
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON REWARD FUNCTIONS FOR SELF-IMPROVING
GENERAL-PURPOSE REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompting a Large Language Model (LLM) to output Chain-of-Thought (CoT)
reasoning improves performance on complex problem-solving tasks. Moreover,
several popular approaches exist to “self-improve” the CoT reasoning abilities of
LLMs on tasks where supervised (question, answer) datasets are already avail-
able. An emerging line of work explores whether self-improvement is possible
without these supervised datasets, instead utilizing the same large, unstructured
text corpora as used during pre-training. This would overcome the data availabil-
ity bottleneck present in current self-improvement methods, and open the door to-
wards compute-only scaling of language model reasoning ability. We investigate
a fundamental question in this line of work: What constitutes a suitable reward
function for learning to reason during general language model pretraining? We
outline the desirable qualities of such a reward function and empirically demon-
strate how different functions affect what reasoning is learnt and where reasoning
is rewarded. Using these insights, we introduce a novel reward function called
Reasoning Advantage (RA) that facilitates self-improving CoT reasoning on free-
form question-answering (QA) data, where answers are unstructured and difficult
to verify. We also perform an exploratory experiment optimizing RA on general
unstructured text using offline RL, and our analysis indicates that future work
should investigate methods for generating a more diverse set of CoTs.

1 INTRODUCTION

Large Language Models (LLMs) have become increasingly effective at solving complex reasoning
tasks (Huang & Chang, 2022; Kojima et al., 2023; Wei et al., 2023; Havrilla et al., 2024b). A
key driver of this success has been the discovery of Chain-of-Thought (CoT) reasoning (Wei et al.,
2023), whereby a model outputs a step-by-step “thought process” before arriving at a final answer.

While some CoT reasoning ability emerges naturally from pretraining on unstructured web-text data
(Fu et al., 2023), it is through further supervised finetuning (SFT) on curated question-answering
(QA) datasets (Saparov & He, 2023), as well as Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022), that CoT becomes such a powerful tool. Considerable effort is being
placed in curating large-scale (question, CoT, answer) datasets (Cobbe et al., 2021; Saparov & He,
2023; Liu et al., 2023), with models increasingly being used “in the loop” to help generate initial
reasoning traces or refine existing ones (Zelikman et al., 2022; Zhang et al., 2024). In certain do-
mains like mathematics, it is also possible to further automate dataset generation by sampling many
CoTs and selecting those which lead to ground-truth answers (Zelikman et al., 2022). However,
despite these recent advancements, there are significant limitations to relying on curated datasets for
improving CoT abilities. It is becoming increasingly difficult and prohibitively expensive to curate
sufficiently challenging, large-scale (question, CoT, answer) datasets across the diverse set domains
that today’s general models can tackle. For instance, a popular benchmark of just 500 graduate-level
biology, physics, and chemistry questions with CoT reasoning and answers cost over $120,000 to
produce and required thousands of human expert hours (Rein et al., 2023).

To address these limitations, an emerging line of work explores self-improving CoT reasoning ability
in a self-supervised setting—leveraging the large, unstructured datasets used for pretraining (Zelik-
man et al., 2024) instead of relying on curated QA or RLHF datasets. In this new setting, the LLM
learns to produce CoT reasoning for the task of next-token prediction: given n tokens from the pre-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

training corpus, the model generates a CoT and receives a reward based on how well the CoT
helps predict the following m tokens. This is an exciting prospect, as we have trillions of tokens
of unstructured text encompassing much of human knowledge. Therefore, learning to self-improve
CoT reasoning on pretraining scale data might overcome the data availability bottleneck in current
self-improvement methods, opening the door towards compute-only scaling of reasoning ability.

While there have been some initial efforts towards self-improving CoT during pretraining, we inves-
tigate a fundamental problem in this emerging line of work: What constitutes a suitable reward
function for reasoning during general language model pretraining? In Section 4, we outline
the desirable qualities of such a reward function, and in Section 5.1, we empirically investigate how
different functions affect:

1. What reasoning is rewarded—the ability to distinguish effective CoT reasoning

2. Where reasoning is rewarded—the ability to pick useful locations to produce CoT reasoning

To our knowledge, our work is the first to provide this type of analysis on reward functions towards
self-improving CoT reasoning on unstructured text. Our investigations reveal critical shortcomings
in commonly used reward functions, including an inability to differentiate between meaningful CoT
reasoning and random word sequences (poor what: failing to reward effective reasoning), as well
as a tendency to incentivize reasoning at locations where predicting following tokens is trivial (poor
where: inability to pick out useful locations for reasoning). Drawing on these insights, we introduce
a novel reward function called Reasoning Advantage (RA), an augmentation of standard language
modeling loss, and show that it addresses many of these limitations.

To facilitate more efficient study of self-improving CoT reasoning, we also introduce an open-
ended, free-form QA dataset called MMLU-FREE-FORM by adapting the popular MMLU dataset
(Hendrycks et al., 2020) to be closer to the unstructured text setting. Specifically, by removing its
multiple-choice format and requiring models to generate full, unstructured answers—which are hard
to verify using exact-match accuracy heuristics (see Figure 6). Our purpose in creating MMLU-
FREE-FORM is to make the smallest possible change to MMLU that reveals the limitations of exist-
ing reward functions. It acts as an intermediate benchmark between improving CoT reasoning using
curated (question, CoT, answer) datasets and the challenging, unsolved task of self-improving CoT
reasoning on unstructured text.

MMLU-FREE-FORM does not allow for using exact-match accuracy as a reward metric (similar
to unstructured pretraining text), and yet offers a higher density of clear opportunities for CoT rea-
soning compared to typical pre-training corpora. This makes it an ideal stepping-stone towards the
ultimate goal of self-improving CoT reasoning on unstructured text. In Section 5.2, we demonstrate
that RA is the only reward function which enables self-improvement of CoT reasoning on MMLU-
FREE-FORM, improving zero-shot transfer accuracy on GSM8K (Cobbe et al., 2021) by nearly 7%,
compared to barely when trained with other reward functions.

Using our Reasoning Advantage (RA) reward function, we conduct an initial experiment on self-
improving CoT reasoning on general unstructured text using OpenWebMath (Paster et al., 2023),
a collection of 14.7 billion tokens of maths-heavy text. Our results in Section 6 indicate that the
offline RL algorithm employed is not sufficiently powerful to escape the local optimum of extremely
conservative CoT reasoning that just summarizes previous information instead of trying to solve the
problem. Future work should investigate methods for generative a more diverse set of CoTS. To
facilitate future work, we will open-source all of our code, which runs on academic compute.

In summary, our main contributions are as follows:

• We establish desirable criteria of reward functions for self-improving CoT reasoning on
unstructured text at pretraining scale.

• We provide empirical evidence demonstrating how different reward functions impact both
the quality of CoT reasoning (what reasoning is rewarded) and the ability to pick out useful
locations to produce CoT reasoning (where reasoning is rewarded).

• We introduce MMLU-FREE-FORM, an open-ended QA dataset that facilitates more effi-
cient study of self-improving CoT reasoning and reveals the limitations of commonly used
reward functions. It serves as an intermediate benchmark between curated QA datasets and
general language modeling on unstructured text.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We propose Reasoning Advantage (RA), a novel reward function based on clipped nor-
malized loss, and demonstrate that RA is the only reward function which facilitates
self-improvement of CoT reasoning on MMLU-FREE-FORM, a key step towards self-
improving reasoning on unstructured, pretraining-scale text.

