
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEAR: A TRAINING-FREE PRE-ESTIMATOR OF MA-
CHINE LEARNING MODEL PERFORMANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Artificial neural networks have been shown to be state-of-the-art machine learning
models in a wide variety of applications, including natural language processing
and image recognition. However, building a performant neural network is a labo-
rious task and requires substantial computing power. Neural Architecture Search
(NAS) addresses this issue by an automatic selection of the optimal network from
a set of potential candidates. While many NAS methods still require training of
(some) neural networks, zero-cost proxies promise to identify the optimal network
without training. In this work, we propose the zero-cost proxy Network Expres-
sivity by Activation Rank (NEAR). It is based on the effective rank of the pre-
and post-activation matrix, i.e., the values of a neural network layer before and
after applying its activation function. We demonstrate the cutting-edge correla-
tion between this network score and the model accuracy on NAS-Bench-101 and
NATS-Bench-SSS/TSS. In addition, we present a simple approach to estimate the
optimal layer sizes in multi-layer perceptrons. Furthermore, we show that this
score can be utilized to select hyperparameters such as the activation function and
the neural network weight initialization scheme.

1 INTRODUCTION

Originally inspired by the structure and function of biological neural networks, artificial neural net-
works are now a key component in machine learning (Bishop, 2006; Russell & Norvig, 2021). They
are applied in many tasks such as natural language processing, speech recognition, and even protein
folding (Vaswani et al., 2017; Baevski et al., 2020; Jumper et al., 2021). Artificial neural networks
are built by layers of interconnected neurons, which receive inputs, apply a, typically non-linear,
activation function, and pass on the result (see Figure A.1). By tuning the weights of the individual
inputs to a neuron, a neural network can learn functional relations from sample data to perform pre-
dictions without explicit program instructions. Deep learning is obtained if more than one layer is
hidden between the first input and last output layer of the neural network. In theory, already a neural
network with a single hidden layer and enough neurons is capable of approximating any continuous
function up to arbitrary precision (Hornik et al., 1989; Cybenko, 1989; Hornik, 1991).

However, the choice of the model size, i.e., the number of hidden layers and the number of neurons
per layer, has a huge impact on the performance, training time, and computational demand (Tan &
Le, 2019). A too small network is unable to capture a complex relation in a dataset resulting in
underfitting. Conversely, a too large model lacks efficiency and carries the risk of overfitting and
poor generalization. Determining the optimal model size that strikes a balance between accuracy and
efficiency remains an important challenge (Ren et al., 2021). In common practise, various models
of different sizes are trained and their final performances are compared. This manual process is
time-consuming and often leads to sub-optimal model architectures.

The goal of Neural Architecture Search (NAS) is to eliminate this manual process and autonomously
identify suitable architectures (Elsken et al., 2019). Commonly applied techniques for NAS are
based on reinforcement learning, evolutionary algorithms, or gradient-based optimization (Zoph &
Le, 2017; Real et al., 2017; Liu et al., 2019). However, these methods are still time- and resource-
intensive. Zero-cost proxies have been proposed to improve the efficiency of NAS methods (Mellor
et al., 2021; Abdelfattah et al., 2021; Krishnakumar et al., 2022). They exploit properties of the
untrained network that are correlated with the final accuracy, bypassing the costly training process.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this way, they promise speed-ups of several orders of magnitude compared to traditional NAS
algorithms (Abdelfattah et al., 2021).

The performance of previously reported zero-cost proxies is highly dependent on the underlying
search space (Ning et al., 2021). Furthermore, many of them are unable to demonstrate consis-
tently a higher correlation with the final accuracy than the trivial baseline given by the number of
parameters (#Params) (Ning et al., 2021). In addition, these proxies require a search space of known
architectures. While the latter is not a severe limitation in applications such as computer vision,
in many other applications such search spaces do not exist. An example is a so-called machine
learning potential (Behler & Parrinello, 2007; Behler, 2021) applied in chemistry and materials sci-
ence, which employs neural networks to predict the energy of a chemical system as a function of
the molecular structure. In this work, we propose the zero-cost proxy Network Expressivity by Ac-
tivation Rank (NEAR) that can be used in conjunction with a search space, but also provides the
possibility to estimate the optimal layer size for multi-layer perceptrons without a search space.

Besides the network architecture, the activation function and weight initialization scheme have a
significant impact on the training dynamics and the final performance of a neural network (LeCun
et al., 1998; Glorot & Bengio, 2010). A variety of techniques have been developed to select such
hyperparameters, including methods based on Bayesian optimization and evolutionary algorithms
(Snoek et al., 2012; Lorenzo et al., 2017). However, these techniques still require expensive training
of multiple networks, and the zero-cost proxies reported so far have not been applied to the selection
of the activation function and the weight initialization scheme. A zero-cost proxy that can be applied
not only to find optimal architectures, but also to choose the activation function and the weight
initialization scheme, would allow one to further reduce the computational burden of constructing
a performant artificial neural network. Here, we therefore evaluate the suitability of our zero-cost
proxy NEAR for this purpose.

In summary, we make the following three key contributions: First, we propose the zero-cost proxy
NEAR and test its performance across several search spaces and datasets. Second, we introduce a
simple method to estimate the optimal layer size of multi-layer perceptrons and show its effective-
ness for machine learning potentials. Third, we empirically demonstrate that our zero-cost proxy
NEAR can support the selection of an activation function and a suitable weight initialization scheme.

2 RELATED WORK

Zero-cost NAS proxies are designed to identify optimal neural network architectures without requir-
ing training. Some of the earliest proxies such as Single-Shot Network Pruning Based on Connec-
tion Sensitivity (SNIP), Gradient Signal Preservation (GraSP), Fisher, and Synaptic Flow (SynFlow)
have been adapted from pruning techniques and are based on gradients of the neural network (Ab-
delfattah et al., 2021). While SNIP assigns scores to individual parameters by approximating the
change in loss when the parameter is removed (Lee et al., 2019), the scores of GraSP are based on
an approximation of the change in the gradient norm (Wang et al., 2020). The Fisher proxy estimates
the importance of an activation by calculating its contribution to the loss (Turner et al., 2020), and
SynFlow assigns a score to each parameter indicating how much it contributes to the information
flow in the network (Tanaka et al., 2020). A proxy that has not been adapted from the pruning litera-
ture is Grad norm, which is defined as the Euclidean norm of the gradient (Abdelfattah et al., 2021).
SNIP, GraSP, SynFlow, and Grad norm are calculated for each individual parameter, whereas Fisher
is calculated for channels within a convolution layer. To obtain a score for the entire network, the
values assigned to the parameters or channels are summed. Zero-Shot NAS via Inverse Coefficient of
Variation on Gradients (ZiCo) (Li et al., 2023) is another proxy that exploits gradient information,
linking the mean and the variance of the gradient to the convergence rate and the capacity of the
neural network. With the exception of SynFlow, all the aforementioned proxies require the pres-
ence of target output, so-called labels. Therefore, they can only be applied to a limited extent in
unsupervised learning for categorization tasks.

Some zero-cost proxies exist that employ properties of the untrained network that do not require
backpropagation and hence work without labels. These include Neural Architecture Search Without
Training (NASWOT) (Mellor et al., 2021), Zen-Score (Lin et al., 2021), Sample-Wise Activation
Patterns (swap) (Peng et al., 2024), Regularized Sample-Wise Activation Patterns (reg swap) (Peng
et al., 2024), and Minimum Eigenvalue of Correlation (MeCoopt) (Jiang et al., 2023). To a certain ex-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

tent, these proxies can be related to theoretical considerations regarding, for example, the functions
that can be represented by a particular neural network or the convergence rate during training. A
proxy that combines information from gradients with the output of the untrained network and works
without labels is Training-Free Neural Architecture Search (TE-NAS) (Chen et al., 2021).

