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Abstract— Deploying robots in real-world environments, such
as households and manufacturing lines, requires generaliza-
tion across novel task specifications without violating safety
constraints. Linear temporal logic (LTL) is a widely used
task specification language with a compositional grammar that
naturally induces commonalities among tasks while preserving
safety guarantees. However, most prior work on reinforce-
ment learning with LTL specifications treats every new task
independently, thus requiring large amounts of training data
to generalize. We propose LTL-Transfer, a zero-shot transfer
algorithm that composes task-agnostic skills learned during
training to safely satisfy a wide variety of novel LTL task
specifications. Experiments in Minecraft-inspired domains show
that after training on only 50 tasks, LTL-Transfer can solve over
90% of 100 challenging unseen tasks and 100% of 300 commonly
used novel tasks without violating any safety constraints. We
deployed LTL-Transfer at the task-planning level of a quadruped
mobile manipulator to demonstrate its zero-shot transfer ability
for fetch-and-deliver and navigation tasks.

I. INTRODUCTION
Deploying robots in the real world requires generalization

across many novel tasks while preserving safety. For example,
an industrial robot that fetches the same components in
different orders based on the assembled product should
only learn to fetch each part once. These tasks typically
share constituents like objects and trajectory segments, which
creates an opportunity to reuse knowledge [1].

Linear temporal logic (LTL) [2] is an effective means
of specifying objectives, including safety constraints, for
reinforcement learning (RL) agents [3], [4], [5]. Its compo-
sitional grammar reflects the compositional nature of most
tasks. However, most prior approaches to RL for LTL tasks
learn to solve every new task from scratch. We propose a
zero-shot transfer algorithm, LTL-Transfer, that exploits the
compositionality of LTL task specification to safely solve
novel tasks without additional training by composing skills
learned in prior tasks. Transferring skills is more data-efficient
than learning from scratch and more computationally efficient
than planning.

We show in a simulated Minecraft-inspired domain that
LTL-Transfer can solve over 90% of 100 challenging unseen
tasks and 100% of 300 common and less complex novel tasks
after training on only 50 tasks and never violates a safety
constraint. We deploy LTL-Transfer at the task-planning level
of a quadruped mobile manipulator to solve fetch-and-deliver
and navigation tasks in zero-shot. Our key insight is efficiently
reusing learned skills by leveraging similarities between
the novel and training tasks. Code, datasets, supplementary
materials, and robot demonstration videos are at https:
//jasonxyliu.github.io/LTL-Transfer.

∗Equal contribution. 1 Brown University.

(a) go to shelf to fetch book (b) deliver juice to desk

Fig. 1: The robot is executing four task-agnostic skills
sequentially to solve a novel task F(book ∧ F(deska ∧
F(juice ∧ Fdeska))), i.e., fetch and deliver a book then
a juice bottle to the user. Two of the four skills are shown.

II. PRELIMINARIES

Linear Temporal Logic (LTL) for Task Specification:
LTL is a widely used alternative to numerical rewards for task
specification. An LTL formula φ is a Boolean function that
determines whether a given trajectory satisfies the objective
expressed by the formula. Littman et al. [3] showed that LTL
can express non-Markovian, temporal tasks that numerical
rewards cannot, and it has become a target language for
acquiring task specification in many settings, including from
natural language [6], [7] and learning from demonstration [8].
Formally, an LTL formula is interpreted over traces of Boolean
propositions over discrete time and is defined through the
following recursive syntax:

φ := α | ¬φ | φ1 ∨ φ2 | Xφ | φ1 U φ2. (1)

α ∈ α is a proposition that maps a state to a Boolean
value; φ, φ1, and φ2 are valid LTL formulas. The operator
X (next) is used to define a property Xφ that holds if φ
holds at the next time step. The formula φ1 U φ2 with the
binary operator U (until) specifies that φ1 must hold until φ2

first holds at a future time. The operators ¬ (not) and ∨ (or)
are identical to propositional logic operators. We also utilize
the following abbreviated operators: ∧ (and), F (finally or
eventually), and G (globally or always). Fφ specifies that
the formula φ must hold at least once in the future, and Gφ
specifies that φ must always hold in the future. Consider the
Minecraft map depicted in Figure 2. The task of collecting
wood and axe in an arbitrary order is specified by the LTL
formula Faxe ∧ Fwood. The formula F(axe ∧ Fwood)
specifies collecting wood at least once after collecting axe.
Fwood ∧ ¬wood U axe specifies the task of collecting
wood only after axe has been collected.