• While our work does not solve the challenging problem of self-improving CoT reasoning
on unstructured text at the pretraining scale, we conduct an initial experiment and provide
key insights into how future work might make further headway in this direction. Specif-
ically, while we are unable to generalize when optimizing RA using a simple offline RL
algorithm on OpenWebMath (Paster et al., 2023), our analysis suggests that future works
should investigate ways to better explore the space of possible CoTs. This includes moving
towards more online RL algorithms, in order to escape the local optimum of learning con-
servative CoT reasoning strategies that just summarize prior information from the context.

• We will open source all of our code, which runs on academic compute, to facilitate future
work in this direction.

2 BACKGROUND

CoT Reasoning Given n prefix tokens p, performing CoT reasoning refers to an LLM M gener-
ating a sequence of reasoning tokens r before the m answer suffix tokens s. The goal of generating
CoT reasoning tokens before the final answer is to maximize PM(s|p, r), the probability of the
answer suffix tokens s conditioned on both the prefix p and the CoT reasoning tokens r. The prefix-
suffix pair can be any token sequence, ranging from question-answer pairs in mathematical datasets
to arbitrarily split sentences from an unstructured text corpus.

Traditionally, CoT reasoning has been elicited by pretending few-shot examples of (question, CoT,
answer) to the prefix. This approach relies the pattern-completion tendencies of LLMs to continue
this structure for subsequent outputs. Alternatively, it has also become popular to elicit CoT rea-
soning by appending prompts like “Let’s think step by step.” to the prefix (e.g., to the end of input
questions), especially for instruction-tuned models.

Self-Improving CoT Reasoning as Reinforcement Learning Self-improvement refers to any
process where an LLM is finetuned on self-generated data, leading to performance gains without
human intervention or assistance from larger models. This process can be framed as a Reinforcement
Learning (RL) problem. In RL, an agent interacts with an environment by taking actions a ∈ A in
states s ∈ S to maximize cumulative rewards. The agent receives a reward Rt = R(st, at) after
each action at and aims to learn a policy π(a|s) that maximizes the expected cumulative discounted
reward Gt =

∑∞
k=0 γ

kRt+k, where γ ∈ [0, 1] is the discount factor.

In the context of CoT generation, each token can be viewed as an action at, with the current string of
generated tokens representing the state st so far. We focus on a sparse reward setting where rewards
are 0 until CoT generation is complete, and with a discount factor γ = 1. The reward function maps
the prefix p, CoT reasoning tokens r, and answer suffix s to a real number R(p, r, s) ∈ R, with
higher rewards for CoTs that better predict the suffix. As long as this reward function doesn’t require
external intervention from humans or more powerful models, optimizing it through RL methods
constitutes self-improving CoT reasoning.

Self-Improving CoT Reasoning Using Supervised Datasets When a supervised dataset of (ques-
tion, answer) pairs is available, accuracy can serve as a reward function:

Racc(p, r, s) =

{
1 if argmaxs′ PM(s′|p, r) = s

0 otherwise
(1)

In this case, we can sample multiple CoTs and finetune on those that lead to correct answers (Dong
et al., 2023; Zelikman et al., 2022). Iterating this process yields increasingly high-quality CoT gen-
eration, and this iterative self-improvement is equivalent to online reinforcement learning (Zelikman
et al., 2022). There are also more complex methods, such as Process Reward Models (PRMs), which
provide dense rewards for each step in a CoT and address credit assignment challenges (Ma et al.,
2023; Wang et al., 2023; Havrilla et al., 2024b; Lightman et al., 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Self-Improving CoT Reasoning on General-Purpose, Unstructured Data This setting explores
the possibility of self-improving CoT reasoning given only an unstructured corpus of text, without
access to a curated dataset of (question, CoT, answer) or (question, answer) pairs. In this setting, the
model generates and inserts intermediate CoT reasoning at various points in a sequence of tokens
(for example, at various points in a web-document that shows how to apply the quadratic formula).

A key challenge in this setting is evaluating the performance of CoT reasoning tokens inserted
into general-purpose text. The accuracy-based reward Racc is ineffective here, as it would almost
always be 0, providing minimal learning signal. Instead, language modelling performance—the log-
likelihood of the suffix conditioned on the prefix and CoT—serves as a more natural starting point
for a reward function:

Rloss(p, r, s) = logPM(s|p, r) (2)

We aim to help advance the field towards this setting, enabling self-improving CoT reasoning on un-
structured text at the pretraining. In this paper, we specifically focus on identifying key shortcomings
of commonly used reward functions and introducing a new function to address these limitations.

3 RELATED WORK

LLM Reasoning Various works have looked at improving the reasoning capabilities of LLMs.
Rajani et al. (2019) improve the commonsense reasoning ability of language models by training on
human explanations for commonsense problems. Nye et al. (2021) generate tokens in a “scratchpad”
for intermediate computations when solving multi-step reasoning problems. On difficult algorith-
mic tasks, Pfau et al. (2024) show that LLMs can even be trained to leverage meaningless filler
tokens under dense supervision, in place of legible CoTs. Further, theoretical analyses by Merrill &
Sabharwal (2023) and Feng et al. (2024) show that CoT improves the expressivity of Transformers
(Vaswani et al., 2017).

LLM Self-Improvement Using Supervised Datasets Iterated learning approaches involve LLMs
generating new outputs and using “successful” ones to improve generation quality (Anthony et al.,
2017; Vani et al., 2021; Polu et al., 2022). Such methods have been applied to LLMs (Zelikman
et al., 2022; Huang et al., 2022; Chen et al., 2024). However, much of the research on LLM
self-improvement has been limited to question-answer domains where accuracy is an appropri-
ate success measure, such as multiple-choice questions or simple numeric answers. This limi-
tation is evident in the policy gradient objective approximated by STaR (Zelikman et al., 2022):
∇J(M,X, Y) =

∑
i Er̂i,ŷi∼pM (·|xi)[⊮(ŷi = yi) · ∇ log pM (ŷi, r̂i|xi)], which makes use of an in-

dicator function with respect to ground truth labels. Clearly, this breaks down in settings where
ground truth labels are not available, such as open-ended or “free-form” QA setting as well as
general-purpose language modelling. Havrilla et al. (2024a) show that Expert Iteration (Anthony
et al., 2017), a self-improvement method based on iterative Supervised Fine-Tuning (SFT), outper-
forms RL in their evaluations. Building on this, our work extends RAFT (Dong et al., 2023), which
also uses iterative SFT, by introducing a new reward function called Reasoning Advantage (RA) for
filtering synthetically generated CoTs.

Process Reward Models (PRMs) (Ma et al., 2023; Wang et al., 2023; Havrilla et al., 2024b; Lightman
et al., 2023) have been used to enhance reasoning via Reinforcement Learning (RL) by rewarding
individual problem-solving steps in a CoT. However, PRM training is computationally expensive,
usually involving backtracking and resampling from specific points in the CoT, and these points
from which to resample are usually determined by hard-coded heuristics such as new line breaks.

Self-Supervised LLM Self-Improvement Quiet-STaR (Zelikman et al., 2024) looks to self-
improve reasoning during general language modeling. Zelikman et al. generate a CoT at every
token in an unstructured text document, using the negative cross-entropy loss on the suffix tokens
as a reward. They employ REINFORCE (Williams, 1992) to optimize the loss of the suffix s given
a prefix p and a reasoning trace r, with a baseline for variance reduction. Importantly, perform-
ing CoT reasoning at every token is highly computationally expensive, making it difficult to use
for pretraining-scale datasets and also limiting the length of CoT sequences that can be learnt (the
reasoning learnt in Quiet-STaR is quite short and simple). Regardless, Quiet-STaR provides key in-
sights into how to optimize for reward on general, unstructured text—a very difficult problem. Our
work aims to take a step back and investigate the reward functions we optimize to self-improving

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

reasonin ability, with particular focus on what reasoning we should be rewarding and whether we
can take steps towards determining where is the best place to produce CoT reasoning.

