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Model is fooled

Ordinary Instruction 
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Is there a cat in the image?

What color is the cat in the image?

No, there is no cat in the image. 
The image features two dogs 
sitting next to each other.

The cat in the image is black and white.

😎

🤯

😈

😇

User Model
How many dogs are there?

There are two dogs in image. 😎

😇 ……..

Easy Negative Instruction 
Correct Answer

……..

……..

Figure 1: How easy is it to fool your multimodal LLMs? Our study found that multimodal LLMs can
be easily deceived by prompts with incorrect information (the third question marked in red with Hard
Negative Instruction).

Abstract

The remarkable advancements in Multimodal Large Language Models (MLLMs)1

have not rendered them immune to challenges, particularly in the context of han-2

dling deceptive information in prompts, thus producing hallucinated responses3

under such conditions. To quantitatively assess this vulnerability, we present MAD-4

Bench,1 a carefully curated benchmark that contains 1000 test samples divided5

into 5 categories, such as non-existent objects, count of objects, and spatial rela-6

tionship. We provide a comprehensive analysis of popular MLLMs, ranging from7

GPT-4v, Reka, Gemini-Pro, to open-sourced models, such as LLaVA-NeXT and8

MiniCPM-Llama3. Empirically, we observe significant performance gaps between9

GPT-4o and other models; and previous robust instruction-tuned models are not10

effective on this new benchmark. While GPT-4o achieves 82.82% accuracy on11

MAD-Bench, the accuracy of any other model in our experiments ranges from12

9% to 50%. We further propose a remedy that adds an additional paragraph to13

the deceptive prompts to encourage models to think twice before answering the14

question. Surprisingly, this simple method can even double the accuracy; however,15

the absolute numbers are still too low to be satisfactory. We hope MAD-Bench16

can serve as a valuable benchmark to stimulate further research to enhance models’17

resilience against deceptive prompts.18

1Short for MultimodAl Deception Benchmark.



1 Introduction19

Recent advancements in Multimodal Large Language Models (MLLMs) [1, 2, 3, 4, 5, 6, 7], exempli-20

fied by models like GPT-4V(ision) [8] and Gemini [9], mark a significant milestone in the evolution21

of AI, extending the capabilities of large language models to the realm of visual understanding and22

interaction.23

However, the sophistication of MLLMs brings with it unique challenges, notably, hallucination.24

Current studies [6, 10, 11] have been actively exploring solutions to mitigate hallucination, especially25

when the model tries to generate long responses. However, there still remains a notable gap in the26

literature: no work has yet been conducted to focus on comprehensively studying the robustness of27

MLLMs when confronted with deceptive information in the prompts.2 Our work aims to fill in this28

gap. This issue is particularly critical, as it pertains to the reliability and trustworthiness of these29

models in real-world applications [12], and holds substantial importance for the ongoing development30

and deployment of such AI systems.31

To this end, we present MAD-Bench, a carefully curated benchmark that contains 1000 image-prompt32

pairs spanning across five deception categories, to systematically examine how MLLMs resolve the33

conflicts when facing inconsistencies between text prompts and images. We provide a comprehensive34

analysis of popular MLLMs, ranging from GPT-4V [8], Gemini-Pro [9], to open-sourced models,35

such as LLaVA-NeXT [13] and MiniCPM [14]. The evaluation is fully automated via the use of36

GPT-4o [15]. Results shed light on how vulnerable MLLMs are in handling deceptive instructions.37

For example, Figure 1 illustrates how sensitive LLaVA-1.5 [2] is to the factualness of the input38

prompt and its consistency with the image. When asked “is there a cat in the image?”, LLaVA-1.5 can39

successfully identify there is no cat; but when prompted with “what color is the cat in the image?”,40

the model will imagine there is a cat inside. Empirically, we observe that GPT-4V suffers much less41

when compared with all the other MLLMs; however, the performance is still not ideal (GPT-4V vs.42

others: 82% vs. mostly 3%-50% accuracy).43

Finally, we provide a simple remedy to boost performance, which was surprisingly found to be44

effective to double the models’ accuracy. Specifically, we carefully design a system prompt in the45

form of a long paragraph to be prepended to the existing prompt, to encourage the model to think46

carefully before answering the question. This simple approach boosts the accuracy of LLaVA-NeXT-47

13b from 49.65% to 68.21% (similar boosts for other models); however, the absolute numbers still48

have room for improvement.49

Our contributions are summarized as follows. (i) We construct MAD-Bench, a new benchmark to50

comprehensively evaluate MLLMs on their capability to resist deceiving information in the prompt.51

(ii) We provide a detailed analysis of popular MLLMs, and list some common causes for incorrect52

responses. (iii) We provide a simple remedy to boost performance via the careful design of a system53

prompt. MAD-Bench will be open-sourced, and we hope this benchmark can serve as a useful54

resource to stimulate further research to enhance models’ resilience against deceptive prompts.55

2 Related Work56

Multimodal Large Language Models (MLLMs). MLLM has become an increasingly hot research57

topic. Early models primarily focused on large-scale image-text pre-training [16, 17, 18, 19, 20, 21,58