Every LTL formula can be represented as a Büchi automa-
ton [9], [10] interpreted over an infinite trace of truth values of
the propositions in the formula, thus providing an automated
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translation of an LTL specification to a transition-based
representation. We consider task specification in the co-safe
fragment of LTL [11], [12] where formulas can be verified by
a finite trace, thus making it ideal for episodic tasks. Camacho
et al. [5] showed that every co-safe LTL formula φ can be
translated to an equivalent reward machine (RM) [13], [14],
Mφ = ⟨Qφ, q0,φ,Qterm,φ, φ, Tφ, Rφ⟩; where Qφ is the
finite set of states, q0,φ is the initial state, Qterm,φ is the set
of terminal states; Tφ : Qφ × 2|α| → Qφ is the deterministic
transition function; and Rφ : Qφ → R represents the reward
accumulated by entering a given state. Figure 2d shows
the reward machine graph representing the LTL formula
Fwood ∧ ¬woodUaxe. Nodes encode progressed RM states,
0 for an accepting state and 3 for a failure state. Boolean
formulas label edges. Truth assignments of propositions α
that satisfy edges induce transitions in the RM. Our proposed
algorithm, LTL-Transfer, for transferring learned policies
to solve novel LTL specifications, is compatible with all
algorithms that generate policies by solving a product MDP
of the reward machine Mφ and the task environment.

Options Framework: Sutton and Barto [15] introduced
a framework, termed options or skills, for incorporating
temporally extended actions into reinforcement learning. An
option o = ⟨I, β, π⟩ is defined by the initiation set I , a set of
states where the option policy can be executed; the termination
condition β, which determines when the execution ends; and
the option policy π. Our proposed algorithm, LTL-Transfer,
compiles policies learned during training into task-agnostic
options that are transferred to solve novel tasks.

III. RELATED WORK

Most approaches extending reinforcement learning (RL) to
temporal tasks first generate a product MDP of the state space
and the automaton equivalent of the LTL task specification [3],
[14], [4], [5], [13]. Notably, Jothimurugan et al. [16] proposed
interleaving graph-based planning on the automaton with
RL to bias exploration towards trajectories that satisfy the
LTL specification. Although these approaches exploited the
compositional structure of LTL to accelerate learning, they
did not exploit the compositionality to transfer to novel tasks.
Thus, the policy to satisfy a novel LTL specification must be
learned from scratch.

A common approach towards generalization across tem-
poral tasks has been to learn independent policies for
subtasks [17], [18], [19], [20]. Given a new task, these
methods then sequentially compose the learned policies in an
admissible order. Consider the Minecraft-inspired grid world
depicted in Figure 2a containing wood and axe objects. The
subtask-based methods learn policies to solve subtasks Fwood
and Faxe involving reaching each object. When tasked
with the specification φtest = Fwood ∧ (¬wood U axe),
i.e., collect wood, but do not collect wood until axe is
collected, the subtask-based methods would violate the
ordering constraint by reaching axe through the grid cells
containing wood. These approaches rely on additional fine-
tuning to solve the target task correctly. We propose a general

framework for transferring learned policies to novel tasks in
zero-shot without violating any safety constraints.

