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Abstract
This study explores the capability of Large Language Models (LLMs) to evaluate causality in causal
graphs generated by conventional statistical causal discovery methods—a task traditionally reliant on
manual assessment by human subject matter experts. To bridge this gap in causality assessment, LLMs
are employed to evaluate the causal relationships by determining whether a causal connection between
variable pairs can be inferred from textual context. Our study compares two approaches: (1) prompting-
based method for zero and few-shot causal inference (unsupervised) and, (2) fine-tuning language models
for the causal relation prediction task (supervised). While prompt-based LLMs have demonstrated
versatility across various NLP tasks, our experiments on biomedical and general-domain datasets show
that fine-tuned models consistently outperform them, achieving up to a 20.5-point improvement in F1
score—even when using smaller-parameter language models. These findings provide valuable insights
into the strengths and limitations of both approaches for causal graph evaluation.
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1. Introduction
Uncovering underlying causal relationships is a fundamental task across various scientific disci-
plines, as these relationships form the basis for understanding and decision-making. Statistical
causal discovery methods [1, 2] estimate causal structures from observational data, generating
causal graphs that visualize these relationships, as illustrated in Figure 1.
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Figure 1: Illustration of a
causal graph.

Despite significant advancements in causal discovery, a major
challenge remains: verifying the accuracy of causal graphs pro-
duced by these predominantly unsupervised methods. Typically,
this verification relies on domain experts manually validating the
graphs, often through controlled experiments. However, such ex-
periments can be prohibitively expensive or, in some fields, entirely
unfeasible due to ethical constraints. This highlights the pressing
need for alternative, scalable methods to verify causal graphs.

Another approach to verifying causal graphs is using external
knowledge from text sources. Causal information is widely dis-
tributed across diverse sources, making it an invaluable resource
for assisting human experts in validating the accuracy of causal
graphs. However, as the number of variables in a causal graph
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grows and the volume of textual information expands rapidly, manual verification becomes
increasingly impractical. Natural Language Processing (NLP) technologies, including Large
Language Models (LLMs) like BERT [3] and ChatGPT, offer a promising solution. These models
infer causal relationships between node pairs by leveraging their pre-trained knowledge to
analyze the relevant textual context.

In this work, we examine the feasibility of applying NLP technologies to automate causal
graph verification. Through quantitative evaluation on causal text datasets, we investigate the
performance of two distinct types of NLP models: (1) pre-trained language models fine-tuned for
the task of causal relation classification (supervised), and (2) prompt-based LLMs (unsupervised).
To sum up the results, prompt-based LLMs do not necessarily perform better than supervised
models on this task, despite their promising performance on diverse clinical NLP tasks [4]. We
conduct a detailed analysis to explore the potential factors contributing to this performance
gap. Our findings offer valuable insights into the strengths and limitations of these approaches
for scalable, automated causal graph validation.

2. Related Work
The research on causal relation extraction/classification from text sources has been done mostly
in supervised setting, especially in biomedical-chemistry domains [5, 6, 7, 8, 9, 10], and open-
domain [11, 12, 13, 14]. The pre-training and fine-tuning paradigm in NLP led to state-of-the-art
performance in many downstream tasks; likewise, most of the related works listed above fine-
tune the pre-trained language models such as BERT [15], or propose some sort of enhancement
for BERT such as the work by [16, 10]. Their results on relation extraction on biomedical
datasets has been encouraging, motivating us to choose BERT as the model for our fine-tuning
experiments. On the other hand, recent works [17, 18, 19, 20, 21, 22] show that Large Language
Models (LLMs) effectively provide background knowledge for causal discovery, and their findings
suggest that LLM-based prompting methods achieved superior performance than non-LLM
approaches. For instance, [4] shows that LLMs perform well at zero and few-shot information
extraction from clinical text, despite not being trained specifically for the clinical domain.
Similarly, other works [23, 24] suggest that LLMs (i.e., InstructGPT [25], ChatGPT, GPT-3.5,
etc.), perform well in various downstream tasks even without tuning the parameters, but only
with few examples as instructions/prompts. This inspires us to evaluate such instruction, or
prompt-based LLMs, on our causal relation classification task. In this work, we compare the
prompt-based LLMs against the more traditional supervised model where it is trained/fine-tuned
using the training data for causal relation classification task.

