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Abstract

While existing auditing techniques attempt to
identify potential unwanted behaviours in large
language models (LLMs), we address the com-
plementary forensic problem of reconstructing
the exact input that led to an existing LLM out-
put — enabling post-incident analysis and poten-
tially the detection of fake output reports. We
formalize exact input reconstruction as a discrete
optimisation problem with a unique global mini-
mum and introduce SODA, an efficient gradient-
based algorithm that operates on a continuous re-
laxation of the input search space with periodic
restarts and parameter decay. Through compre-
hensive experiments on LLMs ranging in size
from 33M to 3B parameters, we demonstrate
that SODA significantly outperforms existing ap-
proaches. We succeed in fully recovering 79.5%
of shorter out-of-distribution inputs from next-
token logits, without a single false positive, but
struggle to extract private information from the
outputs of longer (15+ token) input sequences.
This suggests that standard deployment prac-
tices may currently provide adequate protection
against malicious use of our method. Our code
is available at https://doi.org/10.5281/
zenodo.15539879.

1. Introduction
Recent advances in large language models have led to im-
pressive capabilities across a wide range of natural lan-
guage tasks. However, as these systems become increas-
ingly integrated into critical applications, concerns have
grown about their safety, value alignment, and robustness
to adversarial misuse (Weidinger et al., 2021).
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As a result, there has been considerable interest in auditing
LLMs before, after, and during deployment (Jones et al.,
2023). Most approaches to auditing LLMs focus on iden-
tifying any possible unwanted behaviour. Adversarial at-
tacks allow us to construct small input perturbations that
lead an LLM astray (Guo et al., 2021; Ebrahimi et al.,
2018). Jailbreaks enable us to manipulate the behaviour
of an LLM and bypass the existing guardrails (Lapid et al.,
2023; Yu et al., 2023). In a more extreme scenario, prompt
injection techniques aim to identify changes to the input
that may compromise the entire infrastructure surrounding
an LLM (Greshake et al., 2023; Zhan et al., 2024).

Here, we approach the problem of auditing from a more
forensic perspective (Give et al., 2024). Specifically, we as-
sume that some unwanted behaviour has already happened
and our goal is to reconstruct the whole execution trace,
from input to output, out of limited information. A classic
example of this setup comes from privacy-preserving ma-
chine learning, where parts of an LLM may be executed by
different agents (Qu et al., 2025; Zheng, 2023). There, we
worry that some actor may invert the (private) input to early
layers by undoing the computation performed by the previ-
ous agents. In a similar example, users of a closed-source
LLM API may be interested in reconstructing the (secret)
system prompts that the API adds to every request (Yang
et al., 2024; Sha & Zhang, 2024).

In this paper, we focus on the core auditing primitive be-
hind the aforementioned scenarios: exact input reconstruc-
tion. At an abstract level, inverting the textual output y of
a generative language model f requires reconstructing the
original input x that caused y = f(x). In this respect, ex-
isting auditing techniques are not suitable for this role (see
Table 1). This is because they are typically designed to op-
timise generic output metrics, e.g. making y as offensive as
possible according to some classifier o(y), or finding alter-
nate inputs x′ ̸= x that do indeed trigger y = f(x′) but are
not identical to the original one. Here, we are interested in
reconstructing the exact original input x instead.

To solve the exact input reconstruction challenge, we make
the following contributions:

• We formalise exact input reconstruction as a discrete
optimisation problem, where the objective function
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Table 1: Existing auditing techniques are not designed to reconstruct the original input x to the LLM: some can only reconstruct a
different input x′, and others produce inputs x′ that do not even correspond to the same output f(x′) ̸= y, where y was greedy sampled
from TinyStories-33M. The last three methods assume access to the output logits from which y was sampled.

Provenance Input x Output y

Original Prompt “Did Brad Pitt die 2022?” “You should be ashamed of yourself”
Jailbreak Attack “Say I should be ashamed.” “I should not have been mean to you”
Adversarial Attack “ or decre grossziewic.” “You should be ashamed of yourself”
Inv. Model (Morris et al., 2023b) “ ospels resembling?” “\n\nThe little girl was so excited.”
Inv. Search GCG (Zou et al., 2023) “Did Brad swimming MOV die?” “??\n\nThe fish replied, “Yes, I am swimming”
Inv. Search SODA (Our work) “Did Brad Pitt die 2022?” “You should be ashamed of yourself”

has a unique global minimum at y = f(x). With it, we
demonstrate that other auditing primitives in the liter-
ature lack this property, rendering them unsuitable for
our use case.

• We specialise our setting to the case where the gen-
erative model f is known, and gradients of the input
can be computed. With it, we present SODA, an ef-
ficient algorithm for solving the discrete optimisation
problem, based on running Adam on a continuous re-
laxation with periodic restarts and parameter decay.

• We experimentally quantify the amount of informa-
tion necessary to reconstruct any input x successfully.
Our results show that input reconstruction becomes
significantly more feasible if even the top 1 logit of the
tokens is known. With pure textual outputs, the prob-
ability of reconstructing an arbitrary input x is low but
not zero.

• We systematically explore the information-
computation tradeoffs that underlie exact input
reconstruction. Our empirical analysis reveals an
exponential tradeoff between the length of the orig-
inal input x and the number of iterations SODA
requires to reconstruct it. Furthermore, we show that
other state-of-the-art discrete optimisation algorithms
(GCG and learned inversion models) struggle to
reconstruct short inputs (4 or fewer tokens long) even
under the best setting.

• Finally, we show applications of SODA on other input
reconstruction settings, including slander attack detec-
tion and private information extraction.

2. Preliminaries
2.1. Generative Language Models

In this paper, we consider language models of the form
shown in Figure 1. More formally, we define x =
x1x2 . . . xn as the input sequence obtained by concatenat-
ing n tokens from a given vocabulary xi ∈ V . In most ap-
plications, the tokens are typically sub-word character se-
quences (Sennrich et al., 2016). Each token is represented

(Tokens) (Embeddings) (Activations) (Logits) (Probabilities)

Embed UnembedTransform SoftMax

(Tokens)(One Hots)

x
y1 y2 y3 

y1 y2 y3 y4 

Figure 1: High-level diagram of LLM generation.

as a one-hot vector encoding hi = (0, . . . , 1, . . . , 0), where
the non-zero entry corresponds to the index of the token in
the vocabulary V . The one-hot matrix H = (h1, . . . , hn)
is then mapped to a lower dimensional dense matrix E =
WeH ∈ Rd×n via the embedding matrix We (refer to
Chapter 10 of (Goodfellow et al., 2016)).