Kuo et al. [21] proposed learning subnetworks for propo-
sitions and operators, then creating the final policy network
through composition. Vaezipoor et al. [22] proposed learning
a latent embedding over LTL formulas using a graph neural
network to solve novel LTL tasks. In contrast, our method
uses formal methods to identify learned policies best suited
for transfer, thus requiring orders of magnitude fewer training
tasks to achieve comparable results. Furthermore, neither
method can guarantee the preservation of safety constraints
like our approach. Xu et al. [23] considered transfer learning
between pairs of source and target tasks, while our approach
trains on a collection of tasks and transfers to a set of
novel tasks. Nangue Tasse et al. [24] attempted zero-shot
composition through logical and temporal compositions of
policies, but their approach assumes that a given task must be
satisfiable. By leveraging the structure of the task automaton,
our proposed algorithm aborts execution immediately after it
identifies the task as unsolvable given the learned skills.

A qualitatively distinct approach to zero-shot generalize to
novel tasks is model-based RL that plans with an estimated
transition model [25], [26]. Compared to model-based meth-
ods, our approach transfers learned policies in zero-shot thus
requires significantly less computation at test time.

Our approach draws inspiration from prior works on
learning portable skills in Markov domains [27], [28], [29],
[30]. These approaches learn task-agnostic representations of
preconditions, constraints, and effects of an option [15]. We
learn portable skills to satisfy novel LTL task specifications.

IV. PROBLEM DEFINITION

We represent the environment as an MDP without the
reward function MS = ⟨S,A, TS⟩, where S is the set of
states, A is the set of actions, and TS : S ×A× S → [0, 1]
represents the transition dynamics of the environment which
we assume to be hidden from the RL algorithm. Further, a
set α of Boolean propositions represents the facts about the
environment and forms the compositional building blocks for
specifying tasks. We assume a labeling function L : S → 2|α|

that maps the state to the Boolean propositions is given. A
task in the environment MS is specified by a linear temporal
logic (LTL) formula φ, and it is translated to a reward machine
Mφ = ⟨Qφ, q0,φ,Qterm,φ, φ, Tφ, Rφ⟩ detailed in Section II.

Given a set of training tasks Φtrain = {φ1, φ2, . . . , φn},
specified by LTL, and policies for a set of options Oq learned
from these training tasks, a zero-shot transfer algorithm
needs to solve a novel LTL task φtest ̸∈ Φtrain in the same
environment without additional training.

V. LTL-TRANSFER WITH TRANSITION-CENTRIC OPTIONS

A. Algorithm Overview

Consider the environment map depicted in Figure 2b.
Assume an RL algorithm has learned option policies to
collect axe and wood individually from the training tasks
Faxe and Fwood, respectively. Now given the test task
φ1 = F(axe ∧ F wood), i.e., first collect axe, then wood, a



Fig. 2: An example of tasks, the environment, and trajectories. The robot learned to solve the two training LTL tasks and is
expected to solve two novel tasks φ1 and φ2. Figure 2a depicts the trajectories output by a subtask-based algorithm (blue for
φ1, red for φ2). Figure 2b depicts the trajectories produced by our proposed algorithm LTL-Transfer. Note that LTL-Transfer
does not start execution for the task φ2 as the two learned policies do not guarantee the preservation of the ordering constraint.
Figure 2c depicts the optimal trajectories for the novel tasks φ1 and φ2. Figure 2d is a graph representation of the reward
machine (RM) for the task φ2. Nodes represent RM states. Edges represent Boolean formulas.

transfer algorithm should identify that sequentially composing
the policies for Faxe and Fwood solves the new task φ1

(as depicted in blue). Then consider a different test task
φ2 = Fwood ∧ ¬wood Uaxe, i.e., first collect axe, then
wood, but avoid wood until axe is collected. The transfer
algorithm must realize that the policy that satisfies Faxe does
not guarantee avoiding wood while going to axe. Therefore, it
must not start execution using only these two learned policies
to avoid accidentally violating the ordering constraint.

We developed a zero-shot transfer algorithm, LTL-Transfer,
that composes learned policies to solve novel LTL tasks while
enforcing ordering constraints. It operates in two stages.

