement learning. In FLAIRS conference, volume 372, page 377, 1998.

[21] Sridhar Mahadevan, Nicholas Marchalleck, Tapas K Das, and Abhijit Gosavi. Self-improving
factory simulation using continuous-time average-reward reinforcement learning. In Machine
Learning Interantional Workshop, pages 202–210, 1997.

[22] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
Alizadeh. Learning scheduling algorithms for data processing clusters. In Proceedings of the
ACM special interest group on data communication, pages 270–288. 2019.

[23] Mahmoud Masoud, Ahmed Abdelhay, and Mohammed Elhenawy. Exploring combinatorial
problem solving with large language models: A case study on the travelling salesman problem
using gpt-3.5 turbo, 2024.

[24] William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.
doi: 10.1162/tacl_a_00562. URL https://aclanthology.org/2023.tacl-1.31.

[25] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence V Snyder, and Martin Takáč. Reinforce-
ment learning for solving the vehicle routing problem. In Conference on Neural Information
Processing Systems, NeurIPS 2018, 2018.

[26] Afshin Oroojlooyjadid, Lawrence V Snyder, and Martin Takáč. Applying deep learning to the
newsvendor problem. IISE Transactions, 52(4):444–463, 2020.

[27] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

12

http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://arxiv.org/abs/2401.02051
https://arxiv.org/abs/2310.19046
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://aclanthology.org/2023.tacl-1.31
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html

[28] Tantikorn Pichpibul and Ruengsak Kawtummachai. A heuristic approach based on clarke-wright
algorithm for open vehicle routing problem. The Scientific World Journal, 2013, 2013.

[29] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, Alhussein Fawzi, Josh Grochow, Andrea Lodi, Jean-Baptiste
Mouret, Talia Ringer, and Tao Yu. Mathematical discoveries from program search with large
language models. Nature, 625:468 – 475, 2023. URL https://api.semanticscholar.
org/CorpusID:266223700.

[30] Veronique Sels, Nele Gheysen, and Mario Vanhoucke. A comparison of priority rules for the
job shop scheduling problem under different flow time-and tardiness-related objective functions.
International Journal of Production Research, 50(15):4255–4270, 2012.

[31] Penghao Sun, Zehua Guo, Junchao Wang, Junfei Li, Julong Lan, and Yuxiang Hu. Deepweave:
Accelerating job completion time with deep reinforcement learning-based coflow scheduling. In
Proceedings of the Twenty-Ninth International Conference on International Joint Conferences
on Artificial Intelligence, pages 3314–3320, 2021.

[32] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V. Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan L.
Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pages 13003–13051. Association
for Computational Linguistics, 2023. doi: 10.18653/v1/2023.findings-acl.824. URL https:
//doi.org/10.18653/v1/2023.findings-acl.824.

[33] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam M. Shazeer, Apoorv Kulshreshtha,
Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, Yaguang Li, Hongrae Lee,
Huaixiu Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry
Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten
Bosma, Yanqi Zhou, Chung-Ching Chang, I. A. Krivokon, Willard James Rusch, Marc Pickett,
Kathleen S. Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos,
Toju Duke, Johnny Hartz Søraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Díaz,
Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo,
Ravindran Rajakumar, Alena Butryna, Matthew Lamm, V. O. Kuzmina, Joseph Fenton, Aaron
Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak,
Ed Huai hsin Chi, and Quoc Le. Lamda: Language models for dialog applications. ArXiv
preprint, abs/2201.08239, 2022. URL https://arxiv.org/abs/2201.08239.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pages 5998–6008,
2017.

[35] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural
information processing systems, 28, 2015.

[36] Libing Wang, Xin Hu, Yin Wang, Sujie Xu, Shijun Ma, Kexin Yang, Zhijun Liu, and Weidong
Wang. Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning.
Computer Networks, 190:107969, 2021.

[37] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

[38] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL https:
//openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

13

https://api.semanticscholar.org/CorpusID:266223700
https://api.semanticscholar.org/CorpusID:266223700
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://arxiv.org/abs/2201.08239
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD

[39] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 24824–24837. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

[40] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824–24837, 2022.

[41] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024.

[42] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

[43] Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo
Park, and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective
evolution, 2024. URL https://arxiv.org/abs/2402.01145.

[44] Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao, and Bing Xie. Rlscheduler: an automated
hpc batch job scheduler using reinforcement learning. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–15. IEEE, 2020.

[45] Wei Zhang and Thomas G Dietterich. A reinforcement learning approach to job-shop scheduling.
In IJCAI, volume 95, pages 1114–1120. Citeseer, 1995.

[46] Yizhou Zhang, Lun Du, Defu Cao, Qiang Fu, and Yan Liu. Prompting with divide-and-conquer
program makes large language models discerning to hallucination and deception, 2024.

[47] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompt-
ing in large language models. In The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=5NTt8GFjUHkr.

[48] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables
complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

[49] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/pdf?id=WZH7099tgfM.

