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ABSTRACT

Artificial neural networks have been shown to be state-of-the-art machine learning
models in a wide variety of applications, including natural language processing
and image recognition. However, building a performant neural network is a labo-
rious task and requires substantial computing power. Neural Architecture Search
(NAS) addresses this issue by an automatic selection of the optimal network from
a set of potential candidates. While many NAS methods still require training of
(some) neural networks, zero-cost proxies promise to identify the optimal network
without training. In this work, we propose the zero-cost proxy Network Expres-
sivity by Activation Rank (NEAR). It is based on the effective rank of the pre-
and post-activation matrix, i.e., the values of a neural network layer before and
after applying its activation function. We demonstrate the cutting-edge correla-
tion between this network score and the model accuracy on NAS-Bench-101 and
NATS-Bench-SSS/TSS. In addition, we present a simple approach to estimate the
optimal layer sizes in multi-layer perceptrons. Furthermore, we show that this
score can be utilized to select hyperparameters such as the activation function and
the neural network weight initialization scheme.

1 INTRODUCTION

Originally inspired by the structure and function of biological neural networks, artificial neural net-
works are now a key component in machine learning (Bishop, 2006; Russell & Norvig, 2021). They
are applied in many tasks such as natural language processing, speech recognition, and even protein
folding (Vaswani et al., 2017; Baevski et al., 2020; Jumper et al., 2021). Artificial neural networks
are built by layers of interconnected neurons, which receive inputs, apply a, typically non-linear,
activation function, and pass on the result (see Figure A.1). By tuning the weights of the individual
inputs to a neuron, a neural network can learn functional relations from sample data to perform pre-
dictions without explicit program instructions. Deep learning is obtained if more than one layer is
hidden between the first input and last output layer of the neural network. In theory, already a neural
network with a single hidden layer and enough neurons is capable of approximating any continuous
function up to arbitrary precision (Hornik et al., 1989; Cybenko, 1989; Hornik, 1991).

However, the choice of the model size, i.e., the number of hidden layers and the number of neurons
per layer, has a huge impact on the performance, training time, and computational demand (Tan &
Le, 2019). A too small network is unable to capture a complex relation in a dataset resulting in
underfitting. Conversely, a too large model lacks efficiency and carries the risk of overfitting and
poor generalization. Determining the optimal model size that strikes a balance between accuracy and
efficiency remains an important challenge (Ren et al., 2021). In common practise, various models
of different sizes are trained and their final performances are compared. This manual process is
time-consuming and often leads to sub-optimal model architectures.

The goal of Neural Architecture Search (NAS) is to eliminate this manual process and autonomously
identify suitable architectures (Elsken et al., 2019). Commonly applied techniques for NAS are
based on reinforcement learning, evolutionary algorithms, or gradient-based optimization (Zoph &
Le, 2017; Real et al., 2017; Liu et al., 2019). However, these methods are still time- and resource-
intensive. Zero-cost proxies have been proposed to improve the efficiency of NAS methods (Mellor
et al., 2021; Abdelfattah et al., 2021; Krishnakumar et al., 2022). They exploit properties of the
untrained network that are correlated with the final accuracy, bypassing the costly training process.
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In this way, they promise speed-ups of several orders of magnitude compared to traditional NAS
algorithms (Abdelfattah et al., 2021).

The performance of previously reported zero-cost proxies is highly dependent on the underlying
search space (Ning et al., 2021). Furthermore, many of them are unable to demonstrate consis-
tently a higher correlation with the final accuracy than the trivial baseline given by the number of
parameters (#Params) (Ning et al., 2021). In addition, these proxies require a search space of known
architectures. While the latter is not a severe limitation in applications such as computer vision,
in many other applications such search spaces do not exist. An example is a so-called machine
learning potential (Behler & Parrinello, 2007; Behler, 2021) applied in chemistry and materials sci-
ence, which employs neural networks to predict the energy of a chemical system as a function of
the molecular structure. In this work, we propose the zero-cost proxy Network Expressivity by Ac-
tivation Rank (NEAR) that can be used in conjunction with a search space, but also provides the
possibility to estimate the optimal layer size for multi-layer perceptrons without a search space.

Besides the network architecture, the activation function and weight initialization scheme have a
significant impact on the training dynamics and the final performance of a neural network (LeCun
et al., 1998; Glorot & Bengio, 2010). A variety of techniques have been developed to select such
hyperparameters, including methods based on Bayesian optimization and evolutionary algorithms
(Snoek et al., 2012; Lorenzo et al., 2017). However, these techniques still require expensive training
of multiple networks, and the zero-cost proxies reported so far have not been applied to the selection
of the activation function and the weight initialization scheme. A zero-cost proxy that can be applied
not only to find optimal architectures, but also to choose the activation function and the weight
initialization scheme, would allow one to further reduce the computational burden of constructing
a performant artificial neural network. Here, we therefore evaluate the suitability of our zero-cost
proxy NEAR for this purpose.

In summary, we make the following three key contributions: First, we propose the zero-cost proxy
NEAR and test its performance across several search spaces and datasets. Second, we introduce a
simple method to estimate the optimal layer size of multi-layer perceptrons and show its effective-
ness for machine learning potentials. Third, we empirically demonstrate that our zero-cost proxy
NEAR can support the selection of an activation function and a suitable weight initialization scheme.

2 RELATED WORK

Zero-cost NAS proxies are designed to identify optimal neural network architectures without requir-
ing training. Some of the earliest proxies such as Single-Shot Network Pruning Based on Connec-
tion Sensitivity (SNIP), Gradient Signal Preservation (GraSP), Fisher, and Synaptic Flow (SynFlow)
have been adapted from pruning techniques and are based on gradients of the neural network (Ab-
delfattah et al., 2021). While SNIP assigns scores to individual parameters by approximating the
change in loss when the parameter is removed (Lee et al., 2019), the scores of GraSP are based on
an approximation of the change in the gradient norm (Wang et al., 2020). The Fisher proxy estimates
the importance of an activation by calculating its contribution to the loss (Turner et al., 2020), and
SynFlow assigns a score to each parameter indicating how much it contributes to the information
flow in the network (Tanaka et al., 2020). A proxy that has not been adapted from the pruning litera-
ture is Grad norm, which is defined as the Euclidean norm of the gradient (Abdelfattah et al., 2021).
SNIP, GraSP, SynFlow, and Grad norm are calculated for each individual parameter, whereas Fisher
is calculated for channels within a convolution layer. To obtain a score for the entire network, the
values assigned to the parameters or channels are summed. Zero-Shot NAS via Inverse Coefficient of
Variation on Gradients (ZiCo) (Li et al., 2023) is another proxy that exploits gradient information,
linking the mean and the variance of the gradient to the convergence rate and the capacity of the
neural network. With the exception of SynFlow, all the aforementioned proxies require the pres-
ence of target output, so-called labels. Therefore, they can only be applied to a limited extent in
unsupervised learning for categorization tasks.

