
If You’ve Trained One You’ve Trained Them All:
Inter-Architecture Similarity Increases With Robustness

Haydn T. Jones1 Jacob M. Springer1 Garrett T. Kenyon1 Juston S. Moore1

1Los Alamos National Laboratory, Los Alamos, New Mexico, United States

Abstract

Previous work has shown that commonly-used met-
rics for comparing representations between neu-
ral networks overestimate similarity due to corre-
lations between data points. We show that intra-
example feature correlations also causes significant
overestimation of network similarity and propose
an image inversion technique to analyze only the
features used by a network. With this technique,
we find that similarity across architectures is sig-
nificantly lower than commonly understood, but
we surprisingly find that similarity between mod-
els with different architectures increases as the
adversarial robustness of the models increase. Our
findings indicate that robust networks tend toward
a universal set of representations, regardless of ar-
chitecture, and that the robust training criterion is a
strong prior constraint on the functions that can be
learned by diverse modern architectures. We also
find that the representations learned by a robust
network of any architecture have an asymmetric
overlap with non-robust networks of many archi-
tectures, indicating that the representations used by
robust neural networks are highly entangled with
the representations used by non-robust networks.

1 INTRODUCTION

There is evidence that neural networks—across architec-
tures and weight initializations—rely on similar features for
classification. Previous literature has proposed the univer-
sality hypothesis, which posits that neural networks learn
essentially the same representations when trained on the
same data, regardless of exact architecture or training algo-
rithm [Olah et al., 2020]. However, we know that different
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Figure 1: Representation-layer similarity of neural networks
increases with robustness. Our proposed metric, based on
image inversions, is averaged across every pair of architec-
tures. The representations used by robust neural networks
are extremely similar across architectures and random initial-
izations, and show high similarity with non-robust networks.

architectures and random initializations often make different
predictions [Lakshminarayanan et al., 2017]. This paper re-
examines the similarity question from a novel viewpoint by
considering the effect of an adversarial robustness constraint
during training.

Robust training is a well-established procedure to decrease
the sensitivity of a network’s outputs to small changes in in-
puts Madry et al. [2018]. It is well-known that increasing the
robustness of neural networks against adversarial examples
comes with a cost to accuracy [Tsipras et al., 2019]. How-
ever, little attention has been paid to the effect that robust
training has on agreement between models. We empirically
show through multiple methods of similarity analysis that
the representations, and consequently the functions, learned
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by networks of different architectures become significantly
more similar as robustness increases. This finding indicates
that robustness serves as a strong prior on the functions that
can be learned, and in fact may be a strong enough con-
straint to matter more than the specific network architecture.
While surprising, this hypothesis is consistent with recent
theoretical results showing that modern networks are actu-
ally under-parameterized to represent smooth functions in
high dimensions [Bubeck and Sellke, 2021].

Many methods have been proposed to measure similarity be-
tween neural networks, including centered kernel alignment
(CKA) [Kornblith et al., 2019], Canonical Correlation Anal-
ysis (CCA) [Hardoon et al., 2004], singular vector canonical
correlation analysis (SVCCA) [Raghu et al., 2017], sub-
space match [Wang et al., 2018] and more. In this paper,
we show that existing methods for evaluating representation
similarity tend to over-estimate similarity due to feature
correlations. We develop a novel method for measuring net-
work representation similarity that deconfounds the effect of
correlated features by constructing model-specific datasets
where each data point has been transformed to contain only
the features used by the model. Using this metric, we present
a comprehensive study examining the similarity between
neural networks as a function of the robustness level used
in adversarial training.

Figure 1 summarizes our results using the novel similarity
metric we propose. The similarity between networks with
different architectures is extremely high amongst robust net-
works, and robust networks indeed show high similarity with
non-robust networks, indicating that there is significant en-
tanglement between robust and non-robust representations.
Overall, we find two novel and surprising results:

1. Similarity between networks trained with empirical
risk minimization is limited, and this similarity is over-
estimated by existing correlation-based similarity met-
rics due to feature correlations present in the dataset it-
self. We present experimental evidence that non-robust
neural networks rely on features that are highly corre-
lated in the data yet measure distinct patterns.

2. Adversarial robustness is a strong constraint on the
function that is learned by a network, regardless of
architecture or random initialization. We find that simi-
larity between robust networks is extremely high, and
that robust networks also show asymmetric similarity
with non-robust neural networks.