14

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2402.01145
https://openreview.net/pdf?id=5NTt8GFjUHkr
https://openreview.net/pdf?id=WZH7099tgfM

A Appendix

A.1 Baseline prompting techniques

Combinatorial problems are too complex for solving using direct approach. To solve in several
shots, different methods can be used such as few-shot prompting, chain-of-thought, exploration-
of-thought, decomposition, and self-refine advanced prompting techniques. Traditional few-shot
prompting involves teaching an LLM to derive an answer A to a query Q using a limited set of
contextual examples D = {E1, ..., E|D|}, where A = f(Q,D). In the simplest few-shot setup,
examples are formatted as Ej = (Qj , Aj), where each Qj , Aj are corresponding prompt and
solution of example problem j. For Chain of Thought (CoT) prompting, the objective shifts to
generating a sequence of intermediate reasoning steps, or "thoughts" T , and subsequently deriving the
final answer from T . These in-context examples are structured as Ej = (Qj , (Tj,1, . . . , Tj,k), Aj).
Exploration-of-Thought techniques, such as those described in [37, 42], focus on dividing the
problem Q into K subproblems and auto-generating thoughts Tk through subproblem queries Qk

with Tk = f(Qk, Tk−1).The ultimate answer is then computed as A = f(Q,TK). In addition to that,
in Tree-of-Thought (ToT) and Graph-of-Thought (GoT) prompting strategies, the problem is split into
N thought trajectories Tn

k , using pre-determined subqueries Qn
k , with the final answer determined by

A = f(Q,T 1
K , ..., TN

K). These strategies necessitate manually identifying effective subqueries Qn
k for

each specific task (e.g., arithmetic, commonsense, symbolic). Decomposition prompting strategies,
as referenced in [48, 12] get Qn

k subqueries through in-context examples formatted similarly to
CoT exemplars: Ej =

(
(Qj ,

(
Qj,1, Tj,1), ..., (Qj,kj , Tj,kj)

)
Aj

)
. Another prompting method called

self-refinement [19] uses feedback and refine procedures to generate feedback queries Qn
kfeedback

and subsequently refine thoughts Tn
k . In our research we combined these advanced techniques and

updated them into new method called self-guiding exploration to enhance performance of LLMs for
CPs.

A.2 Combinatorial problems

Combinatorial problems are decision problems where solver needs to assign binary decision variable
x ∈ {0, 1} to minimize some cost function or maximize reward function given input C.

Assignment problem. Despite not being classified as NP-hard and solvable in polynomial time
using the Hungarian algorithm, the Assignment Problem remains a fundamental combinatorial
challenge. This problem entails optimally assigning n tasks to n workers, aiming to minimize the
total cost or maximize the total efficiency of the assignments. The input array C is represented as
n× n cost matrix, where the element at the ith row and jth column represents the cost of assigning
the jth task to the ith worker. The goal is essentially about finding a one-to-one matching between
workers and tasks with the objective of minimizing the total cost, i.e.

min g(x) =

n∑
i=1

n∑
j=1

cijxij , (1)

s.t.
n∑

i=1

xij = 1;

n∑
j=1

xij = 1; xij ∈ {0, 1} ∀i, j. (2)

Knapsack problem. The knapsack problem is a classic combinatorial problem, focusing on
resource allocation. It is a decision problem in which the goal is to pack items from a set of items
with given weights w and values v into a container with a maximum capacity W . The input array
C is represented as n× 2 matrix with volume and value information of every item i. The goal is to
maximize total value of packed items without exceeding container capacity, i.e.

max g(x) =

n∑
i=1

vixi, (3)

s.t.
n∑

i=1

wixi ≤ W ; xi ∈ {0, 1} ∀i. (4)

15

Bin packing problem. The bin packing problem is a combinatorial problem that involves efficiently
packing n objects of different sizes w into a finite number of k bin containers of fixed capacity W in
a way that minimizes the number of bins used. The input array C is represented as n× 1 vector with
size information of every item i,

min g(x) =

k∑
j=1

xj , (5)

s.t.
n∑

i=1

xij = 1;

n∑
i=1

wixij ≤ W ; xij ∈ {0, 1} ∀i, j. (6)

Travelling salesman problem. In the travelling salesman problem, given a list of n cities and the
distances d between each pair of cities, what is the shortest possible route that visits each city exactly
once and returns to the origin city. The input array C is represented as n× n cost matrix, where the
element at the ith row and jth column represents the cost dij of travelling between these two cities,

min g(x) =

n∑
i=1

n∑
j=1

dijxij , (7)

s.t.
n∑

i=1

xij = 1;

n∑
j=1

xij = 1; xij ∈ {0, 1} ∀i, j. (8)

Vehicle routing problem. The vehicle routing problem generalizes the TSP by incorporating
multiple vehicles into the route planning. The VRP seeks to determine the optimal set of routes for
a fleet of K vehicles with maximum capacity P to deliver goods to n customers, typically from a
central depot, with the objective of minimizing the total travel cost. In addition to TSP, the input C
also includes the demand of each customer, i.e.

min g(x) =

n∑
i=1

n∑
j=1

dijxijk, (9)

s.t.
n∑

i=1

xijk = 1;

n∑
j=1

xijk = 1; xijk ∈ {0, 1} ∀i, j, k. (10)

In cases when the capacity P is less than the customer’s demand, the vehicle will go between the
depot and the customer until the demand is satisfied.