1) First, LTL-Transfer accepts the set of training tasks
Φtrain and the policies learned from the training tasks
and compiles a set of task-agnostic, portable options Oe.

2) Next, it identifies and executes a sequence of options
from the set Oe to solve a novel task φtest.

We can use a class of RL algorithms that operate on a
product MDP composed of the environment MS and the
reward machine Mφ to learn option policies from the training
LTL tasks [3], [14], [4], [5], [13]. We chose LPOPL [4]
because it explicitly allows for sharing policies across LTL
task specifications that share progression states. Given a set
of LTL tasks, LPOPL first translates each task to a reward
machine (RM) and decomposes tasks to subtasks, each of
which corresponds to a state in the RM, then learns an action-
value function, represented by a DQN [31], for each subtask.
Please see the supplementary materials for implementation
details of LPOPL. The learned policy is Markov with respect
to the environment states S for a given RM state, i.e., the
policy to be executed in the RM state q ∈ Qφ is πφ

q : S → A.
Executing the state-centric option oφq ∈ Oq with the policy

πφ
q from the reward machine state q triggers a transition

in the RM on a path to an acceptance state. There can
be multiple outgoing transitions from an RM state, so the
target RM transition of an option oφq is conditioned on the
environment state s ∈ S where the execution was initiated. We
propose compiling each state-centric option, oφq , into multiple
transition-centric options by partitioning the initiation set
of the state-centric option based on the estimated success
probability of its policy satisfying the target RM transition
from the starting environment state. Each resulting transition-

centric option will maintain the satisfaction of self-transition
edge eφq,q from the starting RM state q until it triggers the
target RM transition eφq,q′ . Our insight is that each transition-
centric option triggers a transition in the reward machine on
a path to an acceptance state, and these RM transitions may
be shared across different tasks. Thus, the transition-centric
options Oe are portable across different tasks. We describe
the compilation algorithm in Section V-B.

Given a novel LTL task specification φtest ̸∈ Φtrain,
our transfer algorithm first constructs a reward machine
representing the task, Mφtest

, then identifies a path through
the reward machine that can be traversed by sequentially
executing transition-centric options from the set Oe. Our
transfer algorithm is sound, and it terminates. We describe
the details of the transfer algorithm in Section V-C.

The key advantage of our approach is that the option
compilation can be done offline for any environment. We can
then transfer the options to solve novel tasks at execution
time in zero-shot. Thus, learning to solve a limited number
of LTL tasks can help solve a wide gamut of unseen tasks.

B. Compilation of Transition-Centric Options

The policy learned to satisfy an LTL task specification
φ identifies the current reward machine state q ∈ Qφ and
executes a Markov policy πφ

q until the state of the reward
machine progresses. We represent this policy as a state-centric
option, oφq = ⟨S, βeφq,q , π

φ
q ⟩, where the initiation set is the

entire state space S of the environment; the option terminates
when the truth assignment of the propositions α violates
the self-transition eφq,q from the RM state q. The termination
condition βeφq,q is formally defined as follows,

βeφq,q =

{
1, if L(s) ⊭ eφq,q
0, otherwise.

(2)

A transition-centric option oeφq,q,eφq,q′
executes a Markov

policy that ensures that the truth assignment of the proposi-
tions α satisfies the self-transition edge eφq,q at all time until
the policy yields a truth assignment that satisfies the target
outgoing edge eφq,q′ . We define a transition-centric option as
follows,

oeφq,q,eφq,q′
= ⟨S, βeφq,q , π

φ
q , e

φ
q,q, e

φ
q,q′ , feφq,q′

⟩. (3)