2 RELATED WORK

Cui et al. [2022] investigate the confounding effect of in-
put data on representational similarity across deep neural
networks. They highlight that inter-example similarity can
cause representation similarity to be spuriously high even
between networks with Gaussian noise added to their pa-

rameters. They propose to regress out the input similarity
structure from the representation similarity structure and
find that doing so corrects for the failure of CKA to dis-
tinguish between random neural networks, among other
benefits. Ding et al. [2021] further investigates issues sur-
rounding similarity indices, finding that CKA and CCA both
fail to satisfy at least one of their proposed criteria expected
of similarity metrics. We identify an additional limitation to
these similarity metrics by showing that correlated features
in the input data can likewise cause the similarity between
neural networks to be overestimated.

Bai et al. [2021] propose a method to study the representa-
tions learned by neural networks by removing all non-linear
components of a network and integrating all linear compo-
nents into linear subnetworks W . By analyzing the weight
vectors of W , the authors find that adversarially-trained
networks cluster along class hierarchies while standard net-
works do not. Likewise, Salman et al. [2020] find that the
representations learned by robust neural networks provide
a better starting point for transfer learning than the repre-
sentations learned by non-robust networks. These findings
may indicate that adversarially-trained networks are extract-
ing more semantic and generalizable representations than
standard networks.

Springer et al. [2021b] investigate the ability of adversari-
ally trained neural networks to generate targeted adversarial
examples. They find that classifiers that have been adver-
sarially trained, even those only robust to small-magnitude
perturbations, are much more effective than standard clas-
sifiers at generating targeted adversarial examples. Based
on their findings, they argue that the representations used
by slightly robust neural networks are shared widely across
non-robust networks. We present further evidence for this
hypothesis by evaluating the representational similarity of
robust and non-robust neural networks.

3 METHODS

We consider a labeled classification dataset D = X, y of
data points and ground truth labels. Given two neural net-
works f1 and f2, comprised of layers

f1 = f
(L1)
1 ◦ f (L1−1)

1 ◦ . . . f (1)1

f2 = f
(L2)
2 ◦ f (L2−1)

2 ◦ . . . f (1)2

we are interested in the activations at the representation
layers (i.e. the second-to-last, or penultimate, layer) of f1
and f2, denoted A and B

g1 = f
(L1−1)
1 ◦ . . . ◦ f11 A = g1(X)

g2 = f
(L1−1)
1 ◦ . . . ◦ f11 B = g2(X)



3.1 CENTERED KERNEL ALIGNMENT

We use centered kernel alignment to compare representa-
tions between neural networks. Given two mean-centered
matrices of activations A ∈ Rn×p1 and B ∈ Rn×p2 of p1
and p2 neurons on a set of n examples, CKA computes a
value in the range [0, 1] with values closer to 1 indicating
higher similarity. Kornblith et al. [2019] show that CKA has
a number of desirable properties, including the ability to
calculate similarity between layers with a different numbers
of neurons, invariance to isotropic scaling, and the ability to
identify correspondences between the layers of identical ar-
chitectures trained from different initializations—properties
many widely used metrics lack.

Since Kornblith et al. [2019] show that linear and radial basis
function kernels compute similar similarity indices, we use
a linear kernel for simplicity. The linear CKA between A
and B is given by:

CKA(A,B) =
‖BTA‖2F

‖ATA‖F ‖BTB‖F

=
‖cov(AT , BT )‖2F

‖cov(AT , AT )‖F ‖cov(BT , BT )‖F

(1)

where ‖·‖F denotes the Frobenius norm. Previous studies
have evaluated CKA between each pair of layers in the net-
works to be compared. In this study, we restrict our attention
to the penultimate layer of each network, since this layer
effectively captures the summary statistics used by each
network for classification.

In this work, we empirically demonstrate a shortcoming of
CKA, as traditionally applied. Suppose that two features are
perfectly correlated in both the train and test partitions of a
dataset: X·,i = c X·,j for some |c| > 0 and i 6= j. Also sup-
pose that each network computes its representationsA·,l and
B·,m using only one of these correlated features: i for f1 and
j for f2, respectively. Then, CKA evaluated on test data will
show that representations l and m are perfectly correlated,
although it does not indicate similar feature usage between
the networks. In large, high-dimensional datasets with many
correlated features, such as natural images, this shortcoming
can lead to a dramatic overestimation of network similarity.