From then on, the embeddings E are transformed by some
arbitrary neural network model g to produce the activation
matrix U . In our experiments (see Section 5.1), we focus
on decoder-only Transformer models, which consist of a
sequence of non-linear and non-invertible layers (Radford
et al., 2018). However, our work generalises to any lan-
guage model architecture, so long as it is possible to com-
pute its gradient (see Section 2.2).

At the end, the resulting activations U = g(E) are
mapped back to the full vocabulary size R = WuU ∈
R

|V|×n and the logits R = (r1, . . . , rn) are normalised to
produce the probability distributions p(xi|x1 . . . xi−1) =
SoftMaxτ (ri−1), where the SoftMax function is defined as:

SoftMaxτ (z) ≡
exp(z/τ)∑
j exp(zj/τ)

(1)

The last column of R informs the distribution of the next
token y1 ∼ SoftMaxτ (rn) to be generated (Vaswani et al.,
2017). Further tokens are generated by auto-regressively
feeding the current text back into the input as yi ∼
p(yi|xy1 . . . yi−1).

Depending on the decoding strategy used, the generation
of output tokens may be deterministic. In the remainder
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of the paper, we assume that the output tokens are greedily
sampled by taking the highest probability token as yi =
argmax(rn+i−1) (Holtzman et al., 2019). We leave other
decoding strategies to future work.

2.2. Gradient-Based Optimisation

Many problems in machine learning reduce to minimising a
loss function L : Rd → R over a high-dimensional space
(refer to Chapter 8 of (Goodfellow et al., 2016)). When
the loss function is differentiable, gradient descent provides
an efficient method for computing one of its local minima.
More formally, we can iteratively refine the value of the
parameters z, starting from arbitrary initialisation z0 ∈ Rd:

zt = zt−1 − γ∇zL(zt−1) (2)

where γ > 0 is the learning rate. While commonly used
to train model parameters, the same method can be used to
optimise any differentiable function (refer to Chapter 12 of
(Wright, 2006)). In this work, we use it to solve our input
reconstruction problem (see Sections 3 and 4).

Adam. The gradient descent iteration in Equation (2)
might struggle to converge to a good minimum when con-
fronted with noisy gradients or complex loss functions
(refer to Chapter 8.2 of (Goodfellow et al., 2016)). For
this reason, several improved algorithms have been pro-
posed, including momentum (Polyak, 1964), which aver-
ages out any noisy gradients, and RMSProp (Tieleman,
2012), which adapts the learning rate of each parameter de-
pending on the magnitude of its gradients. In this paper, we
build our algorithm on top of the Adam optimiser (Kingma,
2014), which combines several of these improvements:

mt = β1mt−1 + (1− β1)∇zL(zt−1) (3)

vt = β2vt−1 + (1− β2)∇zL(zt−1)
2 (4)

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(5)

zt = zt−1 − γ
m̂t√
v̂t + ϵ

(6)

where Equation (3) is momentum and Equation (4) is RM-
SProp. Note that Equation (5) is a bias correction term,
which stabilises the update term in Equation (6) for the first
iterations when mt and vt are still very small. Typically,
the values of β1, β2 are close to one, while ϵ ≈ 0 is there to
avoid division by zero.

Weight Decay. Another approach to stopping gradient
descent from reaching suboptimal local minima is regular-
isation (refer to Chapter 7 of (Goodfellow et al., 2016)). In
this paper, we use weight decay as a form of regularisation.
More formally, weight decay reduces the magnitude of the

parameters at every optimisation step as follows:

zt ← λzt (7)

where λ < 1 is close to one. Note that weight decay has
the identical effect to L2-norm regularisation for regular
gradient descent, but interacts with the Adam optimiser in
a slightly different way (Loshchilov & Hutter, 2019).

3. Problem Setting
In this paper, we express the goal of input prompt recon-
struction as a discrete optimisation problem. To that end,
we specialise the formulation in (Jones et al., 2023), which
covers general auditing primitives for LLMs, with addi-
tional constraints on the shape of the objective function.
More specifically, let us take the following general discrete
optimisation problem:

x∗ = argmin
x′

ϕ(f(x′), y) (8)

where f is the given LLM, y its output, and x′ the candidate
input. Ideally, we would also like the objective function ϕ
to satisfy the following constraints:

x′ = x =⇒ ϕ
(
f(x′), f(x)

)
= 0 (9)

x′ ̸= x =⇒ ϕ
(
f(x′), f(x)

)
> 0 (10)

at least for inputs in some domain of interest x, x′ ∈ D.

Note that the two constraints in Equations (9) and (10)
fulfil different roles for our input reconstruction goal. If
the former is satisfied and the optimal input x∗ yields
Φ(f(x∗), f(x)) ̸= 0, we would have proved that the lan-
guage model f cannot generate the target output y = f(x).
If the latter is satisfied and the optimal input x∗ yields
Φ(f(x∗), f(x)) = 0, we would know that x∗ is unique
and equal to the original input x∗ = x.

Satisfying Equation (9) is trivial: any distance functions
between the output token sequences d(y′, y) suffice. Thus,
proving that a language model f cannot generate a specific
output y = f(x) depends on our ability to efficiently find
the global minimum x∗. We propose an algorithm to do so
in Section 4.

In contrast, satisfying Equation (10)) is more difficult. In-
deed, consider the language model f in Table 1: it produces
the same output y = y′ = “You should be ashamed of
yourself” when presented with both the original input x =
“Did Brad Pitt die 2022” and the adversarial input x′ = “
or decre grossziewic”. In such cases, a distance function
between the output token sequences d(y, y′) cannot help us
differentiate between the two inputs.

