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ABSTRACT

Large Language Models (LLMs) have showcased remarkable reasoning capabil-
ities in various domains, yet face challenges in complex embodied tasks due to
coherent long-term policy, context-sensitive environmental understanding. Pre-
vious work performed LLM refinement relying on outcome-supervised feedback,
which can be costly and ineffective. In this work, we introduce a novel framework,
Discriminator-Guided Action OPtimization (DGAP) for facilitating optimization
of LLM action plans via step-wise signals. Specifically, we employ a limited set
of demonstrations to enable the discriminator in learning a score function, which
assesses the alignment between LLM-generated action and the underlying opti-
mal one at every step. Based on the discriminator, LLM is prompted to generate
actions to maximize the score utilizing historical action-score pairs trajectory as
guidance. Under mild conditions, DGAP resembles the critic-regularized opti-
mization and is demonstrated to achieve a stronger policy than the LLM planner.
In experiments across different LLMs (GPT-4, Llama3-70B) in ScienceWorld and
VirtualHome, our method obtains superior performance and better efficiency than
previous methods.

1 INTRODUCTION

The effectiveness of large language models (LLMs) in task planning hinges on their ability to gen-
erate coherent, executable plans in dynamic, open-ended environments (Song et al., 2023; Suzgun
et al., 2022), in which embodied scenarios present greater challenges due to the need for long-
term planning in more intricate contexts. Specifically, embodied planning presents challenge due
to inherent complexities and error accumulation over extended horizons. It involves coordinating
long action sequences while managing intricate, dynamic environments with high-dimensional state
spaces and tangible interactions. Moreover, in long-term planning, initial inaccuracies compound
over steps, causing significant deviations from the plan and risking mission failure (Ross et al., 2011;
Luo et al., 2024).

Facing these difficulties, in-context learning methods (Dong et al., 2022; Abernethy et al., 2023;
Akyürek et al., 2023), tree-of-thought(ToT) methods (Yao et al., 2023a; Feng et al., 2023; Zhou
et al., 2023a) and demonstration-based methods (Lin et al., 2023; Rita et al., 2024) have accom-
plished partial progress. However, a key issue is that they generally receive feedback signals at
the trajectory level, which is non-proactive and limits their effectiveness and generalization in dy-
namic embodied scenarios (Chen et al., 2024b; Liu et al., 2024; Shi et al., 2024). In particular,
in-context learning methods introduce closed-loop feedback(Song et al., 2023; Wu et al., 2023) for
failed results at completion via inner monologue (Madaan et al., 2023; Huang et al., 2022a; Yao
et al., 2023b) or physical feedback (Shinn et al., 2023; Mandi et al., 2023). ToT methods (Yao
et al., 2023a; Feng et al., 2023; Zhou et al., 2023a) generate multiple trajectories to represent several
reasoning pathways, and perform trajectory-level switching optimization, which incurs high explo-
ration costs (Zhang et al., 2024). Demonstration-based approaches require extensive, high-quality
trajectories in diverse scenarios to obtain a generalized policy (Lin et al., 2023; Rita et al., 2024)
(see Fig. 1).

In the light of these challenges, we consider an alternative way for grounding and generalization
of embodied planning by leveraging the knowledge from limited demonstrations to construct step-
level guidance, which is subsequently integrated into in-context learning to boost planning. A key
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Figure 1: Comparing methods of LLMs to conduct embodied planning. DGAP leverages step-wise
alignment signals to guide LLMs in the planning process.

challenge is applying the limited information from few-shot demonstrations in diverse scenarios. As
described before, embodied agents that directly imitate these demonstrations often accumulate errors
due to their restricted scope (Ross et al., 2011; Luo et al., 2024). In contrast, humans possess dis-
tinct capabilities for internal generalization and alignment (Barsalou, 2008; Rizzolatti & Craighero,
2004), allowing them to comprehend quickly task objectives and environment dynamics from few-
shot demonstrations (Schaal, 1999; Malaviya et al., 2022). Motivated by this, we allow the agent to
acquire a small number of demonstrations and further leverage them to provide step-wise signals to
embodied planning. Specifically, (i) the demonstrations includes task objective and dynamics con-
straints that are lacking in LLMs, while it struggles to handle Out-Of-Distribution (OOD) situations
across diverse scenarios; and in contrast, (ii) LLMs that contain a vast amount of commonsense
knowledge enabling long-term reasoning on a broad set of situations without suffering from OOD
problems, while LLMs lack domain knowledge and expert guidance for grounding. As a result, our
work aims to combine the benefits of LLMs with the precise insights from demonstrations to provide
few-shot generalization and task-specific grounding simultaneously.

In this paper, we propose a novel framework named Discriminator-Guided Action Optimization
(DGAP) to perform efficient grounding and generalization for the LLM planner at every step. In-
stead of imitating expert actions, we learn a discriminator on a small number of demonstrations to
form a score function within the framework of sentence transformers, which measures the align-
ment between LLM actions and underlying expert actions at the step level. By using meta-prompts
that contain previously generated actions with score guidance Yao et al. (2023a), the LLM planner
performs as a closed-loop optimizer for new actions with high scores through its understanding of
existing discriminative action-score pairs. This approach effectively treats the LLM as an optimizer
(Yang et al., 2024), which inherently involves an optimizing process, bypassing the need for phys-
ical or outcome feedback required by previous methods for refinement. Under mild conditions, we
show that DGAP resembles the critic-regularized optimization in RL and is provable to achieve a
stronger policy than the LLM planner.

Our contributions are summarized as follows. (i) We propose a novel framework that combines the
long-term reasoning of LLMs and task-specific grounding under guidance from a small number of
demonstrations. (ii) We propose a simple discriminator learned with a small number of demon-
strations to serve as a step-level score function, which helps the LLM planner generate high-score
actions via implicit optimization. (iii) We build theoretical connections between DGAP and critic-
regularized optimization in RL, which shows our method obtains a stronger policy than the LLM
planner under mild conditions. (iv) We conduct extensive experiments in challenging ScienceWorld
(Wang et al., 2022) and VirtualHome (Puig et al., 2018) benchmarks combined with different LLM
planners (GPT-4 (OpenAI, 2023), Llama3-70B (Meta, 2024)), and the result shows DGAP obtains
superior performance and better efficiency than previous methods.

2 PRELIMINARIES
The embodied tasks can be formalized as a Markov Decision Process (MDP) defined by a tuple
M = (L,S,O, E,A,P, r, T ). In the MDP, l ∼ L is the language description of a task specifying a
high-level goal. For example, in ScienceWorld, a task description can be "your task is to boil lead"
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Figure 2: Framework of DGAP: (i) Acquiring domain-specific knowledge through discriminator’s
regressive training. (ii) Optimizing action generation via historical action-score pairs.

At time step t, the state st ∼ S contains the description of environment information including the
agent observations ot ∼ O (i.e., environment feedback of previous action or information queried)
and environment states et ∼ E (i.e., details about all visible objects). The action at ∼ π(a|st) is
generated by following a valid policy π : S → ∆A. For example, an LLM planner πllm(at|st) is
a valid policy that generates an action at based on the state st. In most embodied planning tasks,
a valid action should follow some supported action templates such as "use X on Y, examine Y" For
example, a valid action at in this task can be "use thermometer on liquid tin," and the initial action
a0 is always "look around" for showing initial environment information. Each step involves the
agent executing the action to interact with the environment, obtaining the next state st+1 and some
reward rt. For an RL-based agent, the rewards will be used for policy learning via policy gradient
algorithms. As for an LLM policy, the policy generates actions based on commonsense knowledge,
the provided prompts, and (optionally) the closed-loop feedback.

In DGAP, we additionally acquire a small number of demonstrations, which include the opti-
mal action sequences generated by an oracle planner πoracle. We denote the expert dataset as
B = {l, (ai0, ai1, . . . , aiT )}Mi=1, where M denotes the number of episodes. An imitation policy πbc is
learned via Behavior Cloning (BC) in the expert data, by maximizing the log-likelihood of expert ac-
tions as πbc = maxπ EB[π(a

i
t|l, ht)], where ht = ait−1, ..., a

i
t−n contains previous actions up to 10.

πbc can perform poorly in real-world interactions due to limited state coverage of demonstrations.

3 METHOD

In this section, we present the details of our proposed framework, DGAP, as depicted in Fig. 2. This
framework capitalizes on the domain knowledge embedded in both expert and handcrafted datasets
to assign scores to responses from the LLM. These scores then strategically guide LLMs in planning
towards specified objectives. Specifically, it consists of three parts: (i) Acquiring domain-specific
knowledge through discriminator’s regressive training from augmented expert data with score labels
in §3.1. (ii) Utilizing the pre-trained discriminator to optimize action generation via historical action-
score pairs and ground actions when facing anomalous scores in §3.2. (iii) Qualitative analysis of
DGAP and critic-regularized optimization.