All these proxies assess the performance of a network based on the output of individual untrained
layers. However, most of them, namely NASWOT, Zen-Score, swap, reg swap, and TE-NAS, can
only be applied if the Rectified Linear Unit (ReLU) (Nair & Hinton, 2010) activation function is
employed. Our zero-cost proxy NEAR utilizes the output of individual layers before and after the
application of the activation function for sample inputs without constraints on the type of activation
function. Therefore, its applicability is more general.

3 METHODS

3.1 MULTI-LAYER PERCEPTRON

An artificial neural network with the architecture described in the introduction (see Figure A.1) is
also called multi-layer perceptron. A multi-layer perceptron with L layers can be expressed as

F(x) = (σ ◦WL) ◦ (σ ◦WL−1) ◦ · · · ◦ (σ ◦W2) ◦ (σ ◦W1)(x) := y , (1)

where x and y are the input and output features, σ is an activation function, and Wl ∈ RNl×Nl−1

are the weights of layer l. The weights can also include so-called bias weights, which are added to
the output of the neuron without being multiplied by any input value. Hence, they effectively shift
the activation function input of the neuron.

We define the pre-activation of layer l as

zl = (Wl) ◦ (σ ◦Wl−1) ◦ · · · ◦ (σ ◦W2) ◦ (σ ◦W1)(x) (2)

and the post-activation as
hl = σ(zl) . (3)

3.2 NETWORK EXPRESSIVITY BY ACTIVATION RANK (NEAR)

The construction of our zero-cost proxy NEAR is inspired by theoretical considerations on machine
learning that attempt to assess the expressivity of artificial neural networks (Pascanu et al., 2013;
Montufar et al., 2014). Therefore, we restate here the most important concepts from these works.
For neural networks applying the ReLU activation function, each activation function can be concep-
tualized as a hyperplane that separates the input space into an active and an inactive region. Both
regions are referred to as linear regions. The number of such linear regions can be viewed as a
measure of the expressivity of the network (Pascanu et al., 2013; Montufar et al., 2014). Following
previous studies (Raghu et al., 2017; Montúfar, 2017; Serra et al., 2018), we define the activation
pattern for an input x and a network F with the ReLU activation function by the set of vectors
A(x;F) = {a1, . . . ,aL} where ali = 1 if the output of the ith neuron in layer l is positive and
ali = 0 otherwise. Given that different linear regions correspond to distinct activation patterns, the
number of linear regions is equivalent to the number of activation patterns. Consequently, it is a
natural idea to analyze the activation patterns to assess the expressivity of a network. This idea is
exploited in several zero-cost proxies (Mellor et al., 2021; Chen et al., 2021; Lin et al., 2021; Peng
et al., 2024). However, constructing a proxy based on the aforementioned definition of the activation
pattern will restrict its application to networks applying the ReLU activation function, a drawback
that all those proxies have in common.

To build a more general zero-cost proxy, we relax the definition of the activation pattern to enable
other activation functions: A(x;F) = {h1, . . . ,hL}, with hl defined in Eq. (3). While there is no
longer a direct relationship to the number of linear regions, we argue that inputs with a very similar
activation pattern are more challenging for the network to distinguish, and we leverage this argument
to develop our zero-cost proxy. We define the pre-activation matrix for layer l as Zl ∈ Rnl×nl ,
where nl is the number of neurons in layer l. Each of the nl rows of Zl contains zl for some
different sample input xi. In a similar manner, the post-activation matrix for layer l is defined as
Hl ∈ Rnl×nl , where each row contains hl for a different sample input xi. Intuitively, we would

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

expect a well-performing network when the rows in the pre-/post-activation matrix are very different
to each other, while a matrix with all similar rows would indicate a poorly performing network. As
an example, we can consider a classification problem in which rows are highly similar yet belong
to inputs of different classes. In this case even a minor perturbation can result in a change in the
predicted class. Additionally, we would expect that a matrix, in which certain rows have entries
that are much larger than the entries in other rows, will result in poorer performance than a matrix
with entries of similar size. The reason for this behavior is that the differences in size can cause the
predictions to become highly dependent on individual weights and hence on individual input values.
These two relationships are captured by the effective rank, defined as follows:
Definition 3.1 Effective Rank (Roy & Vetterli, 2007). The effective rank of a matrix A ∈ CM×N ,
with Q = min{M,N}, is given by

erank(A) = exp[H(p1, . . . , pQ)] , (4)

where H(p1, . . . , pQ) is the Shannon entropy (Shannon, 1948),

H(p1, . . . , pQ) = −
Q∑

k=1

pk log(pk) , with pk =
σ̃k∑Q
i=1 σ̃i

, (5)

where pk are normalized singular values and σ̃i are singular values.

To interpret the effective rank of a matrix, we can think of the matrix as a linear transformation. The
rank of the matrix indicates the number of dimensions of its range. By contrast, the effective rank
contains information about the geometrical shaping of the transformation. A linear transformation
that causes a strong stretching along one dimension, while all other dimensions remain unchanged,
has a lower effective rank than a transformation that causes an equally strong stretching along all
dimensions. The rank of the matrix of both transformations is, however, identical. In addition, a lin-
ear transformation that stretches each dimension equally is represented by a matrix with orthogonal
rows, and rows that are orthogonal to each other could be considered maximally different. In other
words, the effective rank measures what we have intuitively explained above as being indicators of
good performance. Consequently, we propose the zero-cost proxy NEAR as the following:
Definition 3.2 Network Expressivity by Activation Rank (NEAR). The NEAR score of a neural
network is given by

s =

L∑
l=1

erank(Zl) + erank(Hl) ,

where Zl and Hl denote the pre- and post-activation matrices, respectively.

A higher NEAR score s indicates a better performing network. The score depends on the input sam-
ples, which will usually be randomly selected. To prevent large, random fluctuations depending on
the selected samples, we recommend to calculate the score multiple times and employ the average.
On the NAS benchmarks, we calculated the average of 32 repetitions, while for the machine learning
potential benchmarks, we employed 400 repetitions due to the more diverse dataset.

3.3 NEAR FOR CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNNs) are a neural network architecture particularly popular in
the field of computer vision (Li et al., 2021). Our description here focuses on networks applying
2D convolutions. However, the approach can be extended to 3D convolutions as well. For 2D
convolutions, the input has the dimensions W × H × C, where C is the number of channels. For
example, C equals 3 for color images, since these consist of red, green, and blue color channels with
dimension W ×H (number of pixels in width W and height H). To extract features from the input,
a convolution operation is performed (see Figure A.2) using one or more filters with dimension
k × k × C, where k is an adjustable hyperparameter. These filters are essentially the weights that
are learned during the training process. The results of the convolutions are summed, so that each
filter results in a single output matrix, also known as a feature map. The output is passed to the next
layer, where new filters are applied, allowing the network to learn increasingly complex features.

We employ the feature maps in the construction of the activation matrix to calculate the NEAR score
for a CNN. A layer with C input channels results in an output of the form Zl ∈ RW ′×H′×C′

, with

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

W ′ = W − k + 1 and H ′ = H − k + 1 (in case of no padding and stride of one). C ′ denotes the
number of filters in the layer. Since this output is a 3D tensor, the NEAR score cannot be calculated
directly. Instead, the output is first transformed into a matrix. We consider the number of filters to
be analogous to the number of neurons in a fully connected layer. Therefore, the maximum possible
NEAR score should be larger if there are more filters in a layer. This behavior could be achieved by
flattening each feature map into a vector and then packing the vectors into a matrix. However, for
an image with three channels and 32 × 32 pixels as input, this approach quickly results in a large
matrix. For example, when using a filter of dimension 3×3×8, the matrix already is of dimensions
7200 × 7200, and the effort to compute the NEAR score is no longer negligible. Therefore, we
approximate this matrix for the calculation of the NEAR score. First, we flatten the output to get
Zl ∈ RW ′·H′×C′

(see Figure A.3). Second, to reduce the size of the first dimension of this matrix, a
random selection of C ′ contiguous rows is made, where the first row contains elements taken from
the first row of the feature maps. This approach yields essentially a submatrix of the large matrix
containing all the feature maps as vectors. We employ this submatrix as a proxy to compute the
NEAR score.