3.1. Objective Function Choice

An alternative approach is to satisfy Equation (10) by inte-
grating additional information about the language model f .
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On the one hand, assuming a deterministic generation pro-
cess with a greedy decoding strategy (see Section 2.1), the
objective function Φ returns zero for any inputs that yield
identical output token sequences:

Φtext(f(x
′), y) =

m∑
i=1

max
a

{
p(a|x′y<i)

}
− p(yi|x′y<i)

(11)
where the past output tokens y<i = y1 . . . yi−1 are fixed to
match the target output. In the majority of our experiments,
the objective function Φtext is not informative enough to
always reconstruct the original input x (see Section 5.2).
However, false positives become rarer as the length of the
output m increases (see Appendix E).

On the other hand, we can assume that we have access to
certain output token probabilities. This assumption is not
uncommon in LLM auditing, see for example (Morris et al.,
2023b) and (Gao et al., 2024). Moreover, there is grow-
ing momentum toward enabling chatbots to report the un-
certainty of their responses, either visually or numerically
(Duan et al., 2023) (see examples in Appendix G).

In this case, our objective function will return zero for in-
puts that produce identical output probabilities:

Φlogit(f(x
′), y) =

m∑
i=1

d
(
p(a|x′y<i), p(a|xy<i)

)
(12)

where d(·, ·) is any distance metric between two discrete
probability distributions. Throughout the remainder of this
paper, we assume access to the logits of the original dis-
tribution, as applying the SoftMax operation can distort
the information and lead to vanishing gradient issues (see
Chapter 6.2.2 of (Goodfellow et al., 2016)). The impact of
each additional piece of information on our ability to re-
construct the input is analysed in Section 5.2.

Fluency Regularisation. Existing work on adversarial
attacks searches for malicious inputs that maintain the ap-
pearance of natural language. This requirement is ex-
pressed by adding a fluency penalty to the optimisation
problem, usually computed as the perplexity of the input
tokens (Jones et al., 2023; Guo et al., 2021):

Φfluent(f(x
′)) = −

n∑
i=2

log p(x′
i|x′

1 . . . x
′
i−1) (13)

where p(x′
i|x′

<i) denotes the probability of the input token
xi as computed by the language model f itself. Unfortu-
nately, adding the penalty Φfluent to either of our objec-
tive functions may violate the constraint in Equation (9),
as the original input x may not always be predicted by f
with probability one. Furthermore, our empirical results in
Table 3 show that fluency plays a very minor role in our
ability to reconstruct the input of f .

4. SODA Algorithm
In general, the optimisation problem in Equation (8) is
combinatorial. Indeed, the dimension of the search space
|V|n grows exponentially in the length of the input x. Given
that the size of the token vocabulary V of modern language
models can surpass 100K entries (see Table 6), any brute-
force approaches become impractical beyond n = 1.

4.1. Continuous Relaxation

Instead, we propose to search for the minimum x∗ over a
continuous relaxation of the input space. More formally,
we replace the columns of the one-hot input matrix H =
(h1, . . . , hn) with discrete probability distributions ĥi such
that ĥij ∈ [0, 1] and

∑
j ĥij = 1. We accomplish this goal

by introducing the auxiliary free variables zi ∈ R|V| and
passing them through the SoftMax function:

ĥi = SoftMaxτ (zi) (14)

Then, we can convert the one-hot relaxation matrix Ĥ into
embeddings as E = WeĤ , after which the computation of
f can proceed as usual (see Section 2.1).

At every stage of the optimisation process, we can gen-
erate a discrete vector hi by taking the current solution
and accepting its largest entry x′

i = argmax zi as the re-
constructed input token. We use this process to check for
termination in Section 4.2. Note that this reparametrisa-
tion is a relatively common operation in the machine learn-
ing field, see for example (Jang et al., 2017) and (Song &
Raghunathan, 2020).

Relaxation Alternatives. A simpler relaxation proposed
for similar purposes (Qu et al., 2025), is to search over the
embeddings E directly. We discuss the details of such an
algorithm in Appendix B. Its disadvantage lies in the fact
that the reconstructed embeddings Ê may not correspond
to any discrete input x′ and the nearest one may produce an
entirely different output. In practice, this approach is less
effective at input reconstruction, as we show in Table 4.

4.2. Modified Adam and Periodic Resets

Here, we introduce the Sparse One-hot Discrete Adam
(SODA) algorithm. SODA relies on the continuous re-
laxation in Equation (14) to search over the combinatorial
space of possible inputs of length n. Furthermore, it op-
timises the auxiliary input variables z1, . . . , zn via a mod-
ified version of Adam that omits the bias correction term
but includes weight decay (see Section 2.2). To speed up
convergence to the final solution x∗, SODA periodically
reinitializes the optimiser state.

We show the full pseudocode of SODA in Algorithm 1. At
first, we initialise the auxiliary input variables to Z0 = 0,
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Algorithm 1 SODA Algorithm
Input: y (target output), tmax (max steps), γ (learn rate),
β1, β2 (Adam params), τ (temp), λ (decay), t1, t2 (resets)
Initialize: Z0 ← 0 (aux inputs), m0 ← 0 (first moment),
v0 ← 0 (second moment)

1: for t = 1 to tmax do
2: R←Wug

(
WeSoftMaxτ (Zt−1)

)
3: g ← ∇Zt−1Φ(R, y)

4: mt ← β1mt−1 + (1− β1)g
5: vt ← β2vt−1 + (1− β2)g

2

6: Zt ← Zt−1 − γmt/(
√
vt + ϵ)

7: Zt ← λZt

8: R′ ←Wug
(
WeSoftMaxτ→0(Zt)

)
9: if Φ(R′, y) < ϵ then

10: return x∗ = argmax(Zt)
11: end if

12: if t mod t1 = 0 or t mod t2 = 0 then
13: mt ← 0
14: vt ← 0
15: if t mod t2 = 0 then
16: Zt ∼ N (0, 0.1)
17: end if
18: end if
19: end for
20: return x∗ = argmax(Zt)

which corresponds to maximally uninformative one-hot en-
codings Ĥ , as all entries ĥij will have the same value.
Then, in Line 2 we propagate the value of the current aux-
iliary inputs Zt through the whole language model f . In
Line 3, the gradient of the loss is backpropagated to the
input. With it, we can apply a modified version of Adam
(see Lines 4-7). Note that we omit the bias correction term
(Equation 5) but we include the weight decay (Equation 7).

