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Multi-modal Auto-regressive Modeling via Visual Tokens
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ABSTRACT
Large LanguageModels (LLMs), benefiting from the auto-regressive
modelling approach performed on massive unannotated texts cor-
pora, demonstrates powerful perceptual and reasoning capabili-
ties. However, as for extending auto-regressive modelling to multi-
modal scenarios to build Large Multi-modal Models (LMMs), there
lies a great difficulty that the image information is processed in
the LMM as continuous visual embeddings, which cannot obtain
discrete supervised labels for classification. In this paper, we suc-
cessfully perform multi-modal auto-regressive modeling with a
unified objective for the first time. Specifically, we propose the
concept of visual tokens, which maps the visual features to proba-
bility distributions over LLM’s vocabulary, providing supervision
information for visual modelling. We further explore the distribu-
tion of visual features in the semantic space within LMM and the
possibility of using text embeddings to represent visual informa-
tion. Experimental results and ablation studies on 5 VQA tasks and
4 benchmark toolkits validate the powerful performance of our
proposed approach.

CCS CONCEPTS
• Computing methodologies→ Natural language generation;
Image representations.

KEYWORDS
Multimedia Foundation Models, Multi-modal Auto-regressive Mod-
eling, Vision and Language, Modal Interpretation

1 INTRODUCTION
Over the past year, Large Language Models (LLMs) have made
impressive breakthroughs and successfully use language as a com-
mon interface for a wide variety of real-world tasks. Benefiting
from the auto-regressive modelling approach performed onmassive
unannotated texts, LLM is able to learn general-purpose seman-
tic information and powerful reasoning capabilities from natural
language corpora. The success of LLMs attracts researchers to ex-
plore Large Multi-modal Models (LMMs), which aim to extend the
powerful text-only perceptual and reasoning capabilities of LLMs
to scenarios dealing with multi-modal inputs. However, as for ex-
tending auto-regressive modelling to multi-modal scenarios, there
lies a great difficulty that the image information is processed in
the LMM as continuous visual embeddings, which cannot obtain

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Performance of our proposed VT-LMM. We set the
unreported results in the original paper to 0 to avoid confu-
sion.

discrete supervised labels for classification. As a compromise so-
lution, mainstream LMMs choose to compute losses only for the
language portion of multi-modal interleaved sequence. As illus-
trated in figure 2(a), the training objective of mainstream meth-
ods [2, 4, 14, 19, 22] focuses on predicting language responses in
multi-modal contextual sequences that depend on visual informa-
tion, where the visual information merely acts as contextual cues
and does not serve as supervision. This unfair treatment of different
modal information in multi-modal sequences lacks the process of
learning different modal information utilising the inference capa-
bilities of the LLM, severely limiting the potential of LMM and
resulting in under-utilisation of the training data. Although recent
works [26, 27] propose to unlock the LLM for text pre-training by us-
ing a regression task to predict the value of next visual feature in the
pre-training phase (Fig. 2(b)), the inconsistent optimisation goals
of its visual and linguistic components are not conducive to unified
multi-modal auto-regressive modelling. [3] has also proposed learn-
ing visual features using an auto-regressive classification tasks, but
it uses a pre-trained image tokenizer, such as VQVAE or VQGAN,
to cluster image features into a grid of discrete tokens which does
not combine discrete visually supervised information with LLM.

In this paper, we successfully performmulti-modal auto-regressive
modeling with a unified objective for the first time. Specifically, we
introduce the concept of visual tokens to construct representa-
tions of visual features in the language semantic space inside the
LMM, thus implementing visual modelling of LMM in the form of
classification rather than regression. We also propose the Visual
Token guided Large Multi-modal Model (VT-LMM), a novel multi-
modal model that inherits the successful learning paradigm of LLM
in the pre-training task, i.e., predicting the next image/text token

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: The comparisons between different LMMs. (a) Mainstream methods focuses on predicting language responses in
multi-modal contextual sequences that depend on visual information, where the visual information merely acts as contextual
cues and does not serve as supervision. (b) Visual regression method takes regression task to predict the value of next visual
feature and performs joint training with text. (c) Our multi-modal auto-regressive method use visual tokens to construct visual
supervision labels and enabling multi-modal auto-regressive modelling with unified classification objective.

