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Abstract

Point-of-Interest (POI) recommendation has been
an important service on location-based social net-
works. However, it is very challenging to generate
accurate recommendations due to the complex na-
ture of user’s interest in POI and the data sparse-
ness. In this paper, we propose a novel unified ap-
proach that could effectively learn fine-grained and
interpretable user’s interest, and adaptively model
the missing data. Specifically, a user’s general in-
terest in POI is modeled as a mixture of her intrin-
sic and extrinsic interests, upon which we formu-
late the ranking constraints in our unified recom-
mendation approach. Furthermore, a self-adaptive
location-oriented method is proposed to capture the
inherent property of missing data, which is formu-
lated as squared error based loss in our unified opti-
mization objective. Extensive experiments on real-
world datasets demonstrate the effectiveness and
advantage of our approach.

1 Introduction

Recent years have witnessed the rapid prevalence of location-
based social network (LBSN) services, such as Foursquare,
Yelp, and Facebook, which can significantly facilitate users’
outdoor activities by providing a large number of nearby
Point-of-Interests (POIs) in a real-time fashion. The avail-
ability of large-scale user interaction data with these LBSN
services, such as sharing check-in information, provides un-
paralleled opportunities for developing personalized POI rec-
ommender systems [Li et al., 2015; 2016b].

However, the complex nature of user interest and the spar-
sity of check-in data present significant challenges to develop
POI recommender systems. First, only with check-in records,
it is difficult to explain which reason impels a user to check-
in a location. Thus, modeling user’s true and interpretable
interest becomes a thorny issue. For example, when an un-
visited POI is far away from a user, she may not visit it due
to the external geographical restriction, even though she likes
the POI. This imposes a challenge on interpreting and model-
ing a user’s decision making on POI check-in. Second, loca-
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tion recommender systems usually suffer from another criti-
cal challenge caused by the extremely sparse data. In a real
system, there are over millions of locations and users. How-
ever, each user only has limited historical check-ins, signifi-
cantly increasing the difficulty of recommendation.

Recently, a variety of approaches have been proposed for
POI recommendation with matrix factorization from squared
error based loss. For example, [Hu et al., 2008; Pan et al.,
2008; Devooght et al., 2015] treat user’s preferences for ob-
served and unobserved locations as binary values with vary-
ing weights. [Liu et al., 2014] models geo-neighboring influ-
ence in both instance and region levels, where a user’s choice
to a location is affected by its neighboring locations, and lo-
cations in a region share a similar sparsity structure. [Li et
al., 2016a] first utilizes additional knowledge, such as social
network, to learn a set of potential locations from a user’s all
unobserved locations, and then assigns a small fixed value to
fit this user’s preference for these potential locations. How-
ever, all these existing approaches have two limitations. First,
they model user’s preference in a too general way, and thus
fail to capture user’s true interest, not to mention interpret-
ing user’s check-in decision making process. For example, a
low predicted rating of a user for an unvisited POI can not
reveal the reason why this user does not like the location. Is it
because she does not like or due to the external environment
restriction? Second, most existing methods treat user’s all
unobserved feedbacks as negative in the same way, and thus
cannot capture the inherent property of missing data, i.e., a
mixture of missed negative and positive values.

To address the aforementioned issues, in this paper, we
propose a unified approach that could effectively learn fine-
grained and interpretable user’s interest, and adaptively
model missing data. Each user’s general interest is modeled
as a mixture of her intrinsic and extrinsic interests, where the
former one is personal-taste driven and characterizes her own
satisfaction regardless of any restriction, and the latter one is
environment driven and influenced by external environment,
i.e., geographical distance. To capture and distinguish both of
them, we first formally define a user’s activity area as a set of
locations geographically accessible by this user, and then for-
mulate them into pairwise ranking constraints in our unified
recommendation approach. Specifically, upon intrinsic inter-
est, one user prefers each visited POI over any unvisited one
within the corresponding activity area. On the other hand,
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upon extrinsic interest, she prefers each visited POI over any
unvisited one outside activity area. Moreover, a self-adaptive
location-oriented method is proposed to capture the charac-
teristic of missing data, which is formulated as squared error
based loss in our unified optimization objective. Finally, the
proposed model is evaluated via different validation metrics
and compared with several state-of-the-art baseline models
on real-world datasets. The experimental results illustrate the
superiority of our model for POI recommendation. The major
contributions of this paper can be summarized as follows.

e We propose to learn user interest in a precise and inter-
pretable way, which is a mixture of the intrinsic and ex-
trinsic interests. Based on these two types of interests, we
formulate pairwise ranking constraints.

e We propose a location-oriented method to adaptively model
the missing data, upon which we formulate the squared er-
ror based loss.

e We conduct extensive evaluations with real-world datasets
to demonstrate the effectiveness of our model.