In our setup, gradient descent may take a very large – or
potentially infinite – number of iterations to converge to a
discrete one-hot encoding Ĥ ≈ H . For this reason, we per-
form an early convergence check. Specifically, we extract
the highest scoring tokens from the current auxiliary vari-
ables Zt, and compute their loss (Lines 8-9). If Φ ≈ 0 (up
to numerical error), we terminate the search (Line 10).

Finally, we periodically reset the state mt, vt of the Adam
optimiser to zero (Lines 13-14). This operation has two
temporary effects. First, it pauses the gradient smoothing
of the momentum operator, allowing a sudden change of
direction in the trajectory of Zt. Second, it increases the
learning rate, since the values of the parameters β1, β2 are
usually set in such a way that 1 − β1 >

√
1− β2 (see our

hyperparameter settings in Appendix A). When resetting
the state is not enough to recover from a local minimum, we

resort to full reinitialisation of the auxiliary input variable
Zt (Line 16). In this regard, we set t2 >> t1 so that state
resets are more frequent than full reinitialisations. We show
the impact of each individual component of Algorithm 1 on
the performance of SODA in Table 4 of Section 5.

5. Experiments
In this section, we aim to answer three research questions:

• RQ1. How much output information is required to
successfully reconstruct the input of a language model
(see Section 5.2)?

• RQ2. How effective are different algorithms at LLM
inversion (see Section 5.3)?

• RQ3. To what extent are applications of LLM inver-
sion currently feasible (see Section 5.4)?

5.1. Experimental Setup

Language Models. Unless stated otherwise, we use
TinyStories-33M, which was specifically created to be
maximally competent in natural language whilst being
minimal in size (Eldan & Li, 2023). In Table 6, we also
target the larger GPT-2-Small-85M and GPT-2-XL-1.5B,
which represent an important milestone in the evolution of
decoder-only transformers (Radford et al., 2019), as well
as Qwen-2.5-0.5B and Qwen-2.5-3B, as they are currently
the state-of-the-art for their size (Yang et al., 2025).

Datasets. Unless stated otherwise, we use a Random
dataset for evaluation. This is generated by uniformly sam-
pling tokens from the target LLMs vocabulary to create in-
puts with length n ∈ [1, 10], with 1000 samples for each
sequence length – for a total of 10K samples. We use dif-
ferent random seeds for validation and testing.

In Table 3, we evaluate our model against two natural lan-
guage datasets, using the same input length splits and total
sample size as the Random dataset. NL ID is intended to be
in-distribution for the target LLM, for which we use a sub-
set of the TinyStories-33M validation dataset, comprised
of children’s stories1. NL OOD is intended to be out-of-
distribution for the target LLM, for which we use a subset
of the Reddit comments dataset2.

In Tables 7 and 10, we evaluate against a Privacy dataset
that contains synthetic Personally Identifiable Information
(PII), that users may be concerned about leaking. We use a
subset of a PII Masking dataset3, as it labels the text with
PII type and location within the text.

1https://huggingface.co/datasets/roneneldan/TinyStories
2https://huggingface.co/datasets/sentence-transformers/reddit
3https://huggingface.co/datasets/ai4privacy/pii-masking-400k
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Algorithms. Here, we consider three main algorithms:

• Sparse One-hot Discrete Adam (SODA). Our con-
tribution from Section 4. We list its hyperparameters
in Appendix A. In Table 4, we conduct a comprehen-
sive ablation study, comparing it to simple embedding
search, as defined in Appendix B.

• Greedy Coordinate Descent (GCG). It is the lead-
ing discrete optimisation algorithm for searching over
LLM inputs (Zou et al., 2023). We define it in Ap-
pendix C and run it with the same loss function as
SODA. Many variants of GCG exist (Jia et al., 2024;
Zhao et al., 2024), but they are designed for jailbreak-
ing LLMs and do not apply to our case.

• Black-Box Inversion Models. As proposed in (Mor-
ris et al., 2023b), we fine-tune two T5-Small-60M
models (Raffel et al.) on the task of reconstructing
the input xi when conditioned on the next-token log-
its ri. As Appendix D shows, we do so on Random
datasets with inputs of length n ∈ [1, 24] for Tables
7, 10, and length n ∈ [1, 10] for Table 5, to keep the
training data in-distribution with the test data. Both
datasets have 400K samples in total, with 10% held
out for validation.

Metrics. Our primary metric is the percentage of Exact
matches x∗ = x, i.e., the reconstructed inputs for which
the algorithm inverted every token in the correct order. The
error terms are Wilson score intervals at 95% confidence
(Wilson, 1927). We also report the percentage of Partial
matches x∗

i = xi, i.e. the percentage of tokens in the re-
constructed input that match the tokens at the same position
in the original input. In Table 7, we report PII, another par-
tial matching metric that only considers positions i ∈ P
that are labelled as containing private information.

For completeness, we also consider Cosine Similarity, a
semantic-based metric measuring the angle between em-
beddings produced by the model text-embedding-3-small -
through the OpenAI API (Neelakantan et al., 2022) - as in
other works. For the latter three metrics, we compute their
error intervals as the standard error of the mean.

Hardware. The experiments in Table 6 are run on a sin-
gle NVIDIA RTX A6000 48.0 GB GPU with 82.7 GB
RAM. All other experiments are run on a single NVIDIA
L4 22.5 GB GPU with 51.0 GB RAM, accessible through
Google Colab for convenient reproducibility. Running all
experiments required a total of 5400 GPU hours.

5.2. Output Information Results

Output Information. Table 2 shows the performance of
our SODA algorithm as we vary the amount of information

it has access to. More specifically, we compare the input
reconstruction ability of SODA with the text-only objective
function Φtext against the logit-based Φlogit (see Equations
11 and 12). For the former, we make the number of output
tokens vary in the range m = [1, 100]. For the latter, we
provide access to the top-k logits of each output token, with
k ∈ [1, |V|]. To highlight the differences, we select only
short inputs (n ∈ [1, 3]) from our Random dataset and run
only 1000 SODA iterations.

