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ABSTRACT

The emerging field of DNA storage employs strands of DNA bases (A/T/C/G) as a
storage medium for digital information to enable massive density and durability.
The DNA storage pipeline includes: (1) encoding the raw data into sequences of
DNA bases; (2) synthesizing the sequences as DNA strands that are stored over
time as an unordered set; (3) sequencing the DNA strands to generate DNA reads;
and (4) deducing the original data. The DNA synthesis and sequencing stages
each generate several independent error-prone duplicates of each strand which
are then utilized in the final stage to reconstruct the best estimate for the original
strand. Specifically, the reads are first clustered into groups likely originating from
the same strand (based on their similarity to each other), and then each group
approximates the strand that led to the reads of that group. This work improves the
DNA clustering stage by embedding it as part of the DNA sequencing. Traditional
DNA storage solutions begin after the DNA sequencing process generates discrete
DNA reads (A/T/C/G), yet we identify that there is untapped potential in using
the raw signals generated by the Nanopore DNA sequencing machine before they
are discretized into bases, a process known as basecalling, which is done using
a deep neural network. We propose a deep neural network that clusters these
signals directly, demonstrating superior accuracy, and reduced computation times
compared to current approaches that cluster after basecalling.

1 INTRODUCTION

The rapid growth of digital data, projected to reach 180 zettabytes by 2025, is causing a data storage
crisis that cannot be addressed by existing storage technologies (Rydning, 2022). In response,
deoxyribonucleic acid (DNA) is emerging as a promising alternative storage medium due to its
incredible density and durability. The DNA storage process includes four stages illustrated in
Figure 1: (1) an “encoding” stage in which binary data files are encoded into DNA strands (design
files) using error-correcting code (ECC) (Koblitz et al., 2000) schemes that may also overcome errors,
(2) a “synthesis” stage, which produces artificial DNA strands of each design strand and are then
stored in a storage container (LeProust et al., 2010), (3) a “sequencing” stage (Anavy et al., 2019;
Erlich & Zielinski, 2017; Organick et al., 2018; Yazdi et al., 2017) which translates a DNA strand
into a digital sequence known as a “read”, and (4) a “retrieval” stage where reads are decoded
back to binary data files while correcting any errors using the chosen coding methods. Despite the
vast potential of DNA storage, current DNA sequencers are yet to overcome challenges such as low
throughput and high costs compared to the traditional alternatives (Alliance, 2021; Shomorony et al.,
2022; Yazdi et al., 2015).

The emerging Nanopore technology offers real-time sequencing of DNA strands with drastically lower
costs and portability compared to traditional Illumina sequencing machines (Jain et al., 2016; Kono
& Arakawa, 2019). Despite having higher error rates compared to other sequencing technologies such
as Illumina, Nanopore sequencing is gaining significant attention due to its lower cost, portability,
and capability to sequence longer strands of DNA. Nanopore sequencing directly reads the nucleic
acids by passing them through a nanoscale pore, called a nanopore, embedded in a membrane. As the
nucleic acid strand moves through the pore, it impacts the electrical current in a fashion dependent on
the current bases in the pore (between four and six at any given time) (Mao et al., 2018; McBain &
Viterbo, 2024). The current produced by the DNA molecules passing through the pore is converted
into raw analog signals. In Nanopore sequencing, basecalling entails converting these raw signals into
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Figure 1: The stages in the DNA storage pipeline.

nucleotide sequences composed of the bases {𝐴,𝑇, 𝐶, 𝐺} (McBain & Viterbo, 2024). Basecalling is
done using deep neural networks.

While Nanopore sequencing benefits from a drastic reduction in costs, it also poses several challenges
due to significantly higher sequencing error rates (approximately 10% of bases suffer from edit,
insertion or deletion errors as compared to only 1% in Illumina) (Chandak et al., 2020). This
paper overcomes these errors by exploiting the raw Nanopore signals which contain significantly
more information as compared to the discrete post-basecaller read. Unfortunately, direct utilization
of the raw signal is challenging since, to the best of our knowledge, no previous work in DNA
storage has directly exploited the signals for processes such as clustering, reconstruction, and error
correction (Chandak et al., 2020).