2 The Proposed Method

Problem Statement. The recommendation task is defined as:
given the check-in behaviors of n users over m locations, we
aim at recommending each user with top-K new locations that
she might be interested in but has never visited before.

Notations. Scalars, vectors and matrices are denoted by
lower case letters, bold face lower case letters and bold face
capital letters, respectively. Sets are represented by calli-
graphic capital letters. u; denotes the ¢-th column of matrix
U. Frobenius and Euclidean norms are denoted by || - || » and
| - ||, respectively. R,, is defined as the set {1,--- ,n}. A
predicted value is denoted with a” (hat) over it. C is used to
denote the n-by-m check-in frequency matrix.

2.1 Our Framework

Matrix factorization techniques have been popularly used to
solve recommendation tasks by mapping both user and loca-
tion into latent low-dimensional spaces [Salakhutdinov and
Mnih, 2007; Hu et al., 2008; He et al., 2016]. Specifically,
each user-specific hidden vector is used to model this user’s
interest, and is then learned via an appropriate loss func-
tion. However, unlike traditional product consumption, user’s
check-in behaviors are constrained by many external factors,
such as geographical distance. The complex nature in human
mobility leads to the incapability of previous approaches for
modeling a user’s true interest in POI and interpreting her de-
cision making process. Inspired by the studies in psychology
and sociology about distinguishing whether or not a user’s be-
havior is affected by external factors [Ryan and Deci, 2000;
Calder and Staw, 19751, we propose to model each user’s gen-
eral interest from two aspects: (1) intrinsic interest, where she
visits a location for the sake of her own inherent likeness re-
gardless of any restriction, (2) extrinsic interest, where her
check-in decision making process is influenced by geograph-
ical distance. Formally, they are are defined as:

Definition 1 (Intrinsic Interest) It is an internal form of in-
terest and driven by personal taste. For example, it is the
self-desire for a user to visit a POI with her own satisfaction.
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Figure 1: An example of the illustration for ugg ), ul(.z), and
u'®, where u'? is a mixture of u'” and u'® with corre-
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sponding mixture weights a; and b;.

Definition 2 (Extrinsic Interest) It is an external form of in-
terest and driven by environment. For example, a user’s pref-
erence for a POl is influenced by geographical distance.

These two types of user interest have different contribu-
tions to each individual user’s check-in decision. Hence, each
user’s general interest is regarded as a mixture of her intrin-
sic and extrinsic interests. Suppose the general, intrinsic and
extrinsic interests of user ¢ are represented by d-dimensional
vectors ugg ), ugz), and uge), respectively. Their relationship
can be formulated as follows,

uz(-g) =a;® uy) +b; ® uz(-e), (1)

s.t.aik € [0,1], b € [0,1], azr + b = 1,Vk € Ry,

where © denotes the element-wise multiplication. And a; €
R¥>1 and b; € R?*! are the mixture weights of intrinsic and
extrinsic interest, respectively. Figure 1 provides an illustra-
tion example for u'®, u{”, and u{®.

We also propose to capture the characteristic of missing
data (or unobserved data), i.e., a mixture of negative and
missed positive values, for addressing the data sparseness is-
sue in location recommendations. Let us assume each loca-
tion j is also characterized by a latent vector v; € R¥! as in
the matrix factorization technique [Salakhutdinov and Mnih,
2007]. Consequently, towards modeling user’s intrinsic and
extrinsic interest and the missing data, the overall loss func-
tion of our framework is formulated as:

min (P, UY, V) + (U, UD, V) +07(-), (2)

where 0" (+) is the regularization term placed on all variables
to avoid over-fitting. 6¢(+) incorporates additional constraints
that model user’s intrinsic interest U(*) and extrinsic interest
U(®), and will be introduced in Section 2.2. £(-) is the empir-
ical loss used to model both observed and unobserved data,
and introduced in Section 2.3 (P is aslo introduced).