Job scheduling problem. The job scheduling problem focuses on scheduling n jobs on m machines,
where each job i consists of a sequence of m operations that need to be processed in a specified order.
Each operation requires a specific machine for a certain period of time, and each machine can handle
only one operation at a time. The input array C is represented as n×m× 2 cost matrix, which stores
machine id and completion time for every operation j of every job i. The primary objective is to
minimize the makespan, which is the total time required to complete all jobs, effectively reducing the
time from the start of the first operation to the completion of the last operation across all jobs.

Challenges in solving combinatorial problems. The difficulty of the combinatorial problems like
TSP, VRP, JSP, and Knapsack problem stems from several intrinsic and mathematical characteristics
common among them. These problems are typically classified as NP-hard, which fundamentally
contributes to their computational complexity. As the number of elements (cities, jobs, items, etc.)
increases, the number of possible combinations or permutations explodes exponentially. For instance,
the TSP with n cities has (n− 1)! possible routes to evaluate. This exponential growth means that
the time required to examine all possible solutions becomes impractically long even for relatively
small n. In addition to that combinatorial problems involve decisions that are interdependent, where
the choice for one element affects the options and costs for others. For example, in the JSP, the order
in which jobs are processed on one machine can affect the scheduling for other machines.

16

Table 5: Percentage Performance Improvement Compared to IO Prompting on Job Scheduling
Problem. Columns Show the Number of n Jobs and m Machines.

n50m10 n50m20 n100m10 n100m20
LNS 57.2 59.1 59.6 60.8
OR-Tools 61.3 63.1 62.4 61.7
SGE 59.1 62.9 61.4 60.8

Table 6: Percentage Performance Improvement Compared to IO Prompting on Vehicle Routing
Problem. Columns Show the Number of Nodes.

n100 n150 n200
LNS 57.8 58.7 58.1
OR-Tools 62.5 61.2 60.3
LKH3 65.3 64.4 65.8
SGE 59.6 60.1 59.8

Applicability of SGE to combinatorial problems. For combinatorial problems, obtaining exact
solutions is generally computationally prohibitive. Consequently, approximation algorithms and
heuristic methods are frequently employed to tackle these challenges. Typically, these problems are
broken down into more manageable subproblems. Initial solutions are then generated using heuristic
functions, which are subsequently refined through additional heuristic techniques to enhance solution
quality. The SGE approach is particularly well-suited for combinatorial problems as it embodies this
multi-stage process: it systematically decomposes the problem, explores potential solving methods,
and iteratively refines the solutions.

A.3 Additional experiments and results

To further strengthen our results and provide a comprehensive comparison of our method with
well-established solvers and heuristics, we conducted additional experiments on larger instances of
combinatorial problems. Specifically, we included experiments with Job Shop Scheduling Problems
(Table 5) and Vehicle Routing Problems (Table 6), comparing our approach against well-known
solvers and heuristics. The goal was to evaluate the scalability of our method and assess its perfor-
mance relative to commonly used combinatorial optimization methods.

Recognizing the need for understanding computational overhead, we have also provided an analysis
of the computational cost involved in running our algorithm (Table 7). We have introduced a new
baseline using large language models (LLMs) for heuristic generation, which is included in Table 8.
We used the general version of EoH [17] (originally used for the Bin Packing problem). Specifically,
in our case, for the Job Shop Scheduling task, EoH generated heuristics that scored the job nodes, and
the algorithm then selected the job with the highest score as the next one in the schedule. However,
we found that for more complex tasks than Bin Packing (e.g., TSP), EoH is better employed with
Guided Local Search, where simple heuristics like swapping are used for local optimization, and
EoH identifies a heuristic that can disturb the local optimum to explore a better region of the solution
space. We believe that EoH built in this way, developing specific heuristic programs for each problem
instance, would likely perform similarly to Google OR-Tools and achieve better performance. This
approach effectively works as a metaheuristic enhancer, providing state-of-the-art results as seen in
[17].

Table 7: VRP Average Total Cost.

Number of Nodes Total Cost
5 $0.0961
8 $0.1676
12 $0.1964
20 $0.3515

17

Table 8: Percentage Performance Improvement Compared to IO Prompting on Job Scheduling
Problem with New Baseline. Columns Show the Number of Nodes.

n50m10 n50m20 n100m10 n100m20
EoH 57.8 59.6 56.4 57.1
SGE 59.1 62.9 61.4 60.8

Table 9: Effect of problem size on SGE performance using gpt-4 w/ code interpreter. The results
are represented as performance percentage improvement compared to IO solution (the bigger it is the
better).

Size Assignment Knapsack Bin Packing TSP VRP JSP
5 44.05 75.94 90.92 76.77 80.47 87.81
8 42.03 77.14 75.92 80.12 80.78 71.68

12 42.65 72.50 80.36 79.93 76.18 77.08
15 41.78 71.70 71.61 73.24 78.41 79.73
20 40.24 67.21 69.78 67.14 65.19 76.29
25 39.83 67.07 66.35 60.17 60.87 69.52
30 38.75 61.15 68.13 67.32 61.55 65.20

Table 10: Effect of model selection on SGE performance using gpt-4 w/ code interpreter. The
results are represented as performance percentage improvement compared to IO solution (the bigger
it is the better).