Algorithm 1 Compile State-Centric Options to Transition-
Centric Options
1: function COMPILE(MS , Φtrain,Oq)
2: Oe ← ∅
3: for φ ∈ Φtrain do
4: Mφ ← GENERATERM(φ)
5: Oφ

q ←
{
oφ

′
q ∈ Oq : φ′ = φ

}
6: for oφq = ⟨S, βφ

eq,q
, πφ

q ⟩ ∈ O
φ
q do

7: Qout =
{
q′ : q′ is an out-neighbor of q

}
8: ∀q′ ∈ Qout : E ←

{
(eφq,q, e

φ

q,q′ ) : eφq,q is the self edge
}

9: for s ∈ S do
10: Generate Nr rollouts from s using πφ

q

11: Record edge transition frequencies ns(e
φ

q,q′ ) ∀ (eφq,q, e
φ

q,q′ ) ∈
E

12: ∀ q′ ∈ Qout : feφ
q,q′

(s)←
ns(e

φ
q,q′

)

Nr

13: Oφ
q,e ←

{
oeφq,q,e

φ
q,q′

= ⟨S, βe
φ
q,q

, πφ
q , eφq,q, e

φ

q,q′ , fe
φ

q,q′ ⟩
}

14: Oe ← Oe ∪ Oφ
q,e

15: return Oe

The initiation set is the entire state space S of the environment;
the termination condition βeφq,q is defined by the violation of
the self-transition edge eφq,q; the option’s policy is Markov
πφ
q : S → A; eφq,q and eφq,q′ represent the self-transition and

the target outgoing edge, respectively; and feφ
q,q′

: S → [0, 1]

represents the success probability of the policy πφ
q satisfying

the target edge eφq,q′ starting from the environment state s ∈ S .
Algorithm 1 describes our approach to compiling each

state-centric option oφq to a set of transition-options{
oeφq,q,eφq,q′

: q ∈ Qφ, q
′is out-neighbor of q

}
. Executing the

policy πφ
q of the state-centric option may satisfy different

outgoing edges eφq,q′ of the reward machine state q depending
on what environment state s ∈ S the execution was initiated.
Thus, the success probability feφ

q,q′
acts as a soft segmenter

of the state space S; it can be estimated by policy rollouts
from all environment states in discrete domains or using
sampling-based methods [29], [30] in continuous domains.

C. Transferring to Novel LTL Task Specification

Algorithm 2 describes the zero-shot transfer algorithm
that composes transition-centric options from the set Oe to
solve a novel test task φtest in the environment MS . Line 2
generates the reward machine (RM) graph for the test task.
Line 3 examines each edge eφtest

q,q′ of the RM, identifies the
transition-centric options that satisfy that edge transition, and
prunes an edge if no such option is found. Line 7 identifies
and caches all paths from the current state q to the accepting
state q⊤ of the reward machine. Lines 8 and 9 identify a set
of all eligible options that can potentially achieve an RM
transition from the current state to a progressed state on a
path to the accepting state.

Lines 12 and 13 then execute the option with the highest
success probability of satisfying the target edge transition,
estimated by f . If the option fails to progress to another RM
state, we delete it from the set (Line 15) and execute the next
option. If the set of eligible options is empty at any point
without reaching the accepting RM state q⊤, Line 17 exits
with a failure. A successful transfer occurs when the RM
progresses to the accepting state q⊤.

Algorithm 2 Zero-shot transfer to test task φtest

1: function TRANSFER(MS , φtest, Oe)
2: Mφtest ← GENERATE RM(φtest)
3: Mφtest ← PRUNE(Mφtest )
4: s← INITIALIZE(MS )
5: q ← q0,φtest

6: while q ̸= q⊤ do
7: Pcache ←

{
pi : pi = [e0, . . . , eni

] path from q to q⊤ in Mφtest

}
8: Op[0] =

{
oe1,e2

∈ Oe : MATCHEDGE((e1, e2), (e
φtest
q,q , p[0]))

}
∀p ∈ Pcache

9: O[0] =
⋃

pOp[0]

10: ⟨s′, q′⟩ ← ⟨s, q⟩
11: while O[0] ̸= ∅ and q′ = q do
12: o∗e1,e2

← argmaxoe1,e2
∈O[0]

fe2 (s)