A major stage in the DNA storage pipeline involves clustering billions of strings based on the edit
distance metric in order to identify which groups of reads were likely duplicated from the same source
DNA strand. The edit distance between two strings 𝑥,𝑦 denoted as 𝑑𝑒 (𝑥, 𝑦) is the minimum number of
edits, deletions, or insertions required to transform 𝑥 to 𝑦 (Ristad & Yianilos, 1998). The complexity
of this procedure is caused by several factors: (1) the variability and probabilistic nature of the cluster
size due to varying duplicate counts; (2) the number of original clusters in the design files; (3) the
protocols used in the experiments, for example, PCR errors pre-sequencing procedure and sampling
errors that occur during nanopore sequencing machine; and (4) the fact that the computation of a
distance matrix based on the edit distance between each pair of reads is not scalable for typical DNA
storage datasets that are very big.

Existing clustering algorithms often suffer from high computational time and compromised ac-
curacy (Qu et al., 2022; Zorita et al., 2015). While approximation algorithms and tools such as
metric embeddings and locality-sensitive hashing (LSH) offer promising avenues by sacrificing some
accuracy for substantial reductions in runtime, their applicability to edit distances remains poorly
understood. For the retrieval of a given file, the sequencing and retrieval stages take approximately a
number of days to compute; therefore, any reduction in computation time is a major step forward.

At the heart of the challenges of clustering DNA strands for DNA storage lies the impracticality of
computing the edit distance between every pair of input strands to create a distance matrix. Due to the
sheer volume of data, this is exacerbated by the quadratic time complexity of edit-distance algorithms.
Our work addresses this concern by proposing a novel approach: searching for similarity directly in
the raw analog DNA signals rather than the discrete DNA reads. Our work introduces a paradigm
shift in the field of DNA data storage retrieval by leveraging deep neural network embedding directly
on the raw signals instead of the post-basecaller strands. By embedding the raw signals directly in
an architecture composed of convolutional neural network (CNN) layers, long-short-term memory
layers (LSTM), and linear layers, we bypass the limitations associated with clustering based on the
A/T/C/G alphabet, allowing us to cluster raw signals before passing them through the basecaller. This
step can significantly reduce the errors introduced during the sequencing phase and lead to a more
accurate reconstruction of the original design file.

The key contributions to our work are as follows:

• We are the first to perform similarity groupings of DNA strands directly on the raw electrical
signals.
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• The proposed approach significantly reduces sample exclusion because it uses the continuous
dimension of electrical signals, which reduces the loss of information during the conversion
to the discrete dimension after basecalling.

• The proposed approach demonstrates the ability to achieve between 1 to 3 order-of-
magnitude faster computation times while producing clusters with high enough quality
to allow data reconstruction.

The rest of this paper is organized as follows: Section 2 defines the problem, and Section 3 reviews
related work. Section 4 introduces the uniqueness of the datasets and their creation, Section 5
describes the proposed deep learning model, and Section 6 presents an evaluation of the trained ML
models across different experiments. Section 7 uses the trained ML models for applications in the
DNA storage pipeline, and Section 8 concludes the paper.

2 PROBLEM STATEMENT

The main objective of this work is to develop a distance function for raw DNA signals that effectively
captures the similarity between them. Thus, the goal is to ensure that raw signals that originate
from the same cluster are close together in the metric space, while those that are not are far apart.
We formulate the problem as a supervised learning problem, where signals belonging to the same
cluster should have small distances between them in the transformed feature space, while signals
from different clusters should have large distances between them in the transformed feature space.
More specifically, let, without loss of generality, 𝐶 = {1, . . . , 𝑚} be the set of 𝑚 labels originating
from the design file and let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} be the set of raw DNA signals, each belonging to
one of the 𝑚 labels (we denote the label of 𝑠𝑖 by 𝑐𝑖). Our goal is to find a distance function 𝐷 that is
targeted to achieve the following properties:

1. Similarity Preservation: If two samples 𝑠𝑖 and 𝑠 𝑗 belong to the same class (𝑐𝑖 = 𝑐 𝑗 ), the
distance 𝐷 (𝑠𝑖 , 𝑠 𝑗 ) should be minimized.