Task GPT-3.5 GPT-4 Gemini-1.5 Llama-2-7b Llama-2-70b

Assignment 25.35 41.33 40.46 23.19 24.01
Knapsack 34.43 70.39 65.87 28.37 32.82
Bin Packing 35.83 74.72 67.63 29.78 33.76
Travelling Salesman 35.26 72.10 68.09 30.65 33.77
Vehicle Routing 36.28 71.92 68.02 30.55 33.65
Job Scheduling 35.02 75.33 67.89 30.39 34.42

Table 11: Results for reasoning tasks using gpt-3.5 with a code interpreter are presented as
accuracies on benchmark test sets.

Method Arithmetic Commonsense Symbolic Avg.
AQUA GSM8K SVAMP ASDiv StrategyQA CSQA ARC LastLetter

IO Prompting 44.16 57.05 60.02 65.43 54.70 55.68 64.35 56.21 57.20

CoT Prompting 58.35 75.84 80.30 87.39 72.97 74.36 85.48 74.63 76.17
Refine Prompting 58.81 76.10 80.44 87.35 73.38 74.13 85.71 74.78 76.34
Decomp Prompting 71.64 82.11 84.34 89.83 76.16 78.84 87.48 77.89 81.11

Ours 72.84 86.18 86.44 90.17 77.44 79.09 87.83 78.78 82.27

18

A.4 Complete results of combinatorial problem experiments

Table 12: Comparison of various combinatorial problems based on their average cost per problem
size, using gpt-3.5. The Knapsack problem aims to maximize returns, while other problems focus
on minimizing costs.

Size Method Assignment Knapsack Bin Packing TSP VRP JSP

5
N

O
D

E
S

Avg. 102.23 710.53 13.480 679.26 809.67 3873.98
IO 119.25 604.83 15.220 784.98 951.89 4499.38

CoT 111.61 637.73 14.040 701.50 853.91 4032.66
Refine 96.350 750.91 14.150 711.28 828.42 4048.06

Decomp 94.350 738.32 12.920 643.25 746.36 3628.41
Ours 89.610 820.85 11.080 555.29 667.76 3161.4

8
N

O
D

E
S

Avg. 144.99 1053.98 23.080 1261.02 1436.94 8714.13
IO 166.38 870.54 26.850 1425.48 1634.52 9896.3

CoT 157.67 937.96 23.910 1341.56 1527.66 9202.0
Refine 137.22 1118.63 23.500 1293.09 1504.8 9068.51

Decomp 137.40 1122.79 21.670 1195.11 1327.99 8088.35
Ours 126.27 1220.0 19.450 1049.85 1189.73 7315.47

12
N

O
D

E
S

Avg. 218.82 1705.26 32.940 1695.44 2149.65 22142.9
IO 257.33 1462.01 37.420 1914.84 2424.01 24954.7

CoT 239.36 1553.15 34.380 1758.64 2305.24 23697.5
Refine 204.69 1798.81 34.020 1775.3 2219.27 22721.6

Decomp 205.31 1790.05 30.880 1589.09 1992.09 20553.1
Ours 187.44 1922.26 27.970 1439.32 1807.66 18787.4

15
N

O
D

E
S

Avg. 254.60 2412.26 37.230 2536.35 2704.09 38224.9
IO 294.53 2010.03 42.810 2855.74 3070.15 42092.4

CoT 281.95 2208.41 38.840 2743.79 2817.55 40660.3
Refine 242.95 2537.45 38.710 2625.05 2807.14 40123.6

Decomp 235.55 2606.89 34.770 2354.43 2584.13 36515.9
Ours 218.01 2698.54 31.040 2102.76 2241.5 31732.2

20
N

O
D

E
S

Avg. 323.14 2799.89 47.160 3122.83 3317.71 58569.7
IO 377.67 2433.27 53.060 3490.25 3798.23 66151.8

CoT 350.43 2523.88 50.330 3342.51 3504.49 62343.8
Refine 311.98 2867.08 48.550 3202.12 3356.6 61383.3

Decomp 298.35 2988.4 43.690 2924.58 3120.93 54426.8
Ours 277.27 3186.8 40.180 2654.7 2808.3 48542.6

25
N

O
D

E
S

Avg. 411.80 3732.26 14.640 3787.11 3991.53 103789.0
IO 467.70 3208.8 16.740 4246.8 4470.97 117662.0

CoT 449.08 3310.65 15.670 4023.17 4152.43 111329.0
Refine 387.31 3854.93 15.150 3943.46 4101.81 105411.0

Decomp 394.03 3988.58 13.560 3590.42 3832.48 97377.8
Ours 360.87 4298.35 12.060 3131.7 3399.95 87164.7

30
N

O
D

E
S

Avg. 512.38 4653.31 83.860 4995.58 5725.6 144036.0
IO 595.35 3957.27 92.660 5605.85 6501.08 162140.0

CoT 568.30 4162.98 88.780 5308.59 6051.78 147656.0
Refine 481.16 4796.2 88.280 5108.91 5853.66 152181.0

Decomp 476.20 5028.73 79.800 4762.89 5449.52 134230.0
Ours 440.87 5321.36 69.790 4191.68 4771.98 123974.0

19

Table 13: Comparison of various combinatorial problems based on their average cost per problem
size, using gpt-4. The Knapsack problem aims to maximize returns, while other problems focus on
minimizing costs.