13: ⟨s′, q′⟩ ← EXECUTE(π∗)
14: if q′ = q then
15: O[0] ← O[0] \ o∗e1,e2

16: if q′ = q then
17: return Failure
18: else
19: ⟨s, q⟩ ← ⟨s′, q′⟩
20: return Success

D. Matching Options to Reward Machine Transitions

The edge-matching conditions determine whether we can
safely apply a transition-centric option to transition along an
edge of the reward machine (RM). We used the edge-matching
conditions to prune the RM graph to retain only the edges
matched with available options (Algorithm 2 Line 3) and
identify eligible options from a given RM state (Algorithm 2
Line 8). Given a test task φtest, when the current RM state
is q, its self-transition edge is eφtest

q,q and the target outgoing
edge is eφtest

q,q′ , to determine if a transition-centric option oe1,e2
matches the target transition in the RM, we propose two edge-
matching conditions, Constrained and Relaxed. Both ensure
the task execution does not fail due to an unsafe transition.

Constrained Edge-Matching Condition requires that
every truth assignment satisfying the self-transition edge e1 of
the option also satisfies the self-transition edge eφtest

q,q of the
reward machine Mφtest

. Similarly, every truth assignment
satisfying the outgoing edge e2 of the option must satisfy
the target transition eφtest

q,q′ of the test task’s RM. This
strict requirement reduces the applicability of the learned
options but ensures that the target edge is always achieved.
The Constrained edge-matching condition is satisfied if the
following Boolean expression holds:

¬sat(e1 ∧ ¬eφtest
q,q ) ∧ ¬sat(e2 ∧ ¬eφtest

q,q′ ). (4)

Let sat(g) be a Boolean function that is true if and only if a
truth assignment exists to satisfy the Boolean formula g.

Relaxed Edge-Matching Condition requires the self edges
e1 and eφtest

q,q share satisfying truth assignments, so must the
outgoing edges e2 and eφtest

q,q′ . However, it allows the option
to have valid truth assignments that may not satisfy the target
outgoing edge, yet none of the truth assignments should
trigger a transition to an unrecoverable failure state q⊥. We
identify q⊥ as a sink state of the RM graph without outgoing
edges. Further, all truth assignments that terminate the option
must not satisfy the self-transition edge of the test task’s
reward machine. The Relaxed edge-matching condition can



retrieve more eligible options. It is satisfied if the following
Boolean expression holds:

sat(e1 ∧ eφtest
q,q ) ∧ sat(e2 ∧ eφtest

q,q′ ) ∧
¬sat(e1 ∧ e⊥) ∧ ¬sat(e2 ∧ e⊥) ∧ ¬sat(e2 ∧ eφtest

q,q ).
(5)

E. Optimization
We parallelized the two key computational bottlenecks of

LTL-Transfer, i.e., the estimation of the success probability
feφ

q,q′
and the evaluation of the edge-matching condition since

there are no shared memory requirements. We implemented
the Relaxed edge-matching condition using a propositional
model counting algorithm [32] from SymPy [33], and the
Constrained edge-matching condition using string comparison
to circumvent the model counting problem and found a
significant speed-up.

VI. EXPERIMENTS

The aim of our evaluation is to test the hypothesis that
LTL-Transfer can efficiently transfer learned skills to solve
novel temporal tasks while preserving safety guarantees. We
tested our hypothesis in simulation and on a physical robot.
The simulation domain allows us to scale skill transfer across
a wide variety of tasks, while the real robot demonstrates the
practicality of our approach for real-world mobile manipu-
lation tasks. We first defined five types of specifications of
varying complexity for training and testing, then conducted
experiments to evaluate the following hypotheses,

1) H1: LTL-Transfer exceeds the baselines’ success rates
of solving novel tasks.

2) H2: Relaxed edge-matching condition leads to higher
success rates than the Constrained condition.

3) H3: Transferring learned policies to certain specification
types (introduced in Section VI-B) leads to higher
success rates.