3.1 THE DISCRIMINATOR AS SCORER

As previously mentioned, reflection-based methods (Madaan et al., 2023; Shinn et al., 2023) and
search-based methods (Yao et al., 2023a; Chen et al., 2024a; Zhou et al., 2023a) supervised by out-
come present inefficient to some extent. Demonstration-based methods require large datasets for
their scalability in embodied tasks (Rita et al., 2024; Sun & van der Schaar, 2024). Recognizing the
potential complementarity of them, we investigate a solution that combines their strengths by em-
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ploying a discriminator. Specifically, the discriminator integrates external knowledge from demon-
strations, subsequently provides a score measuring the alignment between the LLM’s response and
the underlying expert choice within the current context. The process is defined as:

Dϕ : (l, ht, aπllm(l,st)) → Q, (1)
where Dϕ denotes the offline discriminator with parameters ϕ, l, st refers to task objective and
environmental information as stated in Sec. 2, ht is a summary of the past ten actions, aπllm(l,st)

represents the action generated by LLM based on task goal and state at timestep t. Q is the score
(between 0 and 10), where a higher score indicates greater alignment with the expert policy. A
detailed description of the discriminator is in Appendix C.

Previous research has highlighted the generalization capacity and adaptability of demonstrations in
planning for various embodied tasks (Mu et al., 2023; Lin et al., 2023). Unlike existing methods that
directly utilize fixed demonstrations to transfer to new scenarios, our approach converts the demon-
strations’ information into numeric values, enabling a measurable step-level feedback. Additionally,
We enhance these values through augmentation on limited demonstration samples to improve their
generalization across embodied scenarios. This numeric representation is used to simplify integra-
tion with task planning, offering a more efficient, scalable solution with dense feedback.

Data Overview The discriminator is designed to numerically differentiate actions. Intuitively,
embedding regression serves as an effective method for this purpose. A predominant factor con-
tributing to this is the high similarity between expert action embeddings and those of generated
actions, which makes it difficult to distinguish and be represented as a score with generalization.
To tackle this issue, previous studies propose data distribution adjustments such as an unbalanced
combination of expert data, sub-optimal data (Xu et al., 2022), and data augmentation to provide
generization (Jha et al., 2020) utilizing a customized fine-tuned LM (Tan et al., 2024). In light of
them, we adopt a data collection strategy that involves a tailored modification to expert data, com-
bined with comparable random data and a substantial volume of generated data via fine-tuned LM,
as illustrated in Fig. 3. And the specific implementing details are stated in Appendix. C.

• Expert Data (score 10): This parts are composed of oracle trajectories from ScienceWorld (Lin
et al., 2023) and VirtualHome (Puig et al., 2018) official datasets, from which we exact l and ht

as instructions. The correlated instruction-action pairs adhere to policy πoracle and are assigned a
score of 10. Together, they constitute dataset Be.

• Random Data (score 0): We collect a dataset with negative pairs where the instruction is paired
with a ground truth action from demonstrations that is the least semantically related, where both
the predicate and the object of the action are changed and collectively form the dataset Br.

• Offline Data (score within [0, 10]): Accomplishing regression tasks using highly polarized sam-
ples presents considerable difficulty. To enrich the diversity of both instructions and actions, we
fine-tune a language model (LM) via imitation learning (IL) to provide domain knowledge, using
the instruction-action pairs in expert data, as detailed in Appendix B. Subsequently, we utilize a
fine-tuned model to generate action candidates aπbc through beam search across a range of instruc-
tions, thereby forming entirely new pairs. Here aπbc denotes the action generated by the fine-tuned
LM. We employ a pre-trained sentence embedding model to extract candidates’ features and fur-
ther evaluate semantic similarity with ground-truth actions aπoracle . This process is described as
Sim(aπ̂bc , aπoracle). In unseen scenarios without ground-truth, we mildly treat the first candidate
generated by the LM as 10 for the distribution of fine-tuned small models aligns more closely with
the training data domain (Panigrahi et al., 2023). The scores for the subsequent candidates are
determined by multiplying their cosine similarity to the first candidate by 10. These data hereby
make up dataset Ba and constitute a significant proportion of the overall dataset Bo.

The reason we transfer the similarity naturally ranges between [0, 1] to integrals between [0, 10] is
that LLMs more effectively process integers than decimals (Gruver et al., 2024). Thus, during the
discriminator’s training, we scaled the scores to span in [0, 10] and subsequently rounded them to
integers for the subsequent stage of LLM reasoning to better optimize LLMs’ interpretative effec-
tiveness.

Model Overview Previous research has demonstrated the significant capability of sentence trans-
formers in performing text classification (Cohan et al., 2019). Similarly, We also formulate our dis-
criminator’s training as a regression task and employ another sentence transformer-based network
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Figure 3: Illustration of dataset construction and discriminator training

as a backbone, utilizing the data in Bo, which aims to establish the mapping from instruction-action
pairs to scores. Specifically, we employ the RoBERTa (Liu et al., 2019) model architecture com-
plemented by a linear head to get a precise score, thereby ensuring a robust integration of paired
data into our evaluative framework. We explicitly apply L2 loss in training as shown in equation 2.
Details are in Appendix C.

L = argmin
ϕ

(
E(L,H,A)∼Bo,A∼πbc

[ n∑
i=1

∥Dϕ(li, hi, ai)−Qi∥2
])

(2)

The introduction of discriminator offers intuitive and readily obtainable feedback which supplants
accessing feedback through exploration in the environment, and enhances the planning process by
directly concentrating on the action-score information.

3.2 LLM OPTIMIZATION WITH DISCRIMINATOR

In this section, we outline how to combine the pre-trained discrim-

Figure 4: Regularizing
the LLM policy distribu-
tion through score-based
replanning

inator with in-context learning to boost planning: (i) Prompts with
scores to equip the LLM with the foresight to discern whether each
action contributes to the successful completion of the task. (ii)
Given the LLM’s inherent role as a sampler (Zhao et al., 2023a;
Hopkins et al., 2023), a closed-loop feedback is introduced to en-
sure the optimization process. When the action score at any step
falls below a predefined threshold, the LLM planner is required
to adjust its policy in response to the suboptimal performance ob-
served in the prior iteration.

Prompt with scores Unlike the prevalent use of Outcome-
Supervised Prompts, which assess only the final outcome of so-
lutions (Hu et al., 2023; Zhou et al., 2023a; Shinn et al., 2023;
Yao et al., 2023b; Wang et al., 2023c), our approach implements a
Process-Supervised Prompt (PSP) via scores obtained at each step.
Through this way, LLMs are encouraged to model and optimize task completion by evaluating inter-
mediate steps, enhancing its decision-making in complex, long-term tasks (Hao et al., 2024; Xiong
et al., 2024). Specifically, LLMs are allowed to see the entire trajectory of executed action-score
pairs, dynamically adjusting its next action to maximize future rewards. By focusing the planning
on numerical feedback, the approach is similar to reinforcement learning (RL), where agents refine
their policies through incremental action-based rewards, as to identify key decision points, evaluate
potential future paths, and rebalance its plan according to the stepwise feedback. There are more
details in Corollary 3.2. The structured feedback mechanism ensures that each action aligns ac-
tions more accurately with long-term objectives while reducing the risk of cumulative errors (Sun &
van der Schaar, 2024; Rita et al., 2024), a challenge aforementioned in emboied planning.

Building on this theoretical foundation, we integrate step-based scores into the prompt structure.
Several studies have demonstrated that LLMs’ numerical sensitivity and utilization capabilities can
be unveiled through appropriate prompting (Yang et al., 2024; Liu et al., 2023). Drawing inspi-
ration from these findings, we have integrated the following context into our prompts to heighten
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the model’s focus and faithfulness on scores and further leverage LLMs’ capacity to generate and
optimize existing solutions. For a detailed prompt template, please refer to Appendix D.3.

Previous actions, scores and observations are as follows...
You are required to maximize high-score actions cumulatively while adhere to the task
Identify the intrinsic relationship between the action-score pairs

Refinement for the failed plan As an inherent role as a sampler (Zhao et al., 2023a; Hopkins
et al., 2023), the LLM is required to function as an optimizer. Considering the diffculty of gener-
ating action by score maximizing implicitly and the hindrance caused by high variance in action-
score pairs to the LLM, a closed-loop refinement process is introduced. If the score falls below
the threshold τ , the LLM is asked to replan based on the unsatisfactory action-score pair until
Dϕ(lt, ht, at ∼ πllm) > τ , as illustrated in Fig. 7. This ensures improvements over πllm by score,
with minimal changes to its policy through the closed-loop replanning process. It also decreases
the interaction rounds of agents since the action at has been evaluated and refined via discrimina-
tor feedback before execution. Specifically, we adopt a threshold of 5 for ScienceWorld and 6 for
VirtualHome, based on their respective training data distributions.