RHO-1 (Lin et al., 2024) investigates whether the sample efficiency of general language pretraining
can be improved by selectively training on more useful tokens in a dataset, instead of training on all
tokens. Lin et al. (2024) show that pretraining a model in this way enhances downstream reasoning
ability, and we are excited for future work to investigate a combination of RHO-1 with our proposed
RA reward function (i.e., to perform RL for CoT on datapoints that are suitable for reasoning, not
noisy, and not yet learned).

4 REWARD FUNCTIONS FOR SELF-IMPROVING COT REASONING

In Section 2, we framed self-improving Chain-of-Thought (CoT) reasoning as a Reinforcement
Learning (RL) problem. Given n tokens from a pre-training corpus (the prefix p), the model gener-
ates a CoT r and receives a reward based on how well the CoT helps predict the following m tokens
(the suffix s). Previous works have primarily explored two reward functions for self-improving CoT
reasoning: loss and accuracy. Here, we explore other potential reward functions and their character-
istics from the perspective of facilitating self-improving CoT reasoning on unstructured web-text at
pretraining scale.

There are several key criteria to consider when designing such a reward function. Primarily, it should
reward high-quality reasoning over CoTs containing logical errors or simply random characters. As
shown in Section 5.1, this is not always the case. Moreover, for the purposes of self-improving CoT
reasoning, the reward function must not depend on an stronger source of intelligence (i.e., using a
more powerful LLM to verify the correctness of its CoT). Further, for reasonable use on pretraining
scale datasets, evaluating the function should be fast and ideally parallelizable—requiring a minimal
number of model forward passes.

In this work, we do not consider using an LLM-as-judge to evaluate or verify CoTs since: (1) it
may rely on a stronger model, which is not self-improvement, and (2) while one could use the same
model for both generation and verification, this approach incurs too much computational overhead
to apply to pretraining scale data as it requires the decoding of an answer to be verified against the
ground truth, and the verifier itself needs to generate CoT tokens. We also do not consider accuracy-
based metrics, since free-form answers are often impossible to verify using exact-match, and using
an LLM-as-judge to compute accuracy faces the issues mentioned above. Thus, we choose to focus
on the family of “loss-based” reward functions. These functions compute the token-by-token log-
likelihood of the suffix tokens s0,...,m−1, given the CoT r and prefix p:

logP (s|p, r) = logP (s0|p, r)
+ logP (s1|p, r, s0)
+ logP (s2|p, r, s0,1)
+ ...

(3)

The most basic reward function in this family is R(p, r, s) = logP (s|p, r). This family of reward
functions offers several key advantages. They are computationally efficient, since they can be eval-
uated by an autoregressive model in a single forward pass and can be parallelized across a batch
of CoTs. Also, they do not require access to any external form of intelligence, a requirement for
self-improvement. Most importantly, this family of functions does not rely on an using exact-match
accuracy to compare with the answer suffix, enabling multiple valid answers and accommodating
ambiguity in formatting (a key property of unstructured text).

While there are many possible ways to augment the basic loss-based reward function R(p, r, s) =
logP (s|p, r), we focus our analysis on two key modifications: clipping the log probabilities and
incorporating a baseline value.

Clipping: We clip (aka clamp) the minimum value of the token-level log probabilities to some
−ϵ such that Rclipped(p, r, s) =

∑m
i=0 max [logP (si|p, r, s0:i),−ϵ]. This constrains the loss con-

tribution of each suffix token to the range [−ϵ, 0). In Section 5.1, we demonstrate that this clipping
mechanism helps reward functions distinguish between well-formed CoTs containing a few logical
errors and degenerate CoTs that resemble random tokens.

Baseline Incorporation: We explore incorporating a baseline value both with normalization (R−
B)/B and without normalization R−B, where R is the reward and B is the baseline value. A full

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Criteria Accuracy Loss Loss with baseline RA LLM-as-judge

Uses no external intelligence Yes Yes Yes Yes Yes2

Rewards good reasoning over random Yes No No Yes Yes
Robust to multiple choices in answer No Yes Yes Yes Yes3

Robust to answer perplexity Yes No No Yes Yes
Fast and parrallelisable No1 Yes Yes Yes No

Table 1: To what extent different reward functions meet our criteria. By RA, we mean loss aug-
mented with clipping and the no CoT baseline, as defined in Appendix A. 1whilst we do derive
a generation free variant ‘expected accuracy’ in Appendix A that is as fast as loss based methods,
the variant of accuracy used widely through the literature requires answers to be sampled, and so
is slow. 2Whilst acting as a verifier may be possible for larger models under heavy prompting, we
found it difficult to consistently verify solutions with the 7B models we used for generation and
finetuning. 3Again, whilst this may be possible with more work, we found it very difficult to have
models consistently grade CoTs that yielded answers close to, but not exactly, the right answer.

list and derivation of the reward functions we investigate can be found in Appendix A. Specifically,
we investigate the three baseline values:

1. Average reward: 1
n

∑n
i=1 R(p, ri, s), where ri are multiple generated CoTs.

2. Empty CoT reward: R(p, “ ”, s), where the CoT is an empty string.

3. Random CoT reward: R(p, rrandom, s), where rrandom is a sequence of random tokens.

In the main text of this paper, we focus on two main combinations of these augmentations (Ap-
pendix B.1 contains results for additional reward functions):

• Delta Loss: RDL = R(p, r, s)−R(p, “ ”, s), where we subtract the “Empty CoT” baseline.

• Reasoning Advantage (RA): RRA =
Rclipped(p,r,s)−Rclipped(p,“ ”,s)

Rclipped(p,“ ”,s) , which is clipped delta
loss normalized by the “Empty CoT” baseline.

We find that Reasoning Advantage (RA) is particularly effective. It satisfies each of the identified
criteria in Table 1 and, in Section 5.1, we empirically demonstrate that RA can best distinguish effec-
tive CoT and pick out useful locations for CoT reasoning. Moreover, in Section 5.2, we demonstrate
that RA is the only reward function which enables self-improveming CoT reasoning on free-form
QA data, a key step towards self-improving CoT at on unstructured, pretraining-scale text.

5 EXPERIMENTS

5.1 REWARD FUNCTIONS FOR SELECTING WHAT & WHERE TO REASON

In this section, we empirically investigate a fundamental problem when self-improving CoT reason-
ing on unstructured, pretraining text: What constitutes a suitable reward function for reasoning
during general language model pretraining? Building on the reward function criteria Section 4,
we empirically investigate how different reward functions affect what and where reasoning is re-
warded. Our two experiments reveal critical shortcomings in commonly used reward functions and
demonstrate the advantages of our novel Reasoning Advantage (RA) function in addressing these
limitations.