4 RESULTS AND DISCUSSION

4.1 CORRELATION OF EFFECTIVE RANK AND FINAL MODEL ACCURACY

To examine the performance of our zero-cost proxy NEAR, we evaluated it on the three standard
cell-based NAS benchmarks NAS-Bench-101 (Ying et al., 2019), NATS-Bench-SSS, and NATS-
Bench-TSS (Dong et al., 2021). We note that “cell-based” refers to the construction of the individual
networks, which were obtained by placing stacks of repeated cells in a common skeleton (for details
see Ying et al. (2019) and Dong et al. (2021)). For comparison, we report the two commonly
employed rank correlation measures Kendall’s τ (Kendall, 1938) and Spearman’s ρ (Spearman,
1904) also for twelve other zero-cost proxies. For Grad norm, SNIP, GraSP, Fisher, and SynFlow
we relied on the implementations of Abdelfattah et al. (2021) and for ZiCo (Li et al., 2023), MeCoopt
(Jiang et al., 2023), swap (Peng et al., 2024), and reg swap (Peng et al., 2024) we employed the
respective paper’s implementation. All results were recalculated by us. In some cases we observed
small differences in the correlation coefficients compared to the values of the original publications.

NATS-Bench-TSS

The NATS-Bench-TSS search space consists of 15 625 neural network architectures trained on the
datasets CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and ImageNet16-120 (Chrabaszcz
et al., 2017). The correlation between the different proxies and the final test accuracy is shown
in Table 1. Some of the previously reported proxies, such as Grad norm, SNIP, and GraSP, yield
a lower correlation than the number of parameters. The latter can be seen as trivial baseline for
the zero-cost proxies. The more recently developed proxies ZiCo, MeCoopt, swap, reg swap, and
our proxy NEAR demonstrate superior performance relative to this baseline. In general, MeCoopt
achieves the highest correlation across all datasets for NATS-Bench-TSS. Nevertheless, the NEAR
and reg swap results are very close to those of MeCoopt. However, the comparison to the reg swap
score is not entirely fair because it assumes that architectures with a parameter number close to
the chosen parameter µ perform best, which may not be universally true. MeCoopt and NEAR are
therefore more generally applicable.

NATS-Bench-SSS

For the larger NATS-Bench-SSS search space with 32 768 architectures trained on CIFAR-10,
CIFAR-100, and ImageNet16-120, neither MeCoopt nor reg swap consistently show a higher cor-
relation with the final test accuracy than the number of parameters (Table 2). Only SynFlow, NEAR,
and ZiCo are able to surpass the performance of this baseline on all three datasets, with SynFlow
demonstrating the highest correlation on CIFAR-10 and ImageNet16-120, and NEAR yielding the
highest correlation on CIFAR-100.

NAS-Bench-101

The NAS-Bench-101 search space consists of 423 624 architectures trained on the CIFAR-10
dataset. As shown in Table 3, NEAR achieves the highest correlation with the final accuracy for
both metrics. It significantly outperforms MeCoopt, SynFlow, and reg swap, which show competi-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

tive performance on NATS-Bench-TSS and NATS-Bench-SSS. The second highest correlation for
NAS-Bench-101 is shown by the Zen-Score, closely followed by ZiCo. However, Zen-Score yields
worse correlation than the number of parameters on NATS-Bench-TSS across all datasets.

Table 1: Kendall’s τ and Spearman’s ρ correlation coefficients for different zero-cost proxies on the
NATS-Bench-TSS benchmark. The highest correlation is highlighted in bold face.

NATS-Bench-TSS
Dataset CIFAR-10 CIFAR-100 IN16-120

Proxy
Correlation

τ ρ τ ρ τ ρ

Grad norm (Abdelfattah et al., 2021) 0.48 0.65 0.47 0.64 0.41 0.56
SNIP (Abdelfattah et al., 2021) 0.48 0.64 0.47 0.63 0.43 0.57
GraSP (Abdelfattah et al., 2021) 0.39 0.55 0.40 0.57 0.40 0.55
Fisher (Abdelfattah et al., 2021) 0.41 0.55 0.41 0.56 0.35 0.47
SynFlow (Abdelfattah et al., 2021) 0.58 0.77 0.57 0.76 0.49 0.67
Zen-Score (Lin et al., 2021) 0.32 0.43 0.31 0.42 0.32 0.44
FLOPs 0.58 0.75 0.55 0.73 0.51 0.68
#Params 0.58 0.75 0.55 0.73 0.49 0.66
ZiCo (Li et al., 2023) 0.58 0.78 0.60 0.80 0.57 0.76
MeCoopt (Jiang et al., 2023) 0.72 0.90 0.73 0.90 0.67 0.84
swap (Peng et al., 2024) 0.64 0.82 0.65 0.82 0.58 0.74
reg swap (Peng et al., 2024) 0.71 0.88 0.69 0.87 0.62 0.79
NEAR 0.70 0.88 0.69 0.87 0.66 0.84

Table 2: Kendall’s τ and Spearman’s ρ correlation coefficients for different zero-cost proxies on the
NATS-Bench-SSS benchmark. The highest correlation is highlighted in bold face.

NATS-Bench-SSS
Dataset CIFAR-10 CIFAR-100 IN16-120

Proxy
Correlation

τ ρ τ ρ τ ρ

Grad norm (Abdelfattah et al., 2021) 0.53 0.72 0.38 0.54 0.52 0.70
SNIP (Abdelfattah et al., 2021) 0.63 0.82 0.43 0.61 0.61 0.79
GraSP (Abdelfattah et al., 2021) 0.30 0.43 0.10 0.15 0.33 0.48
Fisher (Abdelfattah et al., 2021) 0.47 0.65 0.30 0.43 0.43 0.60
SynFlow (Abdelfattah et al., 2021) 0.79 0.94 0.59 0.78 0.81 0.95
Zen-Score (Lin et al., 2021) 0.75 0.92 0.50 0.69 0.72 0.89
FLOPs 0.44 0.61 0.19 0.28 0.41 0.57
#Params 0.69 0.87 0.53 0.72 0.68 0.86
ZiCo (Li et al., 2023) 0.72 0.89 0.54 0.74 0.73 0.90
MeCoopt (Jiang et al., 2023) 0.74 0.91 0.62 0.81 0.61 0.80
swap (Peng et al., 2024) 0.48 0.67 0.23 0.34 0.43 0.60
reg swap (Peng et al., 2024) 0.62 0.81 0.38 0.54 0.55 0.73
NEAR 0.74 0.91 0.62 0.82 0.76 0.92

Table 3: Kendall’s τ and Spearman’s ρ correlation coefficients for different zero-cost proxies on the
NAS-Bench-101 benchmark. The highest correlation is highlighted in bold face.

NAS-Bench-101

Proxy
Correlation

τ ρ

Grad norm (Abdelfattah et al., 2021) −0.17 −0.25
SNIP (Abdelfattah et al., 2021) −0.12 −0.17
GraSP (Abdelfattah et al., 2021) 0.17 0.25
Fisher (Abdelfattah et al., 2021) −0.19 −0.28
SynFlow (Abdelfattah et al., 2021) 0.25 0.37
Zen-Score (Lin et al., 2021) 0.47 0.64
FLOPs 0.30 0.43
#Params 0.30 0.43
ZiCo (Li et al., 2023) 0.45 0.63
MeCoopt Jiang et al. (2023) 0.35 0.49
swap (Peng et al., 2024) 0.31 0.43
reg swap (Peng et al., 2024) 0.30 0.43
NEAR 0.52 0.70

To conclude, we provide a performance ranking of the zero-cost proxies across all datasets and
search spaces. For each combination of search space and dataset, we order the zero-cost proxies

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

according to their Spearman’s ρ value. We identify the position in this order as rank, whereby the
proxy of highest correlation is assigned a rank of one. Subsequently, the average over all datasets
for each NAS search space and for all search spaces is calculated. For example, NEAR achieves
ranks three, one, and two on NATS-Bench-SSS for CIFAR-10, CIFAR-100, and ImageNet16-120,
respectively. These rankings result in an average rank of two on this search space. Of the proxies
tested, reg swap, SynFlow, ZiCo, MeCoopt, and NEAR are on average better than the baseline given
by the number of parameters (Table 4). However, only NEAR and ZiCo yield consistently higher
correlation than the number of parameters for each combination of search space and dataset, whereby
NEAR outperforms ZiCo in every case. For each search space, NEAR is either the best or second
best zero-cost proxy highlighting its broad applicability. Overall, NEAR achieves the best rank,
followed by MeCoopt and ZiCo.