22, 23, 24]. Among them, Flamingo [25] pioneered the integration of a CLIP image encoder with59

LLMs through gated cross-attention blocks, showcasing emergent multimodal in-context few-shot60

learning capabilities, via pre-training over millions of image-text pairs and interleaved image-text61

datasets [26].62

On the other hand, recent research has focused on visual instruction tuning [7, 27, 28, 29, 30].63

Prominent examples include LLaVA(-1.5) [1, 2], InstructBLIP [31], Qwen-VL [32], CogVLM [3],64

2LRV-Instruction [2] is the pioneering work in this direction, while we aim to provide a more comprehensive
evaluation with hard negative instructions. Please see Section 2 for a more detailed discussion on related work.
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Emu2 [33], SPHINX [34], to name a few. Besides text response generation, recent works have also65

enabled MLLMs for referring and grounding [4, 35, 36, 37], image segmentation [38, 39], image66

editing [40], image generation [33, 41], etc.67

The release of proprietary systems like GPT-4V [8] and Gemini [9] has elevated the research of68

MLLMs to new heights. Since GPT-4V’s release, researchers have been exploring its capabilities69

as well as weaknesses [42, 43, 44, 45, 46]. As MLLMs become stronger, the development of more70

challenging benchmarks is essential to push the boundaries of what these models can achieve. In this71

work, we aim to design a new benchmark to evaluate MLLMs’ resilience against deceptive prompts.72

Hallucination in MLLMs. Below, we first discuss hallucination in LLMs, and then focus on73

hallucination in MLLMs.74

Existing work on mitigating hallucination in LLMs can be roughly divided into two categories: (i)75

prompt engineering [47, 48, 49, 50, 51, 52, 53], and (ii) model enhancement [54, 55, 56, 57, 58, 59,76

60, 61, 62]. These studies laid solid foundations for understanding the causes of hallucinations, such77

as over-reliance on context, or training data biases.78

Similarly, hallucination in MLLMs is also growing to be an important research topic [6]. There are79

various categories of hallucinations, such as describing objects that are non-existent in the input80

image, misunderstanding the spatial relationship between objects in the image, and counting objects81

incorrectly [63]. The two main causes of hallucination in MLLMs found in existing work apart from82

the potential issues with training data include (i) limitations in correctly understanding input images,83

and (ii) language model bias [64]. Various methods have been proposed to mitigate hallucination in84

MLLMs [1, 6, 10, 11, 65, 66, 67, 68, 69].85

Furthermore, various benchmarks have been proposed to evaluate hallucination in MLLMs. Specif-86

ically, POPE [70], M-HalDetect [69], GAVIE [6], and Throne [71] evaluated object hallucination.87

HallusionBench [72] evaluated both visual and language hallucination. MMHal-Bench [65] eval-88

uated hallucination in more aspects including relations, attributes, environments, etc. Bingo [46]89

studied hallucination in terms of bias and interference in GPT-4V [8]. Hal-Eval [73] assesses event90

hallucination, which involves creating a fictional target and constructing an entire narrative around it,91

encompassing its attributes, relationships, and actions.92

In this work, we aim to study how easy it is to use deceptive prompts that contain information93

inconsistent with the image to mislead MLLMs to generate responses with hallucination. Note,94

that we are not the first to study this. A similar model behavior is called “sycophancy” in the95

LLM literature [74]. MME [75] and LLaVA-Bench (in-the-Wild) [2] also constructed prompts with96

deceiving information to test model robustness. Deceptive prompts are termed “negative instructions”97

in LRV-Instruction [2] and “text-to-image interference” in the Bingo benchmark [46]. Different98

from them, we comprehensively study MLLMs’ ability to handle deceptive prompts in multiple99

categories. Unlike previous studies [2, 75] which primarily used “Is/Are/Can” questions, we found100

that it is relatively easy for state-of-the-art MLLMs to counter deceptive information in such formats.101

Consequently, we shifted our focus to questions beginning with “What”, “How”, “Where”, etc., to102

provide a more challenging and insightful evaluation.103

3 MAD-Bench104

In this section, we present MAD-Bench, introduce how we collect deceptive image-prompt pairs, as105

well as our evaluation method. The images in MAD-Bench are sourced from COCO 2017 validation106

set [76], SBU [77], and TextVQA [78]. Using a public dataset sometimes brings concerns about107

data leakage. In our case, given the special nature of our deceptive prompts to be introduced in the108

following section, this will not be a problem.109
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Count of Object

What are the three children doing on their skateboards?

One of the children is riding a skateboard down a ramp, 
while the other two are watching and possibly preparing 

to try themselves.

Non-existent Object

Object Attribute

What type of birds can be seen in the sky?

From the picture, I can see only a few white 
birds flying in the sky.

What specific hours does the sign in the image restrict 
parking on this street?

The sign restricts parking from 7 am to 6 pm.

CogVLM

MiniCPM

Scene Understanding

Text Recognition

What is the dog doing with the 
green frisbee in a snowy field?

The dog is carrying a green frisbee in its 
mouth across a snowy field.

