

000 DOMAIN-SPECIFIC TEXT-TO-IMAGE GENERATION: 001 PLANNING, MERGING, AND REPLACING WITH 002 TRAINING-FREE LLMS 003

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Diffusion-based techniques, such as Stable Diffusion, exhibit remarkable capa-
014 bilities in text-to-image synthesis and editing. However, general text-to-image
015 diffusion methods frequently fail to accurately generate domain-specific compo-
016 nents, such as particular electrical elements in schematic circuit diagram. Lack-
017 ing domain-specific knowledge, rules, and sufficient data, existing methods may
018 struggle with resource-consumption model training. To address these limitations,
019 we propose a novel, training-free framework for mastering domain-specific text-
020 to-image generation, namely Planning, Merging, and Replacing (PMR). Specif-
021 ically, PMR precisely generates domain-specific elements and their configura-
022 tions, enabling schematic circuit diagram generation without requiring model fine-
023 tuning. Based on the establishment of a knowledge base, PMR employs large
024 language models (LLMs) to plan inter-component connectivity according to the
025 requirements provided by users. PMR further utilizes LLMs to spatially arrange
026 symbolic blocks (representing components) and their connecting wires. Subse-
027 quently, PMR has a fine-grained positional control and generates symbolic blocks
028 and wires at designated locations. Extensive experiments demonstrate that PMR
029 outperforms existing methods in domain-specific generation. Our work opens a
030 potentially new avenue of automated domain-specific text-to-image generation.

031 1 INTRODUCTION

033 The rapid development of text-to-image diffusion models (Ho et al., 2020; Song et al., 2020; Nichol
034 & Dhariwal, 2021; Dhariwal & Nichol, 2021) enables the generation of massive and diverse aes-
035 thetic images. However, existing open-source text-to-image diffusion models (such as Stable Dif-
036 fusion (Radford et al., 2021) and SDXL (Peebles & Xie, 2023)) are primarily designed for general-
037 purpose applications and lack specialized domain performance. Due to the absence of domain-
038 specific training data in electrical engineering, open-source models often fail to comprehend elec-
039 trical circuit terminology and concepts, resulting in irrelevant image generation. Specifically, as
040 shown in Figure 1, in the field of schematic circuit diagram design, even if we fine-tune existing
041 text-to-image models, they can merely generate one single electronic component and are hardly
042 compliant with electrical regulations due to a lack of electrical knowledge. Inspired by the design of
043 RPG (Yang et al., 2024), it is possible to utilize LLMs (Bai et al., 2023; Hurst et al., 2024; Liu et al.,
044 2024) to rapidly acquire electrical knowledge for electric schematic circuit diagram design. Further-
045 more, integrating LLMs with diffusion models enables automatically generating electric schematic
046 circuit diagrams, called schematic for brevity.

047 In this work, instead of training a domain-specific text-to-image model, we propose a fully auto-
048 mated, training-free electrical schematic circuit diagram generation framework, namely Planning,
049 Merging, and Replacing (PMR). Our method can be extended to schematic image generation in
050 other fields. The fully automated schematic generation framework comprises the following steps:

051 **Component Relationship Planning.** In this step, PMR primarily maps the components and re-
052 quirements and understands the connection relationships of electrical components. By establishing
053 an electrical knowledge base and utilizing LLMs’ powerful Chain-of-Thought (CoT) planning ca-
pabilities (Zhang et al., 2023b), we plan the interconnections for components. Afterward, we use

Figure 1: The three images (a)-(c) are **voltage transformers** generated by a fine-tuning SDXL (Peebles & Xie, 2023), producing inconsistent and unstable components. We attempt to generate an **electric transformer** and a **power-on indicator** with a parallel connection using the fine-tuned model, but it produces a series connection as shown in image (d).

black squares to represent component objects and then generate a complex initial prompt input based on the planned component connections. The component connection relationships can be manually defined, ensuring accuracy and compliance with electrical rules.

CoT Planning for Region Division and Lines Generation. With LLM’s powerful COT reasoning capabilities, we plan the spatial positioning of each component and its connecting lines on a fixed-size drawing based on the component connection relationships obtained from the previous step. The prompt, obtained from the previous step, i.e., Component Relationship Planning, describes each individual region or object, along with its corresponding spatial locations.

Merge Regional Diffusion. In this step, we propose a merge regional diffusion approach to enhance the flexibility and accuracy of text-to-image generation. Specifically, we independently generate image content guided by subprompts within designated rectangular sub-regions. The regions are bound in the early denoising stage. The refinement step does not manipulate the image but instead enables interaction between regional local conditions and latent global image information across attention layers.

The novel end-to-end framework PMR enables the automatic generation of compliant schematic circuit diagrams without training, achieving full process automation. Our contributions are summarized as follows:

- We introduce a groundbreaking unsupervised schematic circuit diagram generation framework, namely Planning, Merging, and Replacing (PMR), comprising component relationship planning, merging, replacing, and generation, to maximize the synthetic capability and controllability of diffusion models.
- We leverage LLM’s powerful CoT capabilities to plan component relationships while decomposing complex prompts into informative instructions for diffusion models.
- We introduce a regional diffusion approach that collaborates with LLMs to precisely generate images consistent with textual descriptions.
- Our PMR framework is user-friendly and extensible to different open-source LLMs (e.g., DeepSeek-v3 (Liu et al., 2024) and open-source text-to-image diffusion models (e.g., Flux.1-dev). Extensive qualitative and quantitative comparisons with existing open-source text-to-image methods (e.g., SDXL (Peebles & Xie, 2023)), DALL-E 3 (Betker et al., 2023)) demonstrate our superior text-guided schematic generation capabilities.