2. Dissimilarity Preservation: If two samples 𝑠𝑖 and 𝑠 𝑗 belong to different classes (𝑐𝑖 ≠ 𝑐 𝑗 ),
the distance 𝐷 (𝑠𝑖 , 𝑠 𝑗 ) should be maximized.

3. Robustness to Noise: The distance function should be robust to noise and variability
inherent in raw DNA signal data.

4. Computational Efficiency: The metric should be computationally feasible for large datasets,
where 𝐷 (𝑠𝑖 , 𝑠 𝑗 ) computation has to be done in 𝑂 (1).

3 RELATED WORK

The clustering phase of the DNA storage pipeline has been explored solely in the context of clustering
the discrete DNA reads. The number of clusters in the clustering phase of the DNA storage pipeline
is typically between 1, 000 and 100, 000, while each cluster contains between 10 and 1, 000 samples.
To cluster DNA strands, the similarity between pairs of reads is computed – typically using the
edit-distance method. This presents two main challenges: (1) the computational complexity of
pairwise comparisons being O(𝑛2) where 𝑛 is the number of reads, and (2) the O(ℓ2) complexity
of the edit-distance computation, where ℓ represents the reads length. DNA clustering algorithms
address these challenges by employing (1) filtering techniques to reduce the number of pairwise
comparisons and (2) approximation methods to expedite edit-distance calculations. Both approaches
aim to decrease the time complexity with minimal accuracy loss.

Several DNA clustering algorithms in bioinformatics and metagenomics, such as UCLUST (LeProust
et al., 2010), CD-HIT (Fu et al., 2012), and USEARCH (Srinivasavaradhan et al., 2021) (which
UCLUST is based on), use different methods to deal with the two challenges. One approach
involves using greedy methods for filtering, such as identifying common short sub-sequences as a
preliminary step before edit-distance computation. Location Sensitive Hashing (LSH), which is used
in (Antkowiak et al., 2020; Rashtchian et al., 2017; Ben Shabat et al., 2023), is another emerging
method that limits the edit-distance calculation to strands that share the same LSH value to make
filtering more efficient.
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To address the latter challenge, the edit-distance computation, several methods have been proposed.
First, one can restrict the computation depth of the edit-distance, as demonstrated in (Bao et al., 2011),
to mitigate the complexity. Second, the edit-distance can be calculated based on fixed-sized short
sub-strings, as implemented in Starcode (Zorita et al., 2015) using short DNA bar-codes. Another
approach leverages heuristic similarity instead of edit-distance to expedite processing times, as
demonstrated in Clover (Qu et al., 2022) utilizing a tree structure.

We acknowledge several works (Ji et al., 2021; Li et al., 2021) that have been done in the context of
DNA embeddings. Those works differ from ours since they involve correcting strands to align with a
protein or gene. It is a process that is irrelevant in our case because our data is synthetic, and we aim
to reconstruct our original data without, for example, capturing protein structure.

In the signal domain, a common method for comparing signals is Dynamic Time Warping
(DTW) (Senin, 2008). DTW is a technique designed to compare two time series data sequences with
varying lengths whose data points are not aligned, much like strands in the discrete domain, allowing
for insertions, deletions, and substitutions. Similar to edit-distance, DTW’s computational complexity
is O(𝑚2), where 𝑚 represents the signal length. Given that signal lengths are typically ten times
longer than DNA strands, DTW computation becomes impractical for large datasets that are used in
DNA storage applications. The focus of this work is in the signal domain; therefore, it is imperative
to first develop an accurate solution to the second challenge.

4 DATASETS

Public DNA storage datasets do not share the raw signals, recall that during during the DNA storage
pipeline (Figure 1), the mapping between the DNA strands and their corresponding reads involves an
intermediate stage where the DNA strands are converted to raw signals. Therefore, it is necessary to
create our own datasets from real experiments that maps raw signals to their corresponding DNA
reads.