in an auto-regressive manner. With the help of visual tokens, it’s
possible to train LMM with auto-regressive modeling without any
specific architectural modifications, as shown in figure 2(c). Just as
the LM head component is used in LLM to accomplish the mapping
of text features to interpretable semantics, we correspondingly con-
struct the VM head component, using the same structure, intent
on obtaining the representation of each visual embedding in the
language semantic space of LLM. For each visual embedding, we
use the VM head to map it into probability distributions over the
pre-trained vocabulary, which we call visual tokens. After that, the
visual tokens corresponding to the image modal and the one hot
label corresponding to the text modal are intertwined to form the
supervised information for multi-modal auto-regressive modelling.
Further, the pre-trained embeddings weights of LLM can be ap-
proximated as a set of complete bases of the language semantic
space, i.e., the semantic information covered by the embeddings
can basically cover the whole semantic space. Therefore, we fur-
ther explored whether pseudo image features constructed with
visual tokens and LLM’s pre-trained embeddings can convey visual
information to the model. We conducted extensive experiments
on five commonly used visual question answering benchmarks
and four LMM-evaluating benchmark toolkits, and the experimen-
tal results demonstrate that our VT-LMM, by constructing visual
tokens to introduce visual supervisory information, achieves the
best performance among models of the same scale, and obtains
vision-language understanding capability competitive to or even
surpassing that of 13B or even larger scale models with a scale of
7B. Our main contributions are as follows:

• We propose the concept of visual tokens, which maps visual
features into language semantic space, enabling LMM to per-
form auto-regressive modelling over multi-modal sequence..

• We further explored the distribution of visual features in the
semantic space within the LMM and the possibility of using
text embeddings to represent visual information.

• Experimental results and ablation studies on 5 VQA tasks
and 4 benchmark toolkits validate the powerful performance
of our proposed approach.

2 METHOD
2.1 Multi-modal Learning
To extend the powerful text-only perceptual and reasoning capabil-
ities of LLM to scenarios dealing with multi-modal inputs, existing
multi-modal learning method of LMM typically use the adapter
structure to transform the visual features encoded by pre-trained
visual backbone into the semantic space of LLM and construct
multi-modal input sequences together with text embeddings. The
adapter could be well-designed visual resampler [2, 4], Multi-layer
Perceptron (MLP) [19] or even simple Linear layer [20].

Specifically, given an image and the corresponding text instruc-
tion, the multi-modal input sequence 𝑋input of LMM is constructed
as follows:

𝑋image = AD(VE(image)),
𝑋text = Ψ(text),
𝑋input = [𝑥𝑚0 , 𝑥𝑚1 , . . . , 𝑥𝑚𝐿 ],
𝑚 ∈ {𝑣, 𝑡}, 𝑥𝑣 ∈ 𝑋image, 𝑥

𝑡 ∈ 𝑋text,

(1)

where 𝐿 represents the length of multi-modal input sequence, Ψ
represents the embedding layer of LLM, VE represents the visual
encoder and AD represents the adapter.

Subsequently, 𝑋input is fed into the LLM for auto-regressive
decoding. Assuming that the LLM mainly contains two important
components: a language decoder Γ and an LM head, the loss of
conventional multi-modal learning can be expressed as

𝐿𝑜𝑠𝑠Conv
LM =

1
|𝑆LM |

∑︁
𝑛∈𝑆LM

(
−
𝐶−1∑︁
𝑖=0

𝑃𝑛 (𝑖) log𝑄𝑛 (𝑖)
)
,

𝑄 = Softmax(𝑊LMΓ(𝑋input)),
(2)

where𝑊LM is the optimizable parameters of LM head, set 𝑆LM is
the set of expected text output index of model, 𝑃 represents the
ground truth label and 𝐶 is the vocabulary size of model.