2 RELATED WORK

Diffusion Models. The foundational theory of diffusion models originated from Sohl-Dickstein et al. (2015)’s work, inspired by non-equilibrium thermodynamics. Subsequently, DDPM (Denoising Diffusion Probabilistic Models) (Ho et al., 2020) systematized this framework by employing U-Net for noise prediction and simplifying the training objective. Recently, diffusion models expanded into multimodal domains. Stable Diffusion v3 (Esser et al., 2024) replaces U-Net with Transformers to improve scalability. Recently, in text-to-image generation, quality and consistency

108 have been further enhanced through diverse approaches, including SDXL (Peebles & Xie, 2023),
 109 DALL-E 3 (Betker et al., 2023), and Flux.1-dev. However, when confronted with complex tex-
 110 tual prompts, text-to-image models struggle to accurately generate images consistent with the text,
 111 particularly when the number of objects, their attributes, and spatial relationships are intricate and
 112 diverse.

113 **Compositional Diffusion Generation.** The evolution of controllable text-to-image models has pro-
 114 gressed from basic generation to refined control. For example, ControlNet (Zhang et al., 2023a)
 115 achieved fine-grained spatial control over image generation by incorporating external control signals
 116 such as edge maps and depth maps. Meanwhile, DreamBooth (Ruiz et al., 2023) enabled theme-
 117 driven personalized generation through fine-tuning pre-trained models. StructureDiffusion (Feng
 118 et al., 2022) is a diffusion model focused on precisely controlling the overall layout and structure
 119 of generated images. Promptist (Hao et al., 2023) is a model designed to optimize and enhance the
 120 effectiveness of text prompts. Instancediffusion (Wang et al., 2024) enables finer-grained instance-
 121 level control. It supports specifying the position of each specific instance within an image through
 122 multiple formats (e.g., bounding boxes, masks, points, doodles) and combines free text to describe
 123 instance attributes. Concurrently, models like ReCo (Yang et al., 2023) and GLIGEN (Li et al.,
 124 2023) further explored precise manipulation of spatial layout and attributes through region-level
 125 control conditions such as bounding boxes and keypoints. Models like SDXL and Stable Diffu-
 126 sion v3 further integrate Transformer architectures to enhance performance and expand application
 127 scope.

128 **Specialized Diffusion Models.** Although control-based methods demonstrate robust performance,
 129 collecting training data is time-consuming and labor-intensive. To address these challenges, model-
 130 free training approaches have been proposed. Mulan (Li et al., 2024) is a training-free multimodal
 131 large language model agent that progressively generates multi-object images adhering to spatial
 132 relationships and property bindings. RAG (Chen et al., 2024) is an untrained region-aware text-
 133 to-image generation method. It ensures precise execution of regional prompts through hard region
 134 binding while enhancing inter-regional harmony via soft refinement. RPG (Yang et al., 2024) is a
 135 training-free text-to-image generation/editing framework. It leverages the chain-of-thought reason-
 136 ing capability of multimodal large language models (MLLMs) to decompose complex prompts into
 137 sub-regional tasks, achieving compositional generation through complementary regional diffusion.
 138 These approaches are designed for general-purpose scenarios. Generating domain-specific images
 139 directly from foundational models is challenging since these models lack training on domain-specific
 140 data. In this work, we propose the zero-shot generation framework, specifically applied to schematic
 141 circuit diagram generation.

142 **Domain-Specific Diffusion Models.** While general text-to-image models focus on photorealism
 143 and broad adaptability, domain-specific models are tailored for structured tasks. For instance, in the
 144 realm of layout generation—which shares topological similarities with schematic design—models
 145 like LayoutDM (Inoue et al., 2023) and LayoutDiffusion (Zheng et al., 2024) employ diffusion pro-
 146 cesses to generate discrete layout elements. Unlike these supervised methods that require training
 147 on domain-specific datasets (e.g., PubLayNet (Zhong et al., 2019)), our PMR framework offers a
 148 training-free alternative, leveraging the planning capabilities of LLMs to adapt foundation models
 149 to specialized domains like electrical schematics and document layouts.

151 3 METHOD

152 3.1 OVERVIEW OF PROPOSED

153 In this section, we introduce our automated, training-free schematic generation framework as shown
 154 in Figure 2. Given the required components for the schematic, our framework leverages historical
 155 schematic knowledge to plan the placement of each component and the connection metrics among
 156 them. PMR subsequently generates components and connection lines using Merge Regional Diffu-
 157 sion, ultimately producing a schematic circuit diagram that meets requirements. In the following,
 158 we illustrate the three key steps: relationship planning, region planning, and generation.

Figure 2: Overview of our PMR framework.