Each experiment in the DNA storage domain requires choosing an error-correcting code as part of the
“encoding” stage for file reconstruction. In addition, a design file is generated for each experiment. The
end-to-end experiment process involves DNA strand “synthesis” stage, followed by a “sequencing”
stage, the DNA sequencer process approximately lasts 72 hours. Then basecalling is performed on
the DNA reads, which takes approximately a week. Lastly, creating the ground truth for the dataset
lasts between 6 − 30 days.

Table 1 shows three design files and their corresponding Nanopore sequencing experiments 1. The
table outlines three different experiments that vary the number of clusters, the length of the DNA
strands, and the average edit-distance between strands in the design files, therefore resulting in high
variability in key parameters for the proposed datasets.

The design files of the different experiments encompass encoded data, index information for orderly
reconstruction, and a consistent primer shared among all reads, positioned at the beginning and
end of each strand within the file. Subsequently, the files were synthesized by “Twist Bioscience”,
resulting in “fast5” (Payne et al., 2019) file formats. The raw signal data is encapsulated in “fast5”
file formats, which are then processed by a basecaller to convert it into “fastq” format. The “fastq”
format represents the sequenced data using the following symbols: {𝐴,𝑇, 𝐶, 𝐺}. Each “fast5” file is
linked to a “fastq” file, with a “read-id” serving as the connecting identifier. Given that the standard
signal length in DNA storage datasets typically reaches up to 3000 units, for 95% of the cases, we
uniformly reshaped all of the signals to this length using common techniques.

The ground truth for clustering is obtained by brute-force calculating the edit distance between each
DNA read produced by the basecaller and the original strands from the respective design file. We
then assign each DNA read to the cluster corresponding to the closest DNA strand from the design
file. It is not practical or scalable to perform a full edit-distance computation due to its quadratic
time complexity between the millions of reads per experiment, and their corresponding design files.
To solve this, we impose a 𝑘 = 20 limit constraint, where 𝑘 is the maximum distance between any

1The “Microsoft Experiment” design file is taken from (Srinivasavaradhan et al., 2021) and the sequenced
data is from (Sabary et al., 2024). The “Deep DNA test” and “Deep DNA pilot” design file and sequenced data
are from (Bar-Lev et al., 2021).
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Table 1: Experiments differences

Experiment No. Clusters Strand Length Avg Edit Dist. Avg No. Copies Avg Strand Length post Basecalling Time Length Creation
Microsoft Experiment 10, 000 110 52.6376 300 211 18 days

Deep DNA Pilot 1, 000 140 64.4932 1, 300 240 6 days
Deep DNA Test 110, 000 140 4.0328 10 243 30 days

two strands, and all possible edit values between two strands will be within the range of [0, 𝑘]. This
is a common approach used in extensive edit-distance computations. Table 1 shows that for each
of the experiments, 𝑘 = 20 ensures each strand will be categorized to the correct cluster with high
probability since the majority of the reads are closely aligned to their intended design.

5 PROPOSED DEEP LEARNING SCHEME

We propose a deep-learning-based algorithm for computing similarity measures between the raw
signals of DNA reads. This is done by leveraging the Dorado basecaller (Technologies, 2024)
pre-trained weights. The architecture extends the Dorado model’s feature extractor, coupled with the
ArcFace loss function. In the following section, we explain our solution in detail.

The neural network (NN) architecture begins with the Dorado basecaller (Technologies, 2024), a
key component from the Oxford Nanopore Technologies (ONT) product suite, designed for DNA
sequencing via nanopore technology. ONT has developed several basecalling models that leverage
deep learning (DL) to translate the raw electrical signals from nanopore sequencing into nucleotide
sequences. These DL-based basecallers have significantly improved the accuracy and speed of
nanopore sequencing data analysis.