What reasoning is rewarded This first experiment evaluates the ability of different reward func-
tions to distinguish between three categories of CoTs: correct, incorrect, and randomly generated.
We select 1,000 prefix-suffix pairs from random locations in the FineWeb text corpus of unstructured
web-text data (Penedo et al., 2024). Then, for each pair, we generate the three types of CoT: corrent,
incorrect, and random. “Correct” CoTs are generated using GPT-4o with post-rationalization—by
showing GPT-4o both the prefix and suffix, but instructing the model to generate a CoT without
explicitly repeating the suffix (similar to Zelikman et al. (2022)). “Incorrect” CoTs are generated by
GPT-4o without post-rationalization—while these CoTs often exhibit sophisticated reasoning, they
typically do not predict the exact suffix as well as the “correct” CoTs, which is enough for the pur-
poses of this experiment. Finally, “random” CoTs consist of strings of random words and serve as
our baseline. The goal is to evaluate how well different reward functions can rank these CoT types,
with the ideal ordering: correct > incorrect > random.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Reward What Where
Function (Acc) (AUC)

RA 66.3 77.0
Delta Loss 58.3 64.4
Loss 44.6 39.4

Table 2: Reward function performance
for distinguishing CoT types (What)
and identifying optimal CoT placement
(Where). See Appendix B.1 for full re-
sults and confidence bounds.

To evaluate how well a reward function distinguishes be-
tween these CoT types, we compute the reward score for
all CoTs—using Mistral-7B-Instruct (Jiang et al., 2023)
to compute the log probabilities—and partition them into
thirds: classifying the top third as “correct,” the middle
third as “incorrect,” and the bottom third as “random.”
An effective reward function should rank the CoTs in
the ideal order: correct > incorrect > random. The re-
sults in Table 2 demonstrate that RA performs best among
loss, delta loss, and RA. Moreover, Table 3 shows results
for the complete list of evaluated reward functions. No-
tice that while RA without normalization performs just
slightly better, the normalized version significantly out-
performs all other functions in the where experiments be-
low. Hence, we pick the normalized version as our proposed reward function. Table 3 also shows
the “Average reward” baseline, which is used Quiet-STaR (Zelikman et al., 2024), performs poorly
in this setting—due to a lack of variation in reward over different CoTs.

The histogram in Figure 1 reveals that standard loss struggles primarily in distinguishing between
“incorrect” and “random” CoTs. Interestingly, when we simplify to binary classification between
only “correct” and “incorrect” CoTs, non-clipping methods perform similar to clipping methods,
which suggests that the main advantage of clipping lies in distinguishing truly random reasoning.

Where reasoning is rewarded Next, we investigate how different function reward reasoning at
different locations in a document. Using 1,000 problems each from GSM8K (Cobbe et al., 2021),
CSQA (Talmor et al., 2018), and MMLU (Hendrycks et al., 2020), we first format each problem’s
question, multiple choice options, and answer as a single text string. We then create four (prefix,
suffix) pairs per problem by splitting at different points: 1) mid-question, 2) after the question but
before the multiple choice options, 3) after the multiple choice options (the ideal location for CoT
reasoning), and 4) mid-answer. This setup aims to mimic a key fact about unstructured pretrain-
ing text: not all locations are suitable for CoT reasoning. That is, reasoning may be unhelpful if
produced too early (insufficient context) or too late in a document.

To evaluate each reward function, we frame this as a binary classification task: identifying the ideal
location (after the multiple choice answers but before the solution) versus the three suboptimal lo-
cations. Using reward as a classifier and computing the AUC for this classification task. We find
that RA performs best, followed by delta loss and standard loss (see Table 2). Notice that functions
which use a baseline consistently outperform those without, with clipping providing additional im-
provement. Particularly, subtracting the “Empty CoT” baseline helps distinguish between locations
that have low loss due to effective CoT reasoning versus locations that have low loss because the
suffix is trivial to predict without any reasoning (i.e., with an empty CoT). This partially explains
why standard loss performs so poorly: it favors locations halfway through the answer where suffix
prediction becomes trivial. Table 4 shows results for the complete list of evaluated reward functions.

Summary Across both experiments, the Reasoning Advantage (RA) reward function outper-
formed standard loss and delta loss. As for the two main augmentations, clipping and baseline, we
can summarize their effects. Clipping is often beneficial, almost never harmful, and requires min-
imal extra computation. We explore the impact of different clipping values in Appendix B.1 (Fig-
ure 5). And incorporating a baseline value provides a substantial boost in performance—especially
the “Empty CoT” baseline. Moreover, a key advantage of the “Empty CoT” baseline is that it doesn’t
require generating any additional CoTs per (prefix, suffix) pair. In contrast, the “Average CoT” base-
line requires taking the average loss over multiple CoTs for a single location. Appendix B.1 contains
tables which show results for all combinations of augmentations. Notice that two combinations and
the non-normalized version of RA performed slightly better on the what experiments, but they per-
formed much worse on the where experiments. RA is the only function with strong performance on
both tasks.

5.2 LEARNING TO REASON ON FREE-FORM QA DATA

To investigate the ability of different reward functions to facilitate self-improving CoT during pre-
training, we create a new “free-form” QA dataset called MMLU-FREE-FORM by adapting the pop-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

150 125 100 75 50 25 0
Loss

0

200
Fr

eq
ue

nc
y

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
RA

0

200

400

Fr
eq

ue
nc

y

Post rationalised "Correct" CoTs Non post rationalised "incorrect" CoTs CoTs of random tokens

Figure 1: (What to reward) Distribution of reward scores across different CoT types using standard
loss (left) and RA (right). Each histogram shows reward distribution: “correct” post-rationalized
CoTs (blue), “incorrect” non-post-rationalized CoTs (orange), and “random” token CoTs (green).
Notice, RA can better differentiate between incorrect and random CoTs. See details in Section 5.1.

ular MMLU training dataset (Hendrycks et al., 2020) to be closer to the unstructured text setting.
Specifically, by removing its multiple-choice format and requiring models to generate full, unstruc-
tured answers—which are hard to verify. We use the entire labeled free-form solution as the suffix
when computing rewards. This induces many of the challenges found in reasoning on unstructured
text. For one, problems often become significantly more difficult to answer without multiple choice
options, mirroring the complexity of next-token prediction in pretraining text. In some cases, the
problems become almost impossible to answer (e.g., “Which of the following is the correct method
to multiply 32 x 18?”). Moreover, the free-form nature of answers introduces substantial variance in
response length and structure, making it challenging to predict an answer exactly. Finally, the same
correct answer can be expressed in numerous valid ways (e.g., “Henry VIII had 6 wives” versus
“In total there were 6 different women who were married to Henry the Eighth”). Without a list of
multiple-choice options, it is unclear which answer should preferred. These challenges make the
MMLU-FREE-FORM more representative of real-world pretraining text corpora.

Our purpose in creating MMLU-FREE-FORM is to make the smallest possible change to MMLU
that reveals the limitations of existing reward functions. It acts as an intermediate benchmark be-
tween improving CoT reasoning using curated (question, CoT, answer) datasets and the challenging,
unsolved task of self-improving CoT reasoning on unstructured text. Moreover, this dataset provides
a higher density of clear opportunities for CoT reasoning compared to typical pretraining corpora,
since we know that reasoning is particularly beneficial when predicting answers to questions, and
prior works have shown that LLM reasoning ability on MMLU can be improved with only few thou-
sand labeled CoT examples. Thus, for the purposes of our investigations, MMLU-FREE-FORM
enables a more compute and time efficient study of reward functions, acting as a stepping stone
towards self-improving CoT reasoning on the type of truly unstructured text seen during pretraining
(i.e., OpenWebMath (Paster et al., 2023)).

We will release MMLU-FREE-FORM to the research community, and we hope it will serve as a
helpful intermediate benchmark for future work to progress toward the unsolved problem of self-
improving CoT reasoning on unstructured, pretraining-scale text. Further discussion about MMLU-
FREE-FORM can be found in Appendix B.2.