3.3 QUALITATIVE ANALYSIS

In the following, we give qualitative analysis to connect the proposed framework and the critic-
regularized optimization problem. Since the score function Dϕ(s, a) measures the similarity be-
tween LLM actions and expert actions, it forms an implicit reward function for the LLM agent as
rϕ = Dϕ(s, a). In DGAP, since the planner is prompted to generate an action that maximizes the
score function, our method implicitly maximizes the reward considered in the RL framework. Mean-
while, since the output of DGAP largely relies on the commonsense knowledge of the initial LLM
planner (i.e., πllm), the resulting policy still lies closely to the πllm. As a result, our method can be
formalized as a constrained optimization problem that aims to learn an improved policy πdgap over
the initial πllm by maximizing rewards, as

πdgap = argmax
πθ

Est∼dπ
llm,at∼πllm

[∑
t
rϕ(st, at)

]
− βDKL

[
πθ(at|st)∥πllm(at|st)

]
, (3)

where the states are sampled from a state distribution dπllm(s) induced by the LLM policy, the actions
are sampled by following the LLM policy, and β is a balance factor. The cumulative return is
defined as Rϕ(st, at) =

∑T−1
i=t rϕ(si, ai) without a discount factor. Then the optimization objective

becomes
Ldgap = Es∼dπ

llm,a∼πllm

[
Rϕ(s, a)

]
− βDKL

[
πθ(a|s)∥πllm(a|s)

]
. (4)

In DGAP, since Rϕ(s, a) comes from a learned discriminator, it can be considered as the critic
in an RL framework. We remark that such an objective is slightly different from DGAP where
the LLM planner is prompted to generate actions that maximize the single-step return rather than
the cumulative return since an episode-level discriminator can be more difficult to train. Neverthe-
less, for embodied planning tasks in ScienceWorld and VirtualHome, a successful multi-step plan
requires single-step optimality in each planning step. The objective in equation 4 resembles a critic-
regularized RL objective (Peng et al., 2019). Then the following Lemma gives the solution for πθ

that maximizes this objective.

Lemma 3.1. The optimal policy that solves the constrained optimization problem in Ldgap is

π⋆
θ(a|s) = πllm(a|s) exp

(
Rϕ(s, a)/β

)
/Z(s), (5)

where Z(s) is a normalized factor to make π⋆
θ(a|s) a valid policy, i.e.,

∫
a
π∗
θ(a|s)da = 1.

The proof is given in Appendix A. Then we have a direct corollary, which is as follows:

Corollary 3.2. The updated policy π⋆
θ(a|s) improves over πllm(a|s) as Qπ⋆

θ (s, a) ≥ Qπllm

(s, a).

The proof is given in Appendix A. In Corollary 3.2, the Q-function is defined as the expected return
as Qπ(s, a) = Eπ[Rϕ(s, a)]. As a result, the policy π⋆

θ(a|s) is provable to obtain a higher expected
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return than πllm in the data coverage of the LLM policy. In practice, Z(s) is a partition function that
can be hard to estimate, so we have

πdgap ∝ πllm(a|s) exp
(
Rϕ(s, a)/β

)
. (6)

Thus, the resulting policy πdgap combines the benefits of the LLM planner and score function.
Specifically, LLM is a basic policy that gives candidates actions with high probability, and then the
score function forms a filter to choose actions from the candidates with the highest scores. Such a
process is simplified in DGAP by using LLM as an optimizer, finally obtaining better policies in
expected returns. The parameter β is a tuning factor that balances the effect of the LLM planner and
score functions. In a special case, when β → ∞, we have π⋆

θ ≈ πllm.

Connection to RLHF. Our method is also closely related to Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022; Touvron et al., 2023), which follows a
similar optimization objective as in equation 3 that optimizes some reward function with constraints
to the supervised fine-tuning (SFT) model. However, there exist several major differences. (i)
The rewards in DGAP are learned from demonstrations and sampled offline data, while in RLHF
are learned from human preference data that can be more expensive to collect. (ii) The reward
function in DGAP is trained by a simple regression objective, while RLHF requires BT-model for
explicit reward learning or DPO-style optimization for implicit reward learning (Lambert et al.,
2024). (iii) We consider LLM itself as an optimizer via interactive prompting, while RLHF requires
explicit optimization via RL (Ahmadian et al., 2024) or DPO (Rafailov et al., 2024) by updating
the parameters of LLMs. Thus, our method is desirable for API-based strong LLM models, while
RLHF often requires an open-sourced LLM model for reward learning and RL optimization.

4 RELATED WORK

Embodied Planning with LLMs LLMs have exhibited notable reasoning abilities in solving var-
ious tasks through in-context examples and prompting techniques like chain-of-thought (Wei et al.,
2022; Vemprala et al., 2023) and tree-of-thought (Yao et al., 2023a; Zhou et al., 2023a; Feng et al.,
2023). However, for embodied tasks, the in-context learning often fails as the embodied knowledge
is lacking or even conflicts with that in LLMs. The existing methods introduce closed-loop feedback
such as self-reflection mechanisms for self-evaluation and re-plan based on failure analysis (Madaan
et al., 2023; Huang et al., 2022a; Yao et al., 2023b; Chen et al., 2024a), and external feedback for
reflection (Shinn et al., 2023; Mandi et al., 2023; Zhou et al., 2023b), making them considerably
costly and inefficient in querying or interactions. In contrast, we learn score function from demon-
strations, eliminating the reliance on self-evaluation and external feedback. Several methods have
recently considered LLMs as RL agents that can interact with the environment to collect transitions
with external rewards, and perform parameter tuning by RL algorithms (Yao et al., 2024; Zhai et al.,
2024). In contrast, our method is designed for API-based LLMs without parameter tuning. Similar
to use, SwiftSage (Lin et al., 2023) adopts demonstrations in LLM planning while relying on imi-
tation learning to generate actions. In contrast, we train a score function from demonstrations with
augmented data, which leads to a new solution to combine the benefits of LLMs and demonstrations.

LLM for Decision Making. Beyond planning, LLMs can also play other important roles in em-
bodied decision-making. (i) LLMs as a reward designer (Ma et al., 2023; Xie et al., 2023; Yu et al.,
2023). The code-writing ability of LLMs can be used to generate reward codes according to the
robot and task scripts. The reward function is used to train an RL policy, and the feedback from
the environment can be used to perform evolutionary optimization for code generation. (ii) LLMs
as a world model (Zhao et al., 2023b; Hao et al., 2023; Murthy et al., 2023). The world model is
important for predicting future states and simulating long-term outcomes of actions. LLM can serve
as a world model that benefits model-based RL and LLM planning. (iii) LLMs a foundation policy.
LLMs can serve as a policy for imitation learning (Li et al., 2024; Brohan et al., 2023), and the
policy is fine-tuned with embodied data from real-world tasks. (iv) LLM as codes generator. LLM
can directly generate robot code for execution (Liang et al., 2023; Mu et al., 2024) or generate value
maps to combine with model-predictive control methods (Huang et al., 2023). (v) Environment gen-
erator. LLMs can generate environments and tasks in a simulator via a closed-loop process (Wang
et al., 2023a;b), which can subsequently generate training data for policy learning.
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Task Type *Len TDT SFT Reflexion S-GPT4 D-GPT4 S-Llama3 D-Llama3
1-1(L) 107.70 0.71 15.00 4.22 97.04 100.00 40.33 82.67
1-2(L) 78.60 0.44 24.40 10.61 87.04 92.75 79.00 91.50
1-3(L) 88.90 3.88 32.20 7.78 72.78 74.00 59.33 82.67
1-4(L) 75.20 0.55 57.45 0.92 100.00 100.00 84.00 90.66
2-1(M) 21.40 6.16 9.45 5.92 99.17 100.00 76.00 78.67
2-2(M) 35.20 6.43 6.75 28.59 88.17 80.17 58.00 46.67
2-3(L) 65.00 19.87 5.75 22.37 95.73 88.33 76.00 76.00
3-1(S) 13.60 40.55 70.00 100.00 88.67 91.50 76.00 78.67
3-2(M) 20.80 14.26 48.33 17.45 55.33 58.00 100.00 100.00
3-3(M) 25.60 10.16 59.50 72.54 71.90 78.57 100.00 100.00
3-4(M) 29.00 21.65 69.00 70.22 77.86 88.14 100.00 100.00
4-1(S) 14.60 41.93 100.00 64.93 100.00 100.00 100.00 100.00
4-2(S) 8.80 55.76 100.00 87.27 100.00 100.00 100.00 100.00
4-3(S) 12.60 27.82 94.45 16.42 91.67 100.00 72.33 76.29
4-4(S) 14.60 47.15 100.00 100.00 100.00 100.00 100.00 100.00
5-1(L) 69.50 6.89 13.45 7.33 74.59 73.14 58.00 78.00
5-2(L) 79.60 11.86 44.67 13.00 93.93 90.57 35.67 57.33
6-1(M) 33.60 15.10 26.25 70.35 49.40 57.40 100.00 78.67
6-2(S) 15.10 15.70 53.33 70.67 100.00 100.00 100.00 100.00
6-3(M) 23.00 5.25 8.00 15.77 91.48 92.43 84.67 68.00
7-1(S) 7.00 30.00 11.19 100.00 95.00 100.00 100.00 85.71
7-2(S) 7.00 8.43 83.33 67.50 85.00 85.71 84.67 92.00
7-3(S) 8.00 8.34 100.00 50.00 93.33 92.71 80.00 100.00
8-1(M) 40.00 3.86 77.87 2.58 89.00 100.00 52.00 100.00
8-2(S) 16.30 8.00 33.00 8.00 68.50 38.50 61.67 45.00
9-1(L) 97.00 2.53 8.00 50.63 75.00 75.00 50.00 57.14
9-2(L) 84.90 14.66 73.33 100.00 70.00 83.33 66.67 100.00
9-3(L) 123.10 9.12 73.33 70.62 60.00 71.43 77.67 88.67

