If You’ve Trained One You’ve Trained Them All: Inter-Architecture Similarity Increases With Robustness

Abstract

Previous work has shown that commonly-used metrics for comparing representations between neural networks overestimate similarity due to correlations between data points. We show that intra-example feature correlations also causes significant overestimation of network similarity and propose an image inversion technique to analyze only the features used by a network. With this technique, we find that similarity across architectures is significantly lower than commonly understood, but we surprisingly find that similarity between models with different architectures increases as the adversarial robustness of the models increase. Our findings indicate that robust networks tend towards a universal set of representations, regardless of architecture, and that the robust training criterion is a strong prior constraint on the functions that can be learned by diverse modern architectures. We also find that the representations learned by a robust network of any architecture have an asymmetric overlap with non-robust networks of many architectures, indicating that the representations used by robust neural networks are highly entangled with the representations used by non-robust networks.

1 INTRODUCTION

There is evidence that neural networks—across architectures and weight initializations—rely on similar features for classification. Previous literature has proposed the universality hypothesis, which posits that neural networks learn essentially the same representations when trained on the same data, regardless of exact architecture or training algorithm [Olah et al., 2020]. However, we know that different architectures and random initializations often make different predictions [Lakshminarayanan et al., 2017]. This paper re-examines the similarity question from a novel viewpoint by considering the effect of an adversarial robustness constraint during training.

Robust training is a well-established procedure to decrease the sensitivity of a network’s outputs to small changes in inputs [Madry et al., 2018]. It is well-known that increasing the robustness of neural networks against adversarial examples comes with a cost to accuracy [Tsipras et al., 2019]. However, little attention has been paid to the effect that robust training has on agreement between models. We empirically show through multiple methods of similarity analysis that the representations, and consequently the functions, learned by networks of different architectures become significantly more similar as robustness increases. This finding indicates...
that robustness serves as a strong prior on the functions that can be learned, and in fact may be a strong enough constraint to matter more than the specific network architecture. While surprising, this hypothesis is consistent with recent theoretical results showing that modern networks are actually under-parameterized to represent smooth functions in high dimensions [Bubeck and Sellke, 2021].

Many methods have been proposed to measure similarity between neural networks, including centered kernel alignment (CKA) [Kornblith et al., 2019], Canonical Correlation Analysis (CCA) [Hardoon et al., 2004], singular vector canonical correlation analysis (SVCCA) [Raghu et al., 2017], subspace match [Wang et al., 2018] and more. In this paper, we show that existing methods for evaluating representation similarity tend to over-estimate similarity due to feature correlations. We develop a novel method for measuring network representation similarity that deconfounds the effect of correlated features by constructing model-specific datasets where each data point has been transformed to contain only the features used by the model. Using this metric, we present a comprehensive study examining the similarity between neural networks as a function of the robustness level used in adversarial training.

Figure[1] summarizes our results using the novel similarity metric we propose. The similarity between networks with different architectures is extremely high amongst robust networks, and robust networks indeed show high similarity with non-robust networks, indicating that there is significant entanglement between robust and non-robust representations. Overall, we find two novel and surprising results:

1. Similarity between networks trained with empirical risk minimization is limited, and this similarity is over-estimated by existing correlation-based similarity metrics due to feature correlations present in the dataset itself. We present experimental evidence that non-robust neural networks rely on features that are highly correlated in the data yet measure distinct patterns.

2. Adversarial robustness is a strong constraint on the function that is learned by a network, regardless of architecture or random initialization. We find that similarity between robust networks is extremely high, and that robust networks also show asymmetric similarity with non-robust neural networks.

2 RELATED WORK

Cui et al. [2022] investigate the confounding effect of input data on representational similarity across deep neural networks. They highlight that inter-example input similarity can cause representation similarity to be spuriously high even between networks with Gaussian noise added to their parameters. They propose to regress out the input similarity structure from the representation similarity structure and find that doing so corrects for the failure of CKA to distinguish between random neural networks, among other benefits. Ding et al. [2021] further investigates issues surrounding similarity indices, finding that CKA and CCA both fail to satisfy at least one of their proposed criteria expected of similarity metrics. We identify an additional limitation to these similarity metrics by showing that correlated features in the input data can likewise cause the similarity between neural networks to be overestimated.