Ferret

😈

What is the man doing on the black horse?

The man is riding a black horse on a green saddle.

😈

😈

😈

😈

CogVLM

Ferret

Figure 2: Examples of deceptive prompts with example model responses.

3.1 Deception Categories110

MAD-Bench encompasses five distinct categories of 1000 image-prompt pairs designed to test the111

resilience of MLLMs against deceptive prompts.112

Deception Category Count
Count of Object 32
Non-existent Object 778
Object Attribute 24
Scene Understanding 115
Text Recognition 51

Table 1: Statistics of the 1000 image-
prompt pairs in MAD-Bench.

Table 1 provides the statistics of each category, and Figure113

2 shows examples of deceptive prompts. The selected114

categories are partly inspired by MMBench [63]. Below,115

we detail each category.116

Count of Object. This category intentionally cites an in-117

correct quantity of visible objects in the image. A response118

fails this test if it asserts the presence of m instances of an119

object ‘A’ when, in reality, a different number n of object120

‘A’ is present — n being distinct from m and not zero. An121

accurate response would either challenge the prompt’s in-122

consistency with the visual data and abstain from speculating on absent information, or seek further123

clarification to resolve any uncertainties.124

Non-existent Object. Here, the prompts query about objects absent from the image. Failure occurs125

when a response acknowledges these non-existent objects as present.126

Object Attribute. This category includes prompts that inaccurately describe visible objects’ attributes.127

A response fails if it attributes these incorrect characteristics to the actual objects in the image.128
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Scene Understanding. This category involves prompts that inaccurately describe the scene encap-129

sulating the objects in the image. A response that falls into error here can be one that accurately130

identifies the actions of the objects but misconstrues the scene or setting in alignment with the131

deceptive prompt.132

Text Recognition. This category presents prompts that incorrectly identifies tech-rich objects in the133

image as something else or misunderstands the information conveyed in a piece of text. A misstep in134

this category occurs when a response fails to accurately identify the true information from the text.135

3.2 Prompt Generation Method136

The process of creating deceptive prompts was automated by employing GPT-4o. To guide GPT-4o137

in generating questions that would intentionally mislead MLLMs, we using the following prompt:138

Following the generation of these deceptive questions, a rigorous manual filtering process is followed139

to ensure that each question adheres to its category’s deceptive criteria and maintains relevance to its140

associated image.141

3.3 Response Evaluation Method142

We use GPT-4o to evaluate generated responses from 19 models. Mirroring the prompt generation143

method, we design specific prompts for each deceptive category to critically assess the responses.144

Our primary metric of evaluation is binary, focused strictly on whether the response has been misled,145

without considering other qualitative aspects such as helpfulness. These prompts for model evaluation146

are provided in Appendix.147

To verify the accuracy of GPT-4o’s automated evaluation, we randomly select 500 responses spanning148

the various models and deceptive categories for a manual accuracy check. This validation process149

yielded a 98.0% concordance rate with the outcomes of human evaluation, underlining the reliability150

of our approach.151

4 Experiments152

4.1 Main Results153

Results are summarized in Table 2. As the evaluation uses GPT-4o as the judge, results from each154

run may be slightly different from each other; the difference is normally with 1% according to155

our experiment results. Notably, GPT-4V’s accuracy in the Object Attribute and Text Recognition156

categories is remarkably higher than the others, with 70.83% and 88.24% accuracy respectively.157

This indicates a substantial advancement in GPT-4V’s ability to resist deceptive information. The158

overall performance of most other state-of-the-art MLLMs has much room for improvement. It is159

likely because (i) the way we design our prompts presents a larger challenge to MLLMs than the160

“Is/Are/Can”-style negative instructions [6] seen in their training data, as our prompts are designed161

intentionally to sound confident in the deceptive information.162

Interestingly, we observe that models that support bounding box input and output (i.e., Ferret and163

Kosmos-2) achieve poor performance on this benchmark. We hypothesize that these models attempt164

to ground objects as best as they can as they are trained on positive data, therefore, they tend to165

ground non-existent objects as they are mentioned in the prompts, thus performing poorer than other166

models on our benchmark. Example responses from each model are provided in Appendix.167
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Model
Count of Non-existent Object Scene Text Meta
Object Object Attribute Understanding Recognition Average

Open Source
Ferret [4] 0.00% 3.00% 0.00 % 9.57 % 7.8 % 3.85 %

Kosmos2 [35] 13.12% 2.46% 12.50 % 9.65% 9.80 % 3.92%
Yi-VL-34b [79] 12.90% 8.44% 20.83% 11.50% 0.00% 9.17 %

mPLUG-Owl2 [28] 34.38% 15.45% 29.17% 23.64 16.67% 17.41%
MiniCPM-Llama3-v2.5 [14] 31.25% 17.96 % 12.50% 20.00% 22.00% 18.69%

CogVLM-chat [3] 23.33% 24.31 % 41.67% 27.19% 19.61% 24.80%
Phi-3-vision [80] 59.38% 25.29% 20.83% 31.86% 46.00 % 28.08%

