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Abstract

Tackling overestimation in Q-learning is an important problem that has been
extensively studied in single-agent reinforcement learning, but has received com-
paratively little attention in the multi-agent setting. In this work, we empirically
demonstrate that QMIX, a popular Q-learning algorithm for cooperative multi-
agent reinforcement learning (MARL), suffers from a more severe overestimation
in practice than previously acknowledged, and is not mitigated by existing ap-
proaches. We rectify this with a novel regularization-based update scheme that
penalizes large joint action-values that deviate from a baseline and demonstrate
its effectiveness in stabilizing learning. Furthermore, we propose to employ a
softmax operator, which we efficiently approximate in a novel way in the multi-
agent setting, to further reduce the potential overestimation bias. Our approach,
Regularized Softmax (RES) Deep Multi-Agent Q-Learning, is general and can be
applied to any Q-learning based MARL algorithm. We demonstrate that, when
applied to QMIX, RES avoids severe overestimation and significantly improves
performance, yielding state-of-the-art results in a variety of cooperative multi-agent
tasks, including the challenging StarCraft II micromanagement benchmarks.

1 Introduction

In recent years, multi-agent reinforcement learning (MARL) has achieved significant progress [4, 20]
under the popular centralized training with decentralized execution (CTDE) paradigm [23, 15, 7]. In
CTDE, the agents must learn decentralized policies so that at execution time they can act based on
only local observations, but the training itself is centralized, with access to global information. A
critical challenge in this setting is how to represent and learn the joint action-value function [28].

In learning the value function, overestimation is an important challenge that stems from the max
operator [34] typically used in the bootstrapping target. Specifically, the max operator in Q-learning
[39] approximates the maximum expected value with the maximum estimated value. This can lead to
overestimation as E [maxiXi] ≥ maxi E [Xi] due to noise [34, 11], where Xi is a random variable
representing the Q-value of action i given a state. This overestimation error can accumulate during
learning, lead to sub-optimal policy updates and behaviors, and hurt the performance of both value-
based [37, 2, 32, 16] and actor-critic algorithms [8], and has been widely studied in the single-agent
domain. However, overestimation can be even more severe in the multi-agent setting. For example,
suppose there are n agents, each agent has K actions, and the Q-value for each action given a state is
independently drawn from a uniform distribution U(0, 1). Then, maxi E [Xi] is 1

2 while E [maxiXi]

is Kn

Kn+1 , which quickly approaches 1 (the maximum value of Xi) as the size of the joint action space
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increases exponentially with the number of agents. Nonetheless, this problem has received much less
attention in MARL.

QMIX [29] is a popular CTDE deep multi-agent Q-learning algorithm for cooperative MARL. It
combines the agent-wise utility functionsQa into the joint action-value functionQtot, via a monotonic
mixing network to ensure consistent value factorization. Due to its superior performance, there have
been many recent efforts to improve QMIX’s representation capability [31, 41, 27, 38]. However,
the overestimation problem of the joint-action Q-function Qtot can be exacerbated in QMIX due not
only to overestimation in agents’ Qa but also the non-linear monotonic mixing network. Despite this,
the role of overestimation in limiting its performance has been largely overlooked.

Figure 1: Normalized performance (left) and value
estimations in log scale (right) of QMIX in the
multi-agent particle environments. Value estima-
tions can grow unbounded (right) and lead to catas-
trophic performance degradation (left).

In this paper, we show empirically that over-
estimation in deep multi-agent Q-learning is
more severe than previously acknowledged and
can lead to divergent learning behavior in prac-
tice. In particular, consider double estimators,
which can successfully reduce overestimation
bias in the single-agent domain [37, 8]. Al-
though QMIX applies Double DQN [37] to es-
timate the value function (as mentioned in Ap-
pendix D.3 in [28] and open-source PyMARL
[30] implementations), we find that it is ineffec-
tive in deep multi-agent Q-learning. As shown
in Figure 1 (same experimental setup as in Sec-
tion 5), value estimates of the joint-action Q-function can increase without bound in tasks from the
multi-agent particle framework [18], yielding catastrophic performance degradation. Our experiments
show that surprisingly, even applying Clipped Double Q-learning (a key technique from a state-
of-the-art TD3 [8] algorithm) to the multi-agent setting does not resolve the severe overestimation
bias in the joint-action Q-function. Therefore, alleviating overestimation in MARL is a particularly
important and challenging problem.