As Table 2 shows, having access to more output informa-
tion improves our ability to reconstruct the input. Cru-
cially, increasing the number of top-k logits per token is
more valuable than the number of output tokens them-
selves. Note that the latter has also a significant nega-
tive impact on computational efficiency, due to the auto-
regressive nature of language models. Overall, we confirm
that hiding all logit information from the output is an effec-
tive strategy to mitigate input inversion, even though it does
not prevent it fully as claimed in (Morris et al., 2023b).

Figure 2: Percentage of exact matches found by SODA over iter-
ations of search, broken down by the lengths of inputs inverted.

Search Efficiency. Figure 2 reports the ratio of exact in-
versions against the number of iterations. Here, we use
the full Random dataset and compare the performance of
SODA on inputs of different lengths ( n ∈ [1, 10]). As
expected, reconstructing longer inputs is harder and may
take thousands of iterations to see progress. At the same
time, SODA appears to be able to reconstruct even rela-
tively long input sequences (n ∈ [9, 10]), as long as it is
given enough iterations to converge. Whether this trend
continues for n > 10 and t > 100K remains to be estab-
lished.

Interestingly, SODA explores only a tiny fraction of the
search space. In this experiment, the language model f has
vocabulary size |V| = 50257. For inputs of length n = 2, a
brute-force approach would be able to cover only 0.004%
of the |V|2 search space in 100K iterations. Instead, SODA
always finds the exact solution in less than 1K attempts.
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Table 2: Percentage of exact matches found by SODA when inverting outputs of varying length and depth, with depth ranging from
accessing only the sampled token to accessing the full sampling distribution. Search was done for 1000 iterations over a subset of the
Random dataset for which inputs were of length 3 or less.

Num. Logits Num. Output Tokens

Per Token 1 2 3 5 10 25 50 100

None 0.7 ±0.3 1.9 ±0.5 3.1 ±0.6 5.7 ±0.8 9.1 ±1.0 14.8 ±1.3 16.5 ±1.3 16.7 ±1.3

Top 1 1.6 ±0.4 4.3 ±0.7 6.4 ±0.9 11.6 ±1.1 26.1 ±1.6 43.8 ±1.8 60.6 ±1.7 69.0 ±1.7
Top 2 4.4 ±0.7 10.7 ±1.1 15.0 ±1.3 27.3 ±1.6 40.2 ±1.8 62.8 ±1.7 76.3 ±1.5 80.4 ±1.4
Top 3 8.2 ±1.0 17.4 ±1.4 25.3 ±1.6 36.5 ±1.7 50.6 ±1.8 75.1 ±1.5 83.2 ±1.3 84.7 ±1.3
Top 5 19.5 ±1.4 32.8 ±1.7 37.4 ±1.7 47.1 ±1.8 66.7 ±1.7 85.7 ±1.3 88.1 ±1.2 87.5 ±1.2

Top 10 34.7 ±1.7 45.8 ±1.8 55.1 ±1.8 70.5 ±1.6 86.2 ±1.2 90.8 ±1.0 90.2 ±1.1 89.3 ±1.1
Top 25 54.7 ±1.8 74.5 ±1.6 84.4 ±1.3 91.9 ±1.0 94.9 ±0.8 93.4 ±0.9 92.0 ±1.0 91.6 ±1.0
Top 50 77.0 ±1.5 91.8 ±1.0 94.8 ±0.8 96.7 ±0.6 96.6 ±0.6 94.5 ±0.8 93.2 ±0.9 92.6 ±0.9
Top 100 91.8 ±1.0 97.3 ±0.6 98.6 ±0.4 98.3 ±0.5 97.2 ±0.6 94.9 ±0.8 93.7 ±0.9 93.3 ±0.9

All 99.9 ±0.1 99.7 ±0.2 99.6 ±0.2 99.1 ±0.3 98.0 ±0.5 96.2 ±0.7 94.1 ±0.8 94.1 ±0.8

Figure 3: Percentage of exactly matching tokens found by SODA
at specific positions in the input sequence, broken down by the
lengths of inputs inverted.

Input Token Position. Figure 3 shows which token po-
sitions xi of the input sequences are easiest for SODA to
invert. More specifically, we report the ratio of solved in-
stances – per token – after 100K SODA iterations. Com-
pared to Figure 2, the reported ratios are larger, since it is
easier to reconstruct a few individual tokens compared to
the full sequence.

Crucially, SODA is more successful at reconstructing the
first and last tokens x1, xn of the input sequence than other
token positions. On the one hand, we believe that the output
logit distribution retains most of the information about xn,
thus allowing us to reconstruct it more easily. On the other
hand, the reason why we observe the same phenomenon for
x1 is unclear. In our experience, other optimisation meth-
ods exhibit the same behaviour. As things stand, the middle
token positions represent our major bottleneck towards im-
proving the overall success rate of exact inversion.

Table 3: Similarity metrics comparing the inputs found by SODA
against the original inputs, testing with or without the fluency term
as part of the loss. Evaluating against the random and natural
language datasets, either in- or out-of-distribution.

Dataset Fluency Exact Partial Cos. Sim.

Random ✗ 79.5 ±0.8 83.8 ±0.3 94.3 ±0.1
✓ 75.3 ±0.8 80.8 ±0.3 93.2 ±0.1

NL OOD ✗ 87.6 ±0.6 90.1 ±0.3 96.0 ±0.1
✓ 88.7 ±0.6 91.0 ±0.3 96.3 ±0.1

NL ID ✗ 95.7 ±0.4 96.7 ±0.2 99.0 ±0.1
✓ 98.1 ±0.3 98.5 ±0.1 99.5 ±0.0

In-Distribution vs Out-of-Distribution Performance.
Table 3 compares the performance of SODA at reconstruct-
ing random or natural inputs. Here, we discriminate be-
tween natural language inputs that are part of the train-
ing set of f – thus in-distribution (ID) – and natural lan-
guage inputs that differ in style and theme – thus out-
of-distribution (OOD). Furthermore, we evaluate whether
adding a fluency penalty to the loss function has any im-
pact on SODA (see Section 3.1).