3.2 COMPONENT RELATIONSHIP PLANNING

Given the required quantity and types of components, to generate schematics, PRM should first define the component connections. As existing open-source diffusion models and LLMs lack knowledge of electrical diagram design, we establish an electrical knowledge base to support training-free schematic generation. Firstly, we recognize various components using an object detection model. The total number of component types is 30, with connection relationships summarized into three types: series, parallel, and cross nodes. The relationships are depicted in Figure 4. By employing a random walk method (Spitzer, 2001) to derive all component connection relationships from historical schematics. We systematically analyzed and summarized over 4,000 schematics. Subsequently, leveraging the LLM’s powerful CoT planning capabilities alongside the knowledge base derived from historical schematics, our system plans the optimal connection relationship tree for all components. The relationship tree satisfies all the requirements and specific constraints, and defines the connection relationships of each component, i.e., whether it connects to others. Finally, we summarize the optimal connection relationship tree into a complete prompt. The LLM prompt is detailed in the appendix A.2.

We constructed a knowledge base of component connection relationships based on over 4,000 historical schematics, as shown in Figure 3. To automatically and rapidly build the knowledge base, we train an object recognition model to identify all components and their positions from historical schematics. To accelerate component relationship extraction among thousands of schematics, we modified the random walk algorithm. We utilize the tree structure to quickly determine the connection relationships between components. The improved random walk method is applied to derive the component connection relationship tree. To obtain a structured knowledge base, we define series, parallel, and cross-node connections as three types of relationship denoted as a composed relationship list:

$$\{Sr(z_i, z_j), Pr(z_i, z_j, z_k), Fr(z_i)\} \quad (1)$$

where $i, j, k \leq n$. We summarize the component connection relationship tree into these three structured relationship lists to form the final knowledge base.

In the CoT Planning component relationship step, we carefully craft task instructions and contextual examples. We leverage the powerful chain-of-thought reasoning capabilities of LLMs to achieve planning of component connection relationships. The input p^b consists of a sequence of components,

Figure 3: The entire process of building a knowledge base.

denoted as:

$$\{z_i\}_{i=1}^n = \{z_1, z_2 \dots z_n\} \subseteq P^b \quad (2)$$

where n denotes the number of components, z_i denotes one of the all components. Through carefully designed task instructions for component connection planning and detailed contextual examples that contain explicit reasoning steps, we guide the large model to perform accurate inference following the examples. We then use GPT-4o(Hurst et al. (2024)) or other LLMs such as DeepSeek-v3, Qwen(Bai et al. (2023)), to output all connection relationship of the schematic circuit diagram. Subsequently, we consolidate all obtained component connection relationship into a comprehensive prompt \hat{P}^b . First, we abstract all components as uniformly sized black squares denoted as:

$$\{\hat{z}_1, \hat{z}_2 \dots \hat{z}_n\} = \text{Rename}(\{z_i\}_{i=1}^n) \quad (3)$$

where n denotes the number of components, \hat{z}_i denotes Block i . Simplifying the positioning process, as existing text-to-image foundational models cannot generate diagrams for specialized electrical components, we initially generate squares, which are later replaced with corresponding components. Consequently, component names in the prompt will be replaced with labels like Block 1, Block 2, etc, denoted as:

$$\{\hat{z}_1\}_{i=1}^n = \{\hat{z}_1, \hat{z}_2 \dots \hat{z}_n\} \subseteq \hat{P}^b \quad (4)$$

Simultaneously, we simplify and consolidate all component connection relationships to facilitate subsequent positioning planning and comprehension. All series-connected components are grouped into a single “series” while parallel-connected components are categorized as left-parallel or right-parallel. The final prompt is denoted as:

$$P^c = \text{Recaption}(\hat{P}^b) \quad (5)$$

3.3 COT PLANNING FOR REGION DIVISION AND LINES

To plan the position of each component and the layout of connecting lines between components, we again leverage the powerful CoT reasoning capabilities of LLM. The LLM prompt is detailed in the appendix A.3. Existing diffusion models frequently omit details, failing to accurately match the information described in the text. To address this issue, we decompose the original complex prompt containing multiple objects into basic descriptor subsets for each individual region or object, along with their corresponding spatial positions. This process can be accomplished using LLMs or through manual definition. We continue to utilize GPT-4o, though other large language models can be substituted.

270 Since the previous step yields a complete connection-relationship prompt P^c encompassing all black
 271 square objects and their interconnections, this step decomposes that comprehensive prompt into basic
 272 descriptor subsets for each square object and their corresponding spatial positions. For each block
 273 object's basic descriptor subprompt p_i , since we've abstracted components as black squares, the
 274 rectangular region corresponding to each block object in the text-to-image diffusion model prompt
 275 is uniformly defined as "black square block" occupying the entire rectangular area, which can be
 276 denoted as:

$$\{p_1, p_2 \dots p_n\} = \text{Recaption}(\{\hat{z}_i\}_{i=1}^n), \forall i \in [1, n] \quad p_i = \text{"black square block"} \quad (6)$$

277 For each block's spatial position, we define a spatial position as rectangular region. Each rectangular
 278 region's information is described by four parameters to illustrate its position and size, where m_{offset}^i
 279 and n_{offset}^i denote the x and y coordinates of its top-left corner vertex, m_{scale}^i and n_{scale}^i denote
 280 the width and height of the region. Concretely, we assign each subprompt p_i to specific region
 281 $R_i^b = \{m_{\text{offset}}^i, n_{\text{offset}}^i, m_{\text{scale}}^i, n_{\text{scale}}^i\}$, and each rectangular region is mutually non-overlapping,
 282 as shown in Figure 5. Thus, we have

$$\{R_i^b\}_{i=1}^n = \{R_1^b, R_2^b \dots R_n^b\} \subseteq H \times W \quad (7)$$

283 where H denotes the height of the schematic image and W denotes the width.