The Conditional Random Field (CRF) layer in the Dorado model is employed as a feature extractor for
encoding raw signals within the NN architecture. The CRF architecture includes several components,
each with its specific role in processing the sequencing data. Initially, convolutional layers are
deployed to extract salient features from the raw input signals through a sequence of convolutional
operations, capturing critical patterns essential for the basecalling task. Following are recurrent layers
(LSTM) that capture the sequential nature of the DNA sequence. They process the outputs from the
convolutional layers, taking into account the order and dependencies between the nucleotides. The
data is then passed through linear layers, which perform a linear transformation to align the processed
features with the final output space. This is followed by a Clmap layer that ensures that the scores
used for predicting the DNA sequence are within a specified range. This entire sequence of operation
is called the CRFModel.

Dorado is an open-source basecaller for Oxford Nanopore reads (Technologies, 2024). We utilize
the initial pre-trained layers of this model, truncating its architecture after the CRF layer, which
outputs a size of 1024. Subsequently, we append a linear layer with dimensions 1024 × 500, where
500 represents the number of classes. The training process is coupled with the ArcFace loss function
(Deng et al., 2019). This function is used in facial recognition and other DL tasks that involve
distinguishing between different classes. It is designed to enhance the discriminative power of the
feature embeddings produced by a NN. ArcFace loss achieves this by enforcing a margin between
the features of different classes in the angular space, making the decision boundary more distinct.
Specifically, it adds an angular margin penalty to the target angles in the softmax function, which
forces the NN to learn more separable features (Khan et al., 2024). The loss uses a cosine similarity
in its implementation. This results in a more compact clustering of features from the same class and a
wider separation between features of different classes. This loss function assists deeply in quantifying
the similarity between the different signals.

During training, we employed a fine-tuning approach by initializing our model weights with pre-
trained weights of the Dorado model and then iteratively updating them during training. For training
purpose, 500 clusters consisting of 205, 690 samples were selected arbitrarily from the “Microsoft
Experiment” dataset whose size is in the magnitude of millions of samples. The samples are divided
into three sets. The first contains 70% of the samples, and it is used for training. The second contains
15% of the samples, and it is used for validation, and the remaining 15% are used for testing purposes,
and to visualize the test set embedding. The ML models are trained with a batch size of 256 samples
using the Adam optimizer (Kingma & Ba, 2014). During the first 50 epochs of training, the training
was conducted on a subset of 100 clusters, from the initial selected 500. For the remaining 50 epochs,
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Figure 2: Deep signal embedding scheme, using a trimmed version of the Dorado model with an
appended linear layer, using the ArcFace Loss function

training was conducted on all the clusters. When training on a large amount of data, using the ArcFace
Loss, a common approach is to divide the training epochs, by gradually increasing the size of the
training set (Khan et al., 2024). The performance is measured on a 2x AMD EPYC 7513 (32 core)
server with 1TB RAM and four NVIDIA A6000 GPUs.

To evaluate the model, t-Distributed Stochastic Neighbor Embedding (tSNE) is used on the output’s
embeddings of the model, on the test set. tSNE is a dimensionality reduction technique utilized for
visualizing high-dimensional data in lower-dimensional spaces, with an emphasis on preserving the
local and global structure of the data points. Figure 3 illustrates the visualization of tSNE on the test
set, demonstrating a distinct separation between the different clusters.

6 RESULTS

100 50 0 50 100

100

50

0

50

100

Figure 3: The test set is visualized using tSNE,
with each color representing a distinct cluster. The
presence of 500 clusters makes it difficult to distin-
guish similar colors visually. Each dot-like shape
in the Figure represents a single cluster that is pri-
marily well-separated from the other clusters.

For each of the three datasets created in this
work, we have the raw signals and the sequenced
bases for each DNA read. Each of these datasets
contains 50 clusters. The “Deep DNA Pilot”
dataset’s size is 63, 849 samples, the “Deep
DNA Test” dataset’s size is 739 samples, and the
“Microsoft Experiment” dataset’s size is 16, 109
samples that were not used during the training
phase. These datasets ensure a diverse evalua-
tion. For each of the three experiments, a binary
ground truth square matrix was constructed with
a set of 50 clusters. In this matrix, the [𝑖, 𝑗] en-
try equals to 1 only if the 𝑖 and 𝑗 signals belong
to the same cluster.