3. Approach
Given a pair of entities 𝑒1 and 𝑒2 (i.e., node pairs in causal graph such as smoking and lung
cancer), the LLM is tasked with determining whether a causal relationship exists between them.
This formulation frames the problem as a classification task, where the relation is categorized as
either causal or non-causal. We explore both prompt-based and fine-tuned LLMs, as below:

3.1. Prompt-based LLMs
In prompt-based learning, a pre-trained language model is adapted to a specific task via priming
on natural language prompts—pieces of text that are combined with an input and then fed to
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the language model to produce an output for that task [4]. Prompt-based learning requires the
specification of a prompt template to be applied to the input, thus we designed two settings for
the prompt-based LLMs experiments: Zero-Shot Prompt and Few-Shot Prompt settings.

Zero-Shot Prompt. In the Zero-Shot Prompt setting, the prompt directly instructs the
LLM to answer a causal question about a given pair of entities, without including any training
examples—i.e., following a zero-shot approach. Formally, we define the model prediction as

𝑦 = ℳ(𝑃 (𝑒1, 𝑒2, 𝑆)), 𝑦 ∈ 𝒴

where 𝑒1 and 𝑒2 denote the entity pair, 𝑆 represents the context sentence, 𝑃 (·) is the prompt
construction function, and ℳ is the LLM. We hand-crafted the following prompt variations.

A: two-choices, no-context

There is a causal relationship between 𝑒1 and 𝑒2. Answer with ‘True’ or ‘False’

B: two-choices, with-context

Given the following context, classify the relationship between 𝑒1 and 𝑒2 as causal or non-
causal. Answer with ‘causal’ or ‘non-causal’. Context: 𝑆

C: three-choices, with-context

Given the context below, is there a causal relationship between 𝑒1 and 𝑒2. In case only
a correlation, but no strict causation between 𝑒1 and 𝑒2, answer with ‘False.’ In case of
uncertainty, answer with ‘Maybe.’ In a case where there is clearly a causal relationship, and
not just a correlation between 𝑒1 and 𝑒2, answer with ‘True.’ Context: 𝑆

The LLMs are strictly constrained to respond with two choices, as in variations (A) and (B),
ensuring a fair comparison with the fine-tuned model. However, in variation (C), we allow
the LLMs to return a "Maybe" option when they indicate insufficient evidence to determine
causality. Additionally, we varied the prompt by either including or omitting the textual context
sentence 𝑆, referred to as with-context and no-context, respectively.

Few-Shot Prompt. In the Few-Shot prompt setting, the prompt includes 𝑛-number of
labeled training examples to guide the model’s prediction, allowing the LLMs to process and
learn from these examples before making predictions. This method also often referred as in-
context learning [26]. Each training example contains: (a) the entity pair, (b) the relation label
(causal or non-causal), and (c) context sentence. Formally, we define:

𝑦 = ℳ
(︀
𝑃𝑛

(︀
{(𝑎𝑖, 𝑏𝑖, 𝑆𝑖, 𝑦𝑖)}𝑛𝑖=1, (𝑎

*, 𝑏*, 𝑆*)
)︀)︀

, 𝑦 ∈ 𝒴

where {(𝑒𝑖1, 𝑒𝑖2, 𝑆𝑖, 𝑦𝑖)}𝑛𝑖=1 is the set of 𝑛 labeled examples, (𝑒*1, 𝑒
*
1, 𝑆

*) denotes the target test
data, 𝑃𝑛(·) is the prompt construction function for few-shot learning, and ℳ is the LLM. Then,
as shown below, the LLM is tasked to classify the test data:
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Given the context sentence, classify the relationship between the entities marked with 𝑒1
and 𝑒2 as causal or non-causal
Context Sentence: Expression of <e1> osteopontin </e1> contributes to the progression of
<e2> prostate cancer </e2>. Result: e1: osteopontin, relation: causal, e2: prostate cancer’
Context Sentence: Increased expression of <e1> cyclin B1 </e1> sensitizes <e1> prostate
cancer </e1> cells to apoptosis induced by chemotherapy. Result:

Here, one training example (𝑛 = 1) is embedded in the prompt, highlighted in blue, while
the test example is marked in red. The expected output is shown below:

e1: cyclin B1, relation: causal, e2: prostate cancer

We conducted the Few-Shot Prompt experiment by varying the number of the training data
n to be included in the prompt.

3.2. Fine-tuned LLMs
The pre-training of LLMs usually utilizes a great quantity of unlabeled data, and the fine-tuning
involves training these pre-trained LLMs on a smaller dataset labeled with examples relevant to
the target task. By exposing the model to these new labeled examples, the model adjusts its
parameters and internal representations suited for the target task. In this work, we experimented
with two models: (1) BERT [3] to represent small language model (under 1b parameters)
and (2) GPT to represent larger-parameter models.
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Figure 2: Fine-tuning BERT.