However, classical multi-modal learning neglects the supervi-
sion function of visual information on multi-modal auto-regressive
modelling, which is still multi-modal based language modelling
in essence. Our work proposes to leverage the great reasoning
potential of LLM to facilitate both language modelling and visual
modelling of LMM. To achieve this goal, the key component is to



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Multi-modal Auto-regressive Modeling via Visual Tokens ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Multi-modal Decoder

···

Visual Encoder

······

Adapter

Embedding

Text/InstructionImage

Multi-modal Modeling headVM head

Multi-modal Auto-regressive Modeling ···

Visual Encoder&Adapter

······

Embedding

Text/InstructionImage

VM head

(a) (b)

(c)

Visual
Tokens

silver yellow silver

()`.

yellow lemon red white

yellow lemon silver

cloud clouds

clouds

clouds clouds cloud clouds

trees towns

towns towns

stone stone

water green water

··· ······

Language ModelingVisual Modeling

Figure 3: The overview of our method. (a) The overall framework of the model. VT-LMM uses the VM head to transform
visual features in multi-modal input sequences to probability distributions over LLM’s vocabulary (so-called visual tokens) to
participate in visual modelling (b) Constructing pseudo image features with pre-trained embedding of LLM and visual tokens.
(c) Demonstration of semantically closest tokens of each image patch in LMM.

construct formally unified multi-modal generative objectives so
that the model can be trained with auto-regressive manner. As
shown in Figure 3(a), the architecture of VT-LMM consists of five
components: a Visual encoder, a multi-modal decoder, an adapter
for projection between visual modal and language modal, a Multi-
modal Modeling head (MM head) for multi-modal modelling and
a corresponding VM head for visual modelling. The embedding
module can be regarded as part of multi-modal decoder. We ini-
tialise the multi-modal decoder and MM head in VT-LMM using
the pre-trained LLM and its LM head. In contrast to classical multi-
modal learning, VT-LMM uses VMhead to construct visual tokens
for visual features as supervisory information, thus enabling the
model to perform multi-modal auto-regressive modeling over the
entire sequence.

2.2 Visual Tokens
Previous work integrate images and text into a unified structure,
enabling the powerful reasoning capabilities of the LLM to general-
ize from the text space to the multi-modal space. They essentially
blur the modality differences in the encoding process of different
modalities, as they all participate in the encoding of information in
a consistent embedding form.

To further explore the connection between visual features and
text embeddings, we search for the token id semantically closest
to each image patch. For each feature 𝑥𝑖 ∈ 𝑋image, its semantically
closest token id 𝑡𝑖 can be obtained as:

𝑣𝑖 = arg min
𝑗

Cosine(𝑥𝑖 , 𝑒 𝑗 ), 𝑣𝑖 ∈ [0,𝐶 − 1], (3)

in which 𝑒 𝑗 ∈ [𝑒0, 𝑒1, . . . , 𝑒𝐶−1] is the pre-trained text embedding
of LLM and Cosine(𝑎, 𝑏) is the cosine similarity of vector 𝑎 and 𝑏.

We show the semantically closest tokens of image regions in
figure 3(c), it can be observed that for the LMM with multi-modal



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

alignment training, there is a certain correlation between the in-
formation contained in each vector of the image features and the
actual content of the image. Moreover, this correlation can be ex-
plicitly expressed by the vocabulary of the LMM. This finding, on
the one hand, proves that the visual features within the LMM are
in a similar semantic space as the text embedding, and on the other
hand, it provides a new perspective for the interpretability analysis
of the LMM. Furthermore, existing LLM methods have shown that
the hidden states of text features can be mapped to the model’s
vocabulary through linear projection, enabling the extraction of
interpretable semantics. Therefore, we propose using the linear
projection to also map the visual features to the probability distri-
bution over the model’s vocabulary, which we called visual tokens,
to further strengthen the correlation between visual features and
text embeddings.

In this case, the classic languagemodeling loss can be represented
as

𝐿𝑜𝑠𝑠LM =
1

|𝑆LM |
∑︁

𝑛∈𝑆LM

(
−
𝐶−1∑︁
𝑖=0

𝑃𝑛 (𝑖) log𝑄𝑛 (𝑖)
)
,

𝑄 = Softmax(𝑊MMΦ(𝑋input)),
(4)

where𝑊MM is the optimizable parameters of MM head,Φ represents
the multi-modal decoder.