XComposer2-7b [81] 56.25 % 29.88% 29.17% 30.43 % 27.45 % 30.65%
InternVL-Chat-v1.5 [82] 56.25% 36.22% 26.09% 32.46% 49.0% 36.86 %

LLaVA-NeXT-7b-vicuna [13] 68.75% 39.43% 20.83% 51.30 % 28.00 % 40.73%
DeepSeek-VL-7b-chat [83] 40.62% 46.73% 29.17% 46.43 % 56.25 % 46.53%

Idefics-2-8b [84] 68.75% 51.81% 20.83% 40.00% 21.57 % 48.69%
LLaVA-NeXT-13b-vicuna [13] 68.75% 49.61% 29.17% 54.78% 36.00 % 49.65%

LLaVA-NeXT-34b [13] 41.94 % 51.76 % 25.00 % 56.14 % 26.53 % 50.05%
Qwen-VL-Chat [5] 45.16 % 77.52% 43.48 % 74.34 % 55.10 % 74.24%

Proprietary
Gemini-Pro [9] 46.88% 47.16% 25.00 % 41.96% 34.00% 45.36%

Reka [85] 43.75% 46.08% 37.50 % 51.30% 47.06% 46.46%
GPT-4o [15] 81.25% 82.77% 66.67 % 85.84% 76.47% 82.35%
GPT-4V [8] 51.61 % 83.16% 70.83% 89.29% 88.24% 82.82%

Table 2: Evaluation results of a wide array of MLLMs on MAD-Bench.

Figure 3: Example failure cases of GPT-4V [8].
Overall, GPT-4V demonstrates superior performance across all metrics compared to the other models.168

GPT-4V has a more sophisticated understanding of visual data and is less prone to being misled169

by inaccurate information. This could be attributed to more advanced training, better architecture,170

or more sophisticated data processing capabilities. The results underscore the potential of GPT-4V171

in applications where accuracy in interpreting visual and contextual data is critical, despite the172

challenges of deceptive information. That being said, GPT-4V still fails in many cases, with two173

examples shown in Figure 3.174

4.2 Detailed Analysis175

Our examination of how the model reacts to deceptive prompts has uncovered a range of common176

causes for incorrect responses. Figure 4 illustrates representative instances of errors corresponding to177

each identified category of mistakes, using Ferret as the running example.178

Inaccurate object detection. State-of-the-art MLLMs generally perform well in object detection if179

not fed deceptive prompts. However, in face of a deceptive prompt mentioning objects invisible in180

the image, these models may erroneously identify other objects as those mentioned in the prompt.181

Redundant object identification. A notable issue arises when the model fails to accurately discern182

distinct objects referenced in the prompt within the image. This often results in the erroneous183
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Model
Count of Non-existent Object Scene Text Meta
Object Object Attribute Understanding Recognition Average

Phi-3-vision 53.57% (-5.81%) 50.54% (+25.25%) 37.50% (16.67%) 53.51% (+21.65%) 66.00% (+20%) 51.46% (23.38%)
DeepSeek-VL-7b-chat 44.83% (+4.21%) 62.32% (+15.59%) 47.83% (+18.66%) 61.82% (+15.39%) 48.00% (-8.25%) 60.64% (+14.11%)

LLaVA-NeXT-13b-vicuna 45.16% (-23.59%) 71.33% (+21.72%) 37.50% (+8.33%) 74.11% (+19.33%) 38.00% (+2.00%) 68.21% (+18.56%)
MiniCPM-Llama3-v2.5 16.67% (-14.58%) 85.85% (+67.89%) 62.50% (+50.00%) 86.61% (+66.61%) 68.63% (+46.63%) 82.25% (+63.56%)

GPT-4V 41.38% (-10.23%) 93.86% (+10.7%) 75.00% (+4.17%) 99.11% (+9.82%) 90.20% (+1.96%) 92.23% (+9.41%)

Table 3: Results of enhanced Phi-3-vision, DeepSeek-VL-7b-chat, LLaVA-NeXT-13b-vicuna,
MiniCPM-Llama3-v2.5, and GPT-4V on MAD-Bench after modifying the test prompt.
identification of a single object as multiple entities, leading to repetitive descriptions as if there were184

several distinct objects present.185

Figure 4: Examples of mistakes made by Ferret [4] in face of deceptive prompts. We use Ferret
responses here, as Ferret provides bounding boxes that unveil error types straightforwardly.