Size Method Assignment Knapsack Bin Packing TSP VRP JSP

5
N

O
D

E
S

Avg. 198.69 370.00 7.4800 372.00 442.95 2131.42
IO 267.83 267.03 9.5800 459.92 555.57 2701.22

CoT 234.43 300.42 8.2000 415.99 490.05 2360.95
Refine 174.66 400.32 8.1600 394.11 474.43 2259.75

Decomp 166.67 412.43 6.4400 329.82 386.85 1896.89
Ours 149.84 469.81 5.0200 260.18 307.84 1438.3

8
N

O
D

E
S

Avg. 278.35 571.94 13.030 710.49 821.54 4878.37
IO 365.34 415.19 16.160 890.27 1029.37 6024.32

CoT 324.71 456.91 14.050 775.93 901.69 5359.79
Refine 249.70 623.87 14.140 761.91 872.33 5163.49

Decomp 240.23 628.28 11.600 630.08 734.92 4335.16
Ours 211.78 735.45 9.1800 494.25 569.41 3509.08

12
N

O
D

E
S

Avg. 405.56 944.25 18.730 962.85 1238.87 12501.5
IO 534.81 680.40 23.640 1215.49 1537.63 15581.6

CoT 475.38 791.10 20.760 1024.87 1337.63 13557.7
Refine 359.52 1031.5 19.520 1034.36 1325.99 13395.1

Decomp 351.35 1044.55 16.640 864.00 1120.36 11173.7
Ours 306.72 1173.71 13.110 675.53 872.74 8799.38

15
N

O
D

E
S

Avg. 478.16 1349.74 21.780 1469.81 1555.83 21885.7
IO 634.70 996.41 27.150 1822.75 1958.65 27565.6

CoT 561.76 1133.85 23.670 1608.72 1670.3 23247.9
Refine 415.50 1460.7 22.820 1567.79 1639.87 23778.5

Decomp 409.32 1446.91 19.420 1297.62 1412.5 19499.5
Ours 369.55 1710.83 15.820 1052.15 1097.85 15336.9

20
N

O
D

E
S

Avg. 587.33 1581.38 27.780 1822.89 1918.24 34243.4
IO 754.98 1189.83 34.320 2262.86 2356.68 42589.9

CoT 669.13 1326.23 30.270 1981.0 2065.07 36955.8
Refine 536.41 1678.17 29.380 1902.42 1998.58 36585.5

Decomp 525.00 1723.18 24.700 1614.36 1744.24 30926.3
Ours 451.14 1989.48 20.220 1353.84 1426.64 24159.4

25
N

O
D

E
S

Avg. 743.93 2148.32 8.6300 2249.6 2381.92 61530.6
IO 959.89 1622.78 10.430 2690.03 2872.54 75770.1

CoT 843.97 1827.16 9.3000 2430.33 2563.55 67624.2
Refine 678.44 2238.86 9.3300 2445.45 2510.81 64490.3

Decomp 659.79 2341.61 7.8200 2002.71 2177.05 55070.7
Ours 577.56 2711.18 6.2700 1679.49 1785.68 44697.5

30
N

O
D

E
S

Avg. 912.48 2707.35 50.790 3070.36 3388.03 87633.7
IO 1166.32 2079.35 62.520 3735.78 4104.37 104798.0

CoT 1049.36 2254.12 55.550 3296.34 3602.09 95887.8
Refine 844.18 2932.01 52.290 3278.37 3546.61 93372.0

Decomp 788.12 2920.33 46.390 2808.58 3146.44 80674.5
Ours 714.42 3350.95 37.180 2232.74 2540.65 63435.8

20

Table 14: Comparison of various combinatorial problems based on their average cost per problem
size, using gemini-1.5. The Knapsack problem aims to maximize returns, while other problems
focus on minimizing costs.

Size Method Assignment Knapsack Bin Packing TSP VRP JSP

5
N

O
D

E
S

Avg. 185.01 395.98 7.8900 392.96 475.25 2247.28
IO 249.50 293.42 9.7400 488.09 581.55 2781.78

CoT 212.33 325.58 8.6400 432.11 530.63 2460.15
Refine 161.90 424.53 8.4800 414.98 500.49 2410.6

Decomp 161.13 433.07 7.0600 346.36 432.60 2007.1
Ours 140.19 503.30 5.5400 283.29 330.98 1576.76

8
N

O
D

E
S

Avg. 262.29 596.51 13.650 739.72 853.62 5263.2
IO 348.38 450.87 17.040 917.04 1055.48 6532.72

CoT 296.24 489.46 14.860 803.14 938.79 5783.3
Refine 238.56 637.94 14.520 781.85 903.12 5646.28

Decomp 230.29 653.73 12.050 672.67 769.21 4636.82
Ours 197.98 750.57 9.7700 523.89 601.50 3716.89

12
N

O
D

E
S

Avg. 382.15 1005.24 19.690 1012.68 1291.47 13134.0
IO 490.19 729.67 24.330 1249.43 1583.87 15971.6

CoT 437.93 848.80 21.730 1080.36 1396.44 14301.9
Refine 346.04 1068.12 20.700 1077.78 1360.73 14185.8