10-1(L) 130.10 1.51 53.33 50.90 92.30 87.71 43.00 53.00
10-2(L) 132.10 1.29 17.00 23.69 77.60 78.00 78.00 84.00

Short 11.76 28.37 78.68 71.47 92.22 90.84 87.47 87.77
Medium 28.58 10.36 32.90 35.43 77.79 81.84 83.83 84.01

Long 94.30 6.11 32.55 30.17 83.00 84.52 62.31 78.47
Overall 49.26 14.66 49.22 45.34 84.68 85.91 76.43 82.96

Table 1: TASK PERFORMANCE ACROSS BASELINES IN SCIENCEWORLD.

5 EXPERIMENTS

To evaluate the effectiveness of DGAP and other baseline methods in complex embodied reasoning
tasks, we employ the ScienceWorld (Wang et al., 2022) and VirtualHome (Puig et al., 2018) bench-
mark. They both encompass a collection of open scenarios and diverse objects for manipulation to
accomplish embodied tasks.

5.1 SCIENCEWORLD

Experimental Setup We conducted our evaluation on ScienceWorld, a virtual textual environment
designed for complex science tasks that are structured with 30 different types of science experiments
across 10 topics, featuring diverse locations like an art studio, kitchen, and outdoor area. Over 200
types of interactive objects and 25 action templates are included.

Our evaluation employed a series of test variations that presented unique combinations of objects
and scenarios. For example, while our expert data included experiments such as freeze water, the
evaluation extended to scenarios requiring the freeze mercury.

Compared Methods We benchmark DGAP methodology against three kinds of approaches: (i)
Behavior Cloning-Only: The Text Decision Transformer (TDT) leverages behavior cloning and
incorporates reward-to-go as an input, which enables the model to predict actions designed to max-
imize future expected rewards (Chen et al., 2021). (ii) Planning via Self-Reflection: Techniques
such as Reflexion (Shinn et al., 2023) integrate a self-reasoning mechanism within the planning pro-
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Figure 5: Visualizing trajectories of DGAP, SWIFTSAGE and ORACLE, X: time steps, Y: scores.
Task identifiers are positioned at the bottom right of each figure, whose detailed information can be
found in Fig. 10.

cess to enhance reasoning capabilities. (iii) Demonstration Method: STF is based on imitation
learning on expert data. SwiftSage (Lin et al., 2023) amalgamates rapid thinking with demonstra-
tions as our method and methodical reasoning, establishing itself as the state-of-the-art baseline in
ScienceWorld, making it our primary focus of compare.

For our implementations, We used around around half number of demonstrations as ToT, SFT, and
SwiftSage, with 10 to 30 trajectories per task. For Reflexion, we provided the three most relevant
trajectories in the context each time, ensuring coverage of expert trajectories across tasks. We utilize
Llama3-70B and GPT-4 as the foundational Large Language Models. Specifically, S-GPT4 repre-
sents the SwiftSage method utilizing GPT-4, while D-GPT4 denotes the DGAP strategy integrated
with GPT-4. Similarly, S-Llama3 corresponds to the SwiftSage approach adapted Llama3-70B,
and D-Llama3 signifies the DGAP method deployed with Llama3-70B. TDT and Reflexion utilize
GPT-4.

Results Our findings are outlined in Tab. 5.1, which elucidates the performance across thirty dis-
tinct task types. The details of tasks can be referred in Appendix. 3. Analysis of the results yields
several observations: (i) DGAP outperforms SwiftSage in most tasks, suggesting that the external
suggestion of alignment with expert data is more effective than limited internal environmental feed-
back. (ii) In tasks classified as short, our method shows no substantial superiority over SwiftSage.
We suspect this comes from the limited pairs of short task sequences being less effective compared
to the plentiful pairs in long trajectories, while short tasks primarily rely on detailed textual informa-
tion to elicitate LLMs’ reasoning prowess. (iii) In addition to the success rate, DGAP demonstrates
a notable enhancement in efficiency, achieving higher scores in fewer steps as validated by external
expert assessments. This increased efficiency is visually represented in Fig. 5 and in Appendix 10.
(iv) The inferential prowess of various LLMs exhibits discrepancies, with each excelling in distinct
areas. For example, GPT-4 shows outstanding performance in tasks 1-1, 1-3, and 1-4, which involve
changing the state of objects. Conversely, in more complex scenarios such as tasks 3-3, 3-4, and 3-5
that are related to circuits, Llama3 surpasses GPT-4, underscoring the diverse strengths of different
models.

5.2 VIRTUALHOME

Experimental Setup VirtualHome is an interactive platform to simulate complex household ac-
tivities via programs and train agents to perform complete them. It also includes a Knowledge Base,
Providing instructions for a diverse combination of activities, such as put one pancake in stove and
switch on stove,put two milk on kitchentable.

We perform experimental evaluations on three distinct settings as delineated in (Li et al., 2022):
In-Distribution, NovelTasks, and NovelScenes. They differ markedly in task complexity, which
we assess using the number of action steps required for each task. Specifically, the average action
steps required for In-Distribution are 13.4, for NovelTasks 25.61, and for NovelScenes 27.11.
To ensure robustness and reliability of our findings, we replicate experiments on 60 tasks from each
setting three times, thereby gathering comprehensive results. We employ EXEC. and SR. to evaluate
the feasibility of the generated plans , where EXEC. measures whether the generated plan can be
executed in the given environment, and SR. measures the fulfillment of task-specific goal conditions.

Compared Methods We evaluate DGAP against three kinds of approaches: (i) Planning based:
LLMs employ a method that directly generates planning results through in-context learning, such as

9
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In-Distribution NovelScenes NovelTasks

EXEC. SR. EXEC. SR. EXEC. SR.

ProgPrompt 87.33 ± 2.02 82.33 ± 1.76 38.67 ± 1.45 32.33 ± 1.45 49.67 ± 3.18 49.00 ± 3.21
Inner Monologue 79.67 ± 3.38 79.33 ± 3.18 54.33 ± 1.76 53.33 ± 1.76 47.33 ± 1.67 46.00 ± 1.15
Tree Planner – – 89.33 ± 0.17 41.67 ± 3.20 90.33 ± 0.32 52.33 ± 2.03
DGAP-Llama3 90.67 ± 0.86 84.33 ± 2.12 63.00 ± 1.68 56.33 ± 1.12 78.33 ± 1.03 68.00 ± 2.03
DGAP-GPT4 93.33 ± 1.76 88.00 ± 2.45 71.67 ± 1.15 62.67 ± 1.33 73.67 ± 1.15 72.17 ± 3.18
DGAP-InternVL2-8B 84.33 ± 1.15 68.67 ± 2.30 57.06 ± 2.11 45.33 ± 1.20 52.25 ± 1.00 41.17 ± 2.80

Table 2: OVERALL PERFORMANCE DGAP AND BASELINES ACROSS VIRTUALHOME

ProgPrompt (Singh et al., 2023). (ii) Reasoning based: In this approach, LLMs are rendered with a
specialized prompting mechanism to enhance their inference when tackling complex tasks, such as
Inner Monologue (Huang et al., 2022b). (iii) Search based: This approach reframes the inference
process into plan sampling and tree construction, thereby establishing a comprehensive and efficient
pathway for task execution (Hu et al., 2023). (iii) VLM experiments: We have supplemented our
experiments with Vision Language Models (VLMs) in the VirtualHome benchmark. Specifically, we
utilized InternVL2-8B to generate the key object states within scenes, replacing the information that
was previously obtained directly from the environment graph. Additionally, due to the limitations of
the VLMs’ field of vision, which only allows for the retrieval of objects within the current scene, we
adjusted the action step length for each query. Instead of generating a full sequence for a subgoal
at once, the generation now stops when the next action is [walk] (indicating a need to move to a
different location) and then begin another in the new scene.