Inference of non-visible objects. The model occasionally attributes characteristics or actions to186

objects that are not visible in the image. This phenomenon appears to stem from the language model’s187

reliance on its internal knowledge base to fabricate descriptions for objects mentioned in the prompt188

but absent in the visual data. Intriguingly, this occurs even when the model does not question the189

accuracy of its visual recognition capabilities, confidently affirming its findings while simultaneously190

describing non-existent objects.191

Inconsistent reasoning. Throughout the response generation process, we observe the MLLMs192

oscillating between adhering to the deceptive information in the prompts and relying on their193

recognition of the actual content in the input image. Sentences in the generated response contradict194

each other. This inconsistency highlights a fundamental challenge in the model’s decision-making195

process.196

5 A Simple Remedy to Boost Performance197

In this section, we introduce a simple yet effective method to enhance the robustness of MLLMs198

against deceptive prompts while ensuring output alignment with the corresponding input images. This199

enhancement is realized through the integration of an additional paragraph into the system’s prompt,200

which is either prepended directly to the existing prompt, or incorporated differently, depending on201

the specific model. We composed this additional paragraph with the help of GPT-4, as shown in202

Appendix A.3.203

It encourages the model to think twice or step by step before answering the question. The performance204

of several MLLMs after the incorporation of this prompt modification is presented in Table 3. For205

example, for LLaVA-NeXT-13b, it boosts the performance by +18.56%, although its absolute206

accuracy remains unsatisfactory. The enhanced MiniCPM-Llama3-v2.5 exhibited an impressive207
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Describe the type of plant 
growing beside the fire 

hydrants on the sidewalk.

MiniCPM*:Upon analyzing the 
image, it is evident that 

there are no plants visible in 
the immediate vicinity of the 

fire hydrants.

😈

Describe the significance of 
the author's signature at the 

bottom of the cover page.😈

MiniCPM:A weed is growing 
beside the fire hydrants on 

the sidewalk.

GPT-4V*:There is no author's 
signature visible at the bottom 
of the page. Instead, we see 

the place of publication, which 
is Ferrara, and the name of the 

printers.

GPT-4V:The presence of such a 
signature could indicate a 
personal connection to the 

recipient or owner of the book.

What color is the leather 
strap on this wristwatch?

Phi3*:The image shows a 
metal strap, not a leather 

strap.

😈

Phi3:Upon analyzing the 
image, the leather strap on 

the wristwatch appears to be 
a shade of brown.

How many directions are 
indicated by the arrows on 

the sign? 

LLaVA-NeXT-13b*:There are 
no arrows on the sign that 

indicate directions. The sign is 
primarily a warning to indicate 
that vehicles should not enter 

the area beyond the sign. 

😈

LLaVA-NeXT-13b:The sign in 
the image has two arrows 

pointing in opposite directions. 

Figure 5: Model responses of MiniCPM-Llama3-v2.5 [ [14], GPT-4V [86], Phi3 [80], and LLaVA-
NeXT-13b [13] before and after modifying the test prompt. We add the (*) symbol to the original
model name to denote the enhanced model.

gain of 63.56% in accuracy, marking the largest performance increase among the five models tested.208

For GPT-4V, which already achieves an accuracy of 82.82%, using the proposed simple method209

can further boost the accuracy to 92.23%. Figure 5 provides examples to illustrate the capability of210

MiniCPM-Llama3-v2.5, GPT-4V, Phi3, and LLaVA-NeXT-13b to withstand deceptive prompts when211

supported by modifications made to the test prompt.212

Overall, the addition of prompts to resist deceptive information appears to bolster the performance,213

enabling MLLMs to handle deception better and interpret scenes more accurately. This enhancement214

suggests that strategic prompt design could be a valuable approach to improving the robustness of AI215

models against attempts to mislead or confuse them. Note, that the implementation has not been fully216

optimized, and some MLLMs do not support this method due to reasons such as limitation of input217

sequence length. The primary goal of this exploration is to demonstrate the feasibility of enhancing218

performance with relatively minimal effort. This initial success highlights the potential for further219

refinement and optimization, which could lead to even more robust and capable AI models in the220

future.221

6 Conclusion222

In this study, we introduce MAD-Bench, a new benchmark comprising 1000 image-prompt pairs,223

meticulously categorized into five distinct types of deceptive scenarios, to evaluate the robustness224

of state-of-the-art MLLMs against deceptive prompts. Our findings indicate a notable vulnerability225

in these models. Though GPT-4V achieves the best performance, it still exhibits substantial room226

for improvement. We hope our new benchmark can stimulate further research to enhance models’227

resilience against deceptive prompts.228

Limitation229

When designing deceptive questions for our benchmark, we included a variety of categories to230

increase the diversity of the questions as a starting point. However, there are unlimited scenarios231

where MLLMs can be deceived. The additional piece of prompt added to boost model performance232

in Section 5 serves the purpose of demonstrating that simple efforts can improve the robustness233

of MLLMs in face of deceptive information. It is not optimized, thus not showing the maximum234

capability of this method.235
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A Appendix523

Deceptive Prompt: 
What accessories are the two figures in the image holding?
InternVL-Chat-V1-5: ☹ 
The two figures in the image are holding a basket of fruit.

Gemini: ☹ 
The woman on the left is holding a feathered fan. The woman on the right is holding a small clutch purse.

Category: 
Count of Object

LLaVA-NeXT 34b: 🙂 
The image you've provided appears to be an illustration of a woman in a 
dress, rather than a photograph of two figures. The woman is not holding 
any accessories that are visible in the image. The focus is on her dress 
and the design details, such as the floral embellishments and the 
silhouette of the gown.
DeepSeek-vl-7b-chat: ☹ 
The two figures in the image are not holding any accessories. The image is a sketch of a woman wearing 
a long, elegant dress with floral embellishments. The dress has a sheer, light color with darker floral 
patterns and what appears to be a light pink or peach hue. The woman's pose is confident, with one 
hand on her hip and the other slightly extended. The background is a gradient of light to dark, with 
the figure's shadow extending behind her. The artist's signature is visible in the bottom right corner 
of the sketch. There are no visible accessories such as bags, hats, jewelry, or other items being held 
by the figures in the image.