4) H4: LTL-Transfer is robust to highly uncertain transition
dynamics.

A. Task Environment
We tested LTL-Transfer in a Minecraft-inspired grid-

world domain commonly seen in compositional reinforcement
learning (RL) and integration of temporal logics with RL [20],
[4], [16], [19]. This domain is particularly well suited for
testing transfer learning with temporal tasks as policies
to solve individual tasks can be learned rapidly with few
computational resources. Thus, we can run comprehensive
evaluations of skill transfer across a full factorial of training
and test task types that cover a wide variety of LTL templates.
We conducted experiments on four maps, similar to that
depicted in Figure 2, with a dimension of 19 × 19. Each
location in the map is either vacant or occupied by one of nine
object types. Multiple instances of an object type may occur
across the map. After the agent enters a grid cell occupied
by an object, the proposition representing that object type
becomes true. Actions are moving in four cardinal directions;
an invalid action results in no movement. We tested zero-shot
transfer in both deterministic and stochastic domains.

B. Types of Task Specifications

For a comprehensive evaluation of transferring learned
policies across various LTL specifications, we considered
the following three types of ordering constraints, proposed
by Shah et al. [8], which constitute five specification types.
Each constraint is defined on a pair of propositions a and b.
Without loss of generality, we assume that a precedes b.

1) Hard ordering constraints occur when b must never be
true before a. This property is expressed through the
LTL formula ¬b U a.

2) Soft ordering constraints allow b to occur before a as
long as b happens at least once after a becomes true for
the first time. Soft orders are expressed through the LTL
formula F(a ∧ Fb).

3) Strictly Soft ordering constraints are similar to soft
orders except that b must be true strictly after a first holds.
Thus, a and b holding simultaneously would not satisfy
a strictly soft order. Strictly soft orders are expressed
through the LTL formula F(a ∧ XFb).

We sampled five training sets, with 50 formulas in each,
that represent five different specification types, Hard, Soft,
Strictly-Soft, No-Orders, and Mixed, and a test set of 100
formulas for each type. This imitates the real-world scenario
where users do not know the test task beforehand, so the robot
must be trained on a limited set of training tasks then transfer
to a wide variety of novel tasks. When constructing a test set,
we excluded tasks already in the training set. All specifications
in the Hard, Soft, and Strictly-Soft sets were expressed using
the respective templates described above. No-Orders sets
have no ordering constraints, e.g., Fa ∧ Fb ∧ Fc. In the
Mixed set, each binary precedence constraint was expressed
as one of the three ordering constraints described above. A
given task in the environment involves visiting a specified
set of object types in an admissible order determined by
ordering constraints. Please see the supplementary materials
for example formulas from each specification type.

C. Results and Discussion

Comparison with Baselines: We compare the performance
of LTL-Transfer to three baselines, i.e., LTL2Action [22],
LPOPL [4], and a random policy.

LTL2Action proposed by Vaezipoor et al. [22] embeds LTL
specifications using a graph neural network and sequentially
selects the next proposition to satisfy. This pre-trained
embedding is appended to the state features to yield a goal-
conditioned task policy, termed LTL Bootcamp, which serves
as the upper bound of LTL2Action’s performance on novel
tasks. We trained the LTL Bootcamp on the same training
sets as LTL-Transfer and compared their performance.

LPOPL, detailed in Section V-A, serves as the lower bound
that any transfer algorithm must surpass due to its limited
transfer ability to solve novel tasks. While LPOPL was not
explicitly designed for zero-shot transfer, it can satisfy task
specifications that are a progression of a training LTL formula
because of its use of LTL progression and multi-task learning.



(a) Success Rate (b) Violation Rate (c) Relaxed Match (d) Constrained Match (e) Stochastic Domain

Fig. 3: Figure 3a shows the success rates of four methods on five test sets after training on the Mixed training set. Figure 3b
depicts their specification violation rates (with a shared legend). Figure 3c and 3d show the success rates of LTL-Transfer
on five test sets after training on Mixed sets of various sizes using Relaxed and Constrained edge-matching condition,
respectively. The error bars depict the 95% credible interval if the successful transfer was modeled as a Bernoulli distribution.
Figure 3e shows the success rate as the slip probability increases averaged over four maps.