2.2 Modeling User Intrinsic and Extrinsic
Interests

Based on the definition 1 and 2, the distinction between user’s
intrinsic and extrinsic interests sheds light on whether there
exists the involvement of external influence. In POI recom-
mendation task, a user’s check-in decision making process is
significantly affected by geographical factor. Thus, in this pa-
per, we focus on modeling user’s interests with geographical
influence. Before introducing how to model user’s two types
of interests, we first define user’s activity area as follows:
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Figure 2: An example of a user’s observed and unobserved
locations. The solid lines indicate observed behaviors, and
other dashed lines represent unobserved ones. The red circle
represent a activity area of this user, where locations [} ~ 5
is assumed to be geographically accessible by this user.

Definition 3 (User’s Activity Area) Each individual user
has one or more activity areas, within each of which this user
is capable of geographically accessing each POI regardless
of any geo-restriction.

Each user’s activity areas can be calculated through many
ways according to real-world application scenarios. One
method is using clustering technique based on user’s histor-
ical locations. In each cluster, we first select all locations
within a circle with a specified distance as radius and each
visited location as a center, and then merge them as the ac-
tivity area. Formally, we define n{ as the number of activity
areas for the 7-th user, where each of them h € Rng comprises
a set of her visited locations A;,. Based on the definition of
activity area, we will introduce how to model user’s intrinsic
and extrinsic interests in followings of this section.
Modeling User Intrinsic Interest U("), Based on the def-
inition 1, each user’s intrinsic interest suggests her to choose
any locations that she likes regardless of any external geo-
restriction. Within each activity area, the user is able to ge-
ographically access each location. It indicates that a user’s
check-in decision making process on those locations within
her activity areas is restriction-free. Thus, within each activ-
ity area, compared to those unobserved locations, one user’s
intrinsic interest in an observed location plays an important
role in her decision making process. In other words, upon in-
trinsic interest, each individual user ¢ prefers each observed
location j over any unobserved location [ in each activity
area, which can be formulated as follows:
@ Tv; > (W) Tvi, Vj € Ayl € A, h € Rys, (3)

)

where A;;, is a set of unvisited locations of user ¢ in her h-
th activity area, and (ugl))ij indicates her preference for
location j driven by intrinsic interest. Figure 2 shows an ex-
ample to illustrate Eq.(3), where user u would like to check-in
ly ~ I rather than I3 ~ [5 upon her intrinsic interest.
Modeling User Extrinsic Interest U(¢), For those loca-
tions outside a user’s activity areas, she has a small chance
to visit them due to long distance. For example, although a
user living at California likes a restaurant in New York, she
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would not go to check-in this restaurant for the sake of dis-
tance restriction. Thus, compared to those unobserved loca-
tions outside a user’s activity areas, her extrinsic interest in
an observed location has more impact on her check-in deci-
sion than her intrinsic one. Thus, upon extrinsic interest, each
user ¢ prefers each observed location j over any unobserved
one outside the activity areas, which is formulated as follows:

() "v; > () v, Vi € Al € AL h € Ry, (4)

where A is a set of unvisited locations of user 4 outside activ-

ity areas, and (ul(.e))ij indicates her preference for location
7 driven by extrinsic interest. Figure 2 shows an example to
illustrate Eq.(4), where user v would like to check-in l; ~ [y
rather than /g ~ [g upon her extrinsic interest.

Our Method V.S. Existing Approaches. We would clar-
ify that the existing approaches can be viewed as a special
case of our method. If the size of activity area is infinite,
which means the activity area of each user includes the whole
location set, the constraints in Eq.(4) then will be eliminated,
ie., U®© = 0. If the size of activity area is zero, indicat-
ing that each location is a single activity area, the constraints
in Eq.(3) then will be eliminated, i.e., U® = 0. In both
situations, only either intrinsic or extrinsic interest of user
1 contributes to her general interest, i.e., U@ = U or
U@ = U, which is the same as existing approaches with-
out distinguishing user’s two types of interests. Thus, intro-
ducing the activity area can provide us finer-grained granular-
ity to explore better accuracy of POI recommender systems.