The visual tokens of visual features can be represented as

𝑃 ′ = Softmax(𝑊VM𝑋image), (5)

in which 𝑋image is the visual embeddings within 𝑋input and𝑊VM is
the optimizable parameters of VM head. To perform visual modeling
on image information using a unified classification format, we
design the 𝐿𝑜𝑠𝑠VM as follows:

𝐿𝑜𝑠𝑠VM =
1

|𝑆VM |
∑︁

𝑛∈𝑆VM

(
𝐶−1∑︁
𝑖=0

𝑃 ′𝑛 (𝑖) log( 𝑃
′
𝑛 (𝑖)

𝑄𝑛 (𝑖)
)
)
. (6)

where set 𝑆VM is the set of visual output index of model. It should
be noted that in the training process of VT-LMM, the optimisation
phase of VM head and multi-modal decoder are separated, and thus
do not cause instability during training.

The final optimization objective of multi-modal auto-regressive
modeling is represented as

𝐿𝑜𝑠𝑠MM = 𝐿𝑜𝑠𝑠LM + 𝐿𝑜𝑠𝑠VM . (7)

Through the additional visual modeling task, we explicitly force
the model to capture the distribution of image information in the
current semantic space, further eliminating the differences between
visual features and text embeddings, thereby improving the model’s
performance in vision-language comprehension.

2.3 Fused Text Embeddings as Pseudo Image
Features

The text embeddings in the multi-modal decoder can be regarded
as a set of base vectors within its semantic space. Therefore, we
propose utilizing the visual tokens and text embeddings to construct
pseudo image features, aiming to further explore the manifestation
of visual features in the semantic space of the LMM.

As shown in Figure 3(b), we construct the following pseudo
image features 𝑋p:

𝑋p =𝑊embeddings ⊙ Softmax
(
(𝑊VM𝑋image)

)
(8)

in which𝑊embeddings represents the weights matrix of multi-modal
decoder’s pre-trained embeddings, ⊙ represents the dot product
operation.

We replace 𝑋image in 𝑋input with 𝑋p and Keep loss calculation
and other settings unchanged, thereby exploring whether visual
information can be seamlessly reconstructed within the language
semantic space.

3 EXPERIMENTS
3.1 Model Pre-training
3.1.1 Settings. In the specific implementation, we use CLIP-ViT-
L-336px [24] to initialise the visual encoder. for the multi-modal
decoder and MM head, we use two different LLM initialisation
schemes: the Vicuna-7B [29] and the Mistral-7B [12]. VM head is a
randomly initialised unbiased linear layer and adapter is a randomly
initialised two-layer MLP. For detailed dataset information and
training parameter settings, please refer to table ??.

3.1.2 Stage I. At this stage, we aim to perform the preliminary
alignment of the visual information into the semantic space of
LLM. To achieve this, we employ adapter to project the uni-modal
features output from the visual encoder into the semantic space of
the multi-modal decoder, which serves as a contextual reference for
the generation task. During this period, training task of VT-LMM
is generating image caption for given image. We only train adapter
with 𝐿𝑜𝑠𝑠LM at this stage.

3.1.3 Stage II. At this stage, our goal is to adapt the LMM using
multi-modal instruction data to obtain an LMM with multi-modal
comprehension. At this stage, training task of VT-LMM involves a
mixture of tasks, including complex inference, detailed description,
multi-round dialogue, image caption, and visual question answering.
We train multi-modal decoder, MM head and adapter with 𝐿𝑜𝑠𝑠LM
in this phase.

3.1.4 Stage III. In this stage, our objective is to train the VM head
using existing LMM and massive image data, enabling it to map
visual information to the language semantic space. The training
task in this stage is to fit the output of LMM receiving pure image
information using the VM head. It is important to note that in this
stage, 𝑄 serves as the label and 𝑃 ′ serves as the logits. i.e., the
training loss used in this stage is:

𝐿𝑜𝑠𝑠′VM =
1

|𝑆VM |
∑︁

𝑛∈𝑆VM

(
𝐶−1∑︁
𝑖=0

𝑄𝑛 (𝑖) log(𝑄𝑛 (𝑖)
𝑃 ′𝑛 (𝑖)

)
)
. (9)

We only train VM head with 𝐿𝑜𝑠𝑠′VM in this phase.