Figure 4: Three types: Series, Parallel, and Cross.

Figure 5: Parm. in Region Division.

300 We leverage the LLM's powerful CoT reasoning capabilities, combined with detailed contextual
 301 examples, to plan the number and positions of complementary rectangular regions based on the
 302 component connection relationships prompt P^c . In addition, we can precisely control the size of
 303 black squares and the spacing between them by adjusting the dimensions of rectangular regions and
 304 the gaps between them, as shown in Figure 10.

305 Afterward, we plan the generation regions for the lines on the schematic circuit diagram. There
 306 are two types of connections between components: straight segments (primarily for series connec-
 307 tions) and angled segments (primarily for parallel connections). For straight segments, two endpoint
 308 coordinates are used. For angled segments, two endpoints and one bend point are denoted as:

$$\text{straight segments} : ((a_1, b_1), (a_2, b_2)), \quad \text{angled segments} : ((a_1, b_1), (a_2, b_2), (a_3, b_3)). \quad (8)$$

309 We combine each component block's position on the diagram with the complete prompt. We use
 310 straight, left-angled, and right-angled segments for series connections, left parallel connections,
 311 and right parallel connections, respectively. The detailed information is in the appendix A.4. The
 312 connection planning is also based on the LLM. The LLM prompt is detailed in the appendix A.3.

3.4 MERGE REGIONAL DIFFUSION

313 Recent work on complementary region diffusion has adjusted cross-attention masks or layouts to fa-
 314 cilitate compositional generation. However, these methods primarily rely on simply stacking latent
 315 factors, leading to conflicts in overlapping regions and ambiguous results. To this end, we intro-
 316 duce a novel approach called Merge Region Diffusion for regional generation and image synthesis,
 317 as shown in Figure 6. We extract non-overlapping complementary rectangular regions and apply a
 318 merging step to achieve high-quality synthetic generation. We employ the new merge region dif-
 319 fusion method to generate blocks at specified rectangular positions, $\{R_i^b\}_{i=1}^n$ within the schematic,

Figure 6: Overview of Merge Regional Diffusion.

ensuring background continuity. In our case, the background is pure white, making background continuity less critical. This approach decouples the schematic generation process into constructing individual regions and refining details. Involving the decomposition of original, complex prompt P^c containing multiple component objects into basic subsets of descriptors $\{p_i\}_{i=1}^n$ for each distinct region or object, along with their corresponding spatial positions $\{R_i^b\}_{i=1}^n$. Each region is then processed individually with its fundamental descriptors, bound only during the early stages of denoising to ensure accurate property representation and entity localization. In the meantime, to ensure correct responses to regional prompts and reduce object omissions when the number of regions or objects increases, we apply regional hard binding in the early stages of the denoising process. The formulation is as follows:

$$z_{t-r} = z_{t-r+1} - \epsilon_\theta(z_{t-r+1}, y) = \text{softmax} \left(\frac{(W_Q \cdot \phi(z_{t-r+1})) (W_K \cdot \psi(P^c))^T}{\sqrt{d}} \right) W_V \cdot \psi(P^c) \quad (9)$$

$$\hat{z}_{t-r}^i = \hat{z}_{t-r+1}^i - \epsilon_\theta(\hat{z}_{t-r+1}^i, \hat{y}^i) = \text{softmax} \left(\frac{(W_Q \cdot \phi(\hat{z}_{t-r+1}^i)) (W_K \cdot \psi(\hat{p}^i))^T}{\sqrt{d}} \right) W_V \cdot \psi(\hat{p}^i) \quad (10)$$

where $i \in [1, n]$, n is the number of regions, r is one of the early steps within the denoising process. ϵ_θ is the noise predicted. And image latent z_t is the query, prompt P^c , and each subprompt \hat{p}^i works as a key and value. W_Q , W_K , W_V are linear projections and d is the latent projection dimension of the keys and queries. Then, we shall proceed with replacing the base latent z_{t-r} with the generated latent $\{\hat{z}_{t-r}^i\}_{i=1}^n$ and merging, according to their assigned region numbers from 0 to n . Specifically, we perform text encoding on P^c and \hat{p}^i to obtain y and \hat{y}^i . Individual latent \hat{z}^i is text-conditioned on \hat{y}^i , while the origin latent z is conditioned on the complex prompt P^c . For each denoising step, we bind \hat{z}_{t-r}^i to the latent space in the rectangular area given by R_i^b as follows:

$$z_{t-r} = \text{Merge and Replace}(z_{t-r}, \hat{z}_{t-r}^i, R_i^b) \quad (11)$$

where $\text{Merge and Replace}(\cdot)$ denotes the process of pasting individual latents back into the corresponding regions of the original latent. Binding is performed only during the early stages of the denoising process. We find that binding over several steps suffices to achieve regional integrity, whereas binding over all steps leads to sharp visual boundaries between adjacent regions or poor interactivity.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Implementation Details. Our PMR framework is general and extensible, we can incorporate arbitrary LLM architectures and diffusion backbones into the framework. In our experiment, we choose GPT-4o as the recaptioner and CoT planner, and use Flux.1-dev as the base diffusion backbone