Bai et al. [2021] propose a method to study the representations learned by neural networks by removing all non-linear components of a network and integrating all linear components into linear subnetworks W. By analyzing the weight vectors of W, the authors find that adversarially-trained networks cluster along class hierarchies while standard networks do not. Likewise, Salvador et al. [2020] find that the representations learned by robust neural networks provide a better starting point for transfer learning than the representations learned by non-robust networks. These findings may indicate that adversarially-trained networks are extracting more semantic and generalizeable representations than standard networks.

Springer et al. [2021b] investigate the ability of adversarially trained neural networks to generate targeted adversarial examples. They find that classifiers that have been adversarially trained, even those only robust to small-magnitude perturbations, are much more effective than standard classifiers at generating targeted adversarial examples. Based on their findings, they argue that the representations used by slightly robust neural networks are shared widely across non-robust networks. We present further evidence for this hypothesis by evaluating the representational similarity of robust and non-robust neural networks.

3 METHODS

We consider a labelled classification dataset \(D = X, y \) of data points and ground truth labels. Given two neural networks \(f_1 \) and \(f_2 \), comprised of layers

\[
\begin{align*}
 f_1 &= f_1^{(L_1)} \circ f_1^{(L_1-1)} \circ \ldots \circ f_1^{(1)} \\
 f_2 &= f_2^{(L_2)} \circ f_2^{(L_2-1)} \circ \ldots \circ f_2^{(1)}
\end{align*}
\]

we are interested in the activations at the representation layers (i.e. the second-to-last, or penultimate, layer) of \(f_1 \) and \(f_2 \), denoted \(A \) and \(B \)

\[
\begin{align*}
 g_1 &= f_1^{(L_1-1)} \circ \ldots \circ f_1^{(1)} \quad A = g_1(X) \\
 g_2 &= f_1^{(L_1-1)} \circ \ldots \circ f_1^{(1)} \quad B = g_2(X)
\end{align*}
\]
3.1 CENTERED KERNEL ALIGNMENT

We use centered kernel alignment to compare representations between neural networks. Given two mean-centered matrices of activations $A \in \mathbb{R}^{n \times p_1}$ and $B \in \mathbb{R}^{n \times p_2}$ of p_1 and p_2 neurons on a set of n examples, CKA computes a value in the range $[0, 1]$ with values closer to 1 indicating higher similarity. Kornblith et al. [2019] show that CKA has a number of desirable properties, including the ability to calculate similarity between layers with a differing number of neurons, invariance to isotropic scaling, and the ability to identify correspondences between the layers of identical architectures trained from different initializations—something many widely used metrics lack.

Since Kornblith et al. [2019] show that linear and radial basis function kernels compute similar similarity indices, we use a linear kernel for simplicity. The linear CKA between A and B is given by:

$$
\text{CKA}(A, B) = \frac{\|B^T A\|_F^2}{\|A^T A\|_F \|B^T B\|_F}
= \frac{\|\text{cov}(A^T, B)\|_F^2}{\|\text{cov}(A^T, A)\|_F \|\text{cov}(B^T, B)\|_F}
$$

3.2 REPRESENTATION-LAYER INVERSION.

We use an inversion technique from the adversarial robustness literature to eliminate the effect of correlated features in test data. Ilyas et al. [2019] propose a technique known as representation inversion to investigate the features used by robust and non-robust classifiers. Representation inversion constructs a model-specific inverted dataset $I_f(D)$ for a given classifier f where all features not used by f are randomized.

Given a labeled dataset D, we choose a pair of inputs that have different labels. The first of each pair will be the seed image s and the second the target image t. Using the seed image as a starting point, we perform gradient descent to find an image that induces the same activations at the representation layer as the target image, under a specific neural network f. We construct this image through gradient descent in input space (with the constraint that the resulting image has pixel values in the range $[0, 1]$) by optimizing the following objective:

$$
\tilde{s} = \min_s \|g(s) - g(t)\|_2
$$

We perform this process on a subset of 10,000 images drawn from the ImageNet validation set [Deng et al., 2009], producing a unique inverted dataset $I_f(D)$ for each model. There is no constraint to limit the difference between the seed image s and the inverse image \tilde{s}, but extensive experiments show that gradient descent consistently finds inverse images close to the seeds with representations very closely matching the target images, regardless of the source/target pair chosen. The difference between s and \tilde{s} tends to increase as the robustness of the network f increases.