3.2 REPRESENTATION-LAYER INVERSION.

We use an inversion technique from the adversarial robust-
ness literature to eliminate the effect of correlated features
in test data. Ilyas et al. [2019] proposed representation
inversion to investigate the features used by robust and
non-robust classifiers. Representation inversion constructs a
model-specific inverted dataset If (D) for a given classifier
f where all features not used by f are randomized. This
technique was developed in the computer vision domain,
and our experiments use images, so we will explain repre-

sentation inversion in terms of images; note, however, that
the inversion process is generally applicable to datasets with
continuous-valued features.

Given a labeled dataset D, we choose a pair of inputs that
have different labels. The first of each pair will be the seed
image s and the second the target image t. Using the seed
image as a starting point, we perform gradient descent to
find an image that induces the same activations at the repre-
sentation layer as the target image, under a specific neural
network f . We construct this image through gradient de-
scent in input space (with the constraint that the resulting
image has pixel values in the range [0, 1]) by optimizing the
following objective:

s̃ = min
s

‖g(s)− g(t)‖2
‖g(t)‖2

(2)

By sampling pairs of seed and target images that have dis-
tinct labels we eliminate features correlated with the target
class that are not used by the model for classification. For
example, if we have a seed and target images of “microwave”
and “cat” respectively, and a given neural network is using
the feature of “cat ear” to classify cat images but not “cat
fur”, by starting from an image of a microwave we can pro-
duce an image with the model’s representation of “cat ear”
that does not contain the correlated feature of “cat fur”. If
done successfully, the similarity between a neural network
relying only on “cat fur” and a neural network relying only
on “cat ear” will not be inflated by the co-occurrence of
these features in the original dataset.

3.3 REPRESENTATION STITCHING

Csiszárik et al. [2021] approach neural network similarity
from the functional perspective, asking the question “can
network f2 achieve its task using only the representations
of network f1?”. Their simple and elegant method stitches
together the activations A from a body network f1 with
the last layer of a head network f (L2)

2 by fitting an affine
transformation to match the activations of the head network:
B ≈ AW + b. This procedure creates a stitched network:

f2◦1 = f
(L2)
2 ◦ (g1W + b)

We construct stitched networks by fitting W, b via least
squares on activations of the body and head models com-
purted on training data, and we perform no task-specific
fine tuning. If there exists an identifiable linear transforma-
tion between the networks at the penultimate layer, then
the stitched network will achieve high performance. Impor-
tantly, since the last layer of each network is a dense layer
followed by a softmax, when the representation stitching
procedure causes the stitched model to agree with the head
model, it shows that the representations computed by the
body network are compatible and useful with respect to the
head model.



ε 0 .01 .03 .05 .1 .25 .5 1 3 5
ResNet18 3 3 3 3 3 3 3 3 3 3

ResNet50 3 3 3 3 3 3 3 3 3 3

WRN50-2 3 3 3 3 3 3 3 3 3 3

WRN50-4 3 3 3 3 3 3 3 3 3 3

ResNeXt50 3 7 7 7 7 7 7 7 3 7

VGG16-bn 3 7 7 7 7 7 7 7 3 7

DenseNet 3 7 7 7 7 7 7 7 3 7

ShuffleNet 3 7 7 7 7 7 7 7 3 7

MobileNet 3 7 7 7 7 7 7 7 3 7

Table 1: Pretrained ImageNet models used in experi-
ments with available `2 robustnesses, provided by Salman
et al. [2020] (github.com/microsoft/robust-models-transfer).
WRN50-N is a WideResNet50-N [Zagoruyko and Ko-
modakis, 2016].

3.4 ADVERSARIAL TRAINING

Adversarial training has been shown to be effective for con-
structing neural networks that are robust to adversarial ex-
amples [Madry et al., 2018]. In addition, adversarial training
yields neural networks with a number of desirable qualities,
including interpretable gradients [Tsipras et al., 2019], high-
quality representations that are useful for transfer learning
[Salman et al., 2020], and the ability to generate transferable
adversarial examples [Springer et al., 2021c]. Despite the
extensive research into this training paradigm, to our knowl-
edge no comprehensive study has explored the relationship
between network similarity and robustness.

During adversarial training, the empirical risk minimiza-
tion regime is changed to a min-max criterion to produce
a model that is robust to adversarial perturbations within a
bounded region S(x) around each training point x. We use
the common choice of an ε ∈ R sized `2-ball and refer to
ε as the robustness level of the model. The training loss for
robust training is:

min
θ

E(x,y)∼D

[
max
δ∈S(x)

L(x+ δ, y; θ)

]
(3)

Due to computational requirements, we use the pretrained
`2-robust ImageNet models released by Salman et al. [2020].
The specific architectures and robustnesses (ε) studied are
outlined in Table 1.