Now, to self-improve CoT reasoning using MMLU-FREE-FORM as our dataset, we utilize a simple
offline RL method. First, we generate 16 CoTs for each question (using Mistral-7B-Instruct with a
temperature value of 0.5) and compute the reward for each CoT using the entire labeled free-form
solution as the suffix. Then, we filter the CoTs with the highest reward (Dong et al., 2023), finetune
on MMLU-FREE-FORM containing these self-inserted CoTs, and evaluate the trained model on a
held-out test set. Notice that since all self-inserted CoTs are the same for each reward function, we
can directly and efficiently compare each of them.

We test this pipeline using Mistral-7B (Jiang et al., 2023) and find that only RA facilitates general-
ization—both on the in-domain MMLU test set (see Figure 2a) and on zero-shot transfer to GSM8k
(Cobbe et al., 2021) (see Figure 2b). These figures show the probability of the answer given the
question and the generated CoT. This metric is also known as “expected accuracy”, since it esti-
mates how often the model would generate the exact ground truth answer if we repeatedly sampled
completions given the question and CoT reasoning. We produce 95% confidence intervals through
bootstrapping (LaFlair et al., 2015).

In more detail, only RA is able to substantially increase the answer probability on the MMLU test
set, while filtering CoTs by standard loss, delta loss, or just randomly, improves test performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) MMLU Test Performance

0 1000 2000 3000 4000
N training steps

0.10

0.15

0.20

0.25

0.30

GS
M

8K
 E

xp
ec

te
d

Ac
cu

ra
cy

Zero Shot GSM8K Expected Accuracy

random
no clip, no baseline
clip, no baseline
clip, minus baseline < 0
clip, minus baseline / baseline < -0.2

(b) GSM8K Transfer Performance

Figure 2: Reward function performance for self-improving reasoning on MMLU-FREE-FORM.
Only RA (purple) facilitates generalization to MMLU test set and zero-shot transfer to GSM8k.
Functions yield different amounts of filtered data (so different “N training steps”). ‘<’ shows the
filtering threshold, all baselines are “Empty CoT”, and “random” means randomly picking CoTs.

by just a few percent and plateaus quickly with more steps. A full breakdown of in-domain MMLU
performance is shown in Figure 7 in Appendix B.2. Moreover, only RA facilitates zero-shot transfer
to GSM8K math problems—improving accuracy on by nearly 7%, compared to barely 0.5% when
trained with other reward functions. Notice that we were only able to train for 1,000 steps with RA,
since only 1,000 steps worth of generated CoTs were above the threshold of 0.2.

These strong results demonstrate that the resulting model learns generalizable reasoning—beyond
just matching specific token patterns in the data. Thus, by rewarding CoTs that best reduce some
form of loss on a suffix, we can enhance a model’s general reasoning ability. This aligns with
recent work (Du et al., 2024) showing that optimizing for loss during general pretraining improves
downstream reasoning performance. Moreover, this shows that RA’s key modifications to standard
loss (clipping, adding a baseline, and normalizing) are crucial for learning generalizable reasoning.

6 CHALLENGES AND FUTURE DIRECTIONS

As it becomes increasingly challenging and expensive to curate large-scale (question, CoT, answer)
datasets (Rein et al., 2023), the reasoning community has begun focusing on the challenging task of
self-improving CoT reasoning on unstructured, pretraining-scale text. Our work frames this chal-
lenging task as an RL problem and demonstrates the effectiveness of RA at identifying useful reason-
ing, determining useful locations for reasoning, and facilitating self-improvement in the simplified
MMLU-FREE-FORM setting. There is still more work to be done in order to solve the full, unstruc-
tured pretraining setting. In this section, we present an exploratory experiment that provides key
insights into the barriers that must be overcome to achieve self-improvement at pretraining scale.

Specifically, we attempt to use our novel Reasoning Advantage (RA) reward function with the of-
fline RL procedure from Section 5.2 to self-improve CoT reasoning on OpenWebMath (Paster et al.,
2023), a pretraining corpus of unstructured web-text data. The two main steps of this procedure
are: (1) generate a large batch of CoTs and self-insert them into OpenWebMath, and (2) finetune on
the CoTs with the highest reward scores. Our analysis indicates that this method is not sufficiently
powerful to escape the local optimum of extremely conservative CoT reasoning that just summarizes
previous information instead of attempting to actually solve problems (see Appendix C for exam-
ples). In Section 6.1, we provide key insights into why this method is not sufficient. In Section 6.2,
we provide a more detailed experimental setup and additional results.

6.1 KEY INSIGHTS (NEW SUBSECTION)
To understand why this procedure fails on OpenWebMath, we isolate the problem into two key
components: generating diverse CoTs and identifying useful CoTs. In our offline RL approach, the
role of the reward function is purely to identify useful CoTs to use for training, and Section 5.1
demonstrates that RA excels at this task. This suggests that the remaining challenge lies in genera-
tion. Indeed, our analysis shows that only 0.01% of the generated CoTs achieve a reward above 0.2,
which is our filtering threshold for RA (a decent threshold for “good reasoning” in our experience).
Moreover, many of the CoTs that passed the filtering threshold exhibited the conservative strategy

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

described previously: they simply summarize past information from the context. This explains why
the model learned to be overly conservative. However, these overly conservative CoTs which made
it past the RA threshold were still superior to those that did not pass the threshold (those ones mainly
contained incorrect reasoning that predicted the subsequent tokens incorrectly). This indicates that
RA actually succeeded at its job of identifying the best reasoning from the generated batch of CoTs,
and that the main issue indeed lies with the lack of diversity in the generated CoTs.

Thus, to facilitate self-improvement using RA, we must crucially generate a diverse-enough set of
CoTs so that there are enough useful samples for RA to identify. This remains a critical barrier
for future work to investigate. To increase the diversity of explored CoTs, future work might use
Quality-Diversity (Mouret & Clune, 2015) or other evolutionary techniques (Fernando et al., 2023;
Samvelyan et al., 2024), which could generate more diverse CoTs. It would also be worth exploring
different prompting strategies (we used a single system prompt to generate these CoTs, and did not
spend much time prompt engineering). Better exploration may also be facilitated by using online
RL, but the only existing method in this direction generates a CoT at every token in a document (Ze-
likman et al., 2024), which is highly inefficient. Thus, we believe that our computationally feasible
offline RL approach of generating CoTs in large, offline batches and performing supervised fine-
tuning is key to enabling the self-improvement of CoT reasoning at the pretraining scale. However,
future work should investigate ways of generating a more diverse batch of CoTs in order for this
method to work. One possible idea is to use a combination of RHO-1 (Lin et al., 2024) and RA.

To encourage future research in this direction, we will open-source our offline RL code, which runs
on an academic compute budget. We will also open-source MMLU-FREE-FORM, which we believe
acts as a useful intermediate benchmark between curated QA data and general language pretraining.

6.2 EXPERIMENTAL SETUP AND ADDITIONAL RESULTS (NEW SUB SECTION)
We first finetune Mistral-7B-Instruct (Jiang et al., 2023) on a small set of CoTs to learn the
“[THOUGHT]...[/THOUGHT]” syntax. Then, we randomly sample 50,000 (prefix, suffix) pairs
from OpenWebMath and generate CoTs for each location using Mistral-7B-Instruct with a temper-
ature value of 0.5. From this pool of generated CoTs, we create three variants of an augmented
OpenWebMath dataset by selecting 3,200 CoTs using different filtering methods: (1) random selec-
tion, (2) best loss scores, and (3) best RA scores.