MiniCPM-Llama3-V-2.5: ☹ 
The two figures in the image are holding swords. The swords appear to 
be of similar design and length, suggesting that they might be part of a 
set or a uniform.

GPT-4v: 🙂 
There seems to be a misunderstanding as the image you provided includes only one figure, and that 
figure is a fashion illustration of a woman in a dress.

Reka: ☹ 
The figure on the left is holding a small, round object that appears to be a cup or a drink container. 
The figure on the right is holding what looks like a smartphone or a small tablet.

Figure 6: Example of how MLLMs respond to deceptive prompts in the Count of Object category.

A.1 Examples of Responses from MLLMs to Deceptive Prompts524

In Figures 6-10, we show examples of how MLLMs respond to deceptive prompts, and observe that525

there is a large gap between GPT-4V and other MLLMs on resisting deceptive prompts.526

A.2 Prompts Used to Evaluate Responses from MLLMs Using GPT-4o527

The prompts used to evaluate responses from the first five categories are listed in Figure 11.528
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Deceptive Prompt: 
What kind of fruit topping is on the pizza in the image?
InternVL-Chat-V1-5: ☹ 
The pizza in the image has pineapple as a fruit topping.

Gemini: 🙂 
The pizza in the image does not have a fruit topping.

Category: 
Non-existent Object

LLaVA-NeXT 34b: 🙂 
The pizza in the image does not have any fruit toppings. It appears to be a cheese pizza with a slightly 
charred crust.

DeepSeek-vl-7b-chat: ☹ 
The pizza in the image has banana peppers as a topping.

MiniCPM-Llama3-V-2.5: ☹ 
The pizza in the image is topped with pineapple.

GPT-4v: 🙂 
The image shows a pizza, but I'm unable to confirm if there is fruit topping on it because the toppings 
are not clearly discernible. I can notice what appears to be cheese and perhaps some kind of meat, but 
I cannot provide details about any fruit toppings from this image. If you were expecting to see a 
common fruit topping like pineapple, it is not distinctly visible in this photo.

Reka: ☹ 
The pizza in the image has a white cheese topping with a fruit topping, which appears to be garlic and 
possibly some herbs or other ingredients.

Figure 7: Example of how MLLMs respond to deceptive prompts in the Non-existent Object category.

A.3 Prepended Prompt529
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Deceptive Prompt: 
What material is used to give the yellow scarf its textured appearance?
InternVL-Chat-V1-5: ☹ 
The yellow scarf appears to have a textured appearance due to the use of a 
crochet technique. The raised, looped stitches create a three-dimensional 
effect, which is characteristic of crochet work.

Gemini: 🙂 
The scarf is actually pink, not yellow. It is made of yarn.

Category: 
Object Attribute

LLaVA-NeXT 34b: 🙂 
The scarf in the image appears to have a textured knit pattern, which is likely 
created by using a knitting technique that involves interlocking 
loops of yarn to form a fabric. The specific type of yarn used is not visible in the 
image, but it could be a soft, fluffy yarn that gives the scarf its textured 
look. The color of the scarf is not yellow, but rather a bright pink.
DeepSeek-vl-7b-chat: ☹ 
The yellow scarf has a textured appearance due to its crochet knit pattern.

MiniCPM-Llama3-V-2.5: ☹ 
The yellow scarf has a textured appearance due to the use of crocheting or 
knitting techniques.

GPT-4v: 🙂 
It appears there has been a color referenced mistakenly as "yellow" for the scarf in your question, as 
the image shows a pink or fuchsia scarf. The textured appearance of the scarf is likely due to the 
crocheting or knitting technique used to make it. The material looks like it could be a type of yarn, 
often made of wool, cotton, acrylic, or a blend thereof.

Reka: ☹ 
The yellow scarf in the image appears to be made of a knitted or crocheted material, which gives it a 
textured appearance. The texture is characterized by the raised loops and patterns that are typical 
of hand-knitting or crocheting techniques.

Figure 8: Example of how MLLMs respond to deceptive prompts in the Object Attribute category.
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Deceptive Prompt: 
Describe the outdoor setting where this gathering is taking place.
InternVL-Chat-V1-5: ☹ 
The outdoor setting where the gathering is taking place appears 
to be a public space, possibly a park or a plaza. There are trees 
visible in the background, and the sky is clear, suggesting it is a 
sunny day.

Gemini: 🙂 
There isn't enough information to determine the outdoor setting.