Fine-tuning BERTmodel BERT is a language
model trained using a multi-layer bidirectional
transformer encoder and has been demonstrated
to enhance various NLP tasks [3]. Figure 2 il-
lustrates our model architecture for fine-tuning
the pre-trained BERT model on the causal rela-
tion classification task. To ensure a fair compari-
son with prompt-based LLMs, we adopt a simple
fine-tuning approach. Given an input sequence
𝑆 , we extract its vector representation from the
BERT model and utilize the last hidden state of
the [CLS] token as the input representation for
fine-tuning, following the original paper [3]. We
further apply a 𝑇𝑎𝑛ℎ activation function and a
fully-connected layer (FC) to this representation
to obtain the final sequence representation 𝐻 ′

𝑐𝑙𝑠:

𝐻 ′
𝑐𝑙𝑠 = 𝑊0(𝑡𝑎𝑛ℎ(𝐻𝑐𝑙𝑠)) + 𝑏0 (1)

Dropout is applied in the model architecture as a regularization method, as indicated in
Figure 2. We used the binary cross entropy as the loss function during the training.

4



Yuni Susanti et al. CEUR Workshop Proceedings 1–10

Fine-tuning GPT model Fine-tuning the GPT model includes formatting each training
example into prompt-completion pair, where the input example serves as the prompt, and the
corresponding output serves as the completion. The format of these pairs varies depending on
the task. While our task is fundamentally a relation classification task, it can also be framed as a
relation extraction task between pairs of entities. We followed GPT fine-tuning instruction and
formatted the examples into both task formats:.

A: Fine-tuning GPT, classification format

Prompt: The results provide evidence for altered plasticity of synaptic morphology in
memory mutants <e1>dnc</e1> and <e2>rut</e2> and suggest a role...
Completion: non-causal END

B: Fine-tuning GPT, relation extraction format

Prompt: The results provide evidence for altered plasticity of synaptic morphology in
memory mutants <e1>dnc</e1> and <e2>rut</e2> and suggest a role...
Completion: dnc rut non-causal END

4. Evaluation
4.1. Datasets and Experiment Settings
We evaluate our approach in (A) biomedical domain, focusing on 3 types of causality: gene-
gene (GENEC [22]), drug-side effect (DDI [27]), and gene-disease (COMAGC [28]), and (B)
open-domain causality dataset SEMEVAL [29]. We used GPT model using OpenAI API with
gpt-3.5-turbo and text-davinci-003 engines. For experiments with BERT model, we
applied BioBERT [30], PubMedBERT [31] for biomedical dataset and BERT (large, uncased) for
open-domain dataset. Code, dataset and hyper-parameters settings are provided in our Github.

4.2. Results and Discussion
Table 1 summarizes the evaluation results for the biomedical and open-domain datasets. We
report the Precision (P), Recall (R), and F1 scores. We apply 5-fold cross-validation and the
scores are averaged. We report the standard deviation values of the F1 scores over the 5-folds
as shown in parenthesis in Table 1.

In summary, the results indicate that fine-tuned LLM models significantly outperform prompt-
based LLMs, achieving a 12.8–20.5 point improvement in F1 score across all datasets. Notably,
even with smaller language models like BERT, fine-tuning leads to a substantial performance
boost, with F1 scores improving by up to 20.5 points (67.4 vs. 87.9, Zero-Shot Prompt C vs.
PubMedBERT on DDI dataset). This contrasted with the previous studies [23, 24] where LLMs
perform relatively well, if not better than the fine-tuned models in various tasks including in
clinical NLP tasks [4]. One possible reason that the prompt-based model does not perform
as well as the fine-tuned model is that causality is rarely written explicitly with causal cues
like “cause,” “causing,” or “caused”. Instead, it is often described more implicitly or ambiguously,
using keywords such as “contribute” or “play a role”. Additionally, by fine-tuning the model
with training samples, we expose the model to various ways in which causal relationships can
be expressed in text. This suggests that identifying causality patterns from training samples is a
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(Biomed) COMAGC (Biomed) DDI (Biomed) GENE (News) SEMEVAL
Prompt-based 𝑡𝑦𝑝𝑒 P R F1 P R F1 P R F1 P R F1