Some zero-cost proxies exist that employ properties of the untrained network that do not require
backpropagation and hence work without labels. These include Neural Architecture Search Without
Training (NASWOT) (Mellor et al., 2021), Zen-Score (Lin et al., 2021), Sample-Wise Activation
Patterns (swap) (Peng et al., 2024), Regularized Sample-Wise Activation Patterns (reg swap) (Peng
et al., 2024), and Minimum Eigenvalue of Correlation (MeCoopt) (Jiang et al., 2023). To a certain ex-
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tent, these proxies can be related to theoretical considerations regarding, for example, the functions
that can be represented by a particular neural network or the convergence rate during training. A
proxy that combines information from gradients with the output of the untrained network and works
without labels is Training-Free Neural Architecture Search (TE-NAS) (Chen et al., 2021).

All these proxies assess the performance of a network based on the output of individual untrained
layers. However, most of them, namely NASWOT, Zen-Score, swap, reg swap, and TE-NAS, can
only be applied if the Rectified Linear Unit (ReLU) (Nair & Hinton, 2010) activation function is
employed. Our zero-cost proxy NEAR utilizes the output of individual layers before and after the
application of the activation function for sample inputs without constraints on the type of activation
function. Therefore, its applicability is more general.

3 METHODS

3.1 MULTI-LAYER PERCEPTRON

An artificial neural network with the architecture described in the introduction (see Figure A.1) is
also called multi-layer perceptron. A multi-layer perceptron with L layers can be expressed as

F(x) = (σ ◦WL) ◦ (σ ◦WL−1) ◦ · · · ◦ (σ ◦W2) ◦ (σ ◦W1)(x) := y , (1)

where x and y are the input and output features, σ is an activation function, and Wl ∈ RNl×Nl−1

are the weights of layer l. The weights can also include so-called bias weights, which are added to
the output of the neuron without being multiplied by any input value. Hence, they effectively shift
the activation function input of the neuron.

We define the pre-activation of layer l as

zl = (Wl) ◦ (σ ◦Wl−1) ◦ · · · ◦ (σ ◦W2) ◦ (σ ◦W1)(x) (2)

and the post-activation as
hl = σ(zl) . (3)

3.2 NETWORK EXPRESSIVITY BY ACTIVATION RANK (NEAR)

The construction of our zero-cost proxy NEAR is inspired by theoretical considerations on machine
learning that attempt to assess the expressivity of artificial neural networks (Pascanu et al., 2013;
Montufar et al., 2014). Therefore, we restate here the most important concepts from these works.
For neural networks applying the ReLU activation function, each activation function can be concep-
tualized as a hyperplane that separates the input space into an active and an inactive region. Both
regions are referred to as linear regions. The number of such linear regions can be viewed as a
measure of the expressivity of the network (Pascanu et al., 2013; Montufar et al., 2014). Following
previous studies (Raghu et al., 2017; Montúfar, 2017; Serra et al., 2018), we define the activation
pattern for an input x and a network F with the ReLU activation function by the set of vectors
A(x;F) = {a1, . . . ,aL} where ali = 1 if the output of the ith neuron in layer l is positive and
ali = 0 otherwise. Given that different linear regions correspond to distinct activation patterns, the
number of linear regions is equivalent to the number of activation patterns. Consequently, it is a
natural idea to analyze the activation patterns to assess the expressivity of a network. This idea is
exploited in several zero-cost proxies (Mellor et al., 2021; Chen et al., 2021; Lin et al., 2021; Peng
et al., 2024). However, constructing a proxy based on the aforementioned definition of the activation
pattern will restrict its application to networks applying the ReLU activation function, a drawback
that all those proxies have in common.

To build a more general zero-cost proxy, we relax the definition of the activation pattern to enable
other activation functions: A(x;F) = {h1, . . . ,hL}, with hl defined in Eq. (3). While there is no
longer a direct relationship to the number of linear regions, we argue that inputs with a very similar
activation pattern are more challenging for the network to distinguish, and we leverage this argument
to develop our zero-cost proxy. We define the pre-activation matrix for layer l as Zl ∈ Rnl×nl ,
where nl is the number of neurons in layer l. Each of the nl rows of Zl contains zl for some
different sample input xi. In a similar manner, the post-activation matrix for layer l is defined as
Hl ∈ Rnl×nl , where each row contains hl for a different sample input xi. Intuitively, we would
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expect a well-performing network when the rows in the pre-/post-activation matrix are very different
to each other, while a matrix with all similar rows would indicate a poorly performing network. As
an example, we can consider a classification problem in which rows are highly similar yet belong
to inputs of different classes. In this case even a minor perturbation can result in a change in the
predicted class. Additionally, we would expect that a matrix, in which certain rows have entries
that are much larger than the entries in other rows, will result in poorer performance than a matrix
with entries of similar size. The reason for this behavior is that the differences in size can cause the
predictions to become highly dependent on individual weights and hence on individual input values.
These two relationships are captured by the effective rank, defined as follows:
Definition 3.1 Effective Rank (Roy & Vetterli, 2007). The effective rank of a matrix A ∈ CM×N ,
with Q = min{M,N}, is given by

erank(A) = exp[H(p1, . . . , pQ)] , (4)

where H(p1, . . . , pQ) is the Shannon entropy (Shannon, 1948),

H(p1, . . . , pQ) = −
Q∑

k=1

pk log(pk) , with pk =
σ̃k∑Q
i=1 σ̃i

, (5)

where pk are normalized singular values and σ̃i are singular values.