To tackle this issue, we propose a novel update scheme that penalizes large joint-action Q-values.
Our key idea is to introduce a regularizer in the Bellman loss. A direct penalty on the magnitude
of joint-action Q-values can result in a large estimation bias and hurt performance. Instead, to
better trade off learning efficiency and stability, we introduce a baseline into the penalty, thereby
constraining the joint-action Q-values to not deviate too much from this baseline. Specifically, we
use the discounted return as the baseline. By regularizing towards a baseline, we stabilize learning
and effectively avoid the unbounded growth in our value estimates.

However, regularization is not enough to fully avoid overestimation bias in the joint-action Q-
function due to the max operator in the target’s value estimate [34]. To this end, we propose to
employ a softmax operator, which has been shown to efficiently improve value estimates in the
single-agent setting [32, 26, 25]. Unfortunately, a direct application of the softmax operator is often
too computationally expensive in the multi-agent case, due to the exponentially-sized joint action
space. We therefore propose a novel method that provides an efficient and reliable approximation to
the softmax operator based on a joint action subspace, where the gap between our approximation and
its direct computation converges to 0 at an exponential rate with respect to its inverse temperature
parameter. The computational complexity of our approximation scales only linearly in the number
of agents, as opposed to exponentially for the original softmax operator. We show that our softmax
operator can further improve the value estimates in our experiments. We refer to our method as
RES (Regularized Softmax) deep multi-agent Q-learning, which utilizes the discounted return-based
regularization and our approximate softmax operator.

To validate RES, we first prove that it can reduce the overestimation bias of QMIX. Next, we conduct
extensive experiments in the multi-agent particle tasks [18], and show that RES simultaneously
enables stable learning, avoids severe overestimation when applied to QMIX, and achieves state-of-
the-art performance. RES is not tied to QMIX and can significantly improve the performance and
stability of other deep multi-agent Q-learning algorithms, e.g., Weighted-QMIX [27] and QPLEX
[38], demonstrating its versatility. Finally, to demonstrate its ability to scale to more complex
scenarios, we evaluate it on a set of challenging StarCraft II micromanagement tasks [30]. Results
show that RES-QMIX provides a consistent improvement over QMIX in all scenarios tested.
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2 Background

Decentralized partially observable Markov decision process (Dec-POMDP). A fully coop-
erative multi-agent task can be formulated as a Dec-POMDP [22] represented by a tuple
〈A,S, U, P, r, Z,O, γ〉, where A ≡ {1, ..., n} denotes the finite set of agents, s ∈ S is the global
state, and γ ∈ [0, 1) is the discount factor. The action space for an agent is U with size K. At each
timestep, each agent a ∈ A receives an observation z ∈ Z from the observation function O(s, a) due
to partial observability, and chooses an action ua ∈ U , which forms a joint action u ∈ U ≡ Un. This
leads to a transition to the next state s′ ∼ P (s′|s,u) and a joint reward r(s,u). We assume that the
reward function is bounded [35], i.e., |r(s,u)| ≤ Rmax. Each agent has an action-observation history
τa ∈ T ≡ (Z × U)∗, based on which it constructs a policy πa(ua|τa). The goal is to find an optimal
joint policy π = 〈π1, ..., πn〉, whose joint action-value function is Qπ(st,ut) = E[

∑∞
i=0 γ

irt+i].

Deep multi-agent Q-learning. Deep multi-agent Q-learning [33, 29, 31, 38] extends deep Q-
learning [39], a popular value-based method for learning optimal action values, to the multi-agent
setting. Given transitions (s,u, r, s′) sampled from the experience replay buffer B, its objective is to
minimize the mean squared error loss L(θ) on the temporal-difference (TD) error δ = y−Qtot(s,u),
where y = r + γmaxu′ Q̄tot(s

′,u′) is the target value, and Q̄tot is the target network for the joint-
action Q-function that is periodically copied from Qtot. Parameters of Qtot are denoted by θ that
are updated by θ′ = θ − α∇θL(θ), where α is the learning rate. To mitigate the overestimation bias
from the max operator in the target’s value estimate [34], Double DQN [37, 11] estimates the target
value as y = r + γQ̄tot(s

′, arg maxu′ Qtot(s
′,u′)) which decouples action selection and evaluation.