Table 4: The rank of different zero-cost proxies averaged over all datasets of NATS-Bench-TSS,
NATS-Bench-SSS, and NAS-Bench-101 and across all search spaces. The best rank is highlighted
in bold face.

Average rank

Proxy
Search space TSS SSS 101 All

GraSP (Abdelfattah et al., 2021) 9.33 12.00 7.00 10.14
Fisher (Abdelfattah et al., 2021) 10.00 9.67 10.00 9.86
Grad norm (Abdelfattah et al., 2021) 7.67 8.33 9.00 8.14
FLOPs 5.67 11.00 5.00 7.86
SNIP (Abdelfattah et al., 2021) 8.00 6.67 8.00 7.43
Zen-Score (Lin et al., 2021) 11.00 4.00 2.00 6.71
swap (Peng et al., 2024) 3.33 9.67 5.00 6.29
#Params 6.33 5.00 5.00 5.57
reg swap (Peng et al., 2024) 2.00 7.67 5.00 4.86
SynFlow (Abdelfattah et al., 2021) 5.33 1.67 6.00 3.86
ZiCo (Li et al., 2023) 3.67 3.67 3.00 3.57
MeCoopt (Jiang et al., 2023) 1.00 3.67 4.00 2.57
NEAR 1.67 2.00 1.00 1.71

4.2 ESTIMATION OF OPTIMAL LAYER SIZE

Inspired by previous work that suggested a power law scaling for the accuracy with respect to the
model size for language models (Kaplan et al., 2020), we analyzed the NEAR score of a single
layer of different sizes. We observed that the relative score, i.e., the score divided by the number of
neurons, appears to be well represented by a simple power function of the form f(s) = α+ β · sγ ,
where s is the NEAR score (see Figure A.4). This behavior is consistent for two different datasets.
One is the balanced version of the extended MNIST (EMNIST) dataset (Cohen et al., 2017). It
contains handwritten digits and letters, with an equal number of examples for each class. The other
is a molecular dataset for a lifelong machine learning potential (lMLP). This dataset includes target
energies and atomic forces for features given by molecular structures, which were obtained from
various conformations in 42 different SN2 reactions (8 600 structures) (Eckhoff & Reiher, 2023).

We argue that a decreasing relative NEAR score indicates that the network benefits less from ad-
ditional neurons and, at a certain threshold, its performance is no longer limited by its size. Our
experiments suggest a threshold based on the slope of the power function to work reasonably well.
We therefore propose the following approach to estimate the size of individual layers: First, calcu-
late the NEAR score for some different layer sizes. Second, fit a power function to the calculated
relative scores. Third, calculate at which layer size the slope of the fit falls below a certain threshold
and apply this layer size for the neural network.

Since the NEAR score of each layer depends only on the previous layers, this approach can also be
applied to networks with multiple layers. Starting with the first layer, the size of all layers can be
determined iteratively.

Machine Learning Potential

We applied our approach to estimate the layer sizes on a three-hidden-layer machine learning poten-
tial, employing the dataset B of Eckhoff & Reiher (2023). Our method predicted a size of 52, 58, and
60 for the first, second, and third hidden layers, respectively, with a threshold of 0.5% of the slope

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

at a layer size of 1. These sizes are significantly smaller than applied in Eckhoff & Reiher (2023)
(which are 102, 61, and 44). While this change reduces the number of parameters from 22 990 to
13 909, the average test loss only increases from 0.012 ± 0.003 to 0.015 ± 0.004. This increase is
reflected in a change of the root mean squared error for the energies from (4.4± 1.2)meV atom−1

to (4.6 ± 1.2)meV atom−1 and for the forces from (100 ± 8)meV Å
−1

to (109 ± 8)meV Å
−1

.
These numbers represent the mean and standard deviation over 20 individual machine learning po-
tentials, for which the training was started from different randomly initialized neural networks. We
note that the test loss depends not only on the capacity of the neural network, but also on the training
process. However, NEAR only aims to capture the capacity of a network and does not take into
account the training dynamics. Therefore, NEAR alone cannot be expected to determine the perfect
size but rather to give a good estimate.

Keeping the size of the first and second hidden layers at 52 and 58, respectively, and only varying
the size of the third hidden layer showed that the predicted size achieves good performance. Even
increasing the layer size to 100 neurons did not improve the loss (Table 5). However, a slightly
smaller layer of 40 neurons would still be sufficient to achieve the same performance. We note that
smaller networks require fewer computational resources and are therefore more efficient to evaluate.

Repeating the experiment for a variable second hidden layer showed again that the predicted size
has favorable characteristics in terms of accuracy and number of parameters. Reducing the size
of the second layer to 38 neurons (reduction in the number of parameters by ∼ 16%), results in
an increase in the loss of 20%. Conversely, increasing the neuron number to 78 (increase in the
parameter number by ∼ 16%), yields a loss decrease of only ∼ 7% (Table 5).

Balanced Extended MNIST

In a second experiment, we estimated the layer sizes for a two-hidden layer neural network on the
balanced EMNIST dataset. Again, we applied a threshold of 0.5% of the slope at a layer size of
1. The resulting sizes were 200 for both, first and second hidden layer. A comparison of the test
loss to a network with a reduced second layer size of 120, which decreases the parameter number
by ∼ 10%, shows an loss increase of ∼ 4%. The aforementioned loss values correspond to a
classification accuracy of 86.85% and 87.30%. Conversely, an increase in the neuron number to 280
for the second layer, which increases the parameter number by ∼ 9%, results in a decrease in the
loss of around 1% and an increase in the accuracy to 87.34%. This observation suggests that a size
of 200 represents a reasonable compromise between efficiency and accuracy (Table 6).

To check whether also the prediction for the first layer was reasonable, we fixed the size of the
second layer to 200 and train networks with various sizes for the first layer (Table 6). A comparison
of the test loss for a network with a size of 160 (∼ 20% decrease in the parameter number) yields an
increase in the loss of ∼ 1.3% and a decrease in the accuracy from 87.30% to 87.14%. Even when
the size of the first layer was increased to 260 (∼ 30% increase in the parameter number), the loss
can only be reduced by ∼ 0.7% and the accuracy is increased to 87.32%. Again, the predicted size
appears to offer a good trade-off between the number of parameters and the accuracy.

Table 5: The test loss of trained lMLPs when only the size of the second or third hidden layer is
changed. Marked in bold is the architecture predicted by our approach. In this and all following
tables, mean and standard deviation (rounded up) of 20 experiment repetitions are reported.

Variation of second layer Test loss #Params Variation of third layer Test loss #Params
52− 18− 60 0.022± 0.004 9 389 52− 58− 20 0.017± 0.003 11 509
52− 38− 60 0.018± 0.004 11 649 52− 58− 40 0.015± 0.003 12 709
52− 58− 60 0.015± 0.004 13,909 52− 58− 60 0.015± 0.004 13,909
52− 78− 60 0.014± 0.004 16 169 52− 58− 80 0.014± 0.003 15 109
52− 98− 60 0.014± 0.003 18 429 52− 58− 100 0.015± 0.003 16 309

4.3 ESTIMATION OF ACTIVATION FUNCTION AND WEIGHT INITIALIZATION PERFORMANCE

Numerous NAS benchmarks, including NATS-Bench-TSS, NATS-Bench-SSS, and NAS-Bench-
101, apply the ReLU activation function for all networks. There is no attention for zero-cost proxies
to detect favorable activation functions or weight initialization schemes. There are even proxies that
are specifically designed for the ReLU activation function (Mellor et al., 2021; Chen et al., 2021;

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: The test loss on the balanced EMNIST dataset when only the size of the first or second
hidden layer is changed. Marked in bold is the architecture predicted by our approach.