To interpret the effective rank of a matrix, we can think of the matrix as a linear transformation. The
rank of the matrix indicates the number of dimensions of its range. By contrast, the effective rank
contains information about the geometrical shaping of the transformation. A linear transformation
that causes a strong stretching along one dimension, while all other dimensions remain unchanged,
has a lower effective rank than a transformation that causes an equally strong stretching along all
dimensions. The rank of the matrix of both transformations is, however, identical. In addition, a lin-
ear transformation that stretches each dimension equally is represented by a matrix with orthogonal
rows, and rows that are orthogonal to each other could be considered maximally different. In other
words, the effective rank measures what we have intuitively explained above as being indicators of
good performance. Consequently, we propose the zero-cost proxy NEAR as the following:
Definition 3.2 Network Expressivity by Activation Rank (NEAR). The NEAR score of a neural
network is given by

s =

L∑
l=1

erank(Zl) + erank(Hl) ,

where Zl and Hl denote the pre- and post-activation matrices, respectively.

A higher NEAR score s indicates a better performing network. The score depends on the input sam-
ples, which will usually be randomly selected. To prevent large, random fluctuations depending on
the selected samples, we recommend to calculate the score multiple times and employ the average.
On the NAS benchmarks, we calculated the average of 32 repetitions, while for the machine learning
potential benchmarks, we employed 400 repetitions due to the more diverse dataset.

3.3 NEAR FOR CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNNs) are a neural network architecture particularly popular in
the field of computer vision (Li et al., 2021). Our description here focuses on networks applying
2D convolutions. However, the approach can be extended to 3D convolutions as well. For 2D
convolutions, the input has the dimensions W × H × C, where C is the number of channels. For
example, C equals 3 for color images, since these consist of red, green, and blue color channels with
dimension W ×H (number of pixels in width W and height H). To extract features from the input,
a convolution operation is performed (see Figure A.2) using one or more filters with dimension
k × k × C, where k is an adjustable hyperparameter. These filters are essentially the weights that
are learned during the training process. The results of the convolutions are summed, so that each
filter results in a single output matrix, also known as a feature map. The output is passed to the next
layer, where new filters are applied, allowing the network to learn increasingly complex features.

We employ the feature maps in the construction of the activation matrix to calculate the NEAR score
for a CNN. A layer with C input channels results in an output of the form Zl ∈ RW ′×H′×C′

, with
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W ′ = W − k + 1 and H ′ = H − k + 1 (in case of no padding and stride of one). C ′ denotes the
number of filters in the layer. Since this output is a 3D tensor, the NEAR score cannot be calculated
directly. Instead, the output is first transformed into a matrix. We consider the number of filters to
be analogous to the number of neurons in a fully connected layer. Therefore, the maximum possible
NEAR score should be larger if there are more filters in a layer. This behavior could be achieved by
flattening each feature map into a vector and then packing the vectors into a matrix. However, for
an image with three channels and 32 × 32 pixels as input, this approach quickly results in a large
matrix. For example, when using a filter of dimension 3×3×8, the matrix already is of dimensions
7200 × 7200, and the effort to compute the NEAR score is no longer negligible. Therefore, we
approximate this matrix for the calculation of the NEAR score. First, we flatten the output to get
Zl ∈ RW ′·H′×C′

(see Figure A.3). Second, to reduce the size of the first dimension of this matrix, a
random selection of C ′ contiguous rows is made, where the first row contains elements taken from
the first row of the feature maps. This approach yields essentially a submatrix of the large matrix
containing all the feature maps as vectors. We employ this submatrix as a proxy to compute the
NEAR score.

4 RESULTS AND DISCUSSION

4.1 CORRELATION OF EFFECTIVE RANK AND FINAL MODEL ACCURACY

To examine the performance of our zero-cost proxy NEAR, we evaluated it on the three standard
cell-based NAS benchmarks NAS-Bench-101 (Ying et al., 2019), NATS-Bench-SSS, and NATS-
Bench-TSS (Dong et al., 2021). We note that “cell-based” refers to the construction of the individual
networks, which were obtained by placing stacks of repeated cells in a common skeleton (for details
see Ying et al. (2019) and Dong et al. (2021)). For comparison, we report the two commonly
employed rank correlation measures Kendall’s τ (Kendall, 1938) and Spearman’s ρ (Spearman,
1904) also for twelve other zero-cost proxies. For Grad norm, SNIP, GraSP, Fisher, and SynFlow
we relied on the implementations of Abdelfattah et al. (2021) and for ZiCo (Li et al., 2023), MeCoopt
(Jiang et al., 2023), swap (Peng et al., 2024), and reg swap (Peng et al., 2024) we employed the
respective paper’s implementation. All results were recalculated by us. In some cases we observed
small differences in the correlation coefficients compared to the values of the original publications.

NATS-Bench-TSS

The NATS-Bench-TSS search space consists of 15 625 neural network architectures trained on the
datasets CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and ImageNet16-120 (Chrabaszcz
et al., 2017). The correlation between the different proxies and the final test accuracy is shown
in Table 1. Some of the previously reported proxies, such as Grad norm, SNIP, and GraSP, yield
a lower correlation than the number of parameters. The latter can be seen as trivial baseline for
the zero-cost proxies. The more recently developed proxies ZiCo, MeCoopt, swap, reg swap, and
our proxy NEAR demonstrate superior performance relative to this baseline. In general, MeCoopt
achieves the highest correlation across all datasets for NATS-Bench-TSS. Nevertheless, the NEAR
and reg swap results are very close to those of MeCoopt. However, the comparison to the reg swap
score is not entirely fair because it assumes that architectures with a parameter number close to
the chosen parameter µ perform best, which may not be universally true. MeCoopt and NEAR are
therefore more generally applicable.

NATS-Bench-SSS

For the larger NATS-Bench-SSS search space with 32 768 architectures trained on CIFAR-10,
CIFAR-100, and ImageNet16-120, neither MeCoopt nor reg swap consistently show a higher cor-
relation with the final test accuracy than the number of parameters (Table 2). Only SynFlow, NEAR,
and ZiCo are able to surpass the performance of this baseline on all three datasets, with SynFlow
demonstrating the highest correlation on CIFAR-10 and ImageNet16-120, and NEAR yielding the
highest correlation on CIFAR-100.

NAS-Bench-101

The NAS-Bench-101 search space consists of 423 624 architectures trained on the CIFAR-10
dataset. As shown in Table 3, NEAR achieves the highest correlation with the final accuracy for
both metrics. It significantly outperforms MeCoopt, SynFlow, and reg swap, which show competi-
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tive performance on NATS-Bench-TSS and NATS-Bench-SSS. The second highest correlation for
NAS-Bench-101 is shown by the Zen-Score, closely followed by ZiCo. However, Zen-Score yields
worse correlation than the number of parameters on NATS-Bench-TSS across all datasets.