Decomp 339.04 1129.44 17.490 927.75 1194.11 11726.4
Ours 297.53 1250.18 14.200 728.06 922.21 9484.31

15
N

O
D

E
S

Avg. 444.10 1449.26 23.150 1564.27 1653.6 23061.3
IO 585.87 1090.76 27.950 1940.9 2036.78 28629.8

CoT 509.47 1216.37 25.330 1658.02 1801.66 25246.4
Refine 399.71 1541.78 24.940 1687.24 1715.89 23949.6

Decomp 385.44 1585.02 20.670 1416.65 1510.22 20343.8
Ours 340.02 1812.35 16.830 1118.55 1203.46 17137.1

20
N

O
D

E
S

Avg. 548.21 1678.75 29.180 1945.87 2009.98 35753.1
IO 701.27 1280.46 35.360 2396.6 2438.29 44349.1

CoT 620.99 1428.82 31.960 2111.46 2166.27 38059.4
Refine 497.49 1810.0 30.120 2025.49 2142.69 37385.7

Decomp 480.97 1800.23 26.790 1740.08 1806.83 32493.8
Ours 440.31 2074.24 21.690 1455.74 1495.83 26477.4

25
N

O
D

E
S

Avg. 708.54 2233.73 9.2200 2352.5 2496.48 64955.1
IO 911.14 1694.31 11.280 2890.44 2978.91 77142.4

CoT 791.74 1878.46 9.9700 2504.54 2720.89 70181.8
Refine 642.79 2401.42 9.7100 2478.42 2670.85 69104.9

Decomp 634.67 2434.54 8.4200 2126.79 2266.56 60013.5
Ours 562.34 2759.92 6.7300 1762.3 1845.18 48333.0

30
N

O
D

E
S

Avg. 863.39 2855.59 52.430 3200.01 3534.72 91402.1
IO 1108.6 2189.92 62.270 3807.69 4232.51 111716.0

CoT 1002.04 2442.99 56.720 3411.03 3757.36 96055.7
Refine 784.26 2991.77 55.310 3447.36 3764.56 95672.6

Decomp 751.20 3134.08 47.690 2886.03 3265.4 83939.4
Ours 670.85 3519.17 40.140 2447.95 2653.76 69626.6

21

Table 15: Comparison of various combinatorial problems based on their average cost per problem
size, using llama-2-7b. The Knapsack problem aims to maximize returns, while other problems
focus on minimizing costs.

Size Method Assignment Knapsack Bin Packing TSP VRP JSP

5
N

O
D

E
S

Avg. 89.950 802.42 15.550 775.06 926.24 4397.27
IO 104.24 698.34 17.110 853.58 1041.09 4958.95

CoT 98.820 734.35 16.520 821.09 979.18 4575.45
Refine 84.600 845.41 15.890 787.03 939.69 4634.51

Decomp 82.460 839.18 14.810 745.98 873.03 4156.86
Ours 79.630 894.84 13.410 667.62 798.20 3660.59

8
N

O
D

E
S

Avg. 126.29 1197.13 26.320 1418.23 1645.42 9991.67
IO 147.10 1013.08 28.850 1566.87 1832.76 11162.0

CoT 136.66 1092.28 27.860 1498.77 1709.73 10389.7
Refine 119.83 1252.94 27.120 1499.56 1710.88 10509.7

Decomp 118.10 1274.02 25.100 1343.11 1572.56 9305.07
Ours 109.75 1353.31 22.700 1182.83 1401.16 8591.86

12
N

O
D

E
S

Avg. 191.22 1966.31 37.090 1921.87 2465.52 24978.0
IO 220.40 1731.58 40.930 2146.2 2697.85 27795.8

CoT 204.53 1810.85 39.550 1984.84 2596.84 25572.4
Refine 181.54 2045.48 38.930 1992.89 2594.67 26383.4

Decomp 178.63 2063.66 34.910 1834.9 2338.43 24007.4
Ours 170.98 2179.96 31.130 1650.52 2099.78 21131.3

15
N

O
D

E
S

Avg. 228.48 2739.37 42.610 2889.57 3017.02 43004.7
IO 256.26 2351.63 48.170 3212.82 3331.89 47876.6

CoT 250.10 2553.18 44.260 3025.74 3113.82 45938.3
Refine 220.66 2843.52 44.470 3039.47 3077.27 43884.0

Decomp 216.12 2896.08 40.350 2695.41 2901.24 41025.1
Ours 199.24 3052.45 35.790 2474.42 2660.9 36299.3

20
N

O
D

E
S

Avg. 287.07 3209.13 52.710 3548.1 3703.92 65481.9
IO 329.28 2836.21 58.190 3983.11 4240.29 72279.5

CoT 307.87 2933.81 54.780 3746.41 3837.66 69172.2
Refine 277.27 3249.57 55.810 3667.07 3743.99 69032.1

Decomp 268.09 3413.37 50.130 3373.55 3477.77 61580.1
Ours 252.84 3612.7 44.640 2970.35 3219.91 55345.8

25
N

O
D

E
S

Avg. 368.58 4255.19 16.310 4292.01 4503.47 116702.0
IO 425.08 3693.28 18.060 4674.8 5083.89 127229.0