The results present a comparison between raw
signals’ embeddings using a cosine similarity,
and DNA strands using the edit-distance sim-
ilarity. Recall that when using edit-distance,
the possible values are amongst {0, 1, . . . , 𝑘},
where 𝑘 is the upper limit of insertion, dele-
tion or substitution. For each different 𝑘 value,
an edit-distance similarity matrix is calculated,
where a higher score entails a higher dissimilar-
ity. The 𝑘 values chosen are 10, 20, 50, and 200;
For example, for 𝑘 = 10, the tested thresholds
set is {0, 1, . . . , 10}, and for each threshold a
prediction matrix is calculated. These values exemplify the typical approach taken by approximation-
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(a) “Microsoft Experiment”
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(b) “Deep DNA Pilot”

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

signal-model-AUC:0.92
strand-k=200-AUC:0.81
strand-k=50-AUC:0.78
strand-k=20-AUC:0.57
strand-k=10-AUC:0.53

(c) “Deep DNA Test”

Figure 4: Signal similarity vs. sequence similarity across the different experiments

based DNA clustering algorithms to achieve faster computation times with minimal loss of accuracy.
Such algorithms often use constraints or reduction techniques in edit-distance calculations (Starcode
(Zorita et al., 2015), Meshclust (James et al., 2018), SEED (Bao et al., 2011) and Microsoft algorithm
(Rashtchian et al., 2017)).

Every non-heuristic-based DNA clustering algorithm that measures similarity without direct com-
putation relies on an edit-distance constraint. The ArcFace Loss (Deng et al., 2019) uses a cosine
similarity for separating between inputs, therefore, a cosine similarity matrix is created to compare
every pair of signals. For cosine similarity, the thresholds are continuous and not discrete as when
using edit-distance, thus, containing much more data points, ranging between −1 and 1, where 1 is
identical. Using these matrices, receiver operating characteristic (ROC) are generated. The ROC
curve illustrates the trade-off between the true positive (TP) and false positive (FP) values of an
machine learning model.

Figure 4 shows the ROC curves for the proposed signal-model and the three different baselines that
use edit-distance similarity of the DNA strands with varying values of 𝑘 . We expect that models with
better classification performance will have ROC curves closer to the top-left corner since this indicates
high true positive rate with a small false positive. The curve of a random ML model is expected to be
close to the diagonal identity line. We quantitatively measure this performance according to the area
under the ROC curve (AUC) metric, normalized to [0, 1], where 1 indicates perfect classification.

Figure 4 presents the ROC curve results for the three different experiments. The figure shows that the
model that uses raw signals as inputs (signal-model) outperforms the models that use DNA strands
as inputs (strand-𝑘 = 𝑥𝑥) as higher TP rates are achieved for the same FP rates. Quantitatively, for
the “Microsoft Experiment”, we find that the signal-model achieves the best trade-off between TP
and FP with an AUC of 0.99 as compared to 0.81, 0.80, 0.57, and 0.51 for the strand-𝑘 = 200, the
strand-𝑘 = 50, the strand-𝑘 = 20, and the strand-𝑘 = 10 models, respectively. The sharp turn and
linear increase across all the models, after the rapid rise, is attributed to read pairs with distance
above 𝑘 , thus, they are all treated as equally distant. The strand-𝑘 = 200 is the only model that is
comparable performance wise to the signal-model, though its complexity is much higher. Recall
from Table 1, the average strand’s length is approximately 200, therefore using an edit-distance with
a 𝑘 = 200 value, can be treated as an unbounded edit-distance calculation. Similar trends can be seen
for “Deep DNA Pilot” and “Deep DNA Test” (refer to Figures 4(b) and 4(c), respectively). Notice
that the superior performance in the “Microsoft Experiment” compared to the other experiments is
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Figure 5: Compute times for three different experiments. For the signal-model it includes both the
embeddings and the cosine similarity computation times; for the different strand-𝑘 = 𝑥𝑥-models it
includes edit-distance similarity matrix computation time. The red cross indicates the omitted entries
in which the running time is larger than 30 hours

due to the training data originating from the same dataset. Even though the clusters that are used for
evaluation were not present during the training process, the training process was conducted on the
same dataset and thus the signals are taken from the same data distribution.