Table 1: Kendall’s τ and Spearman’s ρ correlation coefficients for different zero-cost proxies on the
NATS-Bench-TSS benchmark. The highest correlation is highlighted in bold face.

NATS-Bench-TSS
Dataset CIFAR-10 CIFAR-100 IN16-120

Proxy
Correlation

τ ρ τ ρ τ ρ

Grad norm (Abdelfattah et al., 2021) 0.48 0.65 0.47 0.64 0.41 0.56
SNIP (Abdelfattah et al., 2021) 0.48 0.64 0.47 0.63 0.43 0.57
GraSP (Abdelfattah et al., 2021) 0.39 0.55 0.40 0.57 0.40 0.55
Fisher (Abdelfattah et al., 2021) 0.41 0.55 0.41 0.56 0.35 0.47
SynFlow (Abdelfattah et al., 2021) 0.58 0.77 0.57 0.76 0.49 0.67
Zen-Score (Lin et al., 2021) 0.32 0.43 0.31 0.42 0.32 0.44
FLOPs 0.58 0.75 0.55 0.73 0.51 0.68
#Params 0.58 0.75 0.55 0.73 0.49 0.66
ZiCo (Li et al., 2023) 0.58 0.78 0.60 0.80 0.57 0.76
MeCoopt (Jiang et al., 2023) 0.72 0.90 0.73 0.90 0.67 0.84
swap (Peng et al., 2024) 0.64 0.82 0.65 0.82 0.58 0.74
reg swap (Peng et al., 2024) 0.71 0.88 0.69 0.87 0.62 0.79
NEAR 0.70 0.88 0.69 0.87 0.66 0.84

Table 2: Kendall’s τ and Spearman’s ρ correlation coefficients for different zero-cost proxies on the
NATS-Bench-SSS benchmark. The highest correlation is highlighted in bold face.

NATS-Bench-SSS
Dataset CIFAR-10 CIFAR-100 IN16-120

Proxy
Correlation

τ ρ τ ρ τ ρ

Grad norm (Abdelfattah et al., 2021) 0.53 0.72 0.38 0.54 0.52 0.70
SNIP (Abdelfattah et al., 2021) 0.63 0.82 0.43 0.61 0.61 0.79
GraSP (Abdelfattah et al., 2021) 0.30 0.43 0.10 0.15 0.33 0.48
Fisher (Abdelfattah et al., 2021) 0.47 0.65 0.30 0.43 0.43 0.60
SynFlow (Abdelfattah et al., 2021) 0.79 0.94 0.59 0.78 0.81 0.95
Zen-Score (Lin et al., 2021) 0.75 0.92 0.50 0.69 0.72 0.89
FLOPs 0.44 0.61 0.19 0.28 0.41 0.57
#Params 0.69 0.87 0.53 0.72 0.68 0.86
ZiCo (Li et al., 2023) 0.72 0.89 0.54 0.74 0.73 0.90
MeCoopt (Jiang et al., 2023) 0.74 0.91 0.62 0.81 0.61 0.80
swap (Peng et al., 2024) 0.48 0.67 0.23 0.34 0.43 0.60
reg swap (Peng et al., 2024) 0.62 0.81 0.38 0.54 0.55 0.73
NEAR 0.74 0.91 0.62 0.82 0.76 0.92

Table 3: Kendall’s τ and Spearman’s ρ correlation coefficients for different zero-cost proxies on the
NAS-Bench-101 benchmark. The highest correlation is highlighted in bold face.

NAS-Bench-101

Proxy
Correlation

τ ρ

Grad norm (Abdelfattah et al., 2021) −0.17 −0.25
SNIP (Abdelfattah et al., 2021) −0.12 −0.17
GraSP (Abdelfattah et al., 2021) 0.17 0.25
Fisher (Abdelfattah et al., 2021) −0.19 −0.28
SynFlow (Abdelfattah et al., 2021) 0.25 0.37
Zen-Score (Lin et al., 2021) 0.47 0.64
FLOPs 0.30 0.43
#Params 0.30 0.43
ZiCo (Li et al., 2023) 0.45 0.63
MeCoopt Jiang et al. (2023) 0.35 0.49
swap (Peng et al., 2024) 0.31 0.43
reg swap (Peng et al., 2024) 0.30 0.43
NEAR 0.52 0.70

To conclude, we provide a performance ranking of the zero-cost proxies across all datasets and
search spaces. For each combination of search space and dataset, we order the zero-cost proxies
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according to their Spearman’s ρ value. We identify the position in this order as rank, whereby the
proxy of highest correlation is assigned a rank of one. Subsequently, the average over all datasets
for each NAS search space and for all search spaces is calculated. For example, NEAR achieves
ranks three, one, and two on NATS-Bench-SSS for CIFAR-10, CIFAR-100, and ImageNet16-120,
respectively. These rankings result in an average rank of two on this search space. Of the proxies
tested, reg swap, SynFlow, ZiCo, MeCoopt, and NEAR are on average better than the baseline given
by the number of parameters (Table 4). However, only NEAR and ZiCo yield consistently higher
correlation than the number of parameters for each combination of search space and dataset, whereby
NEAR outperforms ZiCo in every case. For each search space, NEAR is either the best or second
best zero-cost proxy highlighting its broad applicability. Overall, NEAR achieves the best rank,
followed by MeCoopt and ZiCo.

Table 4: The rank of different zero-cost proxies averaged over all datasets of NATS-Bench-TSS,
NATS-Bench-SSS, and NAS-Bench-101 and across all search spaces. The best rank is highlighted
in bold face.