Variation of first layer Test loss #Params Variation of second layer Test loss #Params
120− 200 0.393± 0.012 127 847 200− 40 0.433± 0.017 166 967
140− 200 0.380± 0.006 147 547 200− 80 0.397± 0.011 176 887
160− 200 0.373± 0.009 167 247 200− 120 0.383± 0.009 186 807
180− 200 0.368± 0.007 186 947 200− 160 0.376± 0.009 196 727
200− 200 0.368± 0.006 206,647 200− 200 0.368± 0.006 206,647
220− 200 0.363± 0.007 226 347 200− 240 0.364± 0.006 216 567
240− 200 0.359± 0.006 246 047 200− 280 0.364± 0.008 226 487
260− 200 0.366± 0.007 265 747 200− 320 0.363± 0.009 236 407
280− 200 0.363± 0.008 285 447 200− 360 0.359± 0.007 246 327

Peng et al., 2024). However, it is well known that choosing an appropriate activation function and
weight initialization scheme is crucial for achieving good model performance (LeCun et al., 1998;
Glorot & Bengio, 2010; Eckhoff & Reiher, 2023). To assess whether NEAR can be employed to se-
lect an activation function and a weight initialization scheme, we calculated the score before training
and compared it with the final model performance.

Machine Learning Potential

Eckhoff & Reiher (2023) previously reported that the activation function sTanh(x) = 1.59223 ·
tanh(x) with a tailored weight initialization scheme improves the final accuracy of a lMLP. We
repeated the training for the same dataset and the same neural network architecture (number of neu-
rons per layer: 133− 102− 61− 44− 1) employing the CoRe optimizer (Eckhoff & Reiher, 2023;
2024a;b). Table 7 shows that the sTanh activation function with the tailored weight initialization
scheme achieves the lowest test loss, while also exhibiting the largest NEAR score. Comparing the
two weight initialization schemes sTanh and Kaiming uniform (He et al., 2015) demonstrates that
the former improves performance and that the NEAR score can be applied as a reliable predictor
for the more suitable weight initialization scheme. A comparison of the loss and NEAR score of
different activation functions applying the same weight initialization scheme also shows that the
score can guide the selection of an appropriate activation function. For example, the activation func-
tion sTanh with the customized initialization scheme exhibits the lowest loss and the highest NEAR
score, while the activation function Tanhshrink shows the highest loss and lowest NEAR score for
this weight initialization scheme. However, the discrepancies in loss for the three best activation
functions sTanh, Sigmoid Linear Unit (SiLU) (Elfwing et al., 2018), and Tanh are minimal, whereas
the differences in the NEAR score would suggest larger differences. The lowest NEAR score is
obtained by Tanhshrink with Kaiming initialization, which is also consistent with the fact that this
combination achieves the highest average loss. Hence, NEAR is capable of identifying more and
less effective activation functions, while the ordering in close cases cannot be guaranteed.

Since the loss function of the lMLP includes derivative constraints, the second derivative of the
activation function appears in the gradient calculation. Consequently, only activation functions with
a non-zero second derivative can be considered, resulting in the omission of the ReLU function in
this experiment. This issue once again highlights the benefit of NEAR that it can be applied to any
activation function.

Balanced Extended MNIST

To show that the NEAR score can guide the selection of the activation function and weight initial-
ization scheme across various datasets and independent of the optimizer, we report the test loss and
the NEAR score on the balanced EMNIST dataset. We employed a multi-layer perceptron with two
hidden layers of size 200 and the Adam optimizer (Kingma & Ba, 2015). We applied early stopping
with a patience of 10 epochs, whereby 10% of the training set served as validation set.

We report the test loss and the NEAR score for the initialization schemes Xavier uniform (Glorot &
Bengio, 2010), Kaiming uniform, and uniform and the activation functions SiLU, ReLU, Tanh, and
Tanhshrink in Table 8. The NEAR score indicates that the Xavier initialization is the most effective,
followed by the Kaiming initialization and the uniform initialization. While the uniform initializa-
tion is undoubtedly the least favorable in terms of resulting test loss, the distinction between Xavier
and Kaiming is not as clear-cut. For the activation functions under consideration, the average loss
is found to be lower with the Kaiming initialization than the Xavier initialization, but the difference

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

is marginal and the standard deviations are higher than the difference. For the Kaiming and Xavier
initializations, the activation functions SiLU, ReLU, and Tanh result in similar test losses, while the
NEAR score gives the impression that there is a clear ordering for a given initialization. As the
orderings of the test losses and NEAR scores do not agree for both initializations, we conclude that
these small differences in the resulting loss cannot be captured by the NEAR score. We note here
again that the NEAR score only accounts for the expressivity of the network and does not take into
account the training process. Still, the NEAR score can reliably predict the worst performing acti-
vation function (Tanhshrink). For this activation function, the test loss is also significantly different
from those of the others. Analogously, the NEAR score can correctly identify that SiLU, Tanhshrink,
and ReLU lead to a lower loss than Tanh if the uniform initialization is applied. Hence, NEAR can
predict the performance of an activation function and weight initialization scheme, though it may
not resolve minor differences in the resulting loss.

Table 7: Comparison of the test loss (after training) and the NEAR score (before training) for various
activation functions σ and weight initialization schemes.

σ, initialization Test loss NEAR score
sTanh, sTanh 0.012± 0.003 70.8± 0.2
SiLU, sTanh 0.013± 0.004 63.1± 0.3
Tanh, sTanh 0.015± 0.003 67.2± 0.3
Tanhshrink, sTanh 0.027± 0.006 45.2± 0.2
SiLU, Kaiming 0.031± 0.008 57.1± 2.5
sTanh, Kaiming 0.041± 0.019 60.3± 2.5
Tanh, Kaiming 0.050± 0.022 58.5± 2.3
Tanhshrink, Kaiming 0.082± 0.014 38.7± 1.8

Table 8: Comparison of the test loss (after training) and the NEAR score (before training) for various
activation functions σ and weight initialization schemes on the balanced EMNIST dataset. For
“SiLU, uniform” one outlier was excluded from the mean and standard deviation.

σ, initialization Test loss NEAR score
SiLU, Kaiming 0.367± 0.008 382.8± 5.0
SiLU, Xavier 0.368± 0.008 417.7± 0.6
ReLU, Kaiming 0.372± 0.010 403.7± 7.4
ReLU, Xavier 0.374± 0.008 421.1± 0.8
Tanh, Kaiming 0.392± 0.010 398.2± 5.1
Tanh, Xavier 0.396± 0.011 415.5± 0.4
Tanhshrink, Kaiming 0.447± 0.022 278.4± 3.2
Tanhshrink, Xavier 0.449± 0.018 401.4± 1.2
SiLU, uniform 0.525± 0.040 13.3± 0.1
Tanhshrink, uniform 0.602± 0.030 13.4± 0.1
ReLU, uniform 0.651± 0.047 13.3± 0.1
Tanh, uniform 3.858± 0.030 9.0± 0.1

5 CONCLUSION

In this work, we have introduced NEAR which is a zero-cost proxy to pre-estimate the performance
of a machine learning model without training. For this purpose, the NEAR score estimates the
expressivity of neural networks by calculating the effective rank of the pre- and post-activation
matrix. We have demonstrated its strong correlation with the final model accuracy on NATS-Bench-
SSS/TSS and NAS-Bench-101. In a ranking of 13 zero-cost proxies by their Spearman’s correlation
coefficient, NEAR achieves an average rank of 1.7 across all datasets and search spaces, while the
second-best proxy MeCoopt has only an average rank of 2.6. In contrast to other proxies, NEAR only
requires sample input data, but no output labels and it is not bound to a specific activation function.
In fact, we have shown that it can even be applied to choose a well performing activation function
and weight initialization scheme. Moreover, NEAR is not limited to a given search space and can
be applied to estimate the optimal layer size in multi-layer perceptrons. This task represents a
significant challenge in the construction of neural networks, and hence, NEAR can help substantially
reduce invested human time and computational demand.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

In order to make our calculations reproducible, we provide the code including all hyperparameter
settings as well as the raw data.