Centralized training with decentralized execution (CTDE). In CTDE [23, 15], agents are trained
in a centralized way with access to the overall action-observation history and global state during
training, but during execution have access only to their own local action-observation histories. The
individual-global-max (IGM) property [31] is a popular concept to realize efficient CTDE as in Eq.
(1), where Qtot and Qa denote the joint-action Q-function and agent-wise utilities respectively.

arg max
u

Qtot(s,u) =
(

arg max
u1

Q1(s, u1), · · · , arg max
un

Qn(s, un)
)
. (1)

The IGM property enables efficient decentralized execution, which ensures the consistency between
greedy action selection in the local and joint Q-values. QMIX [29] is a popular CTDE method that
combines Qa into Qtot via a non-linear monotonic function fs that is state-dependent as in Eq. (2).
To satisfy the IGM property, fs is constrained to be monotonic in Qa, i.e., ∂fs

∂Qa
≥ 0,∀a ∈ A, which

is achieved by enforcing non-negative weights in fs.

Qtot(s,u) = fs
(
Q1(s, u1), · · · , Qn(s, un)

)
. (2)

3 Overestimation in QMIX
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Figure 2: Return of QMIX
and its variants in the
predator-prey environment.

In this section, we show empirically that the overestimation problem
for deep multi-agent Q-learning can be more severe in practice than
previously acknowledged. In particular, we demonstrate that state-of-
the-art methods for tackling this issue in the single-agent domain can
fail in our multi-agent setting.

We investigate the behavior of QMIX in the predator-prey task from
the multi-agent particle environments [18], where 3 slower predators
need to coordinate to capture a faster prey to solve the task. A detailed
description of the task is included in Appendix E.1.1. We consider a
fully cooperative setting where the prey is pre-trained by MADDPG
[18] to avoid capture by the predators, and the predators need to learn
to cooperate with each other in order to surround and capture the prey.

Figures 2 and 3(a) show the performance of QMIX and its estimated values of the joint-action
Q-function during training respectively. QMIX suffers from catastrophic performance degradation
and a severe overestimation bias, where its value estimates grow without bound. Figures 3(b) and 3(c)
illustrate the mean agent-wise utilities Qa and their gradients ∂fs/∂Qa over agents respectively. We
see that for QMIX, the gradients ∂fs/∂Qa increase rapidly and continuously during learning. Figure
3(d) shows the learned weight (matrix) of the monotonic mixing network fs. The weights similarly
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grow larger during training and further amplify the overestimation in each Qa when computing Qtot,
leading to a severely overestimated joint-action Q-function that continues to grow without bound.

To reduce overestimation, Ackermann et al. [1] extend the state-of-the-art TD3 algorithm [8], which
addresses overestimation in the single-agent case, to the multi-agent setting. We obtain QMIX (CDQ)
by applying the key Clipped Double Q-learning technique from TD3 [8] to per-agent utilities in
QMIX for value estimation.2 As shown in Figure 3(b), QMIX (CDQ) slows the increase of agent-wise
utilities. However, Figure 3(a) shows that it still does not eliminate the severe overestimation bias in
the joint-action Q-function, and subsequently suffers a performance degradation as shown in Figure
2. This is due to the gradients of the monotonic mixing network, ∂fs/∂Qa, which still continuously
increase as shown in Figure 3(c), leading to the large and increasing value estimates in Figure 3(a).
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Figure 3: Learning statistics during training in predator-prey. (a) Value estimates in log scale. (b)
Mean agent-wise utility functions Qa over agents. (c) Mean gradients ∂fs

∂Qa
over agents in log scale.

(d) The learned weight (matrix) in the monotonic mixing network fs of QMIX, where a darker color
represents a larger value (a detailed description is in Appendix A.1).

Another way to avoid overly large value estimates is to limit the gradients themselves. We propose
Gradient Regularization (GradReg) to prevent the gradients ∂fs/∂Qa from growing too large by
regularizing the gradient using a quadratic penalty. Specifically, the loss function of QMIX (GradReg)
is defined as LGradReg(θ) = E(s,u,r,s′)∼B

[
δ2 + λ(∂fs/∂Qa)2

]
, where δ is the TD error defined in

Section 2 and λ is the regularization coefficient. However, although QMIX (GradReg) with a tuned
coefficient for the regularizer prevents the gradients from growing overly large during the early stage
of learning (Figure 3(c)), the agent-wise utility functions grow larger instead as shown in Figure 3(b).
This then still leads to a particularly large value estimate as shown in Figure 3(a). Finally, a direct
combination of both CDQ and GradReg also fails to avoid the problem.