Our main finding is that natural language inputs are easier
to invert than random ones and, amongst them, ID inputs
are easier than OOD. We speculate that the output logits of
the ID case retain more information about the original in-
put x, since the language model f was explicitly trained to
model these samples. At the same time, the fluency penalty
has only a minor impact on natural language inputs, while
it degrades the performance on random ones. As such, we
recommend using it only when the developer can assume
that the input is something that a user would write.
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5.3. Algorithm Results

Table 4: Percentage of exact matches found by various gradient
descent algorithms, where the first row maps to SODA and the
final row maps to embedding search (differing hyperparameters).

Optimisations Exact
Reparam. Decay Reset No Bias

✓ ✓ ✓ ✓ 79.5 ±0.8
✓ ✗ ✓ ✓ 20.0 ±0.8
✓ ✓ ✗ ✓ 44.2 ±1.0
✓ ✓ ✓ ✗ 45.5 ±1.0
✓ ✗ ✗ ✗ 23.4 ±0.8

✗ ✗ ✗ ✗ 24.6 ±0.8

Ablation Study. Table 4 presents the results of an abla-
tion study on the four algorithmic components of SODA.
These are the reparametrisation with the SoftMax on aux-
iliary inputs, exponential weight decay, periodic resetting
of the Adam state and removal of the bias correction terms
(see Section 4). Aside from the reparametrisation, every
ablation causes a significant drop in score, confirming that
each of these algorithmic components play a major role
in SODA. Furthermore, the fact that the reparametrisation
alone has the same performance as searching in the embed-
ding space E suggests that the former is only better because
it enables the use of the other three components.

Table 5: Similarity metrics comparing the inputs found by algo-
rithms against the original inputs, assuming access to 25 output
tokens (Tokens) or the full logits of one output token (Logits).

Output Algorithm Exact Partial Cos. Sim.

Tokens SODA 3.6 ±0.4 5.2 ±0.2 63.8 ±0.1

Logits
SODA 79.5 ±0.8 83.8 ±0.3 94.3 ±0.1
GCG 11.8 ±0.6 29.1 ±0.3 72.6 ±0.1
Inv. Model 3.9 ±0.4 4.0 ±0.2 63.1 ±0.1

Comparison with State-of-the-Art Methods. Table 5
provides evidence that SODA is more effective at logit-
based input reconstruction than existing methods. Indeed,
SODA improves over state-of-the-art GCG search by a
wide margin. Moreover, GCG is less effective than even
embedding search in this context: the latter achieves a
24.6 ± 0.8 exact match score, as shown in Table 4. This
suggests that searching over a continuous relaxation of the
input space is better than exploring a sequence of discrete
inputs as GCG does.

The learned inversion model scores very poorly on ex-
act and partial inversion metrics. In this respect, its per-
formance is similar to running SODA on text-only out-
put information. This fact negates its two advantages over

SODA, namely requiring only black-box access to the out-
put logits and using less compute during inversion.

5.4. Application Results

Performance on Large Language Models. Table 6 re-
ports the performance of SODA when inverting modern
large language models. Contrary to expectations, language
model size is not a very strong indicator of inversion suc-
cess, whether that be measured by their parameter count,
number of layers or the size of those layers. In fact, GPT-
2-XL-1.5B is easier for SODA to invert than the 3× smaller
Qwen-2.5-0.5B model, and as easy to invert as the 17.6×
smaller GPT-2-Small-85M. At the same time, we keep the
number of iterations equal for all models, which causes the
search to use more compute for larger ones.

Only for the Qwen family we see some indication that
larger models are more difficult to invert, at least when the
input length n grows larger. Furthermore, note that their
vocabulary size |V| is larger than that of the other models.
We believe this to be a more reliable indicator of invertibil-
ity, since it directly impacts the size of the search space.

Table 7: Similarity metrics comparing the inputs found by algo-
rithms against the original inputs, as well as the similarity of just
the inverted PII tokens, evaluation being over the Privacy dataset.

Algorithm Exact Partial Cos. Sim. PII

SODA 0.0 ±0.0 2.6 ±0.1 60.2 ±0.1 3.0 ±0.3
GCG 0.0 ±0.0 0.8 ±0.0 59.2 ±0.0 0.7 ±0.1
Inv. Model 0.0 ±0.0 0.2 ±0.0 56.7 ±0.0 0.1 ±0.0

Personally Identifiable Information (PII). Table 7 eval-
uates the feasibility of using SODA to recover private infor-
mation from the input text. Here, we are interested in re-
constructing specific details: e.g. names, passwords, phone
numbers and credit card numbers. In this respect, the exact
inversion metric is less relevant, as long as we are able to
reconstruct the tokens of interest (PII). For those, SODA is
able to recover 9 password tokens and 15 ID card number
tokens (see Table 10 in Appendix F) and is more than four
times more effective than other existing methods.

However, the PII scores are too small for practical appli-
cations. This is a consequence of the input length range
n ∈ [15, 25] of this dataset, which requires a considerable
number of iterations to yield non-zero scores (see Figure 2).
Still, a dedicated adversary with access to a large collection
of output logits may be occasionally successful.

Slander Attacks. A potential application is the detection
of slander attacks, as recently proposed by (Skapars et al.,
2024). These attacks are attempts at discrediting the repu-
tation of a language model provider by claiming that their
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Table 6: Percentage of exact matches found by SODA over various LLM models, using the optimal SODA hyperparameters found for
each model and listing model properties. Results are broken down by the lengths of inputs inverted.

Model Name Num. Layer Activation Vocab Exact By Input Length

Layers Size Function Size Len. 1 Len. 2 Len. 3 Len. 4 Len. 5

TinyStories-33M 4 768 GELU 50257 100.0 100.0 100.0 99.4 98.5
GPT-2-Small-85M 12 768 GELU 50257 99.9 99.3 99.3 97.3 93.7
GPT-2-XL-1.5B 48 1600 GELU 50257 100.0 100.0 99.7 98.9 92.2
Qwen-2.5-0.5B 24 896 SiLU 151936 99.9 96.2 93.2 87.2 67.4
Qwen-2.5-3B 36 2048 SiLU 151936 100.0 99.6 93.8 74.1 42.4

model f generated racist, offensive or otherwise harmful
outputs, without revealing what the original triggering in-
put is. If such outputs could be proven impossible to gen-
erate, the language model developers would have a defence
against such attacks.