REFERENCES

Mohamed S. Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D. Lane. Zero-cost
proxies for lightweight NAS. In 9th International Conference on Learning Representations
(ICLR), 2021.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. In Adv. Neural Inf. Process. Syst.,
volume 33, pp. 12449–12460, 2020.

Jörg Behler. Four generations of high-dimensional neural network potentials. Chem. Rev., 121:
10037–10072, 2021. doi: 10.1021/acs.chemrev.0c00868.

Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional
potential-energy surfaces. Phys. Rev. Lett., 98:146401, 2007. doi: 10.1103/PhysRevLett.98.
146401.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, NY, USA,
2006. URL https://link.springer.com/book/9780387310732.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on ImageNet in four
GPU hours: A theoretically inspired perspective. In 9th International Conference on Learning
Representations (ICLR), 2021.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the CIFAR datasets. arXiv:1707.08819 [cs.CV], 2017.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre van Schaik. EMNIST: Extending
MNIST to handwritten letters. In International Joint Conference on Neural Networks (IJCNN),
pp. 2921–2926, Anchorage, United States of America, 2017. IEEE. doi: 10.1109/IJCNN.2017.
7966217.

George Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals
Syst., 2(4):303–314, 1989.

Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. NATS-Bench: Benchmarking NAS
algorithms for architecture topology and size. IEEE Trans. Pattern Anal. Mach. Intell., 44(7):
3634–3646, 2021. doi: 10.1109/TPAMI.2021.3054824.

Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan Liang, Tong Zhang, and Zhenguo Li.
TransNAS-Bench-101: Improving transferability and generalizability of cross-task neural archi-
tecture search. In Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Marco Eckhoff and Markus Reiher. Lifelong machine learning potentials. J. Chem. Theory Comput.,
19:3509–3525, 2023. doi: 10.1021/acs.jctc.3c00279.

Marco Eckhoff and Markus Reiher. CoRe optimizer: an all-in-one solution for machine learning.
Mach. Learn.: Sci. Technol., 5:015018, 2024a. doi: 10.1088/2632-2153/ad1f76.

Marco Eckhoff and Markus Reiher. ReiherGroup/CoRe optimizer: Release 1.1.0. Zenodo, 2024b.
doi: 10.5281/zenodo.11551858.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Netw., 107:3–11, 2018.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. J.
Mach. Learn. Res., 20(55):1–21, 2019.

11

https://link.springer.com/book/9780387310732


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In 13th International Conference on Artificial Intelligence and Statistics (AISTATS), pp.
249–256, Sardinia, Italy, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proc. IEEE Int. Conf. Comput. Vis., pp.
1026–1034, 2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv:1606.08415
[cs.LG], 2016.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Netw., 4(2):
251–257, 1991.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Netw., 2(5):359–366, 1989.

Tangyu Jiang, Haodi Wang, and Rongfang Bie. MeCo: Zero-shot NAS with one data and single for-
ward pass via minimum eigenvalue of correlation. In Adv. Neural Inf. Process. Syst., volume 36,
pp. 61020–61047, 2023.

John Jumper, Richard Evans, Alexander Pritzel, and et al. Highly accurate protein structure predic-
tion with AlphaFold. Nature, 596(7873):583–589, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv:2001.08361 [cs.LG], 2020.

Maurice G. Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations ICLR, San Diego, United States of America,
2015.

Arjun Krishnakumar, Colin White, Arber Zela, Renbo Tu, Mahmoud Safari, and Frank Hutter. NAS-
Bench-Suite-Zero: Accelerating research on zero cost proxies. In Adv. Neural Inf. Process. Syst.,
volume 35, pp. 28037–28051, 2022.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–50. Springer Berlin Heidelberg, 1998. doi: 10.1007/
3-540-49430-8 2.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. SNIP: Single-shot network pruning
based on connection sensitivity. In 7th International Conference on Learning Representations
(ICLR), New Orleans, United States of America, 2019.

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. ZiCo: Zero-shot NAS
via inverse coefficient of variation on gradients. In 11th International Conference on Learning
Representations (ICLR), Kigali, Rwanda, 2023.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst., 33(12):
6999–7019, 2021.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin.
Zen-NAS: A zero-shot NAS for high-performance image recognition. In Proc. IEEE Int. Conf.
Comput. Vis., pp. 347–356, 2021. doi: 10.1109/ICCV48922.2021.00040.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
7th International Conference on Learning Representations (ICLR), New Orleans, United States of
America, 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Pablo Ribalta Lorenzo, Jakub Nalepa, Michal Kawulok, Luciano Sanchez Ramos, and José Ranilla
Pastor. Particle swarm optimization for hyper-parameter selection in deep neural networks. In
Genetic and Evolutionary Computation Conference, pp. 481–488, Berlin, Germany, 2017. doi:
10.1145/3071178.3071208.

Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture search without
training. In 38th International Conference on Machine Learning (ICML), pp. 7588–7598, 2021.

Jisoo Mok, Byunggook Na, Ji-Hoon Kim, Dongyoon Han, and Sungroh Yoon. Demystifying the
neural tangent kernel from a practical perspective: Can it be trusted for neural architecture search
without training? In Conference on Computer Vision and Pattern Recognition (CVPR), pp.
11851–11860, 2022.

Guido Montúfar. Notes on the number of linear regions of deep neural networks. In 12th Interna-
tional Conference on Sampling Theory and Applications (SampTA), Tallinn, Estonia, 2017.

Guido F. Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Adv. Neural Inf. Process. Syst., volume 27, 2014.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In 27th International Conference on Machine Learning (ICML), pp. 807–814, Haifa, Israel, 2010.

Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou, Shuang Liang, Huazhong Yang, and
Yu Wang. Evaluating efficient performance estimators of neural architectures. In Adv. Neural Inf.
Process. Syst., volume 34, pp. 12265–12277, 2021.

Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of inference regions of deep
feed forward networks with piece-wise linear activations. In 2nd International Conference on
Learning Representations (ICLR), Banff National Park, Canada, 2013.

Yameng Peng, Andy Song, Haytham M. Fayek, Vic Ciesielski, and Xiaojun Chang. SWAP-NAS:
Sample-wise activation patterns for ultra-fast NAS. In 12th International Conference on Learning
Representations (ICLR), Vienna, Austria, 2024.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the ex-
pressive power of deep neural networks. In 34th International Conference on Machine Learning
(ICML), pp. 2847–2854, Sydney, Australia, 2017.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V. Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In 34th Interna-
tional Conference on Machine Learning (ICML), pp. 2902–2911, Sydney, Australia, 2017. doi:
10.5555/3305890.3305981.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin
Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM
Comput. Surv., 54(4):1–34, 2021.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 15th
European signal processing conference, pp. 606–610, 2007.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson, Harlow,
United Kingdom, 4th edition, 2021. URL https://elibrary.pearson.de/book/99.
150005/9781292401171.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In 35th International Conference on Machine Learning (ICML),
pp. 4558–4566, Stockholm, Sweden, 2018.

Claude E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27(3):379–423,
1948.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In Adv. Neural Inf. Process. Syst., volume 25, 2012.

13

https://elibrary.pearson.de/book/99.150005/9781292401171
https://elibrary.pearson.de/book/99.150005/9781292401171


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C. Spearman. The proof and measurement of association between two things. Am. J. Psychol., 15:
72–101, 1904. doi: 10.2307/1412159.

Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Aaron Klein, Jorg K. H. Franke, and Frank
Hutter. HW-GPT-Bench: Hardware-aware architecture benchmark for language models. In Adv.
Neural Inf. Process. Syst., volume 38, 2024.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural net-
works. In 36th International Conference on Machine Learning (ICML), pp. 6105–6114, Long
Beach, United States of America, 2019.