From these experiments, we see that even applying the state-of-the-art TD3 [8] method from the
single-agent literature can fail in our multi-agent setting. In addition, it is also insufficient to tackle the
problem by regularizing the magnitude of the gradients ∂fs/∂Qa. These results show that mitigating
overestimation in MARL is particularly important and challenging, and requires novel solutions.

4 Regularized Softmax (RES) Deep Multi-Agent Q-Learning

Our analysis shows that preventing gradients from being large as in QMIX (GradReg) and/or utilizing
clipped double estimators as in QMIX (CDQ) are not sufficient to prevent overly large value estimates.
It is important to note that these methods take an indirect approach to reduce the overestimation of
the joint-action Q-value, and as shown do not solve the severe overestimation problem. Therefore, we
propose a novel way to directly penalize large joint-action Q-values to avoid value estimate explosion.

Directly penalizing large joint-action Q-values can push their values towards 0, yielding a large
estimation bias. Instead, we introduce a baseline into the penalty to better trade off learning efficiency
and stability. Specifically, the new learning objective penalizes joint-action Q-values deviating from
a baseline b(s,u), by adding a regularizer to the loss: λ (Qtot(s,u)− b(s,u))

2, where we use the
mean squared error loss and λ is the regularization coefficient. A potential choice for the baseline is
theN -step return, i.e., b(s,u) =

∑N−1
t=0 γtrt+γN maxu′ Qtot(sN ,u

′). Figure 4(a) shows the value
estimates of Regularized (RE)-QMIX (b = N -step return) using the N -step return as the baseline
(with best N,λ). However, as it still involves Qtot, the value estimation can still grow extremely
large despite being discounted, yielding estimates that almost coincide with those of QMIX.

2Applying CDQ on Qtot leads to larger value estimates than applying it on Qa (details are in Appendix A.2).
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Therefore, we propose to use the discounted return starting from state s as the baseline to regularize
learning, i.e., b(s,u) = Rt(s,u) =

∑∞
k=0 γ

krt+k for the t-th timestep. The regularized learning
objective directly penalizes large joint-action Q-values and allows the value estimates to remain
grounded by real data. As shown in Figure 4(a), RE-QMIX effectively avoids particularly large value
estimations and stabilizes learning.

RE-QMIX (baseline=𝑁-step return)
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Figure 4: Comparison of value estimates in predator-
prey. (a) Value estimation in log scale for QMIX and
RE-QMIX with different baselines. (b) True values and
estimated values of RE-QMIX and RES-QMIX.

However, while the regularized learning
objective is effective in resolving value ex-
plosion, it can still overestimate due to the
use of the max operator when computing
target value estimates [34]. Figure 4(b)
shows the estimated and true values of RE-
QMIX (with best λ). The estimated val-
ues are computed by averaging over 100
states sampled from the replay buffer at
each timestep, and we estimate true values
by averaging the discounted returns which
are obtained by following the greedy pol-
icy with respect to the current Qtot starting
from the sampled states. As shown in Fig-
ure 4(b), although RE-QMIX avoids unbounded growth of its value estimates, it does not fully avoid
the overestimation bias, which still estimates the target value according to the max operator [34].

To further mitigate overestimation bias in the joint-action Q-function, we adopt the softmax operator,
which has shown great potential in reducing overestimation bias in place of the max operator in
single-agent domains [32, 26, 25]. Specifically, the softmax operator is defined in Eq. (3), where
β ≥ 0 is the inverse temperature parameter.

smβ,U (Qtot(s, ·)) =
∑
u∈U

eβQtot(s,u)∑
u′∈U e

βQtot(s,u′)
Qtot(s,u). (3)

When β approaches∞ or 0, softmax reduces to the max or mean operator respectively. Unfortunately,
computing Eq. (3) in the multi-agent case can be computationally intractable as the size of the joint
action space grows exponentially with the number of agents. In addition, as the action space in the
multi-agent case is much larger than that in the single-agent case, some joint-action Q-value estimates
Qtot(s,u) can be unreliable due to a lack of sufficient training. Thus, directly taking them all into
consideration for computing the softmax operator in Eq. (3) can result in inaccurate value estimates.