Figure 3a depicts the success rate of all the methods on
100 novel tasks in each test set described in Section VI-
B after training on 50 tasks of the Mixed type. LPOPL
performed worse than the random policy as it did not attempt
to satisfy any specification that did not exist in its progression
set. Both LTL-Transfer and LTL2Action have near-perfect
success rates on Soft, Strictly-Soft, and No-Orders test set as
these specifications do not have irrecoverable failure state.
Specifications in Hard and Mixed test sets have failure states.
Thus, we observe a lower success rate across all methods.
However, LTL-Transfer demonstrates the best transfer success
rate in the difficult test sets. Crucially, Figure 3b shows
that LTL-Transfer never violated any specification, while
LTL2Action’s specification violation rate is similar to that
of the random policy, which could mean that LTL2Action
essentially acts randomly given an infeasible task.

Effect of Edge-Matching Condition: We trained LTL-
Transfer on Mixed training sets of varying sizes and tested
zero-shot transfer on all five test sets. The success rates of
using the Relaxed and Constrained edge-matching conditions
are depicted in Figure 3c and Figure 3d, respectively. We
observed that LTL-Transfer using the Relaxed edge-matching
condition successfully transferred to significantly more novel
specifications across all types, thus supporting H2.

Relative Difficulty of Specification Types: Figure 3c
shows that LTL-Transfer with the Relaxed edge-matching
condition can perfectly transfer to novel tasks of Soft, Strictly-
Soft and No-Orders types after training on very few tasks.
After training on 50 tasks, LTL-Transfer can transfer to over
95% of novel tasks of the Mixed type. Tasks of the Hard
type are the most difficult to transfer to. Figure 3d shows that
the different tasks are equally difficult to transfer to using the
Constrained edge-matching condition. Thus, H3 is supported
only by using the Relaxed edge-matching condition.

Stochastic Environments: To evaluate the robustness of
LTL-Transfer to stochastic transitions, we increased the slip
probability from 0 to 0.4 and observed a slight 3% decrease
in transfer success in Figure 3e, which supports H4.

D. Robot Demonstrations

We deployed LTL-Transfer at the task-planning level of a
quadruped mobile manipulator, Spot [34], with off-the-shelf
motion planning and grasping capabilities in a discretized

indoor environment where the robot can fetch and deliver
objects while navigating through the space. LTL-Transfer first
learned policies from 20 training tasks, then transferred the
learned skills to 100 novel tasks from the five specification
types defined in Section VI-B, 50 of which were executed
on the robot 1. Please see the supplementary materials for all
test tasks executed on the robot. The environment contains
31 grid cells, but LTL-Transfer works in larger domains,
like 19× 19, as presented in Section VI-A. The state space
includes the locations of the robot and six landmarks, i.e.,
two desks, a couch, a door, a bookshelf with a book, and
a kitchen counter with a juice bottle on top. Actions are
moving in the four cardinal directions. Only navigation skills
are learned from the training tasks. Picking is executed when
the goal location of a navigation option is the bookshelf or
the counter. Placement is executed after the robot stops at
the desk or the couch and has picked up an object.

VII. CONCLUSIONS

We introduced LTL-Transfer, a zero-shot transfer algorithm
that uses the compositionality of LTL task specification
to maximally transfer learned policies to solve various
novel tasks. Experiments in deterministic and stochastic
Minecraft-inspired domains showed that LTL-Transfer can
solve complex unseen tasks without violating any safety
constraints. We deployed LTL-Transfer at the task-planning
level of a mobile manipulator to safely solve fetch-and-deliver
and navigation tasks in zero-shot. We envision incorporating
long-term planning and intra-option policy updates to produce
not just satisfying but optimal solutions to novel tasks.
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