3.1.5 Stage IV. In this stage, our goal is to use the VM head to
construct the visual supervision information so as to train the LMM
with multi-modal auto-regressive modelling. In this stage, we use
the same dataset and training tasks as in Stage 2, but both language
and visual information are involved in supervision. We only train
the multi-modal decoder and MM head with 𝐿𝑜𝑠𝑠MM at this stage.
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Methods LLM Res. Visual Question Answering Benchmark Toolkit
VQAv2 GQA VisWiz SQAI VQAT POPE MMB MMBCN MM-Vet

Language Modeling Method

IDEFICS-80B [11] LLaMA-65B 224 60.0 45.2 36.0 – 30.9 – 54.5 38.1 –
InstructBLIP [4] Vicuna-13B 224 – 49.5 33.4 63.1 50.7 78.9 – – 25.6
BLIP-2 [14] Vicuna-13B 224 41.0 41.0 19.6 61.0 42.5 85.3 – – 22.4
LLaVA-v1.5 [19] Vicuna-13B 336 80.0∗ 63.3∗ 53.6 71.6 61.3 85.9 67.7 63.6 35.4
InstructBLIP [4] Vicuna-7B 224 – 49.2 34.5 60.5 50.1 – 36 23.7 26.2
IDEFICS-9B [11] LLaMA-7B 224 50.9 38.4 35.5 – 25.9 – 48.2 25.2 –
Qwen-VL [2] Qwen-7B 448 78.8∗ 59.3∗ 35.2 67.1 63.8 – 38.2 7.4 –
Qwen-VL-Chat [2] Qwen-7B 448 78.2∗ 57.5∗ 38.9 68.2 61.5 – 60.6 56.7 –
LLaVA-v1.5 [19] Vicuna-7B 336 78.5∗ 62.0∗ 50.0 66.8 58.2 85.9 64.3 58.3 30.5
MoE-LLaVA-2.7B×4-Top2 [18] Phi-2-2.7B 336 77.6∗ 61.4∗ 43.9 68.5 51.4 86.3 65.2 – 34.3

Multi-modal Modeling Method

Emu2-Chat [26] LLaMA-33B 448 84.9∗ 65.1∗ 54.9 65.5∗ 66.6∗ – – – 48.5
Emu-I [27] LLaMA-13B 224 62.0 46.0 38.3 – – – – – 36.3
MM-Interleaved-SFT [28] Vicuna-13B 224 80.2∗ 60.5∗ 54.9 – 61.0 – – – –
Unified-IO 2 [22] UIO-2-6.8B 384 79.4∗ – – 86.2∗ – 87.7 71.5 – –
DreamLLM [5] Vicuna-7B 224 56.6 – 38.1 – 34.9 – – – –
VL-GPT-I [32] LLaMA-7B 224 67.2 51.5 38.9 – – – – – –
LaVIT-v2 [13] LLaMA2-7B 224 68.3 47.9 41.0 – – – – – –
VT-LMM Vicuna-7B 336 78.9∗ 62.7∗ 48.3 68.1 57.6 85.9 65.9 59.8 31.3
VT-LMM Mistral-7B 336 80.8∗ 65.4∗ 58.5 75.9 63.1 87.0 80.6 79.0 44.0

Table 1: Comparison among different LMMs on 5 visual question answering benchmarks and 4 benchmark toolkits. Benchmark
names are abbreviated due to space limits. VQA-v2 [7]; GQA [10]; VisWiz [8]; SQAI: ScienceQA-IMG [23]; VQAT: TextVQA [25];
POPE [17]; MMB: MMBench [21]; MMBCN: MMBench-Chinese [21]; MM-Vet [31]. ∗The training images of the datasets are
observed during training. The best results and second best results are indicated by boldface and underline, respectively.

Hyperparameter Stage I Stage II Stage III Stage IV

batch size 256 128 256 128
lr 1e-3 2e-5 1e-3 2e-5
lr schedule cosine decay
lr warmup ratio 0.03
weight decay 0
epoch 1
optimizer AdamW
DeepSpeed stage 2 3 2 3

Table 2: Training hyper-parameters for the four stages of
training.

3.2 Main Results
To evaluate the effectiveness of our proposed method, we conducted
experiments on five widely used multi-modal benchmarks and four
LMM benchmark toolkits. The experimental results are shown in
Table 1. The experimental results demonstrate that our proposed
VT-LMM, by constructing visual modeling tasks consistent with
the pre-training tasks format of LLM, guides model to learn both
language and visual modalities of the multi-modal sequences in

Usage Source

Stage I LLaVA 1.5-558k

Stage II LLaVA 1.5-mix-665k

Stage III Images of LCS-558K

Stage IV LLaVA 1.5-mix-665k

Table 3: Dataset used in training of VT-LMM

an auto-regressive manner. This further bridges the gap between
the two modal features and significantly enhances the model’s
vision-language understanding capability.