Throughout training, we evaluate each model’s CoT reasoning ability on a holdout set of OpenWeb-
Math documents. At each checkpoint, we identify locations where “[THOUGHT]” is the predicted
next token, generate CoTs at these points, and measure three metrics on the holdout documents (ex-
cluding CoT tokens but using them as context): standard loss, delta loss, and RA. Figure 8 show
three plots—each measuring one of these metrics at various checkpoints throughout training. Notice
that each line represents an entirely different model trained on differently filtered CoTs.

7 CONCLUSION (UPDATED, BETTER CLARITY OF CONTRIBUTIONS)
As it becomes increasingly challenging and prohibitively expensive to curate large-scale (question,
CoT, answer) datasets, the LLM reasoning community has began to focus on the challenging task
of self-improving CoT reasoning on unstructured text at the pretraining scale. We frame this as a
reinforcement learning problem and investigate a fundamental question: What constitutes a suitable
reward function for learning to reason during general language model pretraining? We outline the
desirable qualities of such a reward, point out critical shortcomings in many commonly used reward
functions, and introduce Reasoning Advantage (RA), a novel reward function which addresses these
limitations. Further, we provide a comprehensive analysis on how different functions affect: (1) the
ability to identify effective CoT reasoning (what reasoning is rewarded), and (2) the ability to pick
out useful locations to produce CoT reasoning (where reasoning is rewarded). To our knowledge,
our work is the first to provide this type of analysis on reward functions for self-improving CoT
reasoning on unstructured text.

We introduce MMLU-FREE-FORM, a small step towards the full unstructured pretraining setting,
and demonstrate that only RA is able to facilitate generalization when self-improving CoT reasoning
on MMLU-FREE-FORM. There is still more work to be done in order to solve the full, unstructured
pretraining setting, and we present an exploratory experiment that provides key insights into the
barriers that must be overcome to achieve self-improvement at pretraining scale. Most importantly,
future work should investigate methods for generating a more diverse set of CoTs. We will open
source all of our code, which runs on academic compute, to facilitate future work in this direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and
tree search. Advances in neural information processing systems, 30, 2017.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https://arxiv. org/abs/2110.14168, 2021.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment, 2023.

Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of
language models from the loss perspective. arXiv preprint arXiv:2403.15796, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: Self-referential self-improvement via prompt evolution, 2023. URL https:
//arxiv.org/abs/2309.16797.

Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng, and Tushar Khot. Chain-of-thought hub: A
continuous effort to measure large language models’ reasoning performance, 2023. URL https:
//arxiv.org/abs/2305.17306.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching
large language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642,
2024a.

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravin-
skyi, Eric Hambro, and Roberta Railneau. Glore: When, where, and how to improve llm reasoning
via global and local refinements. arXiv preprint arXiv:2402.10963, 2024b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403, 2022.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2023.

11

https://arxiv.org/abs/2309.16797
https://arxiv.org/abs/2309.16797
https://arxiv.org/abs/2305.17306
https://arxiv.org/abs/2305.17306

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Geoffrey T LaFlair, Jesse Egbert, and Luke Plonsky. A practical guide to bootstrapping descriptive
statistics, correlations, t tests, and anovas. In Advancing quantitative methods in second language
research, pp. 46–77. Routledge, 2015.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, and Weizhu Chen. Rho-1: Not all tokens are what you need. CoRR,
abs/2404.07965, 2024. URL https://doi.org/10.48550/arXiv.2404.07965.

Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli Zhang, Qiji Zhou, and Yue Zhang. Logicot:
Logical chain-of-thought instruction-tuning, 2023. URL https://arxiv.org/abs/2305.
12147.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain of
thought. arXiv preprint arXiv:2310.07923, 2023.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites, 2015. URL
https://arxiv.org/abs/1504.04909.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text. arXiv preprint arXiv:2310.06786, 2023.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. arXiv preprint arXiv:2406.17557, 2024.

Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation
in transformer language models. arXiv preprint arXiv:2404.15758, 2024.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344,
2022.

Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain yourself!
leveraging language models for commonsense reasoning, 2019.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram H. Markosyan,
Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, Tim Rocktäschel,
and Roberta Raileanu. Rainbow teaming: Open-ended generation of diverse adversarial prompts,
2024. URL https://arxiv.org/abs/2402.16822.

12

https://doi.org/10.48550/arXiv.2404.07965
https://arxiv.org/abs/2305.12147
https://arxiv.org/abs/2305.12147
https://arxiv.org/abs/1504.04909
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2402.16822

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought, 2023. URL https://arxiv.org/abs/2210.01240.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, and Aaron Courville. Iterated learning
for emergent systematicity in vqa. arXiv preprint arXiv:2105.01119, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: A label-free step-by-step verifier for llms in mathematical reasoning. arXiv
preprint arXiv:2312.08935, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D Goodman. Star: Self-taught reasoner bootstrap-
ping reasoning with reasoning. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, pp. 15476–15488, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b, 2024. URL
https://arxiv.org/abs/2406.07394.

13

https://arxiv.org/abs/2210.01240
https://arxiv.org/abs/2406.07394

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A FORMAL DEFINITIONS

We look at the following metrics for evaluation of intermediate contemplation for next token pre-
diction, that is, given a prefix set of tokens p = p1, ..., pn, a generated set of intermediate reasoning
tokens r and a suffix of m tokens to predict s = s1,, sm, produce a score R(p, r, s) ∈ R. We use
P (s0|p+ r) to denote the probability distribution over all tokens on the first token of the suffix.

1. Accuracy (using generation): Generate, such as through sampling or via greedy decoding,
k continuations ŝ1, ..., ŝk of length ns from the input p+ r.

Raccuracy using generation =
1

k

k∑
i=1

I[ŝi = s] (4)

2. Accuracy (generation free): Accuracy using generation requires at least ns forward
passes. Instead, one can leverage the autoregressive nature of transformers to obtain the
probability distribution over next tokens for the entire answer simultaneously. That is input
the model p+ r + s and obtain P (ŝ0|p+ r), P (ŝ1|p+ r + s0), ... with one forward pass.
Looking at whether the argmax of this distribution is s is equivalent to accuracy above
using greedy decoding, and taking P (s|p+ r)

Rexpected greedy accuracy = Πns
i=1I[argmax(P (ŝi|p+ r + s:i)) = si] (5)

Rexpected accuracy = Πns
i=1P (ŝi|p+ r + s:i) (6)

3. Loss: We use the cross entropy loss over tokens, i.e:

Rcross entropy loss = −
ns∑
i=1

log(P (ŝi|p+ r + s:i)) (7)

4. Delta Loss: The difference in cross entropy between using and not using the reasoning.

Rdelta cross entropy loss = −
ns∑
i=1

log(P (ŝi|p+ r + s:i))−−
ns∑
i=1

log(P (ŝi|p+ s:i)) (8)

5. Normalised Delta loss: Different answers have varying levels of inherent predictability.
Thus desirable values for loss or delta loss can vary massively. To account for this, we
divide by the answer likelihood without reasoning.

Rnormalised delta cross entropy loss = Rdelta cross entropy loss/−
ns∑
i=1

log(P (ŝi|p+ s:i)) (9)

6. Clipped variants: We evaluate loss, delta loss and normalised delta loss with clipping
applied to the token log probabilities to prevent large values dominating. Our final results
leverage ϵ = −3. For example

Rclipped loss = −
ns∑
i=1

max[log(P (ŝi|p+ r + s:i)), ϵ] (10)

7. Normalised clipped delta loss (Reasoning Advantage): We combine the benefits of delta
loss, normalisation and clipping into one metric.