Zero-Shot Prompt A 28.2 61.0 38.1 (.06) 52.2 25.7 34.3 (.02) 23.6 26.6 24.2 (.07) 64.6 66.0 65.3 (.06)
Zero-Shot Prompt B 28.2 94.2 43.2 (.05) 65.1 69.0 66.7 (.04) 34.3 59.6 42.3 (0.1) 77.7 84.7 80.8 (.04)
Zero-Shot Prompt C 48.8 100 64.2 (.14) 52.9 93.2 67.4 (.02) 27.4 71.9 39.5 (.05) 57.4 82.8 67.7 (.03)

𝑛

Few-Shot Prompt 5 37.2 83.5 51.0 (.03) 100 37.6 53.1 (.15) 22.1 25.7 22.7 (.28) 100 46.0 62.7 (.06)
Few-Shot Prompt 15 52.8 41.4 46.1 (.08) 51.4 27.0 35.1 (.05) 26.0 29.1 26.2 (.18) 100 47.9 64.6 (.04)
Few-Shot Prompt 20 50.2 70.4 57.0 (.08) * * * 31.7 39.5 34.3 (.08) 58.9 57.7 58.2 (.02)

Fine-tuning

BioBERT 77.9 84.4 80.8 (.01) 97.0 76.2 85.2 (.03) 46.1 65.2 53.5 (.07*) * * *
PubmedBERT 80.7 87.4 83.9 (.03) 93.2 83.3 87.9 (.01) 50.6 62.1 55.1 (.03) * * *
BERT-large * * * * * * * * * 93.0 93.0 93.0 (.01)

GPT (classification) 80.5 70.1 74.1 (.06) 99.4 78.1 87.4 (.03) 58.6 23.1 31.4 (.08) 99.9 94.8 96.8 (.03)
GPT (extraction) 75.6 58.1 65.5 (.07) 100 62.9 77.1 (.02) 52.4 21.2 30.1 (.06) 100 91.9 95.7 (.03)

Table 1: Experiment results. Values in bold indicates the best F1 score for each method and
dataset. 𝑡𝑦𝑝𝑒 refers to Zero-Shot Prompt variations as explained in 3.1, 𝑛 refers to the number
of training data included in the prompt for Few-Shot setting.

crucial step in accurately recognizing causal relations. Nevertheless, in the Few-Shot Prompt
experiments, where 𝑛 training samples are included in the prompt, the performance does not
always improve compared to models without training samples. For example, the scores are 67.4
vs. 53.1 with Zero-Shot Prompt C versus Few-Shot Prompt with 𝑛=5 on the DDI dataset. This is
illustrated in Table 1, where, surprisingly, the highest F1 score for the prompt-based methods is
achieved with Zero-Shot Prompt B and C, both of which do not include any training samples.
We hypothesize that the limited size of the training samples may be a factor, and increasing the
amount of training data could potentially improve results. In addition, when training examples
are too few or chosen poorly, it might confuses the model instead. Further investigation is
needed to clarify this point. However, due to the token limitations of the OpenAI API, we were
unable to experiment with larger values of 𝑛.

Next, we investigated the effect of including the context sentence in the prompt. To do this,
we created prompt variations of the Zero-Shot Prompt model by including and not including the
context sentence 𝑆 in the prompt (with-context and no-context). The results suggest that, for
prompt-based methods, including the context sentence in the prompt can be effective. As shown
in Table 1, the Zero-Shot Prompt types B and C (with-context) consistently outperform type A
(no-context). By incorporating context, the model gains additional knowledge to better predict
the relationship between the entity pair, rather than relying solely on the information acquired
during pre-training. In addition, we observed generally higher scores on the open-domain
dataset (96.8 with fine-tuned GPT on SEMEVAL) compared to the biomedical datasets (87.9
with PubMedBERT on DDI). This is expected, as LLMs are predominantly pre-trained on open-
domain texts, such as books, articles, and online content. Another contributing factor could
be the complexity of biomedical texts, which often include more domain-specific or technical
terms compared to open-domain datasets.
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5. Conclusion
We present a study exploring the feasibility of applying NLP technologies for causal graph
verification. Specifically, we compare prompt-based and fine-tuned LLMs in predicting causality
between pairs of entities. Experiments on biomedical and open-domain datasets suggest that
fine-tuned models outperform prompt-based LLMs, even with smaller-parameter models like
BERT. However, fine-tuned models require sufficient expert-annotated data for training, which
can be a significant bottleneck. Constructing training data through expert annotation is often
challenging and costly; in this regard, LLMs hold promise as a breakthrough for causal inference
research. Due to data limitations, our current evaluation was restricted to pairwise causality
validation. Future work will involve extending this approach to multivariate causal graphs,
refining prompting strategies, and exploring performance across diverse models.
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