By sampling pairs of seed and target images that have distinct labels we eliminate features correlated with the target class that are not used by the model for classification of the target class. For example, if we have a seed and target pair of “microwave” and “cat” respectively, and a given neural network is using the feature of “cat ear” to classify cat images but not “cat fur”, by starting from an image of a microwave we can produce an image with the model’s representation of “cat ear” that does not contain the correlated feature of “cat fur”. If done successfully, the similarity between a neural network utilizing “cat fur” and a neural network utilizing “cat ear” will not be inflated by the co-occurrence of these features.

3.3 REPRESENTATION STITCHING

Csiszarik et al. [2021] approaches neural network similarity from the functional perspective, asking the question “can network f_1 achieve its task using the representations of network f_2?”. Their simple and elegant method stitches together the activations A from a body network f_1 with the last layer of a head network $f_2^{(L_2)}$ by fitting an affine transformation $B \approx AW + b$. This procedure creates a stitched network:

$$
f_{2\text{stitch}} = f_2^{(L_2)} \circ (g_1 W + b)
$$

Stitching is performed via linear regression using only the activations on training data, and we perform no task-specific fine-tuning on the stitching parameters W, b. If there exists an identifiable linear transformation between the networks at the penultimate layer, then the stitched network will achieve high performance. Importantly, since the last layer of each
network is dense layer followed by a softmax, when the representation stitching procedure causes the stitched model to agree with the head model, it shows that the representations computed by the body network are compatible and useful with respect to the head model.

3.4 ADVERSARIAL TRAINING

Adversarial training has been shown to be effective for constructing neural networks that are robust to adversarial examples [Madry et al., 2018]. In addition, adversarial training yields neural networks with a number of desirable qualities, including interpretable gradients [Tsipras et al., 2019], high-quality representations that are useful for transfer learning [Salman et al., 2020], and the ability to generate transferable adversarial examples [Springer et al., 2021c]. Despite the extensive research into this training paradigm, to our knowledge no comprehensive study has explored the relationship between network similarity and robustness.

During adversarial training, the empirical risk minimization regime is augmented so it produces a model that is robust to adversarial perturbations within a bounded region \(S(x) \) around each input point \(x \). We use the common choice of an \(\varepsilon \in \mathbb{R} \) sized \(\ell_2 \)-ball and refer to \(\varepsilon \) as the robustness level of the model. This set of perturbations, \(S \), is incorporated into the risk, reformulating it as the following min-max optimization:

\[
\min_{\theta} \mathbb{E}_{(x,y) \sim D} \left[\max_{\delta \in S(x)} \mathcal{L}(x + \delta, y; \theta) \right]
\]

(3)

Due to computational requirements, we use the pretrained \(\ell_2 \)-robust ImageNet models released by [Salman et al., 2020]. The specific architectures and robustnesses \((\varepsilon) \) studied are outlined in Table 1.

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>0.0</th>
<th>0.01</th>
<th>0.03</th>
<th>0.05</th>
<th>0.1</th>
<th>0.25</th>
<th>0.5</th>
<th>1.0</th>
<th>3.0</th>
<th>5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet18</td>
<td>✓</td>
</tr>
<tr>
<td>ResNet50</td>
<td>✓</td>
</tr>
<tr>
<td>WRN50-2</td>
<td>✓</td>
</tr>
<tr>
<td>WRN50-4</td>
<td>✓</td>
</tr>
<tr>
<td>ResNetX50</td>
<td>✓</td>
</tr>
<tr>
<td>VGG16-bn</td>
<td>✓</td>
</tr>
<tr>
<td>DenseNet</td>
<td>✓</td>
</tr>
<tr>
<td>ShuffleNet</td>
<td>✓</td>
</tr>
<tr>
<td>MobileNet</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1: Pretrained ImageNet models used in experiments with available \(\ell_2 \) robustnesses, provided by [Salman et al., 2020](https://github.com/microsoft/robust-models-transfer). WRN50-N is a WideResNet50-N [Zagoruyko and Komodakis, 2016].

4 EXPERIMENTS

We extensively evaluate our proposed method for estimating representation similarity, and show that it leads to consistent conclusions with other accepted methods for network similarity evaluation. Section 4.1 discusses the overestimation of neural network similarity and proposes a novel method for similarity estimation based on image inversions. Sections 4.2 to 4.4 discuss our findings on the convergence of representation similarity across robust neural networks, demonstrating that disparate methods for similarity estimation lead to the consistent conclusion that similarity increases significantly between architectures and random initialization as a function of robustness.