Results The "In-Distribution" task category is ill-suited to the Tree Planner (Hu et al., 2023) mech-
anism, designed to adapt to novel scene and task combinations. So, the experiments with Tree Plan-
ner in the In-Distribution setting are ignored. As shown in Tab. 8, the primary results emphasize
several specific insights: (i) Across nearly all evaluated metrics and settings, DGAP consistently
outperforms competing methodologies. This underscores the superior guidance our approach offers
over environmental feedback, thereby significantly boosting success rates. (ii) In the majority of
settings, DGAP demonstrates a minimal standard deviation. This indicates that our framework aug-
ments the embodied capabilities of LLMs and substantially improves their stability and robustness.
(iii) Though the Tree Planner exhibits superior performance in EXEC. Due to the action tree being
grounded and optimized, our method maintains a lead in success rates. This advantage stems from
our continuous action evaluation loop, which refines the strategic foresight of LLMs by leveraging
step-wise action-score pairs and real-time contextual inputs. (iv) The results indicate a relatively
mild impact of using VLMs on action executability (EXEC) and a more significant influence on
task success rate (SR). This suggests EXEC may rely more heavily on reasoning models rather than
perception models, while SR appears to be more sensitive to the accuracy of environmental infor-
mation. Additionally, we observe that among the three task categories, In-Distribution tasks are
less affected by VLM-generated information, while the other two categories experience a greater
impact. This suggests that familiar tasks exhibit a certain level of robustness under varying types of
environmental descriptions.

Empirical evidence from experiments on two benchmarks corroborates that the DGAP method not
only refines the performance of LLMs but also reduces the necessary steps and queries, thereby
enhancing the efficiency and effectiveness of the embodied task’s planning process.

6 CONCLUSION

This paper presents the Discriminator-Guided Action Optimization (DGAP) framework, addressing
the challenges of complex embodied tasks which demand extensive, executable planning in dynamic
scenerios. By utilizing a few demonstrations, the DGAP framework establishes a discriminator with
a scoring function as real-time feedback, guiding LLMs to closely align with expert actions. Ex-
perimental results demonstrate that DGAP outperforms other baseline methods in benchmarks such
as ScienceWorld and VirtualHome, showcasing superior performance and higher efficiency. The
limitations of this work lie in its suboptimal performance on short-sequence tasks and the additional
effort required to prepare the data. In the future, We will also investigate lightweight frameworks
and adopt a generalized approach to extend their applicability to a broader range of LLM tasks.
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The research conducted in this paper adhere to, in every respect, with ICLR Code of Ethics
(https://iclr.cc/public/CodeOfEthics).

This research adheres strictly to ethical guidelines, with all datasets handled appropriately concern-
ing privacy and consent, and all participant data anonymized. We have evaluated the representa-
tiveness of the models and datasets to ensure fairness and have taken steps to minimize potential
bias. Furthermore, the outcomes of this research will not be used to promote applications that could
harm individuals, society, or the environment, particularly in areas such as safety, discrimination, or
surveillance. Compliance with relevant laws and regulations is ensured.

REPRODUCIBILITY

To ensure reproducibility, the code for our experiments is available at https://anonymous.
4open.science/r/DGAP-5075/. Detailed information on models, data processing steps and
experiments can be found there.
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A THEORETICAL PROOF

A.1 PROOF OF LEMMA 3.1

Proof. We recall the critic-regularized problem as follows.

Ldgap = Es∼dπ
llm,a∼πllm

[
Rϕ(s, a)

]
− βDKL

[
πθ(a|s)∥πllm(a|s)

]
. s.t.

∫
a

πθ(a|s)da = 1. (7)

In a constrained optimization problem, β can be considered as a Lagrange multiplier that controls
the KL-divergence between the learned policy and the basic LLM policy. Then we convert it into a
Lagrangian form by introducing a factor αs as

L(πθ, β, α) =

∫
s

dπllm(s)

∫
a

πllm(a|s)Rϕ(s, a) dads− β

∫
s

dπllm(s)DKL

[
πθ(·|s)∥πllm(·|s)

]
ds

+

∫
s

αs

(
1−

∫
a

π(a|s)da
)
ds,

(8)
with β and α = {αs|∀s ∈ S} corresponding to the Lagrange multipliers. Differentiating L(πθ, β, α)
with respect to π(a|s) results in

∂L
∂π(a|s)

= dπllm(s)Rϕ(s, a)−βdπllm(s) log πθ(a|s)+βdπllm(s) log π
llm(a|s)−βdπllm(s)−αs. (9)

Setting to zero and solving for πθ(a|s) gives

log πθ =
1

β
Rϕ(s, a) + log πllm(a|s)− 1− αs

β · dπllm
. (10)

Then we have

πθ(a|s) = πllm(a|s) exp
(
1

β
Rϕ(s, a)

)
exp

(
−αs

β

1

dπllm
− 1

)
. (11)

Since
∫
a
π(a|s) = 1, the second exponential term is the partition function Z(s) that normalizes the

conditional action distribution, as

Z(s) = exp

(
αs

β

1

dπllm
+ 1

)
=

∫
a′
πllm(a′|s) exp

(
1

β
Rϕ(s, a

′)

)
da′. (12)

Then the optimal policy is given by

π⋆
θ(a|s) =

1

Z(s)
πllm(a|s) exp

(
1

β
Rϕ(s, a)

)
, (13)

which concludes our proof.

A.2 PROOF OF COROLLARY 3.2

Proof. We remark that the objective function Ldgap can also be formulated as a constrained opti-
mization problem. Considering a tabular case with finite state and actions, we have

π⋆
θ = argmax

πθ

Es∼dπ
llm

[∑
a

πllm(s, a)Qπllm

(s, a)
]

s.t. DKL

[
πθ(·|s)∥πllm(·|s)

]
≤ ϵ, ∀s, (14)

where we use Qπ(s, a) to denote Eπ[Rϕ(s, a)]. It is easy to check that equation 14 has the same
solution as equation 7 by relaxing the hard KL constraint into a soft constraint with a coefficient β.
From equation 14, we have∑

a

π⋆
θ(s, a)Q

πllm

(s, a) ≥
∑
a

πllm(s, a)Qπllm

(s, a),∀s. (15)
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Then we have

Qπllm

(s, a) = E
[
r(st, at) +

∑
πllm(at+1|st+1)Q

πllm

(st+1, at+1)
∣∣∣st = s, at = a

]
≤ E

[
r(st, at) +

∑
π⋆
θ(at+1|st+1)Q

πllm

(st+1, at+1)
∣∣∣st = s, at = a

]
= E

[
r(st, at) +

∑
π⋆
θ(at+1|st+1)

[
r(st+1, at+1) +

∑
πllm(at+2|st+2)Q

πllm

(st+2, at+2)
] ∣∣∣...]

≤ E
[
r(st, at) +

∑
π⋆
θ(at+1|st+1)

[
r(st+1, at+1) +

∑
π⋆
θ(at+2|st+2)Q

πllm

(st+2, at+2)
] ∣∣∣...] .

(16)
Repeat this process to expand the equation, we have

Qπllm

(s, a) ≤ Eπ⋆
θ

[
T−t−1∑
k=0

γkr(st+k, st+k)
∣∣∣st = s, at = a

]
= Qπ⋆

θ (s, a), (17)

which concludes our proof.

B LM FINE-TUNING

We selected FLAN-T5-large as the base model due to its fine-tuning on datasets phrased as instruc-
tions, which improves its ability to follow and respond to instructions. According to the research
detailed in (Chung et al., 2024), the model architecture includes:

• Number of layers: 24
• Number of attention heads: 16
• Hidden layer size: 1024
• Feedforward Network Size: 4096
• Activation Function: ReLU (Rectified Linear Unit)
• Total parameters: 770 million

Further we conduct imitation learning on FLAN-T5-Large using expert data in format of (l, ht) →
aπoracle(l,st) . The data primarily encompasses three components: 1.a description of the task, 2.a
record of historical actions, and 3.the actions that ought to be executed.The specifics are delineated
below.