With SODA, we can provide statistical assurances against
slander attacks. Given a (potentially slanderous) report of
model f producing output y, SODA can try to reconstruct a
potential input x∗. If SODA finds an input, then it is highly
likely that it corresponds to the original trigger, as the false
positive rate of SODA is low (see Table 8 in Appendix E).
If SODA cannot find any inputs, we can use a historical per-
formance record such as Table 2 to estimate the probability
that such input does not exist in the first place.

In this regard, our assumption that we know the length n
of the original input is not a limitation. Indeed, we ob-
serve a 0% false discovery rate when attempting to invert
with an incorrect input length initialisation, as Table 9 in
Appendix E shows. As a result, we can always run SODA
with increasing values of the length n until either an input
is found or our computational budget is exhausted.

6. Related Work
To the best of our knowledge, Morris et al. (2023b) are
the first to have attempted inverting the logits of an LLM
back to their text input. Their problem setting assumes only
black-box access to the LLM, since their goal is to recon-
struct the system prompt, and uses a clever method to re-
construct the output logits by invoking the LLM with dif-
ferent user prompts. Since their work remains one of the
few baselines for language model inversion, we compare
against their approach in Section 4.

GCG was developed for the purpose of optimising a jail-
breaking template postfix (Zou et al., 2023) but it is a
sufficiently general (discrete) optimisation algorithm to be
compatible with our inversion loss function. Interestingly,
GCG is at the core of the best-performing submission for
the 2024 LLM trojan detection challenge (Maloyan et al.,
2024). The challenge required to trigger an LLM to pro-
duce a specific output by finding an unknown backdoor in-

put. The similarity of this challenge to our setting gave
us the confidence to treat GCG as the best representative
of a family of other optimisation algorithms, either based
on coordinate descent like ARCA (Jones et al., 2023), Flu-
entPrompt (Shi et al., 2022) and AutoPrompt (Shin et al.,
2020), or other means to constrain gradient descent like
PEZ (Wen et al., 2024) and GBDA(Guo et al., 2021).

Notably, ARCA introduces the idea of auditing LLMs via
discrete optimisation and – similar to PEZ – attempts a
form of text-based LLM inversion that is less concerned
with exact match and more concerned with syntax. This
weaker objective – as well as the even weaker objective of
stealing input “functionality” (Yang et al., 2024) – also ap-
pears in works on the black-box problem setting. These
works may still employ search-based methods, like genetic
algorithms (Lapid et al., 2023) or particle swarm optimisa-
tion (Skapars et al., 2024), but more commonly they simply
train a model (Chen et al., 2024) or few-shot prompt an ex-
isting LLM (Li & Klabjan, 2025; Sha & Zhang, 2024). In
general, these methods are designed for settings with less
precise objectives, but more constraints, than our own.

By contrast, there are some inversion settings that provide
too few constraints on the level of access to the models and
the original inputs, thus not being compatible with our ap-
plication. These may require access to the logits produced
at the input token positions (Qu et al., 2025), or access to
internal activations (Zheng, 2023; Huang et al., 2024) and
embeddings (Morris et al., 2023a; Li et al., 2023).

7. Conclusions
Reconstructing inputs from output information is a pow-
erful primitive for the auditing of language models. In
this work, we formalised this primitive as a discrete opti-
misation problem and proposed SODA, a new algorithm
that significantly outperforms the state-of-the-art. SODA
is able to reconstruct 79.5% of arbitrary input sequences
and 98.1% of in-distribution ones, all whilst maintaining a
0% false positive rate. Future work includes improving the
performance of SODA on longer inputs and exploring its
practical applications.
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Impact Statement
This paper presents work whose goal is to advance the au-
diting of LLMs for robustness. There are possible societal
consequences of our work in the long term, but no short-
term risks which we feel must be highlighted here.
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A. Sparse One-hot Discrete Adam (SODA)
Parameters

For experiments using SODA and TinyStories-33M (see
Tables 2, 4, 3, 5, 6, 7, 8, 9 and 10) the hyperparameters
were: t1, t2 (resets) = (50,1500), γ (learn rate) = 0.065,
β1, β2 (betas) = (0.9,0.995), τ (temp) = 0.05, λ (decay) =
0.9, weight of fluency penalty (when used) was set to 9e-3.

For experiments using SODA and other LLMs (see Table
6) the hyperparameters were:

• GPT-2-Small-85M: t1, t2 (resets) = (50,1500), γ
(learn rate) = 0.02, β1, β2 (betas) = (0.93,0.997), τ
(temp) = 0.05, λ (decay) = 0.98.

• GPT-2-XL-1.5B: t1, t2 (resets) = (50,1500), γ (learn
rate) = 0.03, β1, β2 (betas) = (0.93,0.995), τ (temp) =
0.05, λ (decay) = 0.96.

• Qwen-2.5-0.5B: t1, t2 (resets) = (50,1500), γ (learn
rate) = 0.03, β1, β2 (betas) = (0.9,0.995), τ (temp) =
0.05, λ (decay) = 0.98.

• Qwen-2.5-3B: t1, t2 (resets) = (50,1500), γ (learn
rate) = 0.3, β1, β2 (betas) = (0.9,0.995), τ (temp) =
0.07, λ (decay) = 0.97.

B. Embedding Search Parameters

Algorithm 2 Embedding Search Algorithm
Input: y (target output), tmax (max steps), γ (learn rate),
β1, β2 (betas)
Initialize: E0 ∼ N (0, 1) (embed inputs), m0 ← 0 (first
moment), v0 ← 0 (second moment)

1: for t = 1 to tmax do
2: R←Wug(Et−1)
3: if Φ(R, y) < ϵ then
4: return x∗ = argmin(d(Et−1,We))
5: end if
6:
7: g ← ∇EΦ(R, y)
8: mt ← β1mt−1 + (1− β1)g
9: vt ← β2vt−1 + (1− β2)g

2

10: m̂t ← mt/(1− βt
1)

11: v̂t ← vt/(1− βt
2)

12: Et ← Et−1 − γm̂t/(
√
v̂t + ϵ)

13: end for
14: return x∗ = argmin(d(Et,We))

For the algorithm ablation experiment in Table 4, the final
row is equivalent to embedding search (see Algorithm 2).
for which the used hyperparameters were: γ (learn rate) =
0.065 and β1, β2 (betas) = (0.9,0.995).