We propose a novel method to approximate the computation of the softmax operator efficiently and
reliably. Specifically, we first obtain the maximal joint action û = arg maxuQtot(s,u) with respect
to Qtot according to the individual-global-max (IGM) property discussed in Section 2. Then, for each
agent a, we considerK joint actions, by changing only agent a’s action while keeping the other agents’
actions û−a fixed. We denote the resulting action set of agent a by Ua = {(ua, û−a)|ua ∈ U}.
Finally, we form a joint action subspace Û = U1 ∪ · · · ∪ Un, where each Ua contributes K actions,
and use Û in Eq. (3) for computing the approximate softmax operator. In Theorem 1, we show
that the gap between our approximation in Û and its direct computation in the joint action space U
converges to 0 at an exponential rate with respect to β. The proof can be found in Appendix B.1.

Theorem 1. Let u∗ and u′ denote the optimal joint actions in U and U − Û with respect to
Qtot, respectively. The difference between our approximate softmax operator and its direct com-
putation in the whole action space satisfies: ∀s ∈ S, |smβ,Û (Qtot(s, ·)) − smβ,U (Qtot(s, ·))| ≤
2Rmax

1−γ
|U−Û |

|U−Û |+exp(β(Qtot(s,u∗)−Qtot(s,u′)))
, where |U − Û | denotes the size of the set U − Û .

Discussion. Since its computational complexity is linear instead of exponential in the number of
agents, our approximation is feasible to compute even when the number of agents grows large, as
opposed to the original softmax operator. According to the IGM property, Û consists of joint actions
that are close to the maximal joint action û. Thus, it it more likely to contain joint actions with
more accurate and reliable value estimates, especially when using ε-greedy exploration, since they
are more likely to be sampled and therefore trained. Due to this reduced reliance on unreliable
joint-action Q-values, our approximate softmax operator actually outperforms its counterpart using
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a direct computation in the joint action space U , as well as a random sampling scheme, as shown
in Section 5.1.3. The full algorithm for our approximate softmax is in Appendix B.2. As shown in
Figure 4(b), RES (Regularized Softmax)-QMIX fully addresses the overestimation bias and achieves
better value estimates than RE-QMIX.3

The loss of Regularized Softmax (RES) Deep Multi-Agent Q-Learning LRES(θ) is defined as:

E(s,u,r,s′)∼B

[
δ2
smβ

+ λ (Qtot(s,u)−Rt(s,u))
2
]
, (4)

where δsmβ
= r+ γsmβ,Û (Q̄tot(s

′, ·))−Qtot(s,u), and λ denotes the coefficient of the regularizer.

To better understand the effectiveness of our method, we provide a theoretical justification that
connects the loss function of RES and a new Bellman operator in Theorem 2.
Theorem 2. Given the same sample distribution, the update of the RES method is equivalent to the
update using L(θ) = E(s,u,r,s′)∼B

[
(y −Qtot(s,u))2

]
with learning rate (λ+ 1)α, which estimates

the target value according to y =
r+γsmβ,Û (Q̄tot(s

′,·))
λ+1 + λRt(s,u)

λ+1 .

Its proof is in Appendix C. In the special case where λ = 0, it is equivalent to changing the max
operator to our approximate softmax in the target value estimation. When λ > 0, it can be thought of
as learning with a weighted combination of the 1-step TD target with our approximate softmax and
the discounted return, which allows the bootstrapping target to remain grounded by real data.4

Let T be the value estimation operator which estimates the value of the next state s′. From Theorem 2,
we have TQMIX = maxu′ Q̄tot(s

′,u′), TRE-QMIX = maxu′ Q̄tot(s
′,u′)+λRt+1(s′)
λ+1 , and TRES-QMIX =

smβ,Û (Q̄tot(s
′,·))+λRt+1(s′)

λ+1 . We now analyze the relationship between the value estimation bias of
these operators in Theorem 3 (the proof is in Appendix D), and show that RES-QMIX can reduce the
overestimation bias when built upon QMIX. It is also worth noting that since RES is general, it can
be readily applied to other deep multi-agent Q-learning algorithms, as investigated in Section 5.1.4.
Theorem 3. Let B(T ) = E[T (s′)] −maxu′ Q

∗
tot(s

′,u′) be the bias of value estimates of T and
the true optimal joint-action Q-function Q∗tot. Given the same assumptions as in [37] for the
joint-action Q-function, where there exists some V ∗tot(s

′) = Q∗tot(s
′,u′) for different joint actions,∑

u′

(
Q̄tot(s

′,u′)− V ∗tot(s′)
)

= 0, and 1
|U |
∑
u′

(
Q̄tot(s

′,u′)− V ∗tot(s′)
)2

= C (C > 0) with
Q̄tot an arbitrary joint-action Q-function, then B(TRES-QMIX) ≤ B(TRE-QMIX) ≤ B(TQMIX).