The advantage of modeling user’s general interest from two
aspects is as follows: (1) It makes location recommendation
systems behave in an explainable way by interpreting user’s
choice for locations from both internal and external perspec-
tive. (2) It provides a fine-grained and accurate way to learn
user’s interest. Finally, we can obtain the ranking constraint
0¢(-) of Eq.(2) by penalizing those violated constraints shown
in Eq.(3) and Eq.(4) as follows:

- fi;?’n) ®

AOEED DI ED DRGSR DN
ih,jeT leA;p leAY

here 70 — (v 7O = OV Ty. T — £ ili

where 7,0 = (0;")" v;, 75 (u; )"y, {i,h,jli €

Ry, h € Rya,j € Ain}, ()4 = max(z,0) is plus function,
and A%, \¢ are parameters weighting two ranking constraints.

2.3 Modeling the Missing Data

Due to the large set of locations, it is crucial to model the
missing data as well for addressing data sparseness and im-
proving learning accuracy. Most recent approaches [Hu et
al., 2008; Liu et al., 2014] focus on squared error based loss
and treat all unobserved feedbacks as negative in the same
way. However, it is not realistic in real-world scenario. An
unvisited location of one user does not necessarily indicate
that she dislikes it, whereas it happens possibly due to her
unawareness. In other words, some of the unvisited locations
might be those users are interested in, while others are ac-
tually those they dislike. Thus, each user’s preferences for
unobserved locations are a mixture of negative and missed
positive values. Motivated by this intuition, we propose a
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location-oriented method to adaptively learn the potential val-
ues for missing entries, instead of treating them equally as
a predefined value. To achieve this, we introduce an aug-
mented matrix P € R™*™ that is designed only for unob-
served feedbacks and learned during the training. Suppose
the predicted preference of user ¢ for location j is approxi-
mated by 7;; = (u'?))Tv; . The empirical loss £(-) of Eq.(2)
with squared error is formulated as:

1 .
() =5IIWo R+P-R)} (©)

where W € R™*™ is a weight matrix associated with check-
in frequency and a parameter v € (0,400), and defined as
wi; = /1 +7*c¢;;. R € R™*™ is a one-class feedback ma-
trix with observed feedback as one and unobserved feedback
as zero, i.e., r;; = lif ¢;; # 0 and ry; = 0if ¢;; = 0. Specif-
ically, P has two properties: (1) It is location-oriented, i.e.,
comprising m latent factors, for efficient computing; (2) It
has a small variation range for decreasing the noise in model
learning. Thus, P can be formulated by introducing a m-
dimensional vector q as follows,
if Tij = 17

o 0
Pa= ¢ ifry =0,
s.t. qc [Qmmm Qmaz}a

where ¢y, and ¢4, are parameters used to bound P into a
small range around zero. In Eq.(6), it is clear that R is used to
model observed feedbacks, while P accounts for unobserved
feedbacks and explains the difference of missing data.

Discussion. If ¢in = Gmaz = 0, it leads to the basic
implicit-feedback based approaches by fitting a binary ma-
trix [Hu et al., 2008; Pan et al., 2008]. If ¢min = ¢maz 7 0,
it leads to the constant imputation-based approaches by as-
signing a predefined non-zero numeric value for unobserved
feedback [Yao et al., 2014; Li et al., 2016al. If ¢,15r, # Gmaz-
our method is distinct from existing approaches by adaptively
separating all the unobserved feedbacks, which has two ad-
vantages: (1) capturing the inherent property exhibited in un-
observed data, i.e., a mixture of negative and positive values,
and (2) automatically learning the optimal values for unob-
served data instead of specifying a fixed value.