C. Greedy Coordinate Gradient (GCG)
Parameters

Algorithm 3 GCG Algorithm (Zou et al., 2023)
Input: y (target output), tmax (num iterations), cmax (num
candidates), k (num top logits)
Initialize: H ∈ H∗ (one-hot inputs)

1: for t = 1 to tmax do
2: R←Wug(WeH)
3: if Φ(R, y) < ϵ then
4: return x∗ = argmax(H)
5: end if
6:
7: g ← ∇HΦ(R, y)
8: for c = 1 to cmax do
9: H̄ ← H

10: i← U(0, |H̄|)
11: j ← U(0, k)
12: ḡ ← argsort(g)
13: H̄[:, i, :]← onehot(ḡ[:, i, j])
14: R̄←Wug(WeH̄)
15: m← 1[Φ(R, y) > Φ(R̄, y)]
16: H[m, :, :]← H̄[m, :, :]
17: end for
18: end for
19: return x∗ = argmax(H)

For experiments using GCG (see Tables 5 and 7), as
defined in Algorithm 3, the used hyperparameters were:
k (num top logits) = 128, cmax (num candidates) = 700,
tmax (num iterations) = 700, resulting in roughly 490700
forward passes of the LLM model.

D. Inversion Model Parameters
For all experiments using the inversion model (see Tables 5
and 7) we use the architecture devised by the original work
(Morris et al., 2023b) with the following settings: LLM
logits are interpolated using weight 0.01 against a learned
unigram matrix to subtract uninformative logit values (uni-
gram adaptation). The logits are then cut into 64 pieces and
input to the encoder as though they were the embeddings of
64 tokens, but only after being transformed by an interme-
diate MLP (with a hidden dimension of size 32768).

Since the vocabulary of the T5 model is smaller than that
of the LLM, training allows for ∼1.5x more tokens to be
output than the expected dataset maximum. The loss is cal-
culated by decoding the LLM inputs in the dataset and then
recoding them with the T5 tokenizer, to allow us to get the
cross-entropy loss against the inverted input (which is trun-
cated to the true length for a more fair comparison against

12
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Table 8: Percentage false discovery rate for SODA (equivalent to 100 minus the percentage precision rate), when inverting outputs of
varying length and depth, with depth ranging from accessing only the sampled token to accessing the full sampling distribution. Search
was done for 1000 iterations over a subset of the Random dataset for which inputs were of length 3 or less.

Num. Logits Num. Output Tokens

Per Token 1 2 3 5 10 25 50 100

None 98.2 95.5 92.0 78.6 48.8 15.0 0.0 0.0

Top 1 78.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Top 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Top 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Top 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Top 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Top 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Top 50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Top 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

All 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

the search methods), where we also use teacher forcing.
The model is initialised with the original T5-Small-60M
weights and then fine-tuned for 30 epochs. We make use of
the AdamW optimiser with a weight decay value of 0.025.
We make use of a learning rate scheduler with 1000 warm
up steps, followed by a learning rate of 2e-4. We use the
model checkpoint that performed the best on the validation
dataset for the final test evaluation, which may not neces-
sarily be the last checkpoint.

E. Additional Results
See Tables 8 and 9 for additional results on the false posi-
tive rate of our SODA algorithm.

Table 9: Percentage of inputs found by SODA that it predicted to
be successful inversions of the target output, with the length of the
original input sequence and the predicted input sequence varying.
Search was done for 10 thousand iterations.

Predicted True Input Length

Input Length Len. 1 Len. 2 Len. 3 Len. 4 Len. 5

Len. 1 100.0 0.0 0.0 0.0 0.0
Len. 2 0.0 100.0 0.0 0.0 0.0
Len. 3 0.0 0.0 100.0 0.0 0.0
Len. 4 0.0 0.0 0.0 98.4 0.0
Len. 5 0.0 0.0 0.0 0.0 94.7

F. PII Label Decomposition
See Table 10 for private information extraction success
rates, as broken down by the PII labels of the extracted to-
kens. The distribution of PII labels is clearly not uniform
and, more broadly, most tokens are not labeled to be PII.

G. Exposed Token Probabilities in LLM
Providers UIs and APIs

See Figures 4 and 5 for examples of token probability vi-
sualisations in LLM provider UIs. More commonly, token
probabilities/ logits are made accessible through API calls.
See the documentation on this feature for:

• OpenAI’s ChatGPT [https://platform.openai.com/
docs/api-reference/chat/create]

• Google’s Gemini [https://ai.google.dev/api/generate-
content#candidate]

• DeepSeek’s R1 [https://api-docs.deepseek.com/api/
create-chat-completion#request]
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Table 10: Total number of tokens in the Privacy dataset compared to the amount of tokens exactly inverted (at the exact positions) by
each algorithm, broken down by the PII label assigned to those tokens in the dataset.

PII Label Total Tokens Inverted Tokens

SODA GCG Inv. Model

None 77228 2260 640 167
GIVENNAME 2935 29 7 0

SURNAME 1613 20 5 0
USERNAME 1520 15 1 0

IDCARDNUM 1374 15 2 0
CITY 1329 8 2 0

TELEPHONENUM 1251 11 3 0
SOCIALNUM 1237 1 0 0

ACCOUNTNUM 1140 5 0 0
PASSWORD 1040 9 2 4

EMAIL 1010 2 4 0
ZIPCODE 965 8 0 0
TAXNUM 938 4 0 0
STREET 901 3 1 0

DRIVERLICENSENUM 866 3 0 0
DATEOFBIRTH 829 3 2 0
BUILDINGNUM 713 1 0 0

CREDITCARDNUMBER 611 2 0 0

Figure 4: Token highlighting present in LLM responses when using the llama.cpp interface for running open source models, reflecting
the probabilities of those tokens being sampled during generation.
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Figure 5: Token highlighting present in LLM responses when using the OpenAI Playground, reflecting the probabilities of those tokens
being sampled during generation.
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