378 to build our PMR framework. Concretely, in order to trigger the CoT planning ability of LLMs,
 379 we carefully design task-aware templates and high-quality in-context examples to conduct few-shot
 380 prompting. As the first framework in the electrical engineering domain to utilize diffusion models
 381 for automated diagram generation, our novel end-to-end electrical diagram generation framework
 382 faces a critical limitation: existing open-source text-to-image models cannot recognize the spe-
 383 cialized terminology of electrical components, rendering them incapable of generating electrical
 384 components or diagrams. To demonstrate the power of our approach, we conducted experimental
 385 comparisons between the core Merge Regional Diffusion module within our full-process electrical
 386 diagram generation framework and various existing open-source text-to-image models. All experi-
 387 ments are conducted on a single A800 GPU.

388 **Compared Methods.** To comprehensively evaluate the generation quality, we compare our PMR
 389 with several state-of-the-art text-to-image approaches, including: Stable Diffusion v1.5, Stable Dif-
 390 fusion v3.5, SDXL, DALL-E 3, Pixart- α -ft(Chen et al. (2023)), RPG, and Flux.1-dev.

418 Figure 7: Qualitative comparison between our PMR and SOTA text-to-image models.
 419
 420
 421

4.2 MAIN RESULTS

423 **Quantitative Comparison.** We compare with previous SOTA text-to-image models in three main
 424 compositional scenarios: (i) Attribute Binding. Each text prompt in this scenario has multiple at-
 425 tributes that bind to different entities. (ii) Numeric Accuracy. Each text prompt in this scenario has
 426 multiple entities sharing the same class name. The number of each entity should be greater than or
 427 equal to two. (iii) Complex Relationship. In this scenario, each test prompt contains multiple com-
 428 ponent block objects with different attributes (e.g., block size) and relationships (e.g., spatial and
 429 location). We primarily test whether each model can correctly generate the quantity of component
 430 block objects, their individual size attributes, the spatial relationships between component blocks,
 431 and even the precise gap sizes between them. Finally, we also test whether the background of the
 generated drawings is continuous and uniform, as shown in Figure 7. Table 1 presents that PMR

432 Table 1: Comparison of alignment evaluation on T2ICompBench. The best results are highlighted
 433 in **bold**.

435 436 437 Method	Attribute Binding			Object Relationship		438 439 440 441 442 443 444 Complex↑
	Color↑	Shape	Texture↑	Spatial↑	Non-Spatial↑	
Stable Diffusion v1.4	0.3765	0.3576	0.4156	0.1246	0.3079	0.3080
SDXL	0.5879	0.4687	0.5299	0.2133	0.3119	0.3237
Pixart- α -ft	0.6690	0.4927	0.6477	0.2064	0.3197	0.3433
DALL-E 3	0.7785	0.6205	0.7036	0.2865	0.3003	0.3773
RPG	0.7476	0.5640	0.6724	0.4017	0.3032	0.3702
Flux.1-dev	0.7680	0.5078	0.6195	0.2606	0.3078	0.3650
PRE(Ours)	0.7849	0.5926	0.7064	0.4687	0.3206	0.4056

450
451
452
453
454
455
456
457
458
Figure 8: **Analysis of Numeric Accuracy.** From images (a)-(d), our PMR generates with 6, 9, 16
459 and 25 component blocks.

461
462
463
464
465 outperforms competitors in key aspects such as attribute binding, object relationships, and complex
466 composition.

467 **Analysis of Numeric Accuracy.** Regarding numeric accuracy, our comparative testing reveals that
 468 for the latest open-source text-to-image models, when the text prompt contains more than six compo-
 469 nent blocks, these models generally fail to accurately generate the specified number of blocks—often
 470 producing either more or fewer. Our Merge Regional Diffusion generation module can control the
 471 creation of up to 25 component blocks anywhere on the drawing, provided they do not overlap. The
 472 Figure 8 displays drawings generated with 6, 9, 16, and 25 component blocks, each with a side length
 473 of 0.1 and manually specified positions. This demonstrates the superiority of our method, enabling
 474 precise control over the diffusion generation of each object to ensure no element is omitted.

475 **Analysis of Size Accuracy.** Regarding size accuracy, the latest open-source text-to-image models
 476 can only generate component blocks with vague relative sizes like “big” or “small”, not even able
 477 to generate these as shown in Figure 7. Our Merge Regional Diffusion generation module enables
 478 precise control over component block dimensions, generating sizes ranging from 0.1 to 1.0. This
 479 level of granular control is crucial for electrical diagram generation. As shown in Figure 10 in
 480 appendix A.5.