@)

2.4 Optimization Algorithm

So far we have introduced our solutions to capture user’s in-
trinsic and extrinsic interests, and address missing data issue
in POI recommendation. With these solutions, the loss func-
tion of the proposed model, denoted as IEMF, is achieved by
integrating Eq.(5) and Eq.(6) into the framework in Eq.(2):
argmin 1|\W®(R+P—ft)\|2p+er(-)+ (8)
u®,ule), V,A,B,q 2

PR B DR GRS NPV G S

i,h,j€T 1€ Ay leAr
S.t. A e [07 1]7B e [0’ 1]3A + B = 1n><d7q E [Q’min,qmaIL
"We will also incorporate geographical influence into final pre-

diction with #;; in a multiplicative or additive manner as [Li et al.,
2016a; Ye et al., 2011].

Algorithm 1: IEMF Optimization

Input: )\i, AL, )\f},, A5 A Azs Aps LY, Gmins @maa, 1, maxlter
Output: U® UV, Z, q

1 Randomly initialize U, U(®) |V, Z,q, ¢t + 1

2 while t < maxlter do

3 Randomly sample a tuple (i, h, j, k, 1, S—), where i is a user, h is activity
area index, j is a visited location within the acticity area, & is an unvisited
location within this activity area, [ is an unvisited location outside activity
areas, and S_ is a set of other unvisited locations with size as |S_|.

4 €io wio(f’io — ’Fio),VO €S

5 e+ Mawijy' (7)) — ﬂf;)), e Awiy (7 — ﬁs;))

6 ul? e ul? (T, s eioai © vo) + eji(vie — vi) + Aul?)

7| uf? e uf = n(Ses eio(bi O vo) +ei(vi = vi) + Apui)

8 zi —zi — (X s eio(aQQuEZ)+b;®u§e>)®vo+)\z2i)

9 Vi Vv — n(eijug‘” — ejkugl) — ejlugc) + Aovy)

0| v v —nlerul® +ejpul” + A vi)
11 V] — V] — n(e”ugg) + ejluge) + Ayvy)
12 Vo ¢ Vo — n(eiougg) + Auvo),Vo € S_
13 do + (Vo = n(—€io + Xqq;))q, Vo € ST
14 tt+1

15 end

16 return U U VvV, Z g

where 1,,,4 is a n-by-d matrix of ones, and the weight matrix
‘W is also used to balance the optimization of squared error
and ranking error. To solve above optimization problem, we
need some preprocessing and approximation steps. First, we
eliminate the constraints imposed on A and B by introducing
a helper matrix Z € R"* with z;;, € (—00, +00), and using
a sigmoid function to bound the value to [0, 1] as follows,

bir =1 —0o(zi5), 9
1

where o(z) = Trexp(—z 1s sigmoid function. Second, the
plus function used in Eq.(5) is not twice differentiable and
can be smoothly approximated by the integral to a smooth ap-
proximation of the sigmoid function [Lee and Mangasarian,
2001; Chen and Mangasarian, 1993], given by:

il = U(Zij)v

@) =ylx)=a+ élog(l +exp(—ax)),  (10)

where a € (0, +00) is a parameter. With these two steps, the
optimization problem shown in Eq.(8) can be transformed to,

argmin
U, U, v,z,q

ST wi [ AL DDy =) 28 >y ) |
i,h,jET leA;), le A}

where R = R + P, q € [¢min, Gmaz), and 07 (-) is defined
with regularization parameters A, as follows:

1 o ® r % e

Aj; @ )‘Z Av Az A
07() = PG + SOOI + VI + SN2 + SHlall®.

As there is no close-form for each variable with ALS ap-
proach, a Stochastic Gradient Descent (SGD) using the boos-
trap sampling with replacement algorithm is developed to
solve the optimization problem. The optimization algorithm
is iteratively performed by sampling a tuple (¢, h, j, k,1,S_)
and updating corresponding variables. More details of opti-
mization are provided in Algorithm 1, where S = {j, k,l} U
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S_, 8 ={kI}US_, a = d'(z;), b, = —0'(z:), ()g
is bounded value between @, and ¢mqe, and o'(x) =
o(x)(1 —o(x)), ¥'(x) = m are the derivatives of
o(x) and y(z), respectively.

Complexity Analysis. Sampling a tuple (i, h,j,k,1,S_)
has a constant cost O(|S_|) in each update, where |S_| is
the size of sampled unobserved POIs and usually very small.
Hence, the overall complexity of optimization algorithm is
O(d|S_|#iter), where #iter is the total number of itera-
tions. In practical, #iter > d|S_| is proportional to the
number of the observed check-ins.