4 EXPERIMENTS

We evaluate our proposed method for estimating representa-
tion similarity, and show that it leads to consistent conclu-
sions with other accepted methods for network similarity
evaluation. Section 4.2 discusses the overestimation of neu-
ral network similarity and proposes a novel method for sim-
ilarity estimation based on image inversions. Sections 4.3

to 4.5 discuss our findings on the convergence of representa-
tion similarity across robust neural networks, demonstrating
that disparate methods for similarity estimation lead to the
consistent conclusion that similarity increases significantly
between architectures and random initialization as a func-
tion of robustness.

4.1 DATASET CONSTRUCTION

We perform the representation-layer inversion process on
a subset of 10, 000 images drawn from the ImageNet vali-
dation set [Deng et al., 2009], producing a unique inverted
dataset If (D) for each model. There is no constraint to
limit the difference between the seed image s and the in-
verse image s̃, and the inversion is performed to match acti-
vations, not just classification outputs. Thus our approach
is fundamentally different from presenting a network with
adversarial examples. We found in our experiments that
gradient descent finds inverse images with representations
very closely matching the target images, regardless of the
seed/target pair chosen. The distance between the seed im-
age s and the inverted image s̃ tends to increase as the
robustness of the network f increases (Figure 2).

To produce the inverted datasets, If (D), we use PyTorch
[Paszke et al., 2019] and the Robustness library [Engstrom
et al., 2019], minimizing the objective defined in Equa-
tion (2). All models are set to evaluation mode before start-
ing the inversion process. For faster convergence we im-
plement `2 momentum as described in Dong et al. [2018].
Inversions are produced through 2, 000 steps of gradient
descent with a step size of 1/8 and `2 momentum of 0.9.
For each inversion we choose the point along the optimiza-
tion path that minimizes the objective Equation (2) rather

+

WRN50-4, ε = 0.0

→

(a) Seed image (b) Target image

+

WRN50-4, ε = 5.0

(c) Inverted image

→

Figure 2: Inversion process example for a standard WRN50-
4 (top row) and a WRN50-4 that was trained with l2 robust-
ness ε = 5.0 (bottom row). The target images and inverted
images induce the same activations at the representation
layer of the network despite being visually distinct.

https://github.com/microsoft/robust-models-transfer
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Figure 3: Representation layer similarity of non-robust neural networks on the test set D and the inverted datasets If (D).
High similarity is observed under the natural image dataset and low similarity under datasets generated by inverting
non-robust models. These results indicate that similarity is systematically overestimated when based on responses to natural
images but can be more reliably estimated using responses to inverse images.

than the final result of gradient descent. At each step we
normalize the gradient to unit norm.

4.2 OVERESTIMATION OF NEURAL NETWORK
SIMILARITY

Many previous studies have examined the similarity be-
tween neural networks with different architectures or weight
initializations [Kornblith et al., 2019, Nguyen et al., 2021,
Hermann and Lampinen, 2020]. Here, we argue that simi-
larity between networks may be substantially overestimated
by these studies. While these studies suggest that neural
network activations are often highly correlated across dif-
ferent networks, none of them have taken into account the
substantial confounder that neuron responses may appear to
be correlated despite responding to distinct patterns, due to
frequent co-occurrence of the patterns in the dataset.

We first present experimental results demonstrating that this
confounder is present for standard, non-robust neural net-
works, shown in Figure 3. The left heatmap presents the
CKA similarity at the representation layer between all non-
robust architectures on a subset of the ImageNet validation
set. Note that CKA is symmetric, so the plot on this natural
dataset is symmetric. As is commonly reported, the sim-
ilarity between all architectures is relatively high with an
average of 0.67 between the penultimate layers of distinct ar-
chitectures. In the right heatmap, at each row-column entry,
we present the CKA similarity between the row and column
architecture using the inverted dataset If (D) generated by
the row’s architecture. Because the dataset varies by row,

this plot is not symmetric. In contrast to the high similarities
found in the left heatmap, all similarities are significantly
lower with an average between distinct architectures of 0.09.