From the proof of Theorem 3 and Figure 4(a), we find that RE-QMIX can reduce the overestimation
bias of QMIX following the same standard assumptions in [37, 32]. In addition, Theorem 3 also
shows that the bias of value estimates of RES-QMIX is no larger than that of RE-QMIX, which
validates our RES method.

5 Experiments

We conduct a series of experiments in the multi-agent particle tasks [18] to answer: (i) How much can
our RES method improve over QMIX? (ii) How does RES-QMIX compare against state-of-the-art
methods in performance and value estimates? (iii) How sensitive is RES to important hyperparameters
and what is the effect of each component? (iv) Can RES be applied to other algorithms? We also
evaluate our method on the challenging SMAC benchmark [30] to demonstrate its scalability. The
code is publicly available at https://github.com/ling-pan/RES.

5.1 Multi-Agent Particle Environments

The predator-prey (PP) task was introduced in Section 3. Physical deception (PD) involves 2
cooperating agents and 1 adversary, whose goal is to reach a single target landmark from a total of
two landmarks, while the adversary is unaware of the target. World (W) involves 4 slower agents
who must coordinate to catch 2 faster adversaries that desire to eat food. In covert communication

3Note that applying the softmax operator on agent-wise utilities results in a larger underestimation bias and
significantly underperforms RES, a detailed discussion is included in Appendix B.3.

4The result of QMIX with learning rate (λ+ 1)α is in Appendix C.1 (also suffers from performance drop).
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(CC), one agent must send a private message to the other over a public channel with a private key,
while an adversary tries to reconstruct the message without the key. In the above tasks, we consider a
fully cooperative setting where the adversaries are pre-trained by MADDPG [18] for 104 episodes.

We compare RES against state-of-the-art value factorization algorithms including VDN [33], QMIX
[29], QTRAN [31], Weighted QMIX (including CW-QMIX and OW-QMIX) [27], and QPLEX [38]
using the PyMARL [30] implementations and setup, and the popular actor-critic algorithm MADDPG
[18]. For RES-QMIX, we fix the inverse temperature β to be 0.05 while the regularization coefficient
λ is selected based on a grid search over {1e− 2, 5e− 2, 1e− 1, 5e− 1} as investigated in Section
5.1.3. Each algorithm is run with five random seeds, and is reported in mean ± standard deviation. A
detailed description of the tasks and implementation details is in Appendix E.1.

5.1.1 Performance Comparison

We first investigate how much of a performance improvement RES-QMIX achieves over QMIX.
Performance comparison in different environments is shown in Figure 5, and the mean normalized
return averaged over different environments can be found in Appendix E.2. The results show that RES-
QMIX significantly outperforms QMIX in performance and efficiency, and achieves stable learning
behavior, without any catastrophic performance degradation. We then investigate the performance
of RES-QMIX in comparison with state-of-the-art baselines. As shown in Figure 5, RES-QMIX
significantly outperforms all baselines and achieves state-of-the-art performance in PP, PD, and W
tasks. In the CC environment, RES-QMIX matches the best performers including VDN, QTRAN
and QPLEX, while QMIX and Weighted QMIX suffer from oscillation. We also demonstrate the
robust performance of RES-QMIX in stochastic environments in Appendix E.3.
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Figure 5: Performance comparison.

5.1.2 Value Estimation Analysis
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Figure 6: Normalized bias of value
estimates.