3 Experiments

3.1 Datasets

We use Gowalla and Foursquare datasets to evaluate model
performance. Gowalla and Foursquare contain check-in data,
ranging from January 2009 to August 2010, and from Decem-
ber 2009 to June 2013, respectively. Each check-in record in
the datasets includes a user ID, a location ID and a timestamp,
where each location has latitude and longitude information.
We split the training and testing data as follows: for each in-
dividual user, (1) aggregating check-ins for each location; (2)
sorting locations according to the first checked-in timestamp;
(3) selecting the earliest 80% to train the model and using the
next 20% as testing. The data statistics are shown in Table 1.

Table 1: The statistics of data sets.

Data Set #Users | #Locations | #Records | Sparsity
Gowalla 52,216 98,351 2,577,336 | 0.0399%
Foursquare | 2,551 13,474 124,933 | 0.2910%

3.2 Parameter Settings

All regularization parameters are set as 0.01. The parameter
Al a,nand d are set as 0.01, 5,0.001, and 10. The ¢, |S_|,
Qmin, and @q. are set as 0.1 (or 1), 10 (or 150), —0.3 (or
—0.05) and 0 (or 0.05) in Gowalla (or Foursquare) dataset.
The number and radius of activity area are set as 1 and 2km.

3.3 Evaluation Metrics

We quantitatively evaluate model performance in terms of
top-K recommendation performance, i.e., Precion@K and
Recall @K, and ranking performance, i.e., MAP. They are for-
mally defined as follows:

1 & SI(K)ﬂﬂ 1 & S,,(K)ﬁﬁ
P iston@QK =— E ———— R QK = — E _—
recision eca n

ti= K i1 |73 ’
map = Ly~ Zizip0) X rel)
n | T3

i=1
where S;(K) is a set of top-K unvisited locations recom-
mended to user ¢ excluding those locations in the training,
and 7; is a set of locations that are visited by user ¢ in the
testing. p(j) is the precision of a cut-off rank list from 1 to
j, and rel(j) is an indicator function that equals to 1 if the
location is visited in the testing, otherwise equals to 0.

3.4 Baseline Methods

To comprehensively demonstrate the effectiveness of our
model, we compare them with the following popular models:
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Figure 3: Performance comparison in terms of precision@K
and recall@K on Foursquare and Gowalla datasets.

e ARMF [Li et al., 2016a], which learns a set of user’s po-
tential locations from her unobserved locations using social
network, and then incorporates them into matrix factoriza-
tion with category and geographical information.

e IRenMF [Liu er al., 2014], which incorporates neighbor-
ing characteristics in both instance level and region level
into weighted matrix factorization;

e USG [Ye er al, 20111, which incorporates geographical
influence, social network and user interest into user-based
collaborative filtering in an additive manner;

e BRP [Rendle et al., 20091, which optimizes the ordering
relationship of user’s preferences for the observed location
and the unobserved location;

e WRMF [Hu er al., 2008], which minimizes the squared er-
ror loss by assigning both observed and unobserved check-
ins with different weights based on matrix factorization.

3.5 Performance Comparison

In this section, we evaluate model performance from Preci-
sion@K, Recall@K and MAP on two datasets shown in Fig-
ure 3 and Table 2. We summarize the following observations.

First, our method outperforms all the other baseline meth-
ods. This superior result is for the sake of modeling fine-
grained user interest, unobserved data and geographical in-
fluence together. Our better performance over those baseline
methods with geo-influence, i.e., ARMF, USG, and IRenMF,
further illustrates the benefit of capturing user’s two forms of
interest and adaptively learning unobserved data.

Second, WRMF and BRP perform differently in two
datasets, where the former one is based on squared error
and the latter is based on ranking error. Until now, there is
no explicit clue to demonstrate which method is suitable for
which type of data from Precision@K, Recall@K and MAP.
From the technical viewpoint, our approach can be viewed
as a unified method for ranking and squared error based loss
functions. It is a tradeoff between these two popular matrix
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1000 10000

factorization methods. Although our approach does not have
closed-form solution as WRMF does, the effective SGD with
sampling can achieve the same effectiveness.