ScienceWorld:
{"input": "Your task is to measure the melting point of lead, which is located around the
kitchen. 10. look around.", "Action": "go to hallway"}
{"input": "Your task is to measure the melting point of lead, which is located around the
kitchen. 10. look around. 9. go to hallway.", "Action": "open door to kitchen"}
{"input": "Your task is to measure the melting point of lead, which is located around the
kitchen. 10. look around. 9. go to hallway. 8. open door to kitchen.", "Action": "go to
kitchen"}

VirtualHome:
{"input": "Task: Pay bills. [Walk] <home_office> (1)", "Action": "[Walk] <filing_cabinet>
(1)"}
{"input": "Task: Pay bills. [Walk] <home_office> (1), [Walk] <filing_cabinet> (1)", "Ac-
tion": "[Find] <bills> (1)"}
{"input": "Task: Pay bills. [Walk] <home_office> (1), [Walk] <filing_cabinet> (1), [Find]
<bills> (1)", "Action": "[Grab] <bills> (1)"}

Then we refined FLAN-T5-large with the dataset as previously outlined, including 41k samples
from ScienceWorld and 34k from VirtualHome. For the training, we employed the Adam optimizer
with an epsilon value of 1e-06, a learning rate of 1e-4, and a batch size of 32. We conducted 8
training epochs comprising 5800 steps in total. We employ four A800 GPUs for conducting this
task, consuming eight hours.
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C DISCRIMINATOR TRAINING

Data Preparation For training the discriminator, we collected a diverse dataset consisting of pos-
itive, negative and augmented samples, as illustrated in 3.1, Our motivation to assess the generaliza-
tion necessitated the judicious use of expert data, thus preventing its overuse, particularly for tasks
like Measuring Boiling Point, Testing Conductivity, and Growing, each initially comprising approx-
imately 10k samples. Thus in ScienceWorld, to mitigate the dependency on expert information, we
reduced the expert samples for each task to 1.5k, resulting in a total expert dataset of 45k. In par-
allel, we sampled 45k negative random samples. Finally, we generated 400k augmented samples,
thereby creating a comprehensive pool of 500k samples. In VirtualHome, we utilized the entirety of
available expert samples, given the infrequency of task repetition and a total count of only 34k. We
constructed a dataset of 400k instances in a manner similar to that employed for ScienceWorld. The
specific format of the data is (l, ht, at) → q, represented as follows:

ScienceWorld-Expert:
{"input": "Your task is to measure the melting point of lead, which is located around the
kitchen. 10. look around. Action: go to hallway", "Score": "10" }
{"input": "Your task is to measure the melting point of lead, which is located around the
kitchen. 10. look around. 9. go to hallway. Action: open door to kitchen", "Score": "10" }
ScienceWorld-Random:
{"input": "Your task is to measure the melting point of lead, which is located around the
kitchen. 10. look around. Action: look at art studio", "Score": "0" }
{"input": "Your task is to measure the melting point of lead, which is located around the
kitchen. 10. look around. 9. go to hallway. Action: put down orange", "Score": "0" }
ScienceWorld-Augmented:
{"input": "Your task is to measure the melting point of lead, which is located around the
kitchen. 10. look around. Action: look at hallway", "Score": "9.03" }
{"input": "Your task is to measure the melting point of lead, which is located around the
kitchen. 10. look around. 9. look at hallway. Action: open door to outside", "Score": "6.13"
}
{"input": "Your task is to measure the melting point of lead, which is located around the
kitchen. 10. look around. 9. look at hallway. 8. open door to outside. Action: teleport to
kitchen", "Score": "8.87" }
....

VirtualHome-Expert:
{"input": "Task: Pay bills. [Walk] <home_office> (1). Action: [Walk] <filing_cabinet>
(1)","Score": "10"}
{"input": "Task: Pay bills. [Walk] <home_office> (1), [Walk] <filing_cabinet> (1). Action:
[Find] <bills> (1)", "Score": "10"}
VirtualHome-Random:
{"input": "Task: Pay bills. [Walk] <home_office> (1). Action: [open] <microwave>
(1)","Score": "0"}
{"input": "Task: Pay bills. [Walk] <home_office> (1), [Walk] <filing_cabinet> (1). Action:
[grab] <chicken> (1)", "Score": "0"}
VirtualHome-Augmented:
{"input": "Task: Pay bills. [Walk] <home_office> (1). Action: [walk] <kitchencabinet>
(1)","Score": "8.32"}
{"input": "Task: Pay bills. [Walk] <home_office> (1), [walk] <kitchencabinet> (1). Action:
[grab] <bills> (1)", "Score": "7.42"}
{"input": "Task: Pay bills. [Walk] <home_office> (1), [walk] <kitchencabinet> (1), [grab]
<bills> (1). Action: [walk] <livingroom>(1)", "Score": "6.99"}
.....

Q =

{
10 if data in Be

0 if data in Br

Sim (aπ̂bc , aπoracle) ∗ 10 if data in Ba

(18)
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Model Architecture We employ RoBERTa complemented by a linear head, which facilitates di-
rect output for regression tasks. This configuration leverages RoBERTa’s robust contextual embed-
ding capabilities while the linear head(768,1) simplifies the mapping from embedded space to target
labels, the model architecture is listed:

• Number of Layers: 12 layers

• Hidden Size: 768

• Number of Attention Heads: 12

• Feedforward Network Size: 3072

• Activation Function: GELU

• Total parameters: 125 million

Training Procedure We assembled datasets containing 500k instances for ScienceWorld and 400k
instances for VirtualHome seperately, each formatted as (instruction, action, score). The model was
initialized with RoBERTa parameters and optimized using the AdamW optimizer a learning rate of
1e-5, a warmup rate of 0.1, and a batch size of 32. For detailed training specifications, please refer
to (Tan et al., 2023). During training, the inputs comprising instructions and actions are given into
the RoBERTa model to obtain the last hidden state. This state is then processed through a linear
head to compute scores, which are compared against labels to determine the L2 loss. Subsequently,
this loss is used to update the model parameters. We employ four A800 GPUs for conducting this
task, consuming around forty hours.

Figure 6: Illustration of applying discriminator to LLM

Discriminator Application Fig. 6 depicts the functioning of a discriminator within a LLM inter-
acting framework. Initially, the discriminator receives input tuples composed of a task decription l,
history actions ht, and response action of LLM at. It evaluates these inputs to generate a score qt,
which assesses the relevance to the expert response of the input tuple.

As the interaction progresses, the discriminator’s inputs are advanced to the subsequent state, en-
capsulated by the tuple (l, ht+1, at+1). Here, ht+1 incorporates the previously generated action at
and based on the new context the LLM subsequently derives the new action at+1. In response, the
discriminator calculates a subsequent score, qt+1, for this new input.

The blue and orange dashed lines in the diagram represent information transmission at different time
steps, highlighting the iterative and conditional role of the discriminator in evaluating successive
actions in the sequence.

Actions generated by the Large Language Model (LLM) are not executed immediately but instead
stored in an action buffer. These actions are subsequently scored by a discriminator prior to execu-
tion. If the score is below 4, a replanning process called Score-based Search is triggered, wherein
the discriminator evaluates and selects the highest-scoring action from the set of valid actions for
execution, as shown in Fig. 7. Conversely, if the score exceeds 8, the action is highlighted in the
subsequent interaction round by including it as ’Noted: history action-score pair’ in the prompt,
ensuring its prominence. This procedure ensures that the discriminator not only accesses LLM in-
ferences but also grounds actions when necessary to prevent anomalies.
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Figure 7: Illustration of score-based search

D STATISTICS AND DETAILS IN PLANNING

D.1 EXPERIMENT STATICS

Table 3 provides an overview of the 30 distinct tasks within the ScienceWorld benchmark, catego-
rized by task type, topic, and associated attributes. For the evaluation phase, we optimized time
efficiency by selecting only the first 10 variations for tasks that originally had more than 10 test
variations, resulting in a total of 270 task variations. This approach ensured fair and cost-effective
comparisons across agents. Table 3 also includes trajectory statistics, where *Len represents the av-
erage length of the oracle agent’s trajectories, offering insight into task complexity across different
task types.

D.2 BASELINES

ScienceWorld Baselines We benchmark DGAP methodology against three kinds of approaches:
(i) Behavior Cloning-Only: The Text Decision Transformer (TDT) leverages behavior cloning and
incorporates reward-to-go as an input, which enables the model to predict actions designed to max-
imize future expected rewards (Chen et al., 2021). (ii) Planning via Self-Reflection: Techniques
such as ReAct (Yao et al., 2023b) and Reflexion (Shinn et al., 2023) integrate a self-reasoning
mechanism within the planning process to enhance reasoning capabilities. (iii) Demonstration-
Driven Method: SwiftSage (Lin et al., 2023) amalgamates rapid thinking with demonstrations as
our method and methodical reasoning, establishing itself as the state-of-the-art baseline in Science-
World, making it our primary focus of compare. For our implementations, we utilize Llama3-70B
and GPT-4 as the foundational Large Language Models. Specifically, S-GPT4 represents the Swift-
Sage method utilizing GPT-4, while D-GPT4 denotes the DGAP strategy integrated with GPT-4.
Similarly, S-Llama3 corresponds to the SwiftSage approach adapted Llama3-70B, and D-Llama3
signifies the DGAP method deployed with Llama3-70B. TDT ReAct and Reflexion utilize GPT-4.