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In Adv. Neural Inf. Process. Syst., vol-
ume 33, pp. 6377–6389, 2020.

Jack Turner, Elliot J. Crowley, Michael O’Boyle, Amos Storkey, and Gavin Gray. BlockSwap:
Fisher-guided block substitution for network compression on a budget. In 8th International Con-
ference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Adv. Neural Inf. Process.
Syst., volume 30, 2017.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In 8th International Conference on Learning Representations (ICLR),
Addis Ababa, Ethiopia, 2020.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
Bench-101: Towards reproducible neural architecture search. In 36th International Conference on
Machine Learning (ICML), pp. 7105–7114, Long Beach, United States of America, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th Inter-
national Conference on Learning Representations (ICLR), Toulon, France, 2017.

A APPENDIX

A.1 SUPPORTING FIGURES

x1

x2

x3

y1

y2

Figure A.1: Illustration of an artificial neural network with three inputs {xi} and two outputs {yi}.
The single hidden layer consists of five neurons. The activation functions are shown within the
neurons. The solid lines represent the weights, while the dashed lines indicate input and output
without weights.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

1 0

2 1

13 17 21

29 33 37

45 49 53

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

0 1

1 0

37 39 41

45 47 49

53 55 57

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

1 0

1 1

105 108 111

117 120 123

129 132 135

155 164 173

191 200 209

227 236 245

Three input channels

Feature map

Figure A.2: A convolution is performed on the input of dimension 4×4×3 with a filter of dimension
2× 2× 3 resulting in a feature map of dimension 3× 3.

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

18 19 20

21 22 23

24 25 26

27 28 29

30 31 32

33 34 35

0 9 18 27

3 12 21 30

6 15 24 33

1 10 19 28

4 13 22 31

7 16 25 34

2 11 20 29

5 14 23 32

8 17 26 35

0 9 18 27

3 12 21 30

6 15 24 33

1 10 19 28

(a) Feature maps

(b) Reshaped feature map (c) Two activation matrices

1 10 19 28

4 13 22 31

7 16 25 34

2 11 20 29

Figure A.3: Process of reshaping convolutional neural network feature maps. (a) The process begins
with four 3 × 3 feature maps. (b) These feature maps are subsequently reshaped to a 9 × 4 matrix.
(c) An activation matrix is given by four contiguous rows, whereby the first row contains elements
extracted from the top row of the feature maps. From all possible activation matrices one is randomly
selected.

0 200 400 600 800 1000 1200

Number of Neurons

0.0

0.2

0.4

0.6

0.8

1.0

R
el

a
ti
v
e 

N
E

A
R

 S
co

re

Figure A.4: A power function fitted to the NEAR score divided by the total number of neurons in
the layer. The star marks the first time where the slope is smaller or equal to 0.5% of the slope at
x = 1. The plot has been generated for the experiments on the lMLP.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 ADDITIONAL NAS-BENCHMARKS

TransNAS-Bench-101-Micro

To demonstrate that NEAR is not only applicable to image classification tasks, we show here results
on seven different tasks from the TransNAS-Bench-101-Micro benchmark Duan et al. (2021). The
tasks include classification, regression, pixel-level prediction, and self-supervised tasks. NEAR
outperforms the baseline given by the number of parameters and the number of FLOPs on each task
(Table 9).

Table 9: Kendall’s τ and Spearman’s ρ correlation coefficients for NEAR on different tasks of
TransNAS-Bench-101-Micro.

Proxy
Task Cls. Object Cls. Scene Autoencoding Surf. Normal Sem. Segment. Room Layout Jigsaw

τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ
#Params 0.36 0.53 0.44 0.62 −0.03 −0.04 0.46 0.65 0.45 0.63 0.24 0.38 0.30 0.45
FLOPs 0.37 0.55 0.45 0.64 −0.03 −0.04 0.47 0.66 0.46 0.65 0.24 0.39 0.31 0.46
NEAR 0.54 0.74 0.60 0.80 0.14 0.22 0.66 0.84 0.57 0.76 0.37 0.55 0.45 0.64

HW-GPT-Bench

One of the strengths of NEAR is its ability to work with networks which do not employ the ReLU
activation function. To explore this capability, we applied NEAR to language models with the
Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016) activation function using the HW-
GPT benchmark (Sukthanker et al., 2024). Specifically, we randomly sampled 20 000 architectures
from the small variant of the search space and computed the correlation between the NEAR score
and perplexity. While NEAR did not outperform the strong baseline given by the correlation between
model parameters and perplexity, it still showed a higher correlation than the MeCoopt proxy (Table
10).

Table 10: Kendall’s τ and Spearman’s ρ correlation between zero-cost proxy score and perplexity
for 20 000 randomly sampled architectures of the small HW-GPT-Bench search space. As lower
perplexity values indicate better models, the correlations are expected to be negative.

Proxy
Correlation

τ ρ

#Params −0.92 −0.99
FLOPs −0.92 −0.99
MeCoopt (Jiang et al., 2023) −0.68 −0.88
NEAR −0.90 −0.99

A.3 PROXIES TO SELECT WEIGHT INITIALIZATION AND ACTIVATION FUNCTION

To show that NEAR outperforms previous proxies in identifying suitable weight initialization
schemes and activation functions, we calculated the proxy scores for the same combinations listed in
Table 8. Subsequently, we calculated Spearman’s ρ and Kendall’s τ correlation coeeficients for the
average accuracy as a function of the average proxy score. The results indicate that NEAR exhibits
a significantly higher correlation compared to the other proxies evaluated (see Table 11). Since the
swap and reg swap scores are only defined for the ReLU activation function, they have been omitted
from this analysis.

A.4 STABILITY OF NEAR SCORE AFTER MINIMAL TRAINING

Similar to the analysis in Mok et al. (2022), we computed the NEAR score after 0, 1, 3, 5, and 10
epochs of training on the NATS-Bench-SSS benchmark using the CIFAR-10 dataset. While many
of the tested proxies show a decrease in correlation after some training, the correlation of NEAR
only decreases slightly after the first training epoch and increases steadily for the following epochs
(Figure A.5). Remarkably, NEAR is the only proxy that achieves a higher correlation after ten
epochs of training than it had prior to training.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 11: Kendall’s τ and Spearman’s ρ correlation coefficients between the average model accu-
racy and the average proxy scores evaluated on the combinations of activation functions and weight
initialization methods listed in Table 8. Averages are obtained from 20 repetitions. A higher cor-
relation means that the proxy is more effective at identifying good activation functions and weight
initializations.

Proxy
Correlation

τ ρ

Grad norm (Abdelfattah et al., 2021) −0.53 −0.32
SNIP (Abdelfattah et al., 2021) −0.53 −0.32
GraSP (Abdelfattah et al., 2021) 0.53 0.32
Fisher (Abdelfattah et al., 2021) −0.53 −0.35
SynFlow (Abdelfattah et al., 2021) −0.15 −0.08
Zen-Score (Lin et al., 2021) −0.35 −0.24
ZiCo (Li et al., 2023) −0.07 0.00
MeCoopt (Jiang et al., 2023) 0.67 0.45
NEAR 0.84 0.70

0 2 4 6 8 10
Training epoch

0.89

0.90

0.91

0.92

0.93

0.94

Sp
ea

rm
an

's 

NEAR

0 2 4 6 8 10
Training epoch

0.82

0.84

0.86

0.88

0.90

Sp
ea

rm
an

's 

MeCo_opt

0 2 4 6 8 10
Training epoch

0.880

0.882

0.884

0.886

0.888

0.890

Sp
ea

rm
an

's 

ZiCo

0 2 4 6 8 10
Training epoch

0.90

0.92

0.94

0.96

0.98

Sp
ea

rm
an

's 

SynFlow

0 2 4 6 8 10
Training epoch

0.78

0.80

0.82

0.84

Sp
ea

rm
an

's 

reg_swap

0 2 4 6 8 10
Training epoch

0.84

0.86

0.88

0.90

Sp
ea

rm
an

's 

#Params

0 2 4 6 8 10
Training epoch

0.88

0.90

0.92

0.94

0.96

Sp
ea

rm
an

's 

Zen-Score

0 2 4 6 8 10
Training epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Sp
ea

rm
an

's 

SNIP

0 2 4 6 8 10
Training epoch

0.58

0.59

0.60

0.61

0.62

0.63

0.64

Sp
ea

rm
an

's 

FLOPs

0 2 4 6 8 10
Training epoch

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ea

rm
an

's 

Grad_norm

0 2 4 6 8 10
Training epoch

0.0

0.2

0.4

0.6

Sp
ea

rm
an

's 

Fisher

0 2 4 6 8 10
Training epoch

0.0

0.1

0.2

0.3

0.4

Sp
ea

rm
an

's 

GraSP

Figure A.5: Spearman’s ρ correlation on NATS-Bench-SSS using the CIFAR-10 dataset, evaluated
after 0, 1, 3, 5, and 10 training epochs.