Third, those methods with geo-influence, i.e., IEMF,
ARMEF, USG, and IRenMF, are better than other methods
without geo-influence, i.e., BPR and WRMF. This result fur-
ther clarifies the importance of geo-influence in location rec-
ommendation, which also distinguishes location recommen-
dation task from traditional item recommendation task.

Table 2: Performance comparison in terms of MAP.

Foursquare Dataset
IEMF | ARMF | USG | IRenMF | WRMF | BPR
0.0440 | 0.0391 | 0.0346 | 0.0368 0.0363 | 0.0192
Gowalla Dataset
IEMF | ARMF | USG | IRenMF | WRMF | BPR
0.0601 | 0.0571 | 0.0521 | 0.0255 0.0247 | 0.0365

3.6 Study of Influence of Parameters )\!, and \¢

We study the influence of parameters A%, and \%. Specifi-
cally, we set A, = 0.01 and then train our model with dif-
ferent \{,, where the results are shown in Figure 4. From the
results, we observe that the optimal ¢ /\¢, is 100 and 10 on
Foursquare and Gowalla datasets, respectively. It indicates
that the weight placed on the ranking constraint about extrin-
sic interest should be larger than the one about intrinsic in-
terest. There are two reasons: for each user, (1) the number
of unobserved locations outside her activity areas is usually
larger than those within activity areas, and thus, a large A,
can allow IEMF to model more unobserved data; (2) she has

a large probability to check-in the locations within her activ-
ity areas due to geo-influence, and thus, a too large )\Z will
increase the noise for model learning. If \¢ /\! is too large,
IEMF almost focuses on optimizing the ranking constraint re-
lated to extrinsic interest, definitely resulting in a poor result.

4 Related Work

Related work of this paper can be grouped into two cat-
egories. The first category is about matrix factorization
(MF) [He et al., 2016; Chen et al., 2016; Kabbur et al.,
2013; Balakrishnan and Chopra, 2012; Pilaszy et al., 2010;
Salakhutdinov and Mnih, 2007; Pan and Chen, 2013]. The
core of MF is to map user and item with two into low di-
mensional latent space. Different loss has been developed to
model the implicit feedback. For example, [Hu et al., 2008;
Pan et al., 2008] propose to minimize the sum-of-squared er-
ror with different weight over all user-item pairs, where the
observed and unobserved feedbacks are assigned to one and
zero, respectively. Another loss function is based on ranking
error [Rendle et al., 2009; Rendle and Freudenthaler, 2014]
by optimizing the ranking order between observed examples
and unobserved ones.

The second category is about POI recommendation with
geo-influence [Li er al., 2015; Lian et al., 2014; Lichman and
Smyth, 2014; Li et al., 2016¢]. For example, [Ye et al., 2011;
Li ef al., 2016a] propose to use a power law distribution to
estimate the check-in probability with distance. With geo-
influence, one user’s interest in a location then can be calcu-
lated by a user-based collaborative filtering [Ye et al., 2011]
or learned by MF models [Li et al., 2016al. Also, [Liu et al.,
2014] proposes to model geographical neighboring influence
from both instance level and region level.

Different from the aforementioned methods, in this paper,
we propose a new fine-grained approach to model a user’s
general interest from both intrinsic and extrinsic perspectives.
In addition, the unobserved feedbacks (i.e., missing data) are
modeled by a self-adaptive location-oriented approach.

5 Conclusion

In this paper, we proposed a unified approach to integrate
squared error loss and ranking error loss for solving loca-
tion recommendation task by effectively learning fine-grained
and interpretable user interest, and adaptively modeling the
missing data. Specifically, each user’s general interest is
modeled as a mixture of her intrinsic and extrinsic interests,
upon which we formulated the ranking constraints in our uni-
fied approach. Additionally, a self-adaptive location-oriented
method is proposed to capture the characteristic of missing
data, and is then formulated as the squared error loss in our
unified optimization objective. To evaluate our model, we
conducted extensive experiments on real-world datasets and
compared our method with several baselines. The experimen-
tal results have shown the effectiveness of our model.
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