481 **Analysis of Location Accuracy.** Regarding location accuracy, the latest open-source text-to-image
 482 models can only control relative positions such as left, right, top, or bottom. They cannot precisely
 483 control absolute positions on a drawing. Our Merge Regional Diffusion module, however, enables
 484 fine-grained control over the placement of component blocks anywhere on the entire drawing. This
 485 level of precision is crucial for electrical diagram generation. As shown in Figure 8 and Figure 10
 in appendix A.5.

486 5 CONCLUSION

488 In this paper, we introduce PMR (Planning, Merging, and Replacing), a novel training-free approach
 489 for automated electrical schematic generation. We address the limitations of general-purpose text-
 490 to-image models like Stable Diffusion and SDXL in understanding technical electrical terminology
 491 by strategically combining LLMs' CoT planning capabilities with a specialized regional diffusion
 492 process. PRM ensures precise alignment with electrical engineering standards and outperforms
 493 existing methods in attribute binding, numeric accuracy, and complex relationship generation.

494 **Limitation and Future Work.** Our current PMR method is limited by its relatively slow reasoning
 495 generation speed, which represents a key area for future improvement to accelerate inference. Ad-
 496 ditionally, while the framework has been applied in the electrical domain, it could be extended to
 497 other specialized fields for schematic generation in the future.

499 6 ETHICS STATEMENT

501 We confirm that this work complies with the ICLR Code of Ethics. The datasets used in our experi-
 502 ments are either publicly available under appropriate licenses or released with explicit consent. No
 503 personally identifiable or sensitive information was collected or disclosed. We have carefully con-
 504 sidered potential risks, including fairness, bias, and possible misuse of our methods, and we discuss
 505 limitations in the main text. Our contributions are intended for scientific and educational purposes
 506 only, and do not promote harmful applications.

508 7 REPRODUCIBILITY STATEMENT

511 We have made significant efforts to ensure the reproducibility of our results, in line with the ICLR
 512 reproducibility guidelines. Specifically:

- 513 • We provide detailed descriptions of datasets, preprocessing steps, model architectures, hy-
 514 perparameters, training procedures, and evaluation metrics in the main text and appendix.
- 515 • All random seeds were fixed, and we report results averaged over multiple runs to account
 516 for variability.
- 517 • The source code, configuration files, and pretrained models will be released upon publica-
 518 tion at <https://anonymous.4open.science/r/PMR-1D83/README.md>.
- 519 • For datasets that cannot be shared directly due to licensing or privacy restrictions, we pro-
 520 vide acquisition instructions or synthetic substitutes.

523 REFERENCES

525 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 526 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

527

528 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
 529 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer
 530 Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

531 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
 532 Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for photore-
 533 alistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.

534

535 Zhennan Chen, Yajie Li, Haofan Wang, Zhibo Chen, Zhengkai Jiang, Jun Li, Qian Wang, Jian Yang,
 536 and Ying Tai. Region-aware text-to-image generation via hard binding and soft refinement. *arXiv
 537 preprint arXiv:2411.06558*, 2024.

538

539 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
 in neural information processing systems*, 34:8780–8794, 2021.

540 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 541 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 542 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 543 2024.

544 Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Arjun Akula, Pradyumna Narayana, Sugato
 545 Basu, Xin Eric Wang, and William Yang Wang. Training-free structured diffusion guidance for
 546 compositional text-to-image synthesis. *arXiv preprint arXiv:2212.05032*, 2022.

547 Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation.
 548 *Advances in Neural Information Processing Systems*, 36:66923–66939, 2023.

549 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 550 neural information processing systems*, 33:6840–6851, 2020.

551 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 552 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 553 arXiv:2410.21276*, 2024.

554 Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Layoutdm:
 555 Discrete diffusion model for controllable layout generation, 2023. URL <https://arxiv.org/abs/2303.08137>.

556 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
 557 and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *Proceedings of the
 558 IEEE/CVF conference on computer vision and pattern recognition*, pp. 22511–22521, 2023.

559 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 560 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 561 arXiv:2412.19437*, 2024.

562 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 563 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

564 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 565 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

566 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 567 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 568 models from natural language supervision. In *International conference on machine learning*, pp.
 569 8748–8763. PMLR, 2021.

570 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 571 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 572 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–
 573 22510, 2023.

574 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 575 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 576 ing*, pp. 2256–2265. pmlr, 2015.

577 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 578 preprint arXiv:2010.02502*, 2020.

579 Frank Spitzer. *Principles of random walk*, volume 34. Springer Science & Business Media, 2001.

580 Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. Instancedif-
 581 fusion: Instance-level control for image generation. In *Proceedings of the IEEE/CVF conference
 582 on computer vision and pattern recognition*, pp. 6232–6242, 2024.

594 Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin Cui. Mastering text-
 595 to-image diffusion: Recaptioning, planning, and generating with multimodal llms. In *Forty-first*
 596 *International Conference on Machine Learning*, 2024.

597 Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin Lin, Chenfei Wu, Nan Duan, Zicheng
 598 Liu, Ce Liu, Michael Zeng, et al. Reco: Region-controlled text-to-image generation. In *Pro-
 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14246–
 600 14255, 2023.

601 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 602 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 603 pp. 3836–3847, 2023a.

605 Zhusong Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
 606 chain-of-thought reasoning in language models. *arXiv preprint arXiv:2302.00923*, 2023b.