The trends shown in Figure 3 clearly demonstrate that cur-
rent similarity metrics are overestimating network similarity
to a significant degree due to correlations between distinct
features in the data. When images containing only the rele-
vant features for one of the models are used in the similarity
calculation, we see that models are far more dissimilar than
standard metrics indicate. We therefore propose evaluating
CKA on inverted image datasets in order to best measure
the manner in which each network computes sufficient and
necessary features for classification.

4.3 ADVERSARIAL TRAINING INCREASES
REPRESENTATION SIMILARITY

We apply our new method for network similarity estimation
to investigate how robustness affects the similarity of neural
networks. In Figure 4 we calculate similarity between net-
works in a similar fashion to Figure 3; however, this time
all architectures being compared were adversarially trained
with an `2 robustness of ε = 3. In this plot we find that
robust networks are significantly more similar to each other
than non robust networks are on both the natural dataset
and the inverted datasets If (D). On the natural dataset, ro-
bust models have an average similarity of 0.83 compared to
0.67 for standard models. On If (D), robust models have an
average similarity of 0.80, compared to 0.09 for standard
models as seen in Figure 3. This may indicate that robust
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Figure 4: Representation layer similarity of robust neural networks (ε = 3) on the test set D and the inverted datasets If (D).
Similarity is much higher than observed in Figure 3 on both the inverted datasets and the natural datasets. The fact that
similarity measured via standard CKA (left) and our method (right) is very close indicates that highly robust networks of
different architecture are indeed using very similar features to perform classification.

neural networks tend towards a similar set of representations,
regardless of architecture.

In Figure 6 we plot the similarity between neural networks
across architecture and robustness on the inverted datasets
If (D), restricted to a comparison of three architectures for
readability. In each heatmap we present the similarity be-
tween the outer-row and outer-column architecture, varied
across ε for each. Each inner-row and inner-column tick
corresponds to the robustness of their respective outer-row
and outer-column architecture, with the row architecture
being the source of the inverted dataset If (D). In these
plots we see a strong and consistent trend: when similar-
ity is calculated between architectures using an inverted
dataset produced by a non-robust or slightly-robust model
(low value column ticks), low similarity is observed across
all target architecture (i.e. column) robustnesses. However,
when an inverted dataset produced by a robust architecture
is used, we see notably higher similarity across all target
architecture robustnesses. Average comparisons between all
architectures are shown in Figure 1, showing that this trend
holds for all architectures evaluated.

Our results show a strong asymmetric relationship between
robust and non-robust models. Inversions produced by a
robust model show high similarity with all other models,
but inversions produced by a non-robust model show low
similarity with all other models. This finding supports the
idea that features used by non-robust neural networks are
highly entangled with the features used by robust neural
networks [Springer et al., 2021a]. As is seen in Figure 6, the
features present in the inverted datasets If (D) generated by

robust models are causing the features used by non-robust
classifiers to activate, yet the opposite does not hold.

4.4 ADVERSARIAL TRAINING INCREASES
GRADIENT SIMILARITY

We further show the increase in similarity among robust neu-
ral networks with an intriguing result that as the pairwise-
robustness of models increase, the cosine similarity of their
saliency maps [Simonyan et al., 2014] with respect to the
ground truth labels increases as well. For each pair of mod-
els at identical robustness, we compute the cosine similarity
between their saliency maps, and present the results in Fig-
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Figure 5: Cosine similarity of model gradients in input space
across robustness levels. Error bars indicate 1 std. deviation.
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Figure 6: Representation-layer similarity of neural networks
on the inverted datasets, If (D), pair-wise across different
robustness levels.

ure 5. In a similar fashion to the results in Section 4.2 and
Section 4.3, we find that the similarity between standard
models is quite low, however, as the pairwise robustness
between models increases, so does their gradient similarity.

4.5 ADVERSARIAL TRAINING INCREASES
FUNCTIONAL SIMILARITY

It has been argued that assessments of network similar-
ity must examine functional similarity, since evaluation on
known ground-truth labels gives a concrete, performance-
based test [Ding et al., 2021]. Here, we apply the representa-
tion stitching methodology (Section 3.3) to “stitch” together
networks of two different architectures using a single affine
transformation. Within each robustness level, we evaluate
every pair of models, using the first model as a body and the
second model as a head. When the head and body models
disagree, evaluating the agreement of the stitched model
with the head model can loosely be thought of as evaluating
whether the linear classifiers of the head and body models
are using the same set of features in different proportions
to produce their classifications. If this is in fact the case, by
mapping the body features into the linear subspace of the
head model, one should expect an increase in agreement of
the head model with the stitched model.