Compared to models of the same scale, VT-LMM demonstrates
superior or competitive performance on all evaluation metrics for
vision-language understanding. Compared to larger-scale models,
VT-LMM, with only the scale of 7B, outperforms some models with
scale of 13B and achieves performance similar to models with a
parameter scale of 33B. This once again verifies that our method,
by introducing visual information supervision, further boosts the
multi-modal understanding potential of LMM.
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Methods LLM Res. Adversarial Popular Random
Acc F1-Score Yes Acc F1-Score Yes Acc F1-Score Yes

LLaVA-v1.5[19] Vicuna-13B 336 85.5 84.5 43.3 87.4 86.2 41.4 88.0 87.1 41.7
LLaVA-v1.5[19] Vicuna-7B 336 85.1 84.2 44.0 87.2 86.1 41.9 88.1 87.3 41.9
mPLUG-Owl [30] LLaMA-7B 224 82.4 81.6 45.2 85.5 84.3 42.1 86.3 85.3 42.3
Multimodal-GPT [6] LLaMA-7B 224 50.0 66.7 100.0 50.0 66.7 100.0 50.0 66.7 100.0
MoE-LLaVA-2.7B×4-Top2 [18] Phi-2-2.7B 336 85.9 84.9 43.2 87.5 86.4 41.8 88.5 87.7 41.8
VT-LMM Vicuna-7B 336 85.1 84.1 44.0 87.4 86.3 41.7 88.1 87.3 41.9
VT-LMM Mistral-7B 336 87.3 86.1 41.9 88.3 87.1 40.9 88.7 87.8 41.4

Table 4: Results of object hallucination evaluation. Yes denotes the proportion of answering “Yes” to the given question. The
best results and second best results are indicated by boldface and underline, respectively.

Methods LLM Res. Visual Question Answering Benchmark Toolkit
VQAv2 GQA VisWiz SQAI VQAT POPE MMB MMBCN MM-Vet

VT-LMM Vicuna-7B 336 78.9 62.7 48.3 68.1 57.6 85.9 65.9 59.8 31.3
- visual modeling Vicuna-7B 336 78.5 62.0 50.0 66.8 58.2 85.9 64.3 58.3 30.5

VT-LMM Mistral-7B 336 80.8 65.4 58.5 75.9 63.1 87.0 80.6 79.0 44.0
- visual modeling Mistral-7B 336 79.1 62.5 52.6 72.4 56.6 87.1 70.0 63.6 36.3

VT-LMM with pseudo image features Vicuna-7B 336 77.2 61.6 48.1 65.4 54.5 85.6 65.2 53.5 30.1

Table 5: Results of ablation study and discussion.

Compared to methods that solely apply languagemodeling as the
optimization task, VT-LMM achieves significantly superior results,
highlighting the importance of introducing visual insformation as
supervision for LMMs. Existing methods that also employ multi-
modal modeling tasks and perceive the supervision of visual infor-
mation can be broadly classified into two categories. One involves
constructing an additional image decoder to endow the model with
image generation capabilities, thereby utilizing image information
in the form of image denoising tasks. The other models the image
information through regression tasks, aiming to directly fit the
value of visual features using MSE loss. In comparison to the above
methods, VT-LMM achieves better results by constructing visual
tokens as supervision information, enabling a relatively unified and
concise implementation of multi-modal modeling in the form of a
classification task. This approach proves to be more effective and
efficient.

It should be noted that both LaVIT and VT-LMM employ classifi-
cation task for multi-modal modeling. However, LaVIT introduces
an additional visual tokenizer and 16,384 trainable discrete embed-
dings. In contrast, visual tokens utilize the existing semantic space
of the pre-trained LLM to represent visual information, avoiding
the introduction of massive training parameters. This approach
also bridges the semantic gap between the two modalities and thus
achieves better results.