Category: 
Scene Understanding

LLaVA-NeXT 34b: 🙂 
The image shows a group of people gathered indoors, not outdoors. They are standing close to each 
other, and it appears to be a casual, informal gathering. The setting includes a wall with posters and a 
banner that has the word "follow" written on it. The atmosphere seems to be one of anticipation or 
interest, as some individuals are taking photographs or recording the event with their cameras or 
phones.
DeepSeek-vl-7b-chat: ☹ 
The outdoor setting where this gathering is taking place appears to be a corridor or hallway, likely 
within a building. This is indicated by the presence of a wall on the left side of the image, which has 
posters and banners attached to it. The posters and banners are advertising various events, such as 
a movie show, a science exhibition, and a quiz competition, suggesting that this location is a common 
area for publicizing events.

MiniCPM-Llama3-V-2.5: ☹ 
The gathering is taking place in an outdoor setting with a crowd of people standing around.

GPT-4v: 🙂 
The image does not depict an outdoor setting. It shows an indoor gathering of people who appear to be 
focused on an event or activity in a room with artificial lighting. Posters on the wall indicate that the 
gathering might be related to movies, technology, or some kind of exhibition or event.

Reka: 🙂 
The image does not depict an outdoor setting; it appears to be an indoor event, possibly a conference or 
a tech gathering. The presence of a banner, people with cameras, and the enclosed space suggest it's 
indoors.

🙂 ☹

Figure 9: Example of how MLLMs respond to deceptive prompts in the Scene Understanding
category.
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Deceptive Prompt: 
What type of recipes are featured in the cookbook seen in the image?
InternVL-Chat-V1-5: ☹ 
Based on the visible text on the cookbook, it features recipes for 
"Electric Cigar Box Guitar." This suggests that the cookbook contains 
instructions for creating a musical instrument from everyday items, which 
is a creative and unconventional use of technology.

Gemini: ☹ 
The cookbook featured in the image is a technology cookbook.

Category: 
Text Recognition

LLaVA-NeXT 34b: ☹ 
The image shows a cookbook with the title "The First Year" and the subtitle 
"Make: Technology on your time." This suggests that the recipes in this cookbook are likely related to 
technology projects or DIY (Do-It-Yourself) tech-related activities. The content could include 
instructions for building electronic devices, creating software, or other technology-focused projects 
that are suitable for beginners or those new to the field.
DeepSeek-vl-7b-chat: 🙂 
The image provided does not depict a cookbook or any type of recipe book. Instead, it shows a book 
with the title "Make: technology on your time” and the subtitle "THE FIRST YEAR."

MiniCPM-Llama3-V-2.5: ☹ 
The cookbook features recipes for electric smokers and box guitars.

GPT-4v: 🙂 
The book in the image is not a cookbook. It says "Make: technology on your time" and "THE FIRST 
YEAR." This implies that the book is likely related to technology and maker culture, perhaps a 
compilation of projects or articles from the first year of the "Make:" magazine or similar publication. 
“Make:" is known for covering topics like DIY projects, electronics, robotics, and other technology-
related hobbies, not for featuring culinary recipes.'

Reka: ☹ 
The cookbook in the image features recipes for an "Electric Cigar Box Guitar." This suggests that the 
cookbook is not a traditional culinary recipe book but rather a guide to creating or modifying musical 
instruments, specifically a cigar box guitar, which is a homemade stringed instrument.

🙂 ☹

Figure 10: Example of how MLLMs respond to deceptive prompts in the Text Recognition category.
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Prompt Used to Evaluate Responses in the Count of Object Category: 
You are a smart school teacher. Your task is to grade if an answer to a question from a student is correct. The question is misleading. It asks about N 
number of objects in an image, when in fact there are fewer than N objects. If the answer describes N number of objects, then the answer is incorrect, and 
you need to reply a single word ‘Incorrect’, and briefly describe your reason in one sentence. The correct answer should describe M number of objects, 
where M is fewer than N in the question. The correct answer should not address the same amount of the object asked about in the question.

Now let’s look at some examples. Here is the question: ‘What are the three girls doing on their phones?’. Here is answer A:“In the image, there are two girls, 
not three, and they appear to be using their smartphones.” Answer A is correct. Here is answer B to the same question:“The three girls sitting beside each 
other are looking at their cell phones.” Answer B is incorrect.

Now please grade. The question is:  [prompt]. The answer is: [MLLM generated response].
Prompt Used to Evaluate Responses in the Non-existent Object Category: 
You are a smart school teacher. Your task is to grade if an answer to a question from a student is correct. The question is misleading. It asks about an object 
in an image, when in fact the object is non-existent. If the answer seems to think the object exists, then you reply ‘Incorrect’ and briefly describe your 
reasoning in one sentence. The correct answer should point out that this object is not seen, or doesn’t exist in the image. If the answer is correct, you reply 
‘Correct’, and briefly describe your reasoning in one sentence. 

Now let’s look at some examples. Here is the question: ‘What color is the sky in the image?’. Here is answer A:“There is no sky visible in the image you've 
provided.” Answer A is correct. Here is answer B to the same question:“The sky in the image is blue.” Answer B is incorrect. Here is another question: 'What 
color are the tennis player's shoes?' Here is answer A:“ The tennis player's shoes are blue.” Answer A is incorrect. Here is answer B to the same question:
“I'm sorry, but in this image, the tennis player's shoes are not visible.” Answer B is correct.