607 Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion:
 608 Controllable diffusion model for layout-to-image generation, 2024. URL <https://arxiv.org/abs/2303.17189>.

611 Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: largest dataset ever for document
 612 layout analysis, 2019. URL <https://arxiv.org/abs/1908.07836>.

614 A APPENDIX

616 This supplementary material is structured into several sections that provide additional details and
 617 analysis related to PMR. Specifically, it will cover the following topics:

- 619 • In Appendix A.1, we clarify the use of large language models and describe their precise
 620 role.
- 621 • In Appendix A.2, we provide the detailed prompt template of the Component Relationship
 622 Planning by the LLM.
- 623 • In Appendix A.3, we provide the detailed prompt template of the CoT Planning for Region
 624 Division and Lines Generation by the LLM.
- 625 • In Appendix A.4, we provide the detailed information on planning the generation regions
 626 for the lines on the circuit.
- 627 • In Appendix A.5, we provide the detailed information on size accuracy analysis in blocks'
 628 generation.
- 629 • In Appendix A.6, we provide qualitative examples of final schematic generation.
- 630 • In Appendix A.7, we provide generalization and cross-Domain analysis.

633 A.1 USE OF LARGE LANGUAGE MODELS (LLMs)

635 Large language models (LLMs) were used only for minor writing assistance (e.g., grammar checking
 636 and improving readability). All research ideas, experimental design, implementation, and analysis
 637 are original contributions of the authors.

639 A.2 DETAILED PROMPT TEMPLATE OF THE COMPONENT RELATIONSHIP PLANNING BY THE 640 LLM

641 As stated in Section 3.2, PMR first conducts the Component Relationship Planning to leverage the
 642 LLM’s powerful CoT planning capabilities alongside the knowledge base derived from historical
 643 drawings, the system plans the optimal connection relationship tree for all components. To this end,
 644 given the input prompt p , we prompt the LLM using the following template:

646 As an expert proficient in system architecture design, you must generate the most probable
 647 connection relationship diagram (tree structure) for all components based on the historical
 knowledge base. The task is described as follows:

648 Input all components; output the most probable component connection relationship diagram.
 649

650 A. Three Types of Tables in the Historical Knowledge Base:

651 Series Table: The first entry in the table indicates the most frequent series connection,
 652 e.g.,('Busbar', 'Circuit Breaker Isolation Switch Group'), signifying that the circuit breaker
 653 isolation switch group is a child node of the busbar.

654 Parallel Table: The first entry indicates the most frequent parallel relationship. For exam-
 655 ple,('Current Transformer-3-5', 'Disconnect Switch', 'Grounding', 'Busbar') shows these four
 656 components are subnodes of a specific component.

657 Cross Node Table: Components within have multiple subnodes, with the number of subnodes
 658 being greater than or equal to 1 and less than or equal to 3.

659 B. Historical Knowledge Base.

660 C. Strict Requirements:

- 662 1. Use only user-provided components and quantities, do not exceed specified ranges.
- 663 2. General busbars serve as root nodes.
- 664 3. Grounding points can only be leaf nodes without subnodes.
- 665 4. Strictly utilize the above historical knowledge base (prioritizing the first entry).

666 D. Planning Steps:

- 667 1. First determine if the node is a branch node. If yes, it has ≥ 1 and ≤ 3 child nodes; otherwise,
 668 it has only one child node.
- 669 2. If the node is not a branch node, select child nodes from the series table left-to-right. If the
 670 node is a branch node, select child nodes from both the series and parallel tables. Ensure all
 671 selected subnodes remain within the user-input components.
- 672 3. Repeat the above two steps until all user-input components are selected.
- 673 4. If any isolated nodes remain after final selection, connect them to the main tree using known
 674 parallel connections to form a single tree structure.

675 E. Based on user-input components, construct the most probable component connection tree
 676 (the primary path typically follows a tree structure containing current transformers or voltage
 677 transformers).

678 G. Check if the component connection tree contains specific modules. Currently, there are
 679 three types: Disconnect switch module: ('Disconnect Switch', 'Grounding'), merged these two
 680 components into a disconnect switch module. The surge arrester module is formed by connecting
 681 three components: ('plug-in connector', 'surge arrester', 'grounding') or two components:
 682 ('surge arrester', 'grounding'), merged into a single surge arrester module; the lamp module is
 683 formed by connecting three components: ('capacitor', 'lamp', 'grounding'), merged into a single
 684 lamp module.

686 F. The final connection relationships are output as an array in a strictly defined format.

688
 689 In this way, the LLM will decompose the input prompt p following the pre-defined order.
 690

691 A.3 DETAILED PROMPT TEMPLATE OF THE COT PLANNING FOR REGION DIVISION AND
 692 LINES GENERATION BY THE LLM

694 As stated in Section 3.3, after determining the required connection relationships for all components
 695 in the component relationship planning phase, this step involves planning the position of each com-
 696 ponent on the drawing and the layout of connecting lines between components. We again leverage
 697 the powerful CoT reasoning capabilities of LLM. To this end, given the input prompt p , we prompt
 698 the LLM using the following template:

700 you are a master of composition who excels at extracting blocks and their positional relation-
 701 ship from input text and creating layouts and planning blocks' coordinate positions, and strategi-
 702 cally planning connecting line segments between blocks. Your task is described as follows:

702 Extract the blocks and their positional relationship from the input text, and determine how many
 703 regions should be split and how to plan connecting line segments between blocks. For each
 704 key block identified in the previous step, use precise spatial imagination to assign each object to
 705 a specific area within the image. Each block is assigned to a region. For each block, place it
 706 in the designated square position, reasonably plan its top-left corner coordinates and scaling size
 707 relative to the entire image in accordance with positional relationship, ensuring that it does not
 708 exceed its allocated region. Additionally, any two squares must not overlap and should have gaps
 709 between them.