Average rank

Proxy
Search space TSS SSS 101 All

GraSP (Abdelfattah et al., 2021) 9.33 12.00 7.00 10.14
Fisher (Abdelfattah et al., 2021) 10.00 9.67 10.00 9.86
Grad norm (Abdelfattah et al., 2021) 7.67 8.33 9.00 8.14
FLOPs 5.67 11.00 5.00 7.86
SNIP (Abdelfattah et al., 2021) 8.00 6.67 8.00 7.43
Zen-Score (Lin et al., 2021) 11.00 4.00 2.00 6.71
swap (Peng et al., 2024) 3.33 9.67 5.00 6.29
#Params 6.33 5.00 5.00 5.57
reg swap (Peng et al., 2024) 2.00 7.67 5.00 4.86
SynFlow (Abdelfattah et al., 2021) 5.33 1.67 6.00 3.86
ZiCo (Li et al., 2023) 3.67 3.67 3.00 3.57
MeCoopt (Jiang et al., 2023) 1.00 3.67 4.00 2.57
NEAR 1.67 2.00 1.00 1.71

4.2 ESTIMATION OF OPTIMAL LAYER SIZE

Inspired by previous work that suggested a power law scaling for the accuracy with respect to the
model size for language models (Kaplan et al., 2020), we analyzed the NEAR score of a single
layer of different sizes. We observed that the relative score, i.e., the score divided by the number of
neurons, appears to be well represented by a simple power function of the form f(s) = α+ β · sγ ,
where s is the NEAR score (see Figure A.4). This behavior is consistent for two different datasets.
One is the balanced version of the extended MNIST (EMNIST) dataset (Cohen et al., 2017). It
contains handwritten digits and letters, with an equal number of examples for each class. The other
is a molecular dataset for a lifelong machine learning potential (lMLP). This dataset includes target
energies and atomic forces for features given by molecular structures, which were obtained from
various conformations in 42 different SN2 reactions (8 600 structures) (Eckhoff & Reiher, 2023).

We argue that a decreasing relative NEAR score indicates that the network benefits less from ad-
ditional neurons and, at a certain threshold, its performance is no longer limited by its size. Our
experiments suggest a threshold based on the slope of the power function to work reasonably well.
We therefore propose the following approach to estimate the size of individual layers: First, calcu-
late the NEAR score for some different layer sizes. Second, fit a power function to the calculated
relative scores. Third, calculate at which layer size the slope of the fit falls below a certain threshold
and apply this layer size for the neural network.

Since the NEAR score of each layer depends only on the previous layers, this approach can also be
applied to networks with multiple layers. Starting with the first layer, the size of all layers can be
determined iteratively.

Machine Learning Potential

We applied our approach to estimate the layer sizes on a three-hidden-layer machine learning poten-
tial, employing the dataset B of Eckhoff & Reiher (2023). Our method predicted a size of 52, 58, and
60 for the first, second, and third hidden layers, respectively, with a threshold of 0.5% of the slope
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at a layer size of 1. These sizes are significantly smaller than applied in Eckhoff & Reiher (2023)
(which are 102, 61, and 44). While this change reduces the number of parameters from 22 990 to
13 909, the average test loss only increases from 0.012 ± 0.003 to 0.015 ± 0.004. This increase is
reflected in a change of the root mean squared error for the energies from (4.4± 1.2)meV atom−1

to (4.6 ± 1.2)meV atom−1 and for the forces from (100 ± 8)meV Å
−1

to (109 ± 8)meV Å
−1

.
These numbers represent the mean and standard deviation over 20 individual machine learning po-
tentials, for which the training was started from different randomly initialized neural networks. We
note that the test loss depends not only on the capacity of the neural network, but also on the training
process. However, NEAR only aims to capture the capacity of a network and does not take into
account the training dynamics. Therefore, NEAR alone cannot be expected to determine the perfect
size but rather to give a good estimate.

Keeping the size of the first and second hidden layers at 52 and 58, respectively, and only varying
the size of the third hidden layer showed that the predicted size achieves good performance. Even
increasing the layer size to 100 neurons did not improve the loss (Table 5). However, a slightly
smaller layer of 40 neurons would still be sufficient to achieve the same performance. We note that
smaller networks require fewer computational resources and are therefore more efficient to evaluate.

Repeating the experiment for a variable second hidden layer showed again that the predicted size
has favorable characteristics in terms of accuracy and number of parameters. Reducing the size
of the second layer to 38 neurons (reduction in the number of parameters by ∼ 16%), results in
an increase in the loss of 20%. Conversely, increasing the neuron number to 78 (increase in the
parameter number by ∼ 16%), yields a loss decrease of only ∼ 7% (Table 5).

Balanced Extended MNIST

In a second experiment, we estimated the layer sizes for a two-hidden layer neural network on the
balanced EMNIST dataset. Again, we applied a threshold of 0.5% of the slope at a layer size of
1. The resulting sizes were 200 for both, first and second hidden layer. A comparison of the test
loss to a network with a reduced second layer size of 120, which decreases the parameter number
by ∼ 10%, shows an loss increase of ∼ 4%. The aforementioned loss values correspond to a
classification accuracy of 86.85% and 87.30%. Conversely, an increase in the neuron number to 280
for the second layer, which increases the parameter number by ∼ 9%, results in a decrease in the
loss of around 1% and an increase in the accuracy to 87.34%. This observation suggests that a size
of 200 represents a reasonable compromise between efficiency and accuracy (Table 6).

To check whether also the prediction for the first layer was reasonable, we fixed the size of the
second layer to 200 and train networks with various sizes for the first layer (Table 6). A comparison
of the test loss for a network with a size of 160 (∼ 20% decrease in the parameter number) yields an
increase in the loss of ∼ 1.3% and a decrease in the accuracy from 87.30% to 87.14%. Even when
the size of the first layer was increased to 260 (∼ 30% increase in the parameter number), the loss
can only be reduced by ∼ 0.7% and the accuracy is increased to 87.32%. Again, the predicted size
appears to offer a good trade-off between the number of parameters and the accuracy.

Table 5: The test loss of trained lMLPs when only the size of the second or third hidden layer is
changed. Marked in bold is the architecture predicted by our approach. In this and all following
tables, mean and standard deviation (rounded up) of 20 experiment repetitions are reported.

Variation of second layer Test loss #Params Variation of third layer Test loss #Params
52− 18− 60 0.022± 0.004 9 389 52− 58− 20 0.017± 0.003 11 509
52− 38− 60 0.018± 0.004 11 649 52− 58− 40 0.015± 0.003 12 709
52− 58− 60 0.015± 0.004 13,909 52− 58− 60 0.015± 0.004 13,909
52− 78− 60 0.014± 0.004 16 169 52− 58− 80 0.014± 0.003 15 109
52− 98− 60 0.014± 0.003 18 429 52− 58− 100 0.015± 0.003 16 309

4.3 ESTIMATION OF ACTIVATION FUNCTION AND WEIGHT INITIALIZATION PERFORMANCE

Numerous NAS benchmarks, including NATS-Bench-TSS, NATS-Bench-SSS, and NAS-Bench-
101, apply the ReLU activation function for all networks. There is no attention for zero-cost proxies
to detect favorable activation functions or weight initialization schemes. There are even proxies that
are specifically designed for the ReLU activation function (Mellor et al., 2021; Chen et al., 2021;
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Table 6: The test loss on the balanced EMNIST dataset when only the size of the first or second
hidden layer is changed. Marked in bold is the architecture predicted by our approach.