8. LLM-as-judge: Generate, such as through sampling or via greedy decoding, k continu-
ations ŝ1, ..., ŝk of length ns from the input p + r. Let M(p, r, ŝi, si) denote whether a
model considers ŝi to match be the correct answer of si.. Average over the k completions,
i.e:

RModel eval =
1

k

k∑
i=1

M(p, r, ŝi, si) (11)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENT DETAILS, RESULTS, AND VISUALIZATIONS

To compute the log probabilities for all reward functions, we used Mistral-7B-Instruct (Jiang et al.,
2023) finetuned on a small set of 1,000 GPT-4 generated CoTs that have been filtered for correctness
(by providing the model with the correct answer and asking whether it corresponds). This finetuning
allows us to start from a base model that is used to the format of:

Question: <question> ### Thought <reasoning> ### Answer: <response>.

B.0.1 ADDITIONAL VISUALIZATIONS FOR WHAT & WHERE TO REASON

Figure 3 and Figure 4 provide additional visualization for the What and Where experimental results
from Section 5.1, respectively.

150 125 100 75 50 25 0
Loss

0

200

Fr
eq

ue
nc

y

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
RA

0

200

400

Fr
eq

ue
nc

y
Post rationalised "Correct" CoTs Non post rationalised "incorrect" CoTs CoTs of random tokens

Figure 3: (What to reward) Distribution of reward scores across different CoT types using stan-
dard loss (left) and RA (right) reward functions. Each histogram shows the reward distribution for
three categories: “correct” post-rationalized CoTs (blue), “incorrect” non-post-rationalized CoTs
(orange), and “random” token CoTs (green). Notice that RA is better able to differentiate between
incorrect and random CoTs. Moreover, the RA scores are normalized to the range [-1, 1], which
may facilitate better learning. See Section 5.1 for more details.

200 175 150 125 100 75 50 25 0
Loss

0

250

500

Fr
eq

ue
nc

y

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
RA

0

1000

2000

Fr
eq

ue
nc

y

Halfway Through Question After Question Before Options After Options Before Answer Halfway Through Answer

Figure 4: (Where to reward) Distribution of reward scores for CoTs inserted at different locations
using standard loss (left) and RA (right) reward functions. Each histogram shows the reward dis-
tribution for four insertion points: halfway through question (blue), after question before multiple-
choice options (orange), after multiple-choice options before answer (green), and halfway through
answer (red). As mentioned in Section 5.1, we assume that after multiple-choice options before
answer (green) is the optimal location to generate CoT reasoning. RA successfully scores CoTs
generated at this location higher, while standard loss does not. Particularly, standard loss fails to
prevent halfway-through-answer CoTs from receiving high rewards.

B.1 WHAT & WHERE TO REASON RESULTS FOR ADDITIONAL REWARD FUNCTIONS

Table 3 and Table 4 show full results for additional reward functions. That is, for the entire family of
loss-based reward functions. Moreover, they include results for the “empty CoT” baseline as well as
the “random CoT” and “mean loss” baselines. We explore incorporating these baselines both with
normalization (R−B)/B and without normalization R−B, where R is the reward score and B is
the baseline value.

In Tables 3 and 4, RA outperforms standard loss and delta loss—as in the main text. However, it’s
worth mentioning that there are three combinations of augmentations that perform better than RA in
Table 3 (What to reward), while performing much worse than RA in Table 4 (Where to reward). In
the main text of this work, we choose to focus mainly on standard loss, delta loss, and RA since delta

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

loss shows how the simple change of adding an empty CoT baseline improves results over standard
loss, and RA shows the added effectiveness of clipping and normalization.

Name Baseline Clipping Normalisation Mean q0.025 q0.975 Rank

Loss none none none 44.6% 44.0% 45.4% 9
- empty CoT reward clipped none 67.2% 65.7% 68.3% 3
RA empty CoT reward clipped yes 66.3% 64.5% 67.8% 4
Delta Loss empty CoT reward none none 58.3% 57.8% 58.9% 8
- empty CoT reward none yes 58.8% 58.1% 59.8% 7
- random CoT reward clipped none 80.4% 79.7% 81.4% 1
- random CoT reward clipped yes 78.4% 77.8% 79.0% 2
- random CoT reward none none 60.9% 60.1% 62.7% 6
- random CoT reward none yes 60.9% 59.2% 63.1% 5
- average reward clipped none 30.8% 30.1% 31.7% 10
- average reward clipped yes 30.7% 29.9% 31.3% 11
- average reward none none 29.2% 28.7% 29.8% 13
- average reward none yes 30.7% 30.0% 31.7% 11

Table 3: Full results for What to reward experiment, showing all combinations of augmentations to
the basic loss-based reward in Equation 3.

Name Baseline Clipping Normalisation Mean q0.025 q0.975 Rank

Loss none none none 39.4% 37.7% 40.8% 6
- empty CoT reward clipped none 55.9% 52.5% 59.9% 4
RA empty CoT reward clipped yes 77.0% 75.3% 79.0% 1
Delta Loss empty CoT reward none none 64.4% 62.7% 67.0% 3
- empty CoT reward none yes 73.0% 71.9% 74.3% 2
- random CoT reward clipped none 29.8% 28.2% 30.6% 9
- random CoT reward clipped yes 40.8% 38.9% 43.4% 5
- random CoT reward none none 27.9% 26.7% 28.8% 11
- random CoT reward none yes 27.3% 25.8% 28.6% 13
- average reward clipped none 27.7% 25.8% 29.2% 12
- average reward clipped yes 33.4% 32.5% 35.4% 7
- average reward none none 28.3% 26.5% 30.0% 10
- average reward none yes 32.1% 30.8% 33.4% 8

Table 4: Full results for Where to reward experiment, showing all combinations of augmentations to
the basic loss-based reward in Equation 3.

What to Contemplate (Accuracy) Where to Contemplate (AUC)

Method Mean q0.025 q0.975 Mean q0.025 q0.975

RA 0.546 0.530 0.563 0.875 0.857 0.890
Delta Loss 0.498 0.484 0.511 0.684 0.668 0.700
Loss 0.439 0.426 0.453 0.386 0.367 0.401

Table 5: Reward function performance using Llama-3.1-8B (Dubey et al., 2024) (in contrast to
Mistral-7B as in the main body) for distinguishing CoT types (What) and identifying optimal CoT
placement (Where). This agrees with the results for Mistral-7B in the main body.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Ablation of clipping value for distinguishing CoT
types (What to reason) with Mistral-7B.

(b) Ablation of clipping value for identifying optimal
CoT placement (Where to reason) with Mistral-7B.

Figure 5: Ablating the clipping value used in RA. A value of 1.0 is reasonably optimal for both ex-
periments, and was therefore used for the results in Table 2 and the MMLU-Free-Form experiments.

Figure 6: Example from MMLU-FREE-FORM, our modified version of MMLU (Hendrycks et al.,
2020) designed to study improving CoT reasoning on unstructured, open-ended text. By removing
multiple-choice options, answers become free-form so that they can can be expressed in multiple
different and equally valid ways—this invalidates the use of accuracy without an external verifier.
The left-hand side is the example from MMLU-FREE-FORM and the right-hand side is the original
example from MMLU.