3.3 Object Hallucination Evaluation
We adopt the Polling- based Object Probing Evaluation (POPE)
to evaluate object hallucination in VT-LMM and report results

in table 4. The two variants of VT-LMM have achieved excellent
performance inmodels of the same scale. Notably, VT-LMM-Mistral-
7B has achieved the best performance across three different data
sampling methods: Adversarial, Popular, and Random. Additionally,
the yes ratio of VT-LMM remains relatively balanced, indicating that
our method can provide accurate identification results based on the
given query. These results demonstrate that our VT-LMM, achieving
unified multi-modal auto-regressive modeling across multi-modal
sequences by introducing visual tokens, explicitly forces the model
to learn the semantic distributions of both visual and language
information, leading to improved visual-language consistency. i.e.,
The model tends to perceive and generate object information that
aligns with the given image content.

3.4 Ablation
In order to investigate whether the introduction of visual tokens
as visual supervision information directly improves the vision-
language comprehension performance of LMMs, we conducted
an ablation study, and the experimental results refer to 5. From
table 5, it can be observed that the introduction of visual tokens
leads to evident performance enhancement in both different LLM
settings, which confirms that VT-LMM, by constructing visual to-
kens as visual supervision information, guides the model to learn
the rich semantics in multi-modal sequences through both lan-
guage modelling and visual modelling, therefore boosting model’s
vision-language understanding capability. In addition, we note that
VT-LMM-Vicuna-7B shows a slight performance degradation on
both VisWiz and TextVQA benchmarks. This case is due to the
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Figure 4: Image regions with the highest probability tokens in the visual tokens. Best viewed zoomed-in.

fact that VisWiz involves the requirement of the corresponding
format of the model and TextVQA provides a large number of image
OCR texts as reference. In both tasks, the language semantic un-
derstanding and instruction following capabilities of the model are
more demanded. And the introduction of the visual modelling task
slightly diminishes the text-side capabilities of Vicuna-7B on both
datasets. When using Mistral-7B as the LLM, its stronger baseline
performance and pre-trained language semantic comprehension
bridged this gap, which in turn led to a consistent performance
improvement.

4 DISCUSSION
4.1 Replace Visual Feature with Pseudo Image

Features
To further explore the manifestation of visual features in the seman-
tic space of the LMM, we utilize the visual tokens and text embed-
dings to construct pseudo image features and replace visual features
in the input sequence. The results are shown in table 5. From the
experimental results, it is clear that the model that receives pseudo
image features as visual input can still achieve vision-language
understanding capability close to the original model. This result

confirms that the embedding layer of the pre-trained LLM essen-
tially achieves full utilisation of the semantic space, thus features
from image modalities can be represented by linear combinations
of text embeddings to some extent. Moreover, it also shows that
visual tokens successfully implement the transfer of visual features
to the language semantic space, again verifying the soundness of
our proposed approach. However, the difference in results suggests
that the structure of the linear projection might have limitations
for the projection of visual information into the language semantic
space, and we will further investigate how to better accomplish this
operation in our subsequent work.

4.2 Visualization of Visual Tokens
In order to verify whether the visual tokens learnt by VT-LMM
can realistically reflect the image information, we take VT-LMM-
Vicuna-7B as an example to explore. For each patch in the image, we
select the token with the highest probability in its corresponding
visual tokens, and compare the region of interest in the image with
its visualisation result, visualization is shown in figure 4.

From the visualisation results, it can be observed that: First of
all, visual tokens can intuitively perceive the low-level features of
images such as colour information and object boundary contours.
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The model in region (5) identifies the red region of the parrot’s
face; the distribution of visual tokens in regions (5), (6) (8) clearly
distinguishes the boundaries of the foreground and the background;
and the visual tokens in regions (1), (3) accurately identifies the
demarcation line between the building and the tree.

Secondly, visual tokens are able to recognise higher level seman-
tics such as specific object categories. For example, roof, building,
and tree are successfully recognised in regions (1) and (3); flag and
window are recognised in regions (2) and (4); hair and feather of
parrot are recognised in regions (5), (6), and (8); in region (4), visual
tokens even mark the "walking" action of the crew.

In addition, we found that for the relationship between fore-
ground and background in the internal semantic space of LMM, the
model prefers to predict the background as a comma rather than
a space or other placeholder as we expected. This phenomenon
reflects the fact that visual tokens are simultaneously characterised
by both visual and textual information, i.e. the background is seen
in the image as a separator between different foreground patches.