An important property of our similarity scheme is its execution time, as shown in Figure 5 on a
logarithmic scale. It shows the computation time for the similarity matrices for each model, across
all experiments. For the strand-𝑘 = 𝑥𝑥 models, this entails the edit-distance similarity matrix
computation time, and for the signal-model it entails the feed-forward that generates the embedding,
and the cosine similarity calculation times. For the “Deep DNA Pilot” dataset, the computation time
of the strand-𝑘 = 200-model is marked using a red cross, because its computation time is larger than
30 hours.

It is evident that the running time of strand-𝑘 = 𝑥𝑥 models is between 1 and 3 orders of magnitude
larger than that of signal-model. It is also evident that strand-𝑘 = 𝑥𝑥 models have a linear increase
between the different 𝑘 values across the different experiments. The variation between the datasets is
due to is due to the varying dataset sizes applied to the same model.

7 APPLICATIONS

Dealing directly with the raw signals has the potential to revolutionize the pipeline for analyzing
Nanopore sequencing, especially in the context of DNA storage. Two critical aspects of the DNA
storage pipeline are the clustering and reconstruction phases, which could benefit significantly from
this approach.

7.1 CLUSTERING PHASE

To show the potential of the signal-model in the clustering phase, we used a hierarchical clustering
algorithm (Murtagh & Contreras, 2012) that is compatible with cosine similarity. We conduct the
evaluation on the three datasets introduced earlier. Unlike modern DNA clustering algorithms which
are commonly used, such as Clover (Qu et al., 2022) and Microsoft’s (Rashtchian et al., 2017), the
signal-model computation time is considerably faster. Additionally, we include all the raw signals
samples, unlike for example Clover, which excludes 3% of the strands samples. We compare the
proposed signal-model to Clover, since Clover’s execution time is the only one that is comparable
in its execution time, however Clover’s accuracy is significantly lower than the signal model’s. The
number of clusters that Clover returns is different from the actual number, 50, and the number of
samples in each cluster greatly differs from the ground truth. Microsoft’s algorithm (Rashtchian et al.,
2017) is orders of magnitude slower than Clover; see e.g. (Ben Shabat et al., 2023; Qu et al., 2022), it
also discards a notable number of reads, and similar to Clover, the number of clusters it produces does
not align with the original cluster count, though its accuracy is higher. Both, Clover and Microsoft’s
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Table 2: Clustering scores for the three experiments using raw DNA signals

Dataset Time [s] Rand Homogeneity Completeness V measure
Microsoft Experiment 58 0.971 0.790 0.959 0.866

Deep DNA Pilot 970.82 0.887 0.528 0.859 0.654
Deep DNA Test 0.12 0.978 0.821 0.857 0.839

75 50 25 0 25 50 75

75

50

25

0

25

50

75

(a) “Microsoft Experiment”

100 75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

100

(b) “Deep DNA Pilot”

30 20 10 0 10 20 30 40

20

10

0

10

20

30

(c) “Deep DNA Test”

Figure 6: TSNE Analysis of 50 Clusters from Various Experiments

algorithm, output a subset of highly distinguished clusters, while excluding many samples. Unlike
them, Signal-model outputs clusters which are distinguishable enough so reconstruction can be done,
across all clusters.

Table 2 presents time and clustering scores for the three out-of-sample datasets introduced earlier,
for the signal-model. It should be noted that unlike the traditional DNA strands clustering, the
signal-model achieves its results on the complete set of original clusters and not a partial set. Recall
that the datasets differ in size in orders of magnitude, where the “Deep DNA pilot” is the largest
dataset, followed by the “Microsoft” dataset, and lastly, the “Deep DNA Test”.