4.1 OVERESTIMATION OF NEURAL NETWORK SIMILARITY

Many previous studies have examined the similarity between neural networks with different architectures or weight initializations [Kornblith et al., 2019, Nguyen et al., 2021, Hermann and Lampinen, 2020]. Here, we argue that similarity between networks may be substantially overestimated by these studies. While these studies suggest that neural network activations are often highly correlated across different networks, none of them have taken into account the substantial confounder that neuron responses may appear to be correlated despite responding to distinct patterns, due to frequent co-occurrence of the patterns in the dataset.

We first present experimental results demonstrating that this confounder is present for standard, non-robust neural networks, shown in Figure 2. The left heatmap presents the CKA similarity at the representation layer between all non-robust architectures on a subset of the ImageNet validation set. As is commonly reported, the similarity between all architectures is relatively high with an average of 0.67 between the penultimate layers of distinct architectures. In the right heatmap, at each row-column entry, we present the CKA similarity between the row and column architecture using the inverted dataset \(\mathcal{D}_f(D) \) generated by the row’s architecture. We perform these image inversions using 2,000 iterations of stochastic gradient descent with a step size of 1/8. In contrast to the high similarities found in the left
Figure 2: Representation layer similarity of non-robust neural networks on the test set D and the inverted datasets $I_f(D)$. High similarity is observed under the natural image dataset and low similarity when on datasets generated by non-robust models. These results indicate that similarity is systematically overestimated when based on responses to natural images but can be more reliably estimated using responses to inverse images.

Figure 3: Representation layer similarity of robust neural networks ($\varepsilon = 3$) on the inverted datasets $I_f(D)$. Similarity is much higher than observed in Figure 2.

The trends shown in Figure 2 clearly show that current similarity metrics are overestimating network similarity to a significant degree due to correlations between distinct features in the data. When images containing only the relevant features for one of the models are used in the similarity calculation, we see that models are far more dissimilar than standard metrics indicate. We therefore propose evaluating CKA on inverted image datasets in order to best measure the manner in which each network computes sufficient and necessary features for classification.

4.2 Adversarial Training Increases Representation Similarity

We apply our new method for network similarity estimation to investigate how robustness affects the similarity of neural networks. In Figure 3, we calculate similarity between networks in a similar fashion to the rightmost plot in Figure 2; however, this time all architectures being compared were adversarially trained with an ℓ_2 robustness of $\varepsilon = 3$. In this plot we find that robust networks are significantly more similar to each other on the inverted datasets $I_f(D)$ than non-robust networks are (average similarity of 0.80, compared to 0.09 for standard models as seen in Figure 2); this may indicate that robust neural networks tend towards a similar set of representations, regardless of architecture.

In Figure 3 we plot the similarity between neural networks across architecture and robustness on the inverted datasets $I_f(D)$, restricted to a comparison of three architectures for readability. In each heatmap we present the similarity between the outer-row and outer-column architecture, varied across ε for each. Each inner-row and inner-column tick corresponds to the robustness of their respective outer-row and outer-column architecture, with the row architecture being the source of the inverted dataset $I_f(D)$. In these plots we see a strong and consistent trend: when similar-
Cosine Similarity

We further show the increase in similarity among robust neural networks with an intriguing result that as the pairwise-robustness of models increase, the cosine-similarity of their saliency-maps [Simonyan et al., 2014] with respect to the ground truth labels increases as well. For each pair of models at identical robustness, we compute the cosine similarity between their saliency maps, and present the results in Figure 4. In a similar fashion to the results in Section 4.1 and Section 4.2, we find that the similarity between standard models is quite low, however, as the pairwise robustness between models increases, so does the gradient similarity.

Figure 4: Cosine similarity of model gradients in input space across robustness levels. Error bars indicate 1 std. deviation.

4.3 ADVERSARIAL TRAINING INCREASES GRADIENT SIMILARITY

We further show the increase in similarity among robust neural networks by a non-robust or slightly-robust model (low value column ticks), low similarity is observed across all column-architecture robustnesses. However, when an inverted dataset produced by a robust architecture is used, we see notably higher similarity across all column-architecture robustnesses. Average comparisons between all architectures are shown in Figure 1 showing that this trend holds for all architectures evaluated.

Our results show a strong asymmetric relationship between robust and non-robust models. Inversions produced for a robust model shows high similarity with all other models, but inversions produced for a non-robust model show low similarity with all other models. This finding support the idea that features used by non-robust neural networks are highly entangled with the features used by robust neural networks. As is seen in Figure 5, the features present in the inverted datasets \(I_f(D) \) generated by robust models are causing the representations used by non-robust classifiers to activate, yet the opposite does not hold.