VirtualHome Baselines We evaluate DGAP against three kinds of approaches: (i) Planning
based: LLMs employ a method that directly generates planning results through in-context learn-
ing, such as ProgPrompt (Singh et al., 2023). (ii) Reasoning based: In this approach, LLMs are
rendered with a specialized prompting mechanism to enhance their inference when tackling complex
tasks, such as Inner Monologue (Huang et al., 2022b). (iii) Search based: This approach reframes
the inference process into plan sampling and tree construction, thereby establishing a comprehensive
and efficient pathway for task execution (Hu et al., 2023).
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Figure 8: Prompt Template in ScienceWorld
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Task Num Type Topic Name ∗Lens
1 1-1 Matter Changes of State (Boiling) 107.7
2 1-4 Matter Changes of State (Any) 75.2
3 6-1 Chemistry Mixing (generic) 33.6
4 6-2 Chemistry Mixing paints (secondary colours) 15.1
5 6-3 Chemistry Mixing paints (tertiary colours) 23
6 4-4 Classification Find an animal 14.6
7 4-1 Classification Find a living thing 14.6
8 4-2 Classification Find a non-living thing 8.8
9 4-3 Classification Find a plant 12.6

10 1-3 Matter Changes of State (Freezing) 88.9
11 5-2 Biology Grow a fruit 79.6
12 5-1 Biology Grow a plant 69.5
13 8-2 Biology Identify life stages (animal) 16.3
14 8-1 Biology Identify life stages (plant) 40
15 9-1 Forces Inclined Planes (determine angle) 97
16 9-2 Forces Friction (known surfaces) 84.9
17 9-3 Forces Friction (unknown surfaces) 123.1
18 7-1 Biology Identify longest-lived animal 7
19 7-3 Biology Identify longest-lived animal 8
20 7-2 Biology Identify shortest-lived animal 7
21 2-2 Measurement Measuring Boiling Point (known) 35.2
22 2-3 Measurement Measuring Boiling Point (unknown) 65
23 1-2 Matter Changes of State (Melting) 78.6
24 10-1 Biology Mendelian Genetics (known plants) 130.1
25 10-2 Biology Mendelian Genetics (unknown plants) 132.1
26 3-1 Electricity Create a circuit 13.6
27 3-2 Electricity Renewable vs Non-renewable Energy 20.8
28 3-3 Electricity Test Conductivity (known) 25.6
29 3-4 Electricity Test Conductivity (unknown) 29
30 2-1 Measurement Use Thermometer 21.4

Short (0 <∗Len ≤ 20) Total: 10 11.76
Medium (20 <∗Len ≤ 50) Total: 8 28.58

Long (∗Len > 50) Total: 12 94.30

Overall Total: 30 49.26

Table 3: The table presents detailed information on the 30 distinct tasks in the ScienceWorld bench-
mark, categorized by task number, type, topic, and name. *Len refers to the average length of the
oracle agent’s trajectories, based on which tasks are grouped into short, medium, and long cate-
gories, indicating the complexity and duration of each task. Additionally, the breakdown by task
type (e.g., Matter, Biology, Chemistry) highlights the diversity of domains covered in the bench-
mark.

D.3 PROMPT DETAILS

Our prompt design was inspired by the two-stage framework of SwiftSage (Lin et al., 2023), and
further incorporate DGAP information at various places in the context(marked in red).

Our prompt was influenced by ProgPrompt (Singh et al., 2023) and Tree-Planner (Hu et al., 2023),
and incorporates score-related information into the context(marked in red).

E ADDITIONAL RESULTS AND ANALYSIS

Ablation Study In ScienceWorld, the tasks 1-15 are based on the DGAP-Llama3, whereas tasks
16-30 are according to DGAP-GPT4, both excluding content related to scores from the context
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Figure 9: Prompt Template in VirtualHome

Figure 10: Visualizing trajectories of DGAP, SWIFTSAGE and ORACLE, the x-axis represents time
steps, ranging from 0 to T , while the y-axis denotes scores, which vary from 0 to 100. Each graph
illustrates the trajectories corresponding to different tasks in test variation. Task identifiers are posi-
tioned at the bottom right of each figure, whose detailed information can be found in Tab. 3
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Task D-Llama3 w/o Score Task D-GPT4 New Data
1 82.67 77.33 16 83.33 78.57
2 90.66 76.00 17 71.43 85.71
3 78.67 66.50 18 100.00 100.00
4 100.00 100.00 19 92.71 92.71
5 68.00 100.00 20 85.71 78.57
6 100.00 85.71 21 80.17 62.86
7 100.00 87.50 22 88.33 50.14
8 100.00 100.00 23 92.75 80.67
9 76.29 88.14 24 87.71 100.00

10 82.67 65.33 25 78.00 46.14
11 57.33 45.86 26 91.50 83.00
12 78.00 73.43 27 58.00 50.50
13 45.00 40.00 28 78.57 77.80
14 100.00 100.00 29 88.14 87.43
15 57.14 71.43 30 100.00 61.43

Table 4: Ablation study of DGAP in ScienceWorld

In-Distribution NovelScenes NovelTasks

EXEC. SR. EXEC. SR. EXEC. SR.

ProgPrompt 87.33 ± 2.02 82.33 ± 1.76 38.67 ± 1.45 32.33 ± 1.45 49.67 ± 3.18 49.00 ± 3.21
Inner Monologue 79.67 ± 3.38 79.33 ± 3.18 54.33 ± 1.76 53.33 ± 1.76 47.33 ± 1.67 46.00 ± 1.15
Tree Planner – – 89.33 ± 0.17 41.67 ± 3.20 90.33 ± 0.32 52.33 ± 2.03
DGAP-Llama3 90.67 ± 0.86 84.33 ± 2.12 63.00 ± 1.68 56.33 ± 1.12 78.33 ± 1.03 68.00 ± 2.03
DGAP-GPT4 93.33 ± 1.76 88.00 ± 2.45 71.67 ± 1.15 62.67 ± 1.33 73.67 ± 1.15 72.17 ± 3.18
D-GPT4 w/o Score 92.33 ± 2.19 86.00 ± 2.65 70.67 ± 2.67 60.67 ± 0.63 70.33 ± 3.06 70.00 ± 3.21

Table 5: ABLATION STUDY OF DGAP AND BASELINES

and scoring thresholds mechanism for handling the exception. The results reveal that tasks 5, 9,
15, 17, and 24 exhibited better performance after the removal of score-related content, spanning
both short and long task types. This phenomena likely stems from a significant deviation between
the augmented data used for training the discriminator and the actual data encountered in real-
world interactions in these tasks. It is noteworthy that tasks 6-3, 4-3, 9-1, 9-3, and 10-1 exhibit no
significant performance improvements when evaluated against the SwiftSage baseline.

In VirtualHome environment, we selected DGAP-GPT4 for an ablation study due to its significantly
superior performance compared to DGAP-Llama3. The results indicate that, following the removal
of score-related context and the absence of scoring thresholds mechanism, both the success rate and
the execution rate decreased by 1 to 2 percent. This demonstrates that DSAP is effective not only in
science tasks but also in household tasks, where it provides substantial guidance.

E.1 ALFRED EXPERIMENTS

Methods Seen Unseen
SR GC SR GC

LLMPlanner 0.121 0.267 0.162 0.402
LoTaBench 0.255 0.442 0.241 0.398
Prompter 0.494 0.560 0.423 0.537

DGAP-3.5Turbo 0.121 0.267 0.162 0.402
DGAP-4o 0.462 0.507 0.441 0.545

DGAP-4o-v 0.323 0.404 0.381 0.414
DGAP-InternVL2-8B 0.236 0.291 0.246 0.391

Table 6: Performance comparison across methods on ALFRED seen and unseen tasks.
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Analysis of Methods and Results

Table 6 compares several methods on Seen and Unseen environments using Success Rate (SR) and
Goal Completion (GC) metrics. LLMPlanner and LoTaBench rely only on LLMs and expert
data for in-context learning. Prompter integrates semantic map information and combines low-
level parsing with LLMs. DGAP-3.5Turbo uses gpt-3.5-turbo-0125 as the backbone model.
DGAP-4o is based on Azure’s GPT-4o model. DGAP-4o-v shares the same GPT-4o backbone but
incorporates updated environmental maps during the planning phase. DGAP-InternVL2-8B shares
the same settings as DGAP-4o-v, including updated environmental maps.