To understand the reasons for RES-QMIX’s better performance,
we analyze the bias of value estimation (the difference between
estimated values and corresponding true values, which are com-
puted in the same way as in Section 4) in predator-prey. To
facilitate a fair comparison among different categories of al-
gorithms including value-based and actor-critic methods, we
normalize the bias of each method by 100∗ estimated value - true value

|true value| .
Figure 6 shows that both QMIX and Weighted QMIX suffer
from large and rapidly increasing overestimation bias, yielding
the severe performance degradation shown in Figure 5(a). Value
estimates of VDN, which is based on a linear decomposition of
Qtot, increase more slowly at the end of training. However, it still incurs large overestimation as in
QTRAN and QPLEX. Unlike all other value factorization methods, MADDPG learns an unfactored
critic that directly conditions on the full state and joint action. It is less sample efficient, which
indicates that value factorization is important in these tasks [14, 6, 13]. Thus, MADDPG results in a
lower return and value estimates (shown in Appendix E.4) compared to all other value factorization
methods, but still overestimates. RES-QMIX achieves the smallest bias and fully mitigates the
overestimation bias of QMIX, resulting in stable performance and outperforming all other methods.
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5.1.3 Ablation Study

We now analyze how sensitive RES-QMIX is to some important hyperparameters, and the effect of
each component in our method including the regularizer, the softmax operator, and the approximation
scheme in the predator-prey task. Full results for all environments can be found in Appendix E.5.

The effect of the regularization coefficient λ. Figure 7(a) shows the performance of RES-QMIX
with varying λ. RES-QMIX is sensitive to this hyperparameter, which serves a critical role in trading
off stability and efficiency. A small value of λ fails to avoid the performance degradation, while a large
value of λ focuses more on learning based on the regularization term instead of the bootstrapping
target, and affects learning efficiency. There exists an intermediate value that provides the best
trade-off. In fact, we find that this is the only parameter that needs to be tuned for RES-QMIX.

The effect of the inverse temperature β. As shown in Figure 7(b), RES-QMIX is insensitive to the
hyperparameter β, where the performance remains competitive for a wide range of β. This is different
from previous studies [32, 26, 25] that are usually sensitive to the inverse temperature parameter,
since they solely relies on the softmax operator for overestimation reduction (which is insufficient
in the multi-agent setting as discussed in Section 3). We fix β in RES-QMIX to be 0.05 due to
the relatively low sensitivity with respect to β, which performs the best, in all multi-agent particle
environments.

The effect of each component. By comparing RES-QMIX against RE-QMIX and S-QMIX in
Figure 7(c), we see that the regularization component is critical for stability, while combining with
our softmax operator further improves learning efficiency.

The effect of the approximation scheme. We compare our proposed approximation scheme for
the softmax operator with a random sampling scheme and a direct computation in the joint action
space. Specifically, RES-QMIX (RS) randomly samples the same number of joint actions as in RES-
QMIX, while RES-QMIX (DC) directly computes softmax in the joint action space. The runtime for
QMIX, RES-QMIX, and RES-QMIX (DC) is 4.8, 5.2, and 10.7 hours respectively, which shows that
RES-QMIX only requires a small amount of extra computation compared to QMIX, and is much
more computationally efficient than RES-QMIX (DC). Additionally, from Figure 7(c), it outperforms
RES-QMIX (DC), showing that our approximation scheme is not only a necessary compromise for
computational efficiency, but also improves performance as discussed in Section 4. RES-QMIX also
significantly outperforms its counterpart with random sampling, which also validates its effectiveness.
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Figure 7: Ablation study. (a) Varying λ. (b) Varying β. (c)
The effect of each component (the regularizer, the softmax
operator, and the approximation scheme).
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turn of RES when applied to (a)
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5.1.4 Applicability to Other Algorithms

The proposed RES method is general and can be readily applied to other Q-learning based MARL
algorithms. To demonstrate its versatility, we apply it to two recent algorithms, Weighted QMIX
[27] and QPLEX [38]. For Weighted QMIX, we use OW-QMIX as the base algorithm because it
outperforms CW-QMIX as shown in Figure 5. The improvement in mean normalized return of RES-
based methods over their vanilla counterparts in different environments is summarized in Figure 8,
while the full comparison of learning curves in each environment is in Appendix E.6. As demonstrated,
RES-Weighted QMIX and RES-QPLEX provide consistent improvement in performance and stability
over Weighted QMIX and QPLEX, respectively, demonstrating the versatility of our RES method.
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5.2 StarCraft II Micromanagement Benchmark

To demonstrate the ability of our method to scale to more complex scenarios, we also evaluate it
on the challenging StarCraft II micromanagement tasks [30] by comparing RES-QMIX to QMIX
using SC2 version 4.10 for five random seeds. Both algorithms are implemented using the PyMARL
framework [30] with default hyperparameters as detailed in Appendix E.1. We evaluate the method
on maps with different difficulties ranging from easy (2s3z, 3s5z), hard (2c_vs_64zg), to super
hard (MMM2) as classified in [30], with a detailed description in Appendix E.1.2.