A.5 INTERPRETATION OF CORRELATIONS

To provide further insight into the interpretation of the correlations between proxy scores and accu-
racy, we calculated the probability that, given two randomly selected networks N1 and N2, if the
accuracy of N1 is higher than that of N2, then the proxy score of N1 will also be higher than the
proxy score of N2. These probabilities are presented in Table 12.

A.6 WORST PREDICTIONS

An examination of NEAR’s 100 most inaccurate predictions reveals that its main challenge is in
evaluating networks with a high number of parameters. Unlike other proxies, however, NEAR does
not misclassify a network with low accuracy as one with high accuracy, thus reliably excluding
networks with poor performance (see Figure A.6).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Search Space NATS-Bench-TSS NATS-Bench-SSS NAS-Bench-101

Proxy
Correlation CIFAR-10 CIFAR-100 IN16-120 CIFAR-10 CIFAR-100 IN16-120 CIFAR-10

swap (Peng et al., 2024) 0.82 0.82 0.79 0.74 0.62 0.72 0.62
reg swap (Peng et al., 2024) 0.85 0.85 0.81 0.81 0.69 0.77 0.65
MeCoopt (Jiang et al., 2023) 0.86 0.86 0.84 0.87 0.81 0.81 0.67
ZiCo (Li et al., 2023) 0.79 0.80 0.79 0.86 0.77 0.86 0.73
Zen-Score (Lin et al., 2021) 0.66 0.66 0.66 0.88 0.75 0.86 0.73
SynFlow (Abdelfattah et al., 2021) 0.79 0.78 0.75 0.90 0.79 0.91 0.63
Fisher (Abdelfattah et al., 2021) 0.70 0.71 0.68 0.74 0.65 0.72 0.41
GraSP (Abdelfattah et al., 2021) 0.69 0.70 0.70 0.65 0.55 0.67 0.59
SNIP (Abdelfattah et al., 2021) 0.74 0.73 0.71 0.82 0.72 0.80 0.44
Grad norm (Abdelfattah et al., 2021) 0.74 0.74 0.71 0.77 0.69 0.76 0.42
#Params 0.73 0.72 0.71 0.85 0.77 0.84 0.65
FLOPs 0.73 0.72 0.71 0.72 0.60 0.71 0.65
NEAR 0.85 0.84 0.83 0.87 0.81 0.88 0.76

Table 12: The probability that for two randomly chosen networks the network with the higher ac-
curacy also shows the higher zero-cost proxy score. This probability was estimated by randomly
sampling one million pairs of networks. The highest probability is highlighted in bold face.

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

NEAR

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

MeCo_opt

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

ZiCo

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

SynFlow

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

reg_swap

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

#Params

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

Zen-Score

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

SNIP

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

FLOPs

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

Grad_norm

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

Fisher

0 1 2 3 4 5
Number of Parameters 1e7

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

GraSP

Figure A.6: Each point represents a neural network from the NAS-Bench-101 benchmark. The
points highlighted in orange indicate the 100 neural networks where the proxy’s predictions deviated
most significantly from actual performance.

A.7 CONTRIBUTIONS OF INDIVIDUAL LAYERS

To investigate how individual layers contribute to the overall correlation, we performed a layer-
specific correlation analysis. This analysis involved generating over a billion random subsets, each
comprising 6 layers. For each subset, we calculated the NEAR score. Then, for each layer, we
summed the NEAR scores from all subsets containing that layer. Finally, we divided this sum
by the total number of subsets in which each layer appeared. This analysis revealed no layer with a
significantly lower or higher average correlation than the others. In other words, the results indicated
no individual layer exerted a disproportionately strong or weak influence on the overall correlation.
The average correlation per layer is shown in Figure A.7.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60 70
Layer number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e 

Sp
ea

rm
an

's 

Figure A.7: The average correlation for each layer on NATS-Bench-SSS, determined by computing
the correlations for random subsets of six layers and then averaging the results.

A.8 SAMPLING OF FEATURE MAPS

In subsection 3.3, we explained how NEAR can be calculated using only a subsample of the full
matrix, which consists of all feature maps represented as vectors (see also Figure A.3). For NEAR to
yield meaningful scores despite this approximation, the subsample matrix needs to remain sensitive
to variations in kernel size and the number of channels. As shown in Figure A.8 and Figure A.9, the
effective rank derived from both, the full matrix and the subsample matrix, exhibit similar trends,
indicating that these parameters are accurately captured even within the approximation. In addition,
Table 13 shows the impact of the sample size on the estimation of the rank of the full matrix.

2 4 6 8 10 12
Number of output channels

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fe

ct
iv

e 
ra

nk
 / 

m
ax

 e
ffe

ct
iv

e 
ra

nk

(a) Rank calculated from full matrix.

2 4 6 8 10 12
Number of output channels

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e 
ra

nk
 / 

m
ax

 e
ffe

ct
iv

e 
ra

nk

(b) Rank calculated from subsample matrix.

Figure A.8: Comparison of the rank calculated from the full matrix and the subsample matrix as a
function of the number of channels.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9
Kernel size

0.2

0.3

0.4

0.5

0.6

0.7

Ef
fe

ct
iv

e 
ra

nk
 / 

m
ax

 e
ffe

ct
iv

e 
ra

nk

(a) Rank calculated from full matrix.

1 2 3 4 5 6 7 8 9
Kernel size

0.15

0.20

0.25

0.30

0.35

0.40

Ef
fe

ct
iv

e 
ra

nk
 / 

m
ax

 e
ffe

ct
iv

e 
ra

nk
(b) Rank calculated from subsample matrix.

Figure A.9: Comparison of the rank calculated from the full matrix and the subsample matrix as a
function of the kernel size.

# Samples
Parameter Kernel size Channel number

1 0.95 0.92
10 0.98 0.98
32 0.98 0.99

Table 13: The first column shows Spearman’s ρ correlation between the rank calculated from the full
matrix and the rank calculated from the subsample matrix employing kernel sizes of 1, 3, 5, 7, and
9 averaged over 10 000 iterations. The second column shows Spearman’s ρ correlation between the
rank calculated from the full matrix and the rank calculated from the subsample matrix employing
between 1 and 13 output channels averaged over 10 000 iterations.

20


	Introduction
	Related Work
	Methods
	Multi-Layer Perceptron
	Network Expressivity by Activation Rank (NEAR)
	NEAR for Convolutional Neural Networks

	Results and Discussion
	Correlation of Effective Rank and Final Model Accuracy
	Estimation of Optimal Layer Size
	Estimation of Activation Function and Weight Initialization Performance

	Conclusion
	Appendix
	Supporting Figures
	Additional NAS-Benchmarks
	Proxies to Select Weight Initialization and Activation Function
	Stability of NEAR Score After Minimal Training
	Interpretation of Correlations
	Worst Predictions
	Contributions of Individual Layers
	Sampling of Feature Maps