The above phenomena indicate that visual tokens successfully
achieve the transformation of visual features to language semantic
space, which verifies the feasibility and effectiveness of our method.
Therefore, using visual tokens as visual supervision signals can
indeed guide the model to perform auto-regressive modelling of
visual information, thus enhancing the model’s multi-modal com-
prehension and inference capabilities.

5 RELATEDWORK
5.1 Vision-Language Pre-training
Vision-Language Pre-training aims to build diverse multi-modal
contextual training methods, thus endowing models with stronger
multi-modal comprehension. Existing work has performed exten-
sive and thorough research on Vision-Language Pre-training (VLP).
CLIP [24] proposes to apply contrastive learning with both visual
encoder and text encoder to learn generic cross-modal representa-
tions, which lays the foundation of the learning paradigm for VLP.
ALBEF [16] further improves the learning effectiveness of VLP by
applying Image-Text Contrastive loss (ITC) and Image-Text Match-
ing task (ITM) to the classical Masked Language Modelling (MLM)
task to further enhance the learning of cross-modal representations.
BLIP [15] combines ITM, ITC and language modelling task (LM) as
a classical work on multi-modal generative training methods. With
the rapid development of LLM, researchers begin to explore LLM
applied to vision-language tasks. Flamingo [1] uses interleaved text-
image data for training models with open generative capabilities;
BLIP-2 [14] and InstructBLIP [4] use contrastive learning and ML
tasks to construct efficient visual resampler for LLM at a low price.
KOSMOS [9] proposed to align the visual perception and language
from scratch onweb-scale multi-modal corpora. Previous VLPs used
image-text pairs datasets and simple VQA datasets with limited data
diversity and task complexity to enhance the general understand-
ing and generation of Large Multi-modal Model (LMM). With the
progress of instruction-following in LLM, Multi-modal instruction-
following task is proposed. LLaVA series [19, 20] construct complex
Multi-modal instruction-following data and significantly improves
model’s visual comprehension, and can be effectively extended to

other vision-language tasks such as text understanding and region
dialogue.

However, the visual inputs in the above approaches are only
considered as hints for generating targets and are not involved in
the optimisation, which severely limits the model’s potential for
multi-modal comprehension and results in incomplete utilisation
of VLP training data.

5.2 Visual Supervised Information
To further leverage visual information for supervised learning,
Emu [27] and Emu2 [26] align visual and language modelling with
the objective of predicting the next visual or language token in an
auto-regressive manner, and further explore video as a new source
of interleaved image-text data. This unified modelling provides a
general framework for multi-modal understanding and generation.
LaVIT [13] utilizes narest neighbor lookup to map image infor-
mation to discrete trainable codebooks, and extends the original
vocabulary of LLM to construct one-hot supervised labels for image
information. Unified-IO 2 [22] improves the modeling capability of
the backbone for multi-modal information by predicting corrupt
modalities using an additional VQ-GAN decoder and optimizing
the pixel-level reconstruction loss.

However, the above methods either treat visual modelling as
regression task, which does not match the pre-training format of
LLM, or need to introduce extensive external training parameters
and complex structures. In contrast to these methods, our approach
uses LLM’s ownword embedding space to construct visual tokens as
supervised signals, using the classification task for visual modelling
and do not need to introduce additional visual embedding.

6 CONCLUSION
In this paper, we successfully perform multi-modal auto-regressive
modeling with a unified objective for the first time. Specifically,
we propose the concept of visual tokens which transforms visual
features in multi-modal sequences into probability distributions
over the vocabulary of pre-trained LLMs, thus constructing super-
vision label for visual modeling. We also verified the representation
of visual information by visual tokens and the feasibility of using
visual tokens together with pre-trained embeddings to represent
visual information in the language semantic space. The results
show that visual tokens successfully achieve vision2language se-
mantic transformation and effectively enhance the vision-language
comprehension of model.

7 LIMITATIONS
Mapping continuous visual information into discrete language se-
mantic space leads to a certain degree of information loss. This
is also evidenced by the slight performance degradation brought
about by the use of pseudo image feature. Furthermore, the effect
of the diversity of training images on the learning effectiveness of
the VM head was not explored. Therefore, it is necessary to further
explore a more appropriate structure for constructing visual tokens
and to verify the learning effect of VM head using richer image
data.
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