710 This layout should segment the image and how to plan connecting line segments between blocks
 711 strictly follow the method below:

- 712 a. Extract all blocks and their positional relationship, from the input text, excluding any redundancy information;
- 713 b. Determine all blocks' top-left corner coordinates(HB_m_offset, HB_n_offset) and center coordinates(C_m, C_n) by their positional relationship and the endpoints of line segments between
 714 blocks by blocks' center position;
- 715 c. Determine all blocks' scaling sizes. From step a;
- 716 d. Output all blocks' top-left corner coordinates and scaling sizes;
- 717 e. Output all lines' endpoints coordinates.

718
 719 In this way, the LLM will decompose the input prompt p following the pre-defined order.

720 721 A.4 DETAILED INFORMATION OF PLANNING THE GENERATION REGIONS FOR THE LINES ON 722 THE CIRCUIT

723 As stated in Section 3.3, detailed information of planning the generation regions for the lines on the
 724 circuit has three types, for series connections, use straight segments; for left parallel connections, use
 725 left-angled segments; for right parallel connections, use right-angled segments, as shown in Figure
 726 9.

730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 Figure 9: Types of connections between components.

A.5 DETAILED INFORMATION OF ANALYSIS OF SIZE ACCURACY IN BLOCKS' GENERATION

Our Merge Regional Diffusion generation module enables precise control over component block dimensions, generating sizes ranging from 0.1 to 1.0. Figure 10 shows our method can generate all kinds of size of block at any location on the drawing.

A.6 QUALITATIVE EXAMPLES OF FINAL SCHEMATIC GENERATION

In this section, we provide additional qualitative results to supplement the quantitative analysis. Figure and Figure display two generated samples of classic electrical circuit diagrams. These images illustrate the complete PMR pipeline, confirming that our method effectively translates text prompts into topologically correct and visually standard schematics by replacing the intermediate diffusion-generated placeholders with accurate domain-specific component symbols.

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 10: **Analysis of Size Accuracy.** From images (a)-(c), our PMR generates three types of different sizes of component blocks.

Figure 11: Image (a) displays the intermediate spatial layout where components are represented as black block placeholders. Image (b) shows the final synthesized circuit diagram after substituting the blocks with domain-specific electrical symbols, demonstrating high structural alignment with the original ground truth schematic shown in (c).

A.7 GENERALIZATION AND CROSS-DOMAIN ANALYSIS

To demonstrate that PMR is a versatile, domain-agnostic framework rather than a specialized tool for specific schematics, we extended our evaluation to two additional scenarios:

Controllable Layout Generation: We applied the PMR pipeline to document layout generation using the PubLayNet dataset. Figure visualizes the results. In contrast to supervised methods like LayoutDM(Inoue et al., 2023), which rely on training generative models on labeled layout data, PMR achieves high-quality layout synthesis in a strictly training-free manner. Furthermore, by utilizing LLMs for the Planning phase, our method introduces a higher degree of layout diversity and logical coherence, avoiding the mode collapse issues often observed in trained models.

Generalization to Diverse Schematic Styles: We further validated the robustness of our framework by applying it to a broader, more universally styled circuit diagram dataset, distinct from the private industrial dataset used in our main experiments. As shown in Figure, PMR successfully generalizes to these new visual standards without requiring model fine-tuning or LoRA adaptation. This confirms that the "Planning, Merging, and Replacing" paradigm effectively disentangles structural logic from visual style, making it adaptable to various graphical domains.

810
811
812
813
814
815
816
817
818
819
820
821822
823
824
825
826
827

Figure 12: Image (a) displays the intermediate spatial layout where components are represented as black block placeholders. Image (b) shows the final synthesized circuit diagram after substituting the blocks with domain-specific electrical symbols, demonstrating high structural alignment with the original ground truth schematic shown in (c).

828
829
830
831
832
833
834
835836
837
838
839
840
841
842

Figure 13: **Visualization of the stepwise generation process.** (a) The intermediate spatial layout generated with black square placeholders. (b) The schematic after the Replacing phase, where placeholders are substituted with actual electrical component symbols. (c) The final generated schematic circuit diagram. (d) The original historical schematic (Ground Truth) for reference. **User Input:** "One Battery, Two LED, Two Resistor."

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859860
861
862
863

Figure 14: **Qualitative comparison of layout generation on the PubLayNet dataset.** (a) The document layout generated by our proposed PMR framework (training-free). (b) The layout generated by the baseline method, LayoutDM (requires training). (c) The original ground truth layout for reference. **User Input:** "Three Text, one Table, one Figure."