The Table lists four different scoring measures: (1) The Rand score measures the similarity between
two clusterings, which are different ways of grouping a set of data points into clusters, by evaluating
the proportion of samples pairs that are either placed in the same cluster or placed in different clusters.
It ranges between 0 and 1, where a score of 1 indicates that the clusters are exactly identical, and
a score close to 0 suggests almost no agreement between the clusters. As the table reports, across
all three datasets signal-model achieves a very high accuracy above 88%; (2) The Homogeneity
score assesses clustering quality by determining if each cluster exclusively contains members of a
single class. It ranges between 0 and 1, where a score of 1 indicates perfect homogeneity with each
cluster composed entirely of samples from a single class, whereas a score closer to 0 indicates that
clusters contain a mix of different classes. It is evident from the table that using a larger dataset, it
hinders the performance; (3) The Completeness score evaluates clustering quality by checking if all
samples of a given class are assigned to the same cluster. It ranges between 0 and 1, with a score of 1
indicating perfect completeness, meaning that all data points belonging to a given class are entirely
within a single cluster. Across the three datasets, the performance of the signal-model is consistently
high and comparable; and (4) the V measure score, which is a harmonic mean of homogeneity and
completeness scores. It provides a single measure to assess the quality of a clustering output. It ranges
between 0 and 1, where 1 indicates perfect clustering with maximum homogeneity and completeness.
Signal’s model performance is very high for “Deep DNA Test” and Microsoft datasets, while for
“Deep DNA pilot” the performance is worse.

Figure 6 shows the tSNE visualizations of the signal-model across the three datasets. Figure 6(a)
shows that the “Microsoft Experiment” has the best separation among the clusters, as explained
earlier. Figure 6(b) exhibits higher density with larger clusters, while Figure 6(c) appears sparse with
smaller clusters, as outlined in Table 1.
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7.2 RECONSTRUCTION PHASE

The reconstruction phase is done by taking the output clusters produced by the models or algorithms
(Pan et al., 2022; Sabary et al., 2024) and it computes the error rate within each cluster. Then,
the algorithms selectively remove reads to achieve a specific error rate conducive to successful
reconstruction of the design file. In contrast, since signal-model directly uses the raw signals, the
clustering algorithm will be given more data for the reconstruction algorithms. This is because
signal-model’s approach significantly reduces the sample exclusions, but still outputs well enough
distinguishable clusters. This enables the removal of reads as necessary, potentially yielding equivalent
or improved results. When certain clustering algorithms fail to produce all clusters, signal-model
ensures that all clusters are available for reconstruction.

8 DISCUSSION AND CONCLUSION

Directly utilizing raw DNA signals for analyzing Nanopore sequencing data offers a transformative
approach to the DNA storage pipeline, particularly in the clustering and reconstruction phases. The
signal-based approach enhances both clustering and reconstruction, showing superior computational
efficiency and accuracy over traditional DNA strand-based clusterings. Experiments reveal that the
signal-model outperforms conventional clustering algorithms like Clover and Microsoft’s, providing
faster and more accurate results. Additionally, the signal-model demonstrates significantly lower
computation times, by orders of magnitude, highlighting its efficiency and scalability for large-scale
DNA storage tasks. This paper advocates for a shift towards using raw DNA signal data, improving
current methodologies, and paving the way for future advancements in DNA storage and analysis
technologies.

This paper ignites research on using raw DNA signals directly, prompting the development of a
clustering algorithm suitable for raw DNA signals. Future work can extend the approach of using
the raw signals to enhance the reconstruction algorithms as well as the decoding procedure of error-
correcting codes in the DNA storage pipeline. Additionally, further extensions of this methodology
could apply to DNA and RNA sequencing across various fields, including bioinformatics, chemistry,
and biology.

Limitations: The approach is tailored for Nanopore sequencing, but any modifications to the
Nanopore machine may necessitate retraining the ML model, increasing the complexity of its
practical application. While effective with up to 500 clusters, the algorithm has not yet been scaled
for thousands of clusters, which could pose additional challenges. The implementation relies on the
open-source Dorado model (Technologies, 2024) weights, introducing dependencies on external
updates. Additionally, further adjustments may be needed to adapt the algorithm for biological tasks,
particularly signal comparison, due to challenges like varied-length reads, which differ from the DNA
storage context.
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