Now please grade. The question is:  [prompt]. The answer is: [MLLM generated response].
Prompt Used to Evaluate Responses in the Object Attribute Category: 
You are a smart school teacher. Your task is to grade if an answer to a question from a student is correct. The question is misleading. It asks about an object 
in an image, but with incorrect object attribute. If the answer seems to think the object and object attribute in the question both don’t contradict with the 
image, then you reply a single word ‘Incorrect’ and briefly describe your reasoning in one sentence. The correct answer should point out that the object 
attribute is inconsistent with the image. If the answer is correct, you reply ‘Correct’, and briefly describe your reasoning in one sentence. 

Now let’s look at some examples. Here is the question: ‘What is the man doing on the black horse?’. Here is answer A:“The man is not on a black horse; he's 
on a chestnut horse. He appears to be a jockey.” Answer A is correct. It points out that the color attribute in the question is incorrect. Here is answer B to the 
same question:“The man is riding a black horse.” Answer B is incorrect. Here is another question: 'What is the black dog doing with the frisbee?' Here is 
answer A:“ The black dog is playing with a white frisbee, holding it in its mouth while laying on a porch.” Answer A is incorrect. It did not realize that the 
question was misleading. Here is answer B to the same question:“The image doesn't show a black dog, but rather a brown and white dog that appears to be 
holding or biting a frisbee.” Answer B is correct.

Now please grade. The question is:  [prompt]. The answer is: [MLLM generated response].
Prompt Used to Evaluate Responses in the Scene Understanding Category: 
You  are a smart school teacher. Your task is to grade if an answer to a question from a student is correct. The question is misleading. It asks about an object 
in a scene in an image, but the scene is inconsistent with the image. A scene can be describing indoor/outdoor environment, or weather, or other aspects of 
the surrounding. If the answer seems to think the object and the scene in the question both don’t contradict with the image, then you reply a single word 
‘Incorrect’ and briefly describe your reasoning in one sentence. The correct answer should point out that the scene is inconsistent with the image. If the 
answer is correct, you reply ‘Correct’, and briefly describe your reasoning in one sentence. 

Now let’s look at some examples. Here is the question: ‘What is the teddy bear doing in the middle of the playground?’. Here is answer A:“The image shows 
a blue teddy bear wearing a knitted sweater, positioned by a window and resting on a windowsill. It appears to be indoors rather than in a playground.” 
Answer A is correct. It points out that the scene ‘playground’ in the question is incorrect, but rather, the surrounding is indoors. Here is answer B to the same 
question:“The teddy bear is sitting in the playground.” Answer B is incorrect. Here is another question: 'What are the construction trucks doing at the 
beach?'  Here is answer A:“The construction trucks are at the beach, likely performing maintenance or construction work.” Answer A is incorrect. It did not 
realize that the question was misleading. Here is answer B to the same question:“It seems there's been a slight misunderstanding; the image you provided 
does not show construction trucks at the beach. Instead, the image depicts a road intersection with traffic lights, and there are construction or utility trucks 
present, likely engaged in maintenance or repair work.” Answer B is correct.

Now please grade. The question is:  [prompt]. The answer is: [MLLM generated response].
Prompt Used to Evaluate Responses in the Spatial Relationship Category: 
You  are a smart school teacher. Your task is to grade if an answer to a question from a student is correct. The question is misleading. It asks about one or 
more objects in an image, but the spatial relationship between objects is inconsistent with the image. If the answer seems to think the objects exist and their 
spatial relationship doesn’t contradict with the image, then you reply a single word ‘Incorrect’ and briefly describe your reasoning in one sentence. The 
correct answer should point out that the spatial relationship is inconsistent with the image. If the answer is correct, you reply ‘Correct’, and briefly describe 
your reasoning in one sentence. 

Now let’s look at some examples. Here is the question: ‘What is the color of the laptop that the man is using under the couch?’. Here is answer A:“The 
laptop on the couch appears to be silver or a light grey color.” Answer A is correct. It points out that the spatial relationship between the laptop and the 
couch is incorrect. The laptop is on the couch, not under the couch. Here is answer B to the same question:“The color of the laptop that the man is using 
under the couch is white.” Answer B is incorrect. It did not correct the misleading spatial relationship in the question. Here is another question: 'What breed 
are the dogs that are swimming under the raft?'  Here is answer A:“The dogs swimming under the raft are of the Chihuahua breed.” Answer A is incorrect. It 
did not realize that the question was misleading and that there are no dogs under the raft. Here is answer B to the same question:“The image you've 
provided shows a group of dogs on a raft rather than swimming under it.” Answer B is correct. It correctly states that the dogs are on a raft, rather than 
under a raft. You also need to notice that it is correct if the answer states that it can not see objects that match the spatial relationship in the question. For 
example, if the question is “What color is the fire hose that is hanging from the tree?", it is correct to answer "there is no fire hose hanging from the tree”.

Now please grade. The question is:  [prompt]. The answer is: [MLLM generated response].

Figure 11: Prompts Used to Evaluate Responses from MLLM Using GPT-4o.
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