4.4 ADVERSARIAL TRAINING INCREASES FUNCTIONAL SIMILARITY

It has been argued that assessments of network similarity must examine functional similarity, since evaluation on known ground-truth labels gives a concrete, performance-based test [Ding et al., 2021]. Here, we apply the representation stitching methodology (Section 3.3) to “stitch” together networks of two different architectures using a single affine transformation. Within each robustness level, we evaluate every pair of models, using the first model as a body and the second model as a head. Figure 6 shows that stitching representations across architectures is effective; regardless of robustness level, when the head and body networks agree on a label, the stitched model also predicts the same label (93.9% for correct labels and 83.2% for incorrect labels). Interestingly, when the head and body networks predict different labels, we find that agreement between the stitched model and the head model increases significantly as a function of robustness (Figure 7). In other words, it appears that there is a stronger linear correspondence between representations of the body and head network, from a functional perspective, at higher robustness levels.

5 DISCUSSION

We find that while existing correlation-based similarity metrics overestimate the similarity between non-robust neural networks due to co-occurrence of features in the evaluation dataset, robust neural networks exhibit substantial similarity. We find that as the adversarial robustness of a neural network increases, its similarity to other networks increases,
even across differences in architecture and random initialization. This trend of similarity is also present in the gradients, where we find that the Jacobians with respect to inputs are more similar for robust networks than for their non-robust counterparts. These results suggest a modified universality hypothesis, which suggests that neural networks, regardless of exact training condition (i.e., architecture, random initialization, learning parameters) will learn similar representations under mild constraints, such as adversarial robustness. We find empirically that robust neural networks satisfy this hypothesis. Furthermore, we find that the representations of non-robust neural networks overlap substantially with the representations of robust neural networks despite less overlap with the representations of other non-robust neural networks. This suggests that non-robust representations can be thought of as “components” of robust representations, much as a feature that represents the ear of a cat can be thought of as a component of the feature that represents an entire cat.

Our results provide an important step towards understanding the representations learned by neural networks. Our framework justifies the previously observed exceptional transferability of adversarial examples constructed using robust neural networks by demonstrating that non-robust and robust representations exhibit substantial overlap [Springer et al. 2021b]. In addition, we suspect that the fact that a single robust neural network has some degree of similarity to all non-robust neural networks can explain why robust neural networks are often better at learning representations that transfer to new tasks [Salman et al. 2020].

Neural network architectures and optimization procedures have often been viewed from a Bayesian perspective as a strong prior on the functions that these networks can learn [Wilson and Izmailov 2020, Kleinberg et al. 2018]. Our results indicate that robust training, likewise, is a very strong prior which can constrain both the representations extracted from a dataset and the functions learned, independent of architecture. Viewing adversarial robustness as an inductive bias may lead to understanding the limitations of our current models for adversarial robustness, and may help us develop better notions of robustness and improve the accuracy of robust models.

6 CONCLUSION

Increased similarity between robust neural networks could mean that empirical analysis of a single robust neural network will reveal insight into the representations learned by every other robust neural network, which may lead us to understand the nature of adversarial robustness itself. If neural networks learn a solution that is largely dependent on the data itself rather than the learning algorithm, random initialization, or architecture, then we may be able to derive insight into the innate structure of data by using the representations learned by neural networks.

While we find that non-robust neural networks do not strongly support the universality hypothesis, there is a convergence between both the representations used and the functions encoded by robust neural networks of different architectures. If true, even in the limited case of robust models, the universality hypothesis has substantial implications for the field of machine learning, and more broadly artificial intelligence and neuroscience. First, identifying and understanding the representations used by any individual neural
network may allow us to understand the representations learned by every neural network that has been trained on the same dataset. This can have applications in mitigating transferable adversarial examples [Moosavi-Dezfooli et al., 2017] as well as building representations that are more useful for transfer learning [Salman et al., 2020]. Second, if architecture matters less given a robustness constraint, robust representations may give us insight into patterns learned by biological brains [Conwell et al., 2021a,b]. Yaman et al., 2014. Güçlü and van Gerven, 2015. Eickenberg et al., 2017].

References

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. Adversarial examples are not bugs, they are features, 2019.

Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J DiCarlo.