Variation of first layer Test loss #Params Variation of second layer Test loss #Params
120− 200 0.393± 0.012 127 847 200− 40 0.433± 0.017 166 967
140− 200 0.380± 0.006 147 547 200− 80 0.397± 0.011 176 887
160− 200 0.373± 0.009 167 247 200− 120 0.383± 0.009 186 807
180− 200 0.368± 0.007 186 947 200− 160 0.376± 0.009 196 727
200− 200 0.368± 0.006 206,647 200− 200 0.368± 0.006 206,647
220− 200 0.363± 0.007 226 347 200− 240 0.364± 0.006 216 567
240− 200 0.359± 0.006 246 047 200− 280 0.364± 0.008 226 487
260− 200 0.366± 0.007 265 747 200− 320 0.363± 0.009 236 407
280− 200 0.363± 0.008 285 447 200− 360 0.359± 0.007 246 327

Peng et al., 2024). However, it is well known that choosing an appropriate activation function and
weight initialization scheme is crucial for achieving good model performance (LeCun et al., 1998;
Glorot & Bengio, 2010; Eckhoff & Reiher, 2023). To assess whether NEAR can be employed to se-
lect an activation function and a weight initialization scheme, we calculated the score before training
and compared it with the final model performance.

Machine Learning Potential

Eckhoff & Reiher (2023) previously reported that the activation function sTanh(x) = 1.59223 ·
tanh(x) with a tailored weight initialization scheme improves the final accuracy of a lMLP. We
repeated the training for the same dataset and the same neural network architecture (number of neu-
rons per layer: 133− 102− 61− 44− 1) employing the CoRe optimizer (Eckhoff & Reiher, 2023;
2024a;b). Table 7 shows that the sTanh activation function with the tailored weight initialization
scheme achieves the lowest test loss, while also exhibiting the largest NEAR score. Comparing the
two weight initialization schemes sTanh and Kaiming uniform (He et al., 2015) demonstrates that
the former improves performance and that the NEAR score can be applied as a reliable predictor
for the more suitable weight initialization scheme. A comparison of the loss and NEAR score of
different activation functions applying the same weight initialization scheme also shows that the
score can guide the selection of an appropriate activation function. For example, the activation func-
tion sTanh with the customized initialization scheme exhibits the lowest loss and the highest NEAR
score, while the activation function Tanhshrink shows the highest loss and lowest NEAR score for
this weight initialization scheme. However, the discrepancies in loss for the three best activation
functions sTanh, Sigmoid Linear Unit (SiLU) (Elfwing et al., 2018), and Tanh are minimal, whereas
the differences in the NEAR score would suggest larger differences. The lowest NEAR score is
obtained by Tanhshrink with Kaiming initialization, which is also consistent with the fact that this
combination achieves the highest average loss. Hence, NEAR is capable of identifying more and
less effective activation functions, while the ordering in close cases cannot be guaranteed.

Since the loss function of the lMLP includes derivative constraints, the second derivative of the
activation function appears in the gradient calculation. Consequently, only activation functions with
a non-zero second derivative can be considered, resulting in the omission of the ReLU function in
this experiment. This issue once again highlights the benefit of NEAR that it can be applied to any
activation function.

Balanced Extended MNIST

To show that the NEAR score can guide the selection of the activation function and weight initial-
ization scheme across various datasets and independent of the optimizer, we report the test loss and
the NEAR score on the balanced EMNIST dataset. We employed a multi-layer perceptron with two
hidden layers of size 200 and the Adam optimizer (Kingma & Ba, 2015). We applied early stopping
with a patience of 10 epochs, whereby 10% of the training set served as validation set.

We report the test loss and the NEAR score for the initialization schemes Xavier uniform (Glorot &
Bengio, 2010), Kaiming uniform, and uniform and the activation functions SiLU, ReLU, Tanh, and
Tanhshrink in Table 8. The NEAR score indicates that the Xavier initialization is the most effective,
followed by the Kaiming initialization and the uniform initialization. While the uniform initializa-
tion is undoubtedly the least favorable in terms of resulting test loss, the distinction between Xavier
and Kaiming is not as clear-cut. For the activation functions under consideration, the average loss
is found to be lower with the Kaiming initialization than the Xavier initialization, but the difference
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is marginal and the standard deviations are higher than the difference. For the Kaiming and Xavier
initializations, the activation functions SiLU, ReLU, and Tanh result in similar test losses, while the
NEAR score gives the impression that there is a clear ordering for a given initialization. As the
orderings of the test losses and NEAR scores do not agree for both initializations, we conclude that
these small differences in the resulting loss cannot be captured by the NEAR score. We note here
again that the NEAR score only accounts for the expressivity of the network and does not take into
account the training process. Still, the NEAR score can reliably predict the worst performing acti-
vation function (Tanhshrink). For this activation function, the test loss is also significantly different
from those of the others. Analogously, the NEAR score can correctly identify that SiLU, Tanhshrink,
and ReLU lead to a lower loss than Tanh if the uniform initialization is applied. Hence, NEAR can
predict the performance of an activation function and weight initialization scheme, though it may
not resolve minor differences in the resulting loss.

Table 7: Comparison of the test loss (after training) and the NEAR score (before training) for various
activation functions σ and weight initialization schemes.

σ, initialization Test loss NEAR score
sTanh, sTanh 0.012± 0.003 70.8± 0.2
SiLU, sTanh 0.013± 0.004 63.1± 0.3
Tanh, sTanh 0.015± 0.003 67.2± 0.3
Tanhshrink, sTanh 0.027± 0.006 45.2± 0.2
SiLU, Kaiming 0.031± 0.008 57.1± 2.5
sTanh, Kaiming 0.041± 0.019 60.3± 2.5
Tanh, Kaiming 0.050± 0.022 58.5± 2.3
Tanhshrink, Kaiming 0.082± 0.014 38.7± 1.8

Table 8: Comparison of the test loss (after training) and the NEAR score (before training) for various
activation functions σ and weight initialization schemes on the balanced EMNIST dataset. For
“SiLU, uniform” one outlier was excluded from the mean and standard deviation.