CoT 395.84 3938.03 16.780 4529.96 4718.81 121452.0
Refine 356.35 4438.0 17.280 4418.16 4667.3 123046.0

Decomp 344.61 4534.51 15.410 4140.85 4267.0 110197.0
Ours 321.02 4672.15 14.030 3696.27 3780.34 101586.0

30
N

O
D

E
S

Avg. 452.94 5279.99 93.580 5711.01 6309.75 160913.0
IO 504.64 4594.52 103.15 6409.08 7164.38 177461.0

CoT 502.24 4891.09 98.630 5995.11 6626.95 166083.0
Refine 431.79 5446.81 96.390 5957.74 6419.75 169324.0

Decomp 426.99 5619.47 89.550 5402.13 5940.75 153129.0
Ours 399.05 5848.08 80.200 4791.01 5396.94 138570.0

22

Table 16: Comparison of various combinatorial problems based on their average cost per problem
size, using llama-2-70b. The Knapsack problem aims to maximize returns, while other problems
focus on minimizing costs.

Size Method Assignment Knapsack Bin Packing TSP VRP JSP

5
N

O
D

E
S

Avg. 96.760 757.12 14.650 719.93 864.61 4130.53
IO 111.85 632.09 16.800 831.07 980.70 4706.85

CoT 105.51 700.25 15.590 744.12 917.25 4290.67
Refine 92.620 788.01 15.130 740.45 897.79 4297.34

Decomp 89.850 815.64 13.340 689.33 807.57 3915.78
Ours 83.980 849.63 12.410 594.70 719.74 3442.0

8
N

O
D

E
S

Avg. 134.41 1140.45 24.710 1321.35 1538.71 9429.18
IO 155.54 967.89 28.290 1477.89 1768.47 10645.8

CoT 145.07 1035.49 25.540 1399.97 1602.0 9988.41
Refine 128.91 1186.02 26.100 1355.37 1601.33 9835.02

Decomp 126.39 1209.13 23.090 1263.55 1424.77 8794.53
Ours 116.14 1303.73 20.560 1109.98 1296.99 7882.13

12
N

O
D

E
S

Avg. 201.99 1834.2 35.110 1805.11 2315.91 23294.2
IO 231.77 1562.82 40.340 2081.41 2610.96 26535.8

CoT 220.85 1690.42 36.560 1922.4 2462.96 24542.6
Refine 190.52 1865.06 36.340 1831.0 2363.75 23820.7

Decomp 192.52 1937.35 32.570 1666.65 2169.12 21807.0
Ours 174.27 2115.36 29.750 1524.11 1972.79 19764.7

15
N

O
D

E
S

Avg. 239.40 2575.28 40.140 2728.94 2902.12 40452.0
IO 271.97 2237.81 45.310 3091.61 3270.84 46491.8

CoT 255.93 2296.4 41.940 2852.78 3034.48 42731.8
Refine 234.52 2625.13 41.180 2850.11 2987.35 42280.3

Decomp 226.70 2761.56 37.990 2533.08 2736.93 37362.8
Ours 207.87 2955.51 34.280 2317.12 2480.98 33393.3

20
N

O
D

E
S

Avg. 301.13 2972.25 50.240 3334.42 3499.69 61957.2
IO 341.58 2565.48 56.260 3758.49 4025.37 69824.9

CoT 330.69 2705.18 51.940 3462.22 3620.96 63469.1
Refine 282.33 3031.65 52.210 3438.04 3567.26 64022.3

Decomp 287.94 3116.33 47.640 3167.42 3297.34 58800.7
Ours 263.10 3442.61 43.130 2845.92 2987.54 53669.1

25
N

O
D

E
S

Avg. 389.69 4024.08 15.510 4029.51 4184.99 110414.0
IO 443.99 3518.82 17.390 4600.6 4735.73 126686.0

CoT 418.18 3677.69 15.880 4148.72 4358.13 115617.0
Refine 373.97 4197.63 16.380 4136.03 4306.45 111541.0

Decomp 369.43 4170.69 14.700 3822.3 3975.41 104862.0
Ours 342.89 4555.58 13.180 3439.89 3549.23 93361.4

30
N

O
D

E
S

Avg. 490.92 5026.68 88.930 5310.47 5986.86 154018.0
IO 562.14 4332.75 99.580 5902.09 6848.47 171767.0

CoT 535.73 4629.8 92.530 5670.09 6113.72 158276.0
Refine 472.51 5217.75 92.730 5409.26 6165.51 160831.0

Decomp 455.30 5339.41 85.010 4948.58 5562.01 146910.0
Ours 428.95 5613.7 74.780 4622.34 5244.57 132308.0

23

Example of VRP Prompting

• Task Description: You are given a list of customers with coordinates:
– (1): (87, 39);
– (2): (1, 90);
– (3): (28, 65);
– (4): (85, 85);
and a list of customer demands:
– (1): 12;
– (2): 8;
– (3): 16;
– (4): 5.
There is a depot with coordinates (50, 50) and one vehicle with a maximum capacity
of 50. The goal is to find the route that has the minimum total length and go through
all the customers, starting and ending at the depot.

Example of VRP Exploration

• Prompt: [Task Description]. List heuristic methods to solve this problem. Return
only method names separated by new lines.