DGAP-4o only uses textual environment information and one-fifth of the expert data for discrim-
inator’s training, yet achieves competitive results. In Seen environments, DGAP achieves strong
performance (SR: 0.462, GC: 0.507), slightly behind Prompter. However, in Unseen environments,
DGAP outperforms Prompter in GC (0.545 vs. 0.537), demonstrating better generalization. On the
other hand, DGAP-4o-v, which incorporates RGB images into the planning process, shows a decline
in performance. It’s likely attributed to two main factors: (1) the prompts and discriminator have not
been fully optimized to utilize visual information. (2) the RGB images may introduce ambiguous or
redundant information rather than render location information. These observations suggest that the
integration of visual data requires more refined strategies to fully unlock its potential benefits.

Weaknesses of DGAP:Despite its strengths, DGAP has two notable limitations that affect its per-
formance in certain scenarios:

1. Inconsistent Ground Truth: The ground truth action sequences occasionally lack logical co-
herence or completeness. For example, in the "Turn on the bedroom lamp" task, the ground truth
includes extraneous steps such as "Pick up CellPhone" before toggling the lamp. In the "Put a plate
in a cabinet" task, additional steps like "Place plate in the fridge on the top shelf" are required. Task
"Put a bowl with a pencil in it on the desk," where the ground truth includes an unnecessary inter-
mediate step to "Put the bowl on the Shelf." There are various such cases which introduce noise and
reduce alignment between the generated actions and expected outcomes for LLM planning.

2. Ambiguity in Object Location: For tasks involving similar objects, selecting one randomly
among them can often suffice to meet the task’s objective. However, in scenarios requiring precise
identification of specific storage locations (e.g., determining the correct cabinet where an object is
stored), DGAP faces challenges due to the absence of explicit spatial or semantic distinctions in
the textual input. This limitation impacts its ability to perform accurate object placement, leading to
reduced performance on tasks that rely on spatial reasoning and clear differentiation between similar
storage units. .

E.2 VH-LONG-TASK

Figure 11: The framework of task constructing
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Extended Task Settings and Dataset Construction To better reflect the high-dimensional and
continuous tasks commonly encountered in real-world scenarios, which are typically multi-goal in
nature, we extended the task settings in the VirtualHome environment to include self-constructed
long tasks. By concatenating multiple task objectives, we created tasks exceeding 60 steps, pro-
viding a more complex and realistic evaluation of long-horizon planning. The statistics of these
extended tasks are summarized in the table below.

Dataset Goals Number Action Step Objects Number Objects Variety
In-Distribution 3.40 26.58 5.32 3.57
NovelScenes 3.39 26.27 5.32 3.56
NovelTasks 3.99 27.02 4.97 3.40
LongTasks 9.74 77.01 15.79 8.50

Table 7: Dataset statistics for various tasks in VirtualHome.

Extreme-LONG NovelScenes NovelTasks

EXEC. SR. EXEC. SR. EXEC. SR.

ProgPrompt 42.95 ± 1.22 16.03 ± 1.28 38.67 ± 1.45 32.33 ± 1.45 49.67 ± 3.18 49.00 ± 3.21
Inner Monologue 48.45 ± 1.05 16.16 ± 1.35 54.33 ± 1.76 53.33 ± 1.76 47.33 ± 1.67 46.00 ± 1.15
Tree Planner 85.76 ± 1.40 19.07 ± 1.79 89.33 ± 0.17 41.67 ± 3.20 90.33 ± 0.32 52.33 ± 2.03
DGAP-GPT4o 78.23 ± 1.15 67.25 ± 2.10 71.67 ± 1.15 62.67 ± 1.33 73.67 ± 1.15 72.17 ± 3.18

Table 8: OVERALL PERFORMANCE DGAP AND BASELINES ACROSS VH-LONG-TASK

Experimental results show that our method significantly outperforms the baseline in success rate,
highlighting its superiority in handling high-complexity, long-horizon tasks and demonstrating the
generalization capability of the discriminator.

E.3 DISCRIMINATOR EVALUATION

Methods Out-of-Distribution In-Distribution PER OPer
Acc Var Acc Var

4x 9.17 0.11 9.28 0.08 85.91 -
2x 9.16 0.11 9.28 0.08 85.91 -

0.4x 8.77 0.15 9.19 0.12 83.25 -
basis 8.08 0.36 8.16 0.36 82.26 83.53

basiswithforce 8.06 0.38 8.15 0.26 82.31 84.51
basiswithforcebio 8.91 0.20 9.01 0.17 84.98 86.68

1x(ours) 9.08 0.15 9.21 0.11 85.91 -

Table 9: Performance comparison of discriminator across data with different volumn and categories,
with including PER and OPer metrics.

E.4 SEARCH-BASED METHODS EVALUATION

We utilized the Vanna framework to construct the RAG pipeline, incorporating the bge-large model
as the embedding backbone. The content matching process was based on a combination of task
instructions and the initial environmental observations. We subsequently present its recall perfor-
mance and evaluate its effectiveness within the context of SwiftSage’s deliberative reasoning, a
highly effective in-context learning framework for ScienceWorld. The results are shown in Table
10

E.5 QUALITATIVE ANALYSIS

Feedback Mechanism S-GPT4 failed in Task8 due to its strict adherence to the rule prohibiting
focus on counterparts when conditions are not fulfilled, exposing the limitations of relying solely
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Task Type *Len S-GPT4 D-GPT4 Recall (%) Performance
1-1(L) 107.70 97.04 100.00 91.8 90.89
1-2(L) 78.60 87.04 92.75 89.2 89.20
1-3(L) 88.90 72.78 74.00 87.2 57.20
1-4(L) 75.20 100.00 100.00 90.6 89.41
2-1(M) 21.40 99.17 100.00 94.8 93.99
2-2(M) 35.20 88.17 80.17 88.9 82.90
2-3(L) 65.00 95.73 88.33 86.4 86.40
3-1(S) 13.60 88.67 91.50 97.8 100.00
3-2(M) 20.80 55.33 58.00 89.6 49.60
3-3(M) 25.60 71.90 78.57 90.0 68.44
3-4(M) 29.00 77.86 88.14 91.5 92.66
4-1(S) 14.60 100.00 100.00 99.4 100.00
4-2(S) 8.80 100.00 100.00 98.2 100.00
4-3(S) 12.60 91.67 100.00 96.2 100.00
4-4(S) 14.60 100.00 100.00 98.5 100.00
5-1(L) 69.50 74.59 73.14 85.2 55.20
5-2(L) 79.60 93.93 90.57 90.8 61.58
6-1(M) 33.60 49.40 57.40 88.5 58.50
6-2(S) 15.10 100.00 100.00 98.5 100.00
6-3(M) 23.00 91.48 92.43 91.4 90.78
7-1(S) 7.00 95.00 100.00 97.1 100.00
7-2(S) 7.00 85.00 85.71 92.4 93.63
7-3(S) 8.00 93.33 92.71 95.8 97.96
8-1(M) 40.00 89.00 100.00 94.4 96.28
8-2(S) 16.30 68.50 38.50 93.3 91.76
9-1(L) 97.00 75.00 75.00 85.9 35.90
9-2(L) 84.90 70.00 83.33 86.1 69.10
9-3(L) 123.10 60.00 71.43 85.8 61.80

10-1(L) 130.10 92.30 87.71 92.4 82.74
10-2(L) 132.10 77.60 78.00 85.9 72.90

Short 11.76 92.22 90.84 97.3 98.12
Medium 28.58 77.79 81.84 90.5 79.14

Long 94.30 83.00 84.52 88.3 71.03

Overall 49.26 84.68 85.91 90.2 82.29

Table 10: Task performance comparison for S-GPT4, D-GPT4 with RAG

on the LLM, though the action is reasonable to some extent. In contrast, DGAP-GPT4 succeeded
by leveraging discriminator feedback and re-planning through the LLM, which selected alternative
yet equally reasonable actions to adaptively execute a comprehensive sequence. This included iden-
tifying, transporting, and arranging multiple items to fulfill all task requirements, emphasizing the
importance of integrating robust feedback mechanisms and adaptive planning for complex, multi-
step tasks, as shown in Figure 12.

Enhanced Attention The discriminator’s use of additional score labels enhances attention on rel-
evant examples and prior actions, improving environmental interaction understanding and directly
boosting planning quality without relying on re-planning. This is evident in Task25. As shown in
Figure 13, where DGAP-generated actions are efficiently aligned with task objectives, focusing on
the electric buzzer early and following a logical path to complete the circuit with minimal redun-
dancy. In contrast, the other sequence exhibits inefficiencies, including unnecessary connections and
delays, highlighting the limitations of planning without adequate score attention. This comparison
underscores the discriminator’s role in enabling precise and efficient task execution.
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Figure 12: The visualization of the task8

Figure 13: The visualization of the task25
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