σ, initialization Test loss NEAR score
SiLU, Kaiming 0.367± 0.008 382.8± 5.0
SiLU, Xavier 0.368± 0.008 417.7± 0.6
ReLU, Kaiming 0.372± 0.010 403.7± 7.4
ReLU, Xavier 0.374± 0.008 421.1± 0.8
Tanh, Kaiming 0.392± 0.010 398.2± 5.1
Tanh, Xavier 0.396± 0.011 415.5± 0.4
Tanhshrink, Kaiming 0.447± 0.022 278.4± 3.2
Tanhshrink, Xavier 0.449± 0.018 401.4± 1.2
SiLU, uniform 0.525± 0.040 13.3± 0.1
Tanhshrink, uniform 0.602± 0.030 13.4± 0.1
ReLU, uniform 0.651± 0.047 13.3± 0.1
Tanh, uniform 3.858± 0.030 9.0± 0.1

5 CONCLUSION

In this work, we have introduced NEAR which is a zero-cost proxy to pre-estimate the performance
of a machine learning model without training. For this purpose, the NEAR score estimates the
expressivity of neural networks by calculating the effective rank of the pre- and post-activation
matrix. We have demonstrated its strong correlation with the final model accuracy on NATS-Bench-
SSS/TSS and NAS-Bench-101. In a ranking of 13 zero-cost proxies by their Spearman’s correlation
coefficient, NEAR achieves an average rank of 1.7 across all datasets and search spaces, while the
second-best proxy MeCoopt has only an average rank of 2.6. In contrast to other proxies, NEAR only
requires sample input data, but no output labels and it is not bound to a specific activation function.
In fact, we have shown that it can even be applied to choose a well performing activation function
and weight initialization scheme. Moreover, NEAR is not limited to a given search space and can
be applied to estimate the optimal layer size in multi-layer perceptrons. This task represents a
significant challenge in the construction of neural networks, and hence, NEAR can help substantially
reduce invested human time and computational demand.
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REPRODUCIBILITY STATEMENT

In order to make our calculations reproducible, we provide the code including all hyperparameter
settings as well as the raw data.
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A APPENDIX

A.1 SUPPORTING FIGURES

x1

x2

x3

y1

y2

Figure A.1: Illustration of an artificial neural network with three inputs {xi} and two outputs {yi}.
The single hidden layer consists of five neurons. The activation functions are shown within the
neurons. The solid lines represent the weights, while the dashed lines indicate input and output
without weights.
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Figure A.2: A convolution is performed on the input of dimension 4×4×3 with a filter of dimension
2× 2× 3 resulting in a feature map of dimension 3× 3.
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Figure A.3: Process of reshaping convolutional neural network feature maps. (a) The process begins
with four 3 × 3 feature maps. (b) These feature maps are subsequently reshaped to a 9 × 4 matrix.
(c) An activation matrix is given by four contiguous rows, whereby the first row contains elements
extracted from the top row of the feature maps. From all possible activation matrices one is randomly
selected.
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Figure A.4: A power function fitted to the NEAR score divided by the total number of neurons in
the layer. The star marks the first time where the slope is smaller or equal to 0.5% of the slope at
x = 1. The plot has been generated for the experiments on the lMLP.
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A.2 ADDITIONAL NAS-BENCHMARKS

TransNAS-Bench-101-Micro

To demonstrate that NEAR is not only applicable to image classification tasks, we show here results
on seven different tasks from the TransNAS-Bench-101-Micro benchmark Duan et al. (2021). The
tasks include classification, regression, pixel-level prediction, and self-supervised tasks. NEAR
outperforms the baseline given by the number of parameters and the number of FLOPs on each task
(Table 9).

Table 9: Kendall’s τ and Spearman’s ρ correlation coefficients for NEAR on different tasks of
TransNAS-Bench-101-Micro.

Proxy
Task Cls. Object Cls. Scene Autoencoding Surf. Normal Sem. Segment. Room Layout Jigsaw

τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ
#Params 0.36 0.53 0.44 0.62 −0.03 −0.04 0.46 0.65 0.45 0.63 0.24 0.38 0.30 0.45
FLOPs 0.37 0.55 0.45 0.64 −0.03 −0.04 0.47 0.66 0.46 0.65 0.24 0.39 0.31 0.46
NEAR 0.54 0.74 0.60 0.80 0.14 0.22 0.66 0.84 0.57 0.76 0.37 0.55 0.45 0.64

HW-GPT-Bench

One of the strengths of NEAR is its ability to work with networks which do not employ the ReLU
activation function. To explore this capability, we applied NEAR to language models with the
Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016) activation function using the HW-
GPT benchmark (Sukthanker et al., 2024). Specifically, we randomly sampled 20 000 architectures
from the small variant of the search space and computed the correlation between the NEAR score
and perplexity. While NEAR did not outperform the strong baseline given by the correlation between
model parameters and perplexity, it still showed a higher correlation than the MeCoopt proxy (Table
10).

Table 10: Kendall’s τ and Spearman’s ρ correlation between zero-cost proxy score and perplexity
for 20 000 randomly sampled architectures of the small HW-GPT-Bench search space. As lower
perplexity values indicate better models, the correlations are expected to be negative.

Proxy
Correlation

τ ρ

#Params −0.92 −0.99
FLOPs −0.92 −0.99
MeCoopt (Jiang et al., 2023) −0.68 −0.88
NEAR −0.90 −0.99

A.3 PROXIES TO SELECT WEIGHT INITIALIZATION AND ACTIVATION FUNCTION

To show that NEAR outperforms previous proxies in identifying suitable weight initialization
schemes and activation functions, we calculated the proxy scores for the same combinations listed in
Table 8. Subsequently, we calculated Spearman’s ρ and Kendall’s τ correlation coeeficients for the
average accuracy as a function of the average proxy score. The results indicate that NEAR exhibits
a significantly higher correlation compared to the other proxies evaluated (see Table 11). Since the
swap and reg swap scores are only defined for the ReLU activation function, they have been omitted
from this analysis.

A.4 STABILITY OF NEAR SCORE AFTER MINIMAL TRAINING

Similar to the analysis in Mok et al. (2022), we computed the NEAR score after 0, 1, 3, 5, and 10
epochs of training on the NATS-Bench-SSS benchmark using the CIFAR-10 dataset. While many
of the tested proxies show a decrease in correlation after some training, the correlation of NEAR
only decreases slightly after the first training epoch and increases steadily for the following epochs
(Figure A.5). Remarkably, NEAR is the only proxy that achieves a higher correlation after ten
epochs of training than it had prior to training.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 11: Kendall’s τ and Spearman’s ρ correlation coefficients between the average model accu-
racy and the average proxy scores evaluated on the combinations of activation functions and weight
initialization methods listed in Table 8. Averages are obtained from 20 repetitions. A higher cor-
relation means that the proxy is more effective at identifying good activation functions and weight
initializations.