Figure 7 shows that stitching representations across archi-
tectures is effective; regardless of robustness level, when
the head and body networks agree on a label, the stitched

model also predicts the same label (93.9% for correct la-
bels and 83.2% for incorrect labels). Interestingly, when the
head and body networks predict different labels, we find
that agreement between the stitched model and the head
model increases significantly as a function of robustness
(Figure 8). In other words, it appears that there is a stronger
linear correspondence between representations of the body
and head network, from a functional perspective, at higher
robustness levels.

5 DISCUSSION

We find that while existing correlation-based similarity met-
rics overestimate the similarity between non-robust neural
networks due to co-occurrence of features in the evaluation
dataset, robust neural networks exhibit substantial similar-
ity. We find that as the adversarial robustness of a neural
network increases, its similarity to other networks increases,
even across differences in architecture and random initializa-
tion. This trend of similarity is also present in the gradients,
where we find that the Jacobians with respect to inputs are
more similar for robust networks than for their non-robust
counterparts. These results suggest a modified universality
hypothesis, which suggests that neural networks, regardless
of exact training condition (i.e., architecture, random initial-
ization, learning parameters) will learn similar representa-
tions under mild constraints, such as adversarial robustness.
We find empirically that robust neural networks satisfy this
hypothesis. Furthermore, we find that the representations
of non-robust neural networks overlap substantially with
the representations of robust neural networks despite less
overlap with the representations of other non-robust neural
networks. This suggests that non-robust representations can
be thought of as “components” of robust representations,
much as a feature that represents the ear of a cat can be
thought of as a component of the feature that represents an
entire cat.

Our results provide an important step towards understand-
ing the representations learned by neural networks. Our
framework justifies the previously observed exceptional
transferability of adversarial examples constructed using ro-
bust neural networks by demonstrating that non-robust and
robust representations exhibit substantial overlap [Springer
et al., 2021b]. In addition, we suspect that the fact that a
single robust neural network has some degree of similarity
to all non-robust neural networks can explain why robust
neural networks are often better at learning representations
that transfer to new tasks [Salman et al., 2020].

Neural network architectures and optimization procedures
have often been viewed from a Bayesian perspective as a
strong prior on the functions that these networks can learn
[Wilson and Izmailov, 2020, Kleinberg et al., 2018]. Our
results indicate that robust training, likewise, is a very strong
prior which can constrain both the representations extracted
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Figure 7: Average agreement between stitched models and
their corresponding head models on data instances where
the body and head networks agree. Robustness has no effect
on agreement. Confidence bands indicate 1 std. error.

from a dataset and the functions learned, independent of
architecture. Viewing adversarial robustness as an inductive
bias may lead to understanding the limitations of our current
models for adversarial robustness, and may help us develop
better notions of robustness and improve the accuracy of
robust models.

6 CONCLUSION

Increased similarity between robust neural networks could
mean that empirical analysis of a single robust neural net-
work will reveal insight into the representations learned by
every other robust neural network, which may lead us to
understand the nature of adversarial robustness itself. If neu-
ral networks learn a solution that is largely dependent on
the data itself rather than the learning algorithm, random
initialization, or architecture, then we may be able to de-
rive insight into the innate structure of data by using the
representations learned by neural networks.

While we find that non-robust neural networks do not
strongly support the universality hypothesis, there is a con-
vergence between both the representations used and the
functions encoded by robust neural networks of different
architectures. If true, even in the limited case of robust mod-
els, the universality hypothesis has substantial implications
for the field of machine learning, and more broadly artificial
intelligence and neuroscience. First, identifying and under-
standing the representations used by any individual neural
network may allow us to understand the representations
learned by every neural network that has been trained on
the same dataset. This can have applications in mitigating
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Figure 8: Average agreement between stitched models and
their corresponding head models on data instances where
the body and head networks disagree. Agreement increases
as robustness increases. Confidence bands indicate 1 std.
error.

transferable adversarial examples [Moosavi-Dezfooli et al.,
2017] as well as building representations that are more use-
ful for transfer learning [Salman et al., 2020]. Second, if
architecture matters less given a robustness constraint, ro-
bust representations may give us insight into patterns learned
by biological brains [Conwell et al., 2021a,b, Zhuang et al.,
2021, Yamins et al., 2014, Güçlü and van Gerven, 2015,
Eickenberg et al., 2017].
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