Figures 9(a)-(d) show the test win rate. RES-QMIX provides a consistent performance improvement
over QMIX. Additional comparison results with the most competitive baseline QPLEX, as in the
multi-agent particle tasks, are provided in Appendix E.8, where RES-QMIX also outperforms QPLEX.
Additionally, we show that RES is still effective even without double estimators. The results are
presented in Appendix E.9, showing that RES-QMIX (single) outperforms both QMIX and QMIX
(single) on all maps we tested.
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Figure 9: Comparison of RES-QMIX and QMIX in StarCraft II micromanagement tasks.

6 Related Work

Centralized training with decentralized execution (CTDE) [23, 15] is a popular paradigm in MARL,
where a large number of recent work focuses on training agents under this paradigm. MADDPG [18]
is an off-policy actor-critic algorithm that extends DDPG [17] to the multi-agent setting. Another line
of research focuses on value-based Q-learning algorithm, which learns a centralized but factored joint
action-value function Qtot. For instance, VDN factorizes the joint-action Q-function into a linear
combination of agent-wise utilities, and QMIX [29] improves the representation capability using
a non-linear monotonic mixing network. There has also been a number of approaches improving
QMIX’s representation capability including QTRAN [31], Weighted QMIX [27], QPLEX [38] and
its exploration ability [19, 10].

Methods to alleviate overestimation have been extensively studied in reinforcement learning, with
a focus on the single-agent case [11, 37, 32, 16, 5, 8, 25]. However, as shown in [36], there is
no unbiased estimator in general settings. Double Q-learning [11, 37] uses a pair of independent
estimators to reduce overestimation inQ-learning. In [32, 26, 25], it is shown that the softmax operator
is effective for reducing estimation bias in the single-agent setting. However, it is challenging to
compute the softmax operator in the multi-agent case due to the exponentially-sized joint action
space, for which we propose an efficient approximation scheme. Ackermann et al. [1] extend TD3
[8] to the multi-agent setting while Gan et al. [9] propose a soft Mellowmax operator [9] to tackle
overestimation in MARL. However, the analysis in [9] is based on the assumption that the gradients
∂fs/∂Qa are bounded, which might not hold in practice as we have shown in Figure 3 (more technical
discussion is in Appendix F). Both methods fail to tackle the severe overestimation problem as shown
in Figure 2 and Appendix E.7.

To improve learning efficiency, He et al. [12] propose a learning objective based on lower and upper
bounds of the optimal Q-function. As the upper bound is based on N -step returns, it cannot avoid the
severe overestimation as investigated in Section 4. Self-imitation learning (SIL) [21] aims to improve
exploration via leveraging the agent’s past good experiences, which only performs SIL updates when
the estimated value function is smaller than the discounted return. However, this is not effective for
reducing overestimation bias in our case, as the SIL part pays little attention to experiences whose
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estimated values are greater than the discounted return.5 The update rule of RES shown in Theorem
2 is related to the mixed Monte Carlo update [3, 24]. However, our primary motivation is to reduce
severe overestimation as opposed to speed up learning.

7 Conclusion

Overestimation is a critical problem in RL, and has been extensively studied in the single-agent
setting. In this paper, we showed that it presents a more severe practical challenge in MARL than
previously acknowledged, and solutions in the single-agent domain fail to successfully tackle this
problem. We proposed the RES method based on a novel regularization-based update and the softmax
operator with an efficient and reliable approximation in a novel way. Extensive experiments showed
that RES-QMIX significantly reduces overestimation and outperforms state-of-the-art baselines. RES
is general and can be applied to other deep multi-agent Q-learning methods, and can also scale to
a set of challenging StarCraft II micromanagement tasks. The analysis and development of RES
shed light on how to design better value estimation in MARL. Interesting directions for future work
include theoretical study for the phenomenon discovered in Section 3, an adaptive scheduling for the
regularization coefficient (e.g., meta-gradient approaches [40]), and the application of RES to other
MARL methods.
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