Proxy
Correlation

τ ρ

Grad norm (Abdelfattah et al., 2021) −0.53 −0.32
SNIP (Abdelfattah et al., 2021) −0.53 −0.32
GraSP (Abdelfattah et al., 2021) 0.53 0.32
Fisher (Abdelfattah et al., 2021) −0.53 −0.35
SynFlow (Abdelfattah et al., 2021) −0.15 −0.08
Zen-Score (Lin et al., 2021) −0.35 −0.24
ZiCo (Li et al., 2023) −0.07 0.00
MeCoopt (Jiang et al., 2023) 0.67 0.45
NEAR 0.84 0.70
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Figure A.5: Spearman’s ρ correlation on NATS-Bench-SSS using the CIFAR-10 dataset, evaluated
after 0, 1, 3, 5, and 10 training epochs.

A.5 INTERPRETATION OF CORRELATIONS

To provide further insight into the interpretation of the correlations between proxy scores and accu-
racy, we calculated the probability that, given two randomly selected networks N1 and N2, if the
accuracy of N1 is higher than that of N2, then the proxy score of N1 will also be higher than the
proxy score of N2. These probabilities are presented in Table 12.

A.6 WORST PREDICTIONS

An examination of NEAR’s 100 most inaccurate predictions reveals that its main challenge is in
evaluating networks with a high number of parameters. Unlike other proxies, however, NEAR does
not misclassify a network with low accuracy as one with high accuracy, thus reliably excluding
networks with poor performance (see Figure A.6).
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Search Space NATS-Bench-TSS NATS-Bench-SSS NAS-Bench-101

Proxy
Correlation CIFAR-10 CIFAR-100 IN16-120 CIFAR-10 CIFAR-100 IN16-120 CIFAR-10

swap (Peng et al., 2024) 0.82 0.82 0.79 0.74 0.62 0.72 0.62
reg swap (Peng et al., 2024) 0.85 0.85 0.81 0.81 0.69 0.77 0.65
MeCoopt (Jiang et al., 2023) 0.86 0.86 0.84 0.87 0.81 0.81 0.67
ZiCo (Li et al., 2023) 0.79 0.80 0.79 0.86 0.77 0.86 0.73
Zen-Score (Lin et al., 2021) 0.66 0.66 0.66 0.88 0.75 0.86 0.73
SynFlow (Abdelfattah et al., 2021) 0.79 0.78 0.75 0.90 0.79 0.91 0.63
Fisher (Abdelfattah et al., 2021) 0.70 0.71 0.68 0.74 0.65 0.72 0.41
GraSP (Abdelfattah et al., 2021) 0.69 0.70 0.70 0.65 0.55 0.67 0.59
SNIP (Abdelfattah et al., 2021) 0.74 0.73 0.71 0.82 0.72 0.80 0.44
Grad norm (Abdelfattah et al., 2021) 0.74 0.74 0.71 0.77 0.69 0.76 0.42
#Params 0.73 0.72 0.71 0.85 0.77 0.84 0.65
FLOPs 0.73 0.72 0.71 0.72 0.60 0.71 0.65
NEAR 0.85 0.84 0.83 0.87 0.81 0.88 0.76

Table 12: The probability that for two randomly chosen networks the network with the higher ac-
curacy also shows the higher zero-cost proxy score. This probability was estimated by randomly
sampling one million pairs of networks. The highest probability is highlighted in bold face.
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Figure A.6: Each point represents a neural network from the NAS-Bench-101 benchmark. The
points highlighted in orange indicate the 100 neural networks where the proxy’s predictions deviated
most significantly from actual performance.

A.7 CONTRIBUTIONS OF INDIVIDUAL LAYERS

To investigate how individual layers contribute to the overall correlation, we performed a layer-
specific correlation analysis. This analysis involved generating over a billion random subsets, each
comprising 6 layers. For each subset, we calculated the NEAR score. Then, for each layer, we
summed the NEAR scores from all subsets containing that layer. Finally, we divided this sum
by the total number of subsets in which each layer appeared. This analysis revealed no layer with a
significantly lower or higher average correlation than the others. In other words, the results indicated
no individual layer exerted a disproportionately strong or weak influence on the overall correlation.
The average correlation per layer is shown in Figure A.7.
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Figure A.7: The average correlation for each layer on NATS-Bench-SSS, determined by computing
the correlations for random subsets of six layers and then averaging the results.

A.8 SAMPLING OF FEATURE MAPS

In subsection 3.3, we explained how NEAR can be calculated using only a subsample of the full
matrix, which consists of all feature maps represented as vectors (see also Figure A.3). For NEAR to
yield meaningful scores despite this approximation, the subsample matrix needs to remain sensitive
to variations in kernel size and the number of channels. As shown in Figure A.8 and Figure A.9, the
effective rank derived from both, the full matrix and the subsample matrix, exhibit similar trends,
indicating that these parameters are accurately captured even within the approximation. In addition,
Table 13 shows the impact of the sample size on the estimation of the rank of the full matrix.
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(a) Rank calculated from full matrix.

2 4 6 8 10 12
Number of output channels

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e 
ra

nk
 / 

m
ax

 e
ffe

ct
iv

e 
ra

nk

(b) Rank calculated from subsample matrix.

Figure A.8: Comparison of the rank calculated from the full matrix and the subsample matrix as a
function of the number of channels.
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(a) Rank calculated from full matrix.
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Figure A.9: Comparison of the rank calculated from the full matrix and the subsample matrix as a
function of the kernel size.

# Samples
Parameter Kernel size Channel number

1 0.95 0.92
10 0.98 0.98
32 0.98 0.99

Table 13: The first column shows Spearman’s ρ correlation between the rank calculated from the full
matrix and the rank calculated from the subsample matrix employing kernel sizes of 1, 3, 5, 7, and
9 averaged over 10 000 iterations. The second column shows Spearman’s ρ correlation between the
rank calculated from the full matrix and the rank calculated from the subsample matrix employing
between 1 and 13 output channels averaged over 10 000 iterations.
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