• Exploration Output:
– Nearest Neighbor Algorithm
– Savings Algorithm
– Sweep Algorithm
– Clarke and Wright Algorithm
– Genetic Algorithm
– Simulated Annealing
– Tabu Search
– Ant Colony Optimization
– Particle Swarm Optimization

Example of VRP Decomposition

• Prompt: [Task Description]. Nearest Neighbor Algorithm. List the steps to use this
heuristic method. Return only the steps, separated by new lines.

• Decomposition Output:
– **Initialize at the Depot:** The starting point is the depot located at coordinates

(50, 50).
– **Find the Nearest Customer:** Calculate the Euclidean distance from the

depot to each customer, and move to the closest one.
– **Mark the Customer as Visited:** Once a customer is visited, they should not

be revisited.
– **Repeat Finding and Moving:** Continue finding the nearest unvisited cus-

tomer from the current location until all customers have been visited.
– **Return to the Depot:** After visiting the last customer, calculate the distance

back to the depot to complete the route.
– **Calculate the Total Length of the Route:** Sum up all the distances traveled

from start to finish.

24

Example of Subtask Resolution, Step One

• Prompt: [Task Description]. [Apply the heuristic’s step one].
• Subtask Resolution Output:

Initialize at the Depot
- Current location: Depot at (50, 50).

Example of Subtask Resolution, Step Two

• Prompt: [Task Description]. [Apply the heuristic’s step two].
• Subtask Resolution Output:

Find the Nearest Customer
– Distance to Customer 1 at (87, 39):

√
(87− 50)2 + (39− 50)2

– Distance to Customer 2 at (1, 90):
√

(1− 50)2 + (90− 50)2

– Distance to Customer 3 at (28, 65):
√

(28− 50)2 + (65− 50)2

– Distance to Customer 4 at (85, 85):
√

(85− 50)2 + (85− 50)2

The initial distances from the depot to each customer are as follows:
– Customer 1: 38.60
– Customer 2: 63.25
– Customer 3: 26.63 (nearest)
– Customer 4: 49.50

Example of Subtask Resolution, Step Three

• Prompt: [Task Description]. [Apply the heuristic’s step three].
• Subtask Resolution Output:

Mark the Customer as Visited.
The nearest customer is Customer 3 at coordinates (28, 65). We will visit Customer
3 first.

Example of Subtask Resolution, Step Six

• Prompt: [Task Description]. [Apply the heuristic’s step six].
• Subtask Resolution Output:

Calculate the Total Length of the Route.
The complete route, following the Nearest Neighbor Algorithm from the depot,
visiting all customers, and returning to the depot, totals a distance of approximately
232.22 units.
Here’s a summary of the route taken:
– Start at Depot (50, 50)
– Visit Customer 3 (28, 65)
– Visit Customer 2 (1, 90)
– Visit Customer 4 (85, 85)
– Visit Customer 1 (87, 39)
– Return to Depot (50, 50)

25

Example of Feedback Prompting

• Prompt: [Task Description]. [Nearest Neighbor candidate solution]. Give feedback
to the proposed solution.

• Feedback Output:

Implement route optimization post-processing, such as 2-opt or 3-opt tech-
niques, which iteratively refine the route by removing crossings and reducing travel
distance.

Example of Refinement Prompting

• Prompt: [Task Description]. [Nearest Neighbor candidate solution]. [Feedback].
Improve the solution given feedback.

• Refinement Output:
– we’ll apply a 2-opt optimization to the route. This will involve swapping seg-

ments of the route to find a shorter path. Given the route ‘1 -> 2 -> 3 -> 4‘,
we’ll try different swaps and see if we can reduce the total distance further.

– Let’s simulate the 2-opt optimization on this route.
– After applying the 2-opt optimization technique, the final optimized route has

been adjusted to: Customer 1 -> Customer 3 -> Customer 2 -> Customer 4,
then returning to the depot. This rearrangement was made to minimize the
total distance traveled.

Example of Solution Integration

• Prompt: [Task Description]. [All candidate solutions]. Integrate all previous findings
and provide the final answer. Return the answer only as a Python list of elements.

• Refinement Output: [1, 3, 2, 4]

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The method, problem description, and key results are outlined in the abstract
and introduction sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We examine the trade-off between higher costs and enhanced performance, as
well as the dependency of the method’s effectiveness on the choice of LLM model.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

27

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail the experiments conducted and provide a link to the associated code
repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

28

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code for the experiments, along with instructions, is provided in open
access.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have detailed the LLM models used, as well as the specific splits/details
for reasoning and combinatorial problem tasks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not provided. The mean values of LLM few-shot generations
are reported, consistent with the standard practice in similar research.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details of the resources utilized are provided in the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, all research conducted in this paper fully
conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: At this stage of research on applying generative models to combinatorial
problems, there are no identified societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

30

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe the paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have mentioned the companies that own the LLM models used in our
experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

31

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new code produced represents an asset developed during this research.
Documentation is available in the corresponding repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

32

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Related work
	Preliminaries
	Method
	Algorithm

	Experiments
	Setup
	Results on CP tasks
	Results on reasoning tasks

	Conclusion
	Appendix
	Baseline prompting techniques
	Combinatorial problems
	Additional experiments and results
	Complete results of combinatorial problem experiments