B.2 PERFORMANCE BREAKDOWN FOR SELF-IMPROVING COT REASONING ON
MMLU-FREE-FORM

Figure 7 shows a more complete breakdown of the results on the MMLU test set after self-improving
CoT reasoning on MMLU-FREE-FORM using the method outlined in Section 5.2. The “reasoning
style questions” require quantitative reasoning and span a wide range of subjects including physics,
biology, accounting, mathematics, and computer science. Moreover, we observe far greater im-
provement on “reasoning style questions” compared to “recall style questions”. This interesting
result makes sense, since additional reasoning doesn’t help as much when trying to recall a fact that
was present in the context.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Performance breakdown on MMLU test set after self-improving CoT reasoning on
MMLU-FREE-FORM. Results are shown for different question types. Left: Ensembled cross-
entropy loss (higher is better), computed as average log-likelihood across multiple CoTs. Right:
Answer probability (higher is better). See Section 5.2 for full experiment and method details.

C EXAMPLES OF CONSERVATIVE CHAIN-OF-THOUGHT

As discussed in Section 6, our offline RL procedure applied to the unstructured OpenWebMath
dataset (Paster et al., 2023) converges to a local optimum where the model generates overly conser-
vative CoT reasoning, merely restating or summarizing information rather than attempting problem-
solving. Below are some examples of this behavior. Notice that the model knows about the “prefix”
and “completion” from the prompts it received.

GSM8K Example:

Q: R i c h a r d l i v e s i n an a p a r t m e n t b u i l d i n g wi th 15 f l o o r s . Each
f l o o r c o n t a i n s 8 u n i t s , and 3 / 4 o f t h e b u i l d i n g i s o c c u p i e d .
What ’ s t h e t o t a l number o f u n o c c u p i e d u n i t s In t h e b u i l d i n g ? [
THOUGHT] The p r e f i x p r o v i d e s i n f o r m a t i o n a b o u t an a p a r t m e n t
b u i l d i n g wi th 15 f l o o r s , each f l o o r c o n t a i n i n g 8 u n i t s , and
3 / 4 o f t h e b u i l d i n g o c c u p i e d . The c o m p l e t i o n l i k e l y p r o v i d e s
t h e t o t a l number o f u n o c c u p i e d u n i t s i n t h e b u i l d i n g , based on

t h e g i v e n i n f o r m a t i o n . [/THOUGHT]
A: 30

OpenWebMath Example 1:

In t h i s a r t i c l e , by u s i n g norms (T and C) , we p r e s e n t t h e
c o n c e p t o f i n t u i t i o n i s t i c f u z z y i m p l i c a t i v e i d e a l s ,
i n t u i t i o n i s t i c f u z z y c l o s e d i m p l i c a t i v e i d e a l s and
i n t u i t i o n i s t i c f u z z y commuta t ive i d e a l s o f BCI− a l g e b r a s .
Some i n t e r e s t i n g r e s u l t s o f them a r e g i v e n . C h a r a c t e r i s a t i o n s
o f i m p l i c a t i v e i d e a l s , c l o s e d i m p l i c a t i v e i d e a l s and
commuta t ive i d e a l s o f BCI− a l g e b r a s by u s i n g them a r e
e x p l o r e d . By u s i n g i n t e r s e c t i o n s , d i r e c t p r o d u c t s and
homomorphisms , some i n t e r e s t i n g r e s u l t s a r e o b t a i n e d [THOUGHT]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C o n s i d e r t h e p r e f i x , which i n t r o d u c e s t h e c o n c e p t o f
i n t u i t i o n i s t i c f u z z y i m p l i c a t i v e i d e a l s i n BCI− a l g e b r a s . The

c o m p l e t i o n l i k e l y p r o v i d e s a d e f i n i t i o n o r d e s c r i p t i o n o f
t h e s e i d e a l s , a l o n g wi th t h e i r p r o p e r t i e s and a p p l i c a t i o n s . [/
THOUGHT] .

OpenWebMath Example 2:

C h a p t e r 8 − P o l y n o m i a l s and F a c t o r i n g − C h a p t e r Review − 8−3 and
8−4 M u l t i p l y i n g B i n o m i a l s : 31

$9r ˆ{2} −12 r +4 [THOUGHT] The p r e f i x p r o v i d e s a l i s t o f e q u a t i o n s ,
each wi th a v a r i a b l e and a c o e f f i c i e n t . The c o m p l e t i o n l i k e l y
p r o v i d e s t h e s o l u t i o n t o each e q u a t i o n , u s i n g t h e v a r i a b l e and

c o e f f i c i e n t t o d e t e r m i n e t h e v a l u e o f t h e e q u a t i o n . The
c o m p l e t i o n may a l s o p r o v i d e a s t e p −by− s t e p e x p l a n a t i o n [/
THOUGHT] $

Work S tep by S tep

S i m p l i f y and w r i t e i n s t a n d a r d form $ (3 r −2) ˆ{2} $ R e w r i t e a s : $ (3 r
−2) (3 r −2) $ F o i l $9r ˆ{2} −6 r −6 r +4$ Combine l i k e t e r m s $9r ˆ{2} −12
r +4$

A f t e r you c l a i m an answer you ’ l l have 24 h o u r s t o send i n a d r a f t .
An e d i t o r w i l l r ev i e w t h e s u b m i s s i o n and e i t h e r p u b l i s h your

s u b m i s s i o n o r p r o v i d e f e e d b a c k .

D SOCIETAL IMPACT

While our work is primarily analytical and does not introduce new models, the broader direction of
self-improving CoT reasoning on large-scale unstructured text datasets could significantly enhance
LLMs’ problem-solving capabilities—if successful. Such advances would amplify both the benefits
and risks associated with current language models, warranting continued attention from the research
community on ensuring responsible development.

E ADDITIONAL VISUALIZATIONS

0 50 100
Step

456.2

475.5

Lo
ss

Open Web Math

All Thoughts
Loss Filtered Thoughts
RA Filtered Thoughts
No Thoughts Control

(a) LM Loss with thoughts

0 50 100
Step

-397.02

-212.05

Cl
ip

pe
d

No
rm

al
ize

d
Lo

ss

Open Web Math

All Thoughts
Loss Filtered Thoughts
RA Filtered Thoughts

(b) RA

0 50 100
Step

14.4

20.8

De
lta

 L
os

s

Open Web Math
All Thoughts
Loss Filtered Thoughts
RA Filtered Thoughts

(c) Delta Loss

Figure 8: Standard loss, delta loss, and RA on the holdout documents measured at different training
checkpoints (see Section 6.2 for details). Each line represents an entirely different model trained on
differently filtered CoTs. The filtering strategies are: random selection (“All Thoughts”), loss-based
(“Loss Filtered Thoughts”), RA-based (“RA Filtered Thoughts”), and a “No Thoughts Control”
baseline (trained on standard OpenWebMath documents without any self-inserted CoTs).

19

	Introduction
	Background
	Related Work
	Reward Functions for Self-improving CoT Reasoning
	Experiments
	Reward Functions for Selecting What & Where to Reason
	Learning to Reason on Free-Form QA Data

	Challenges and Future Directions
	Key Insights (NEW SUBSECTION)
	Experimental Setup and Additional Results (NEW SUB SECTION)

	Conclusion (UPDATED, better clarity of contributions)
	Formal Definitions
	Additional Experiment Details, Results, and Visualizations
	Additional Visualizations for What & Where to Reason
	What & Where to Reason Results for Additional Reward Functions
	Performance Breakdown for Self-Improving CoT Reasoning on MMLU-Free-Form

	Examples of Conservative Chain-of-Thought
	Societal Impact
	Additional Visualizations

