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Abstract

Training reinforcement learning (RL) agents by scalar reward signals is often infeasible when
an environment has sparse and non-Markovian rewards. Deterministic finite-state automaton
(DFA) provides a streamlined method for specifying tasks in reinforcement learning (RL) that
surpass the limitations of traditional discounted return formulations. However, existing RL
algorithms designed to address DFA tasks face unresolved challenges, hindering their practical
application. One key issue is that subgoals in the DFA may exhibit hidden hierarchical
structures, with some macro-subgoals comprising multiple micro-subgoals in certain orders.
Without understanding this hierarchy, RL algorithms may struggle to efficiently solve tasks
involving such macro-subgoals. Additionally, the sparse reward problem remains inadequately
addressed. Previous approaches, such as potential-based reward shaping, often encounter
inefficiencies or result in suboptimal solutions. To address these challenges, we propose a novel
RL framework designed to uncover the hierarchical structure of subgoals and accelerating
the solving of DFA tasks without changing the original optimal policies, short as HDCS.
The framework operates in two phases: first, a hierarchical RL method is used to identify
the prerequisites of subgoals and build the hierarchy; second, given any task specification
(DFA), the subgoal hierarchy is incorporated into task DFA to make a product DFA for
the agent to satisfy, and then a simple and novel critic shaping approach is proposed to
accelerate the satisfaction of the product DFA without changing optimal policies of the
original problem. In addition, the convergence of the critic shaping method is theoretically
proved. The effectiveness of HDCS is demonstrated through experiments conducted across
various domains. Especially, compared with representative baselines, the critic shaping can
have 2X or 3X acceleration on task solving.

1 Introduction

In the classical reinforcement learning (RL) framework, the primary objective is to develop a strategy that
maximizes a reward function within an unfamiliar environment. Typically, practitioners design a scalar
reward function to guide the agent toward desirable behaviors during the learning process. However, scalar
rewards often fail to effectively capture the complexity of real-world task specifications (Toromanoff et al.,
2019). While some researchers have posited the hypothesis that "the reward function is enough" (Sutton,
2018; Silver et al., 2021), certain tasks remain inherently unrepresentable by scalar rewards alone (Abel et al.,
2021).

To address these limitations, recent research has increasingly turned to deterministic finite-state automaton
(DFA), which subsumes many previous attempts to define specifications that cannot be reduced to scalar
Markovian rewards (Abel et al., 2021). These works include Linear Temporal Logic (LTL) (Camacho et al.,
2019; Fu & Topcu, 2014; Hasanbeig et al., 2018; Sadigh et al., 2014; Wang et al., 2020; Vaezipoor et al., 2021;
Alur et al., 2022; De Giacomo et al., 2020; Voloshin et al., 2023), SPECTRL (Jothimurugan et al., 2019;
2021) and reward machine (Icarte et al., 2022; Corazza et al., 2022; Neider et al., 2021). DFA consists of
temporally extended subgoals and can express desired characteristics of future behavior of a system, allowing
for precise and flexible task specification (Fersman et al., 2007). Tasks specified using DFA are prevalent
in various real-world applications, including robotics, software verification (Bauer et al., 2011), and system
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Figure 1: Example of subgoal hierarchy in NetHack, a variant of Minecraft. Every icon represents a subgoal
or final goal. The final goal is to get exorcism. The prerequisite of that goal is to first get a scroll, second
visit a necromancer, and then build a fountain. Here, building a fountain has its own prerequisites under
ordering constraint, including making a stone pickaxe, collecting a stone and going to a place with water. In
addition, the prerequisites of making a stone pickaxe consist of first collecting a stone and then visiting a tool
workshop. In addition to the fact that stone pickaxe, fountain and exorcism are in level 1 (blue), 2 (green)
and 3 (red), all the other subgoals are in level 0 and do not have any prerequisites.

control (Tabuada & Pappas, 2003). However, previous works of RL for solving DFA tasks still have two issues
remaining unsolved, which could prevent RL algorithms from being deployed into real-world applications.

First, the hierarchical structures of subgoals have been largely overlooked in previous research. In many
real-world applications, completing macro subgoals often comprise achieving micro subgoals under ordering
constraints. This can form hierarchies of subgoals, where achieving lower-level (micro) subgoals acts as a
prerequisite for achieving higher-level (macro) goals. For instance, in the NetHack game (Küttler et al., 2020),
which can be regarded as a variant of Minecraft game (Duncan, 2011), subgoals exhibit a layered structure
with ordered dependencies. For the example shown in Figure 1, subgoals can be categorized into 4 levels and
the prerequisites of every subgoal are under temporal ordering constraints. Before completing the desired goal,
the agent has to achieve every subgoal in the prerequisite following the right order. This subgoal hierarchy
describing ordering dependencies is typically unknown to the agent at the outset. Without uncovering and
leveraging this hierarchy, RL algorithms may struggle to achieve satisfactory learning efficiency.

Second, the issue of sparse rewards in the context of DFA tasks remains insufficiently addressed. Potential-
based reward shaping (PBRS) has been employed in previous studies to densify the reward signal (Ng et al.,
1999; Grześ, 2017; Jiang et al., 2021; Devidze et al., 2022; Icarte et al., 2022), wherein auxiliary rewards
derived from a potential function are added onto the original reward function. However, these reward
shaping methods still exhibit certain drawbacks. First, the presence of temporal dependencies in DFA tasks
can render the computation of the potential function both difficult and cumbersome, particularly when
subgoal prerequisites are incorporated. Second, because DFA tasks typically encompass multiple subgoals
over extended temporal stages, incorporating subgoal-specific auxiliary rewards risks diverting the agent’s
attention to other redundant subgoals, thus destabilizing the agent’s learning. Moreover, given that the
policy learning is guided by the critic function, the auxiliary rewards must first be assimilated by the critic
to subsequently facilitate policy learning—a process that can be inefficient, especially in tasks with lengthy
time horizons. Some studies have attempted to decompose DFA tasks into subtasks and address them via
hierarchical reinforcement learning (HRL) (Araki et al., 2021; Camacho et al., 2019; Icarte et al., 2022).
However, in many practical settings, independently solving each subtask may yield suboptimal solutions.

In this work, we address the aforementioned challenges by introducing a novel framework, referred to as HDCS,
that discovers hierarchical subgoal structures and expedites DFA task resolution without modifying the
original optimal policy. The framework proceeds in two stages. First, we propose a hierarchical reinforcement
learning (HRL) approach to learn subgoal prerequisites and construct a corresponding subgoal hierarchy.
These learned prerequisites are then integrated into the task specification (DFA) through the construction
of a product automaton. Second, unlike existing reward shaping methods, we propose shaping the critic
function directly to enhance learning efficiency and mitigate the sparse reward problem.
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Figure 2: (a): the map of environment. (b): the DFA of LTL task formula □(♢(r ∧ ♢(g ∧ ♢(b)))) ∧□(¬y).
(c): The DFAs representing the prerequisites of visiting green ("g") zone and blue ("b") zone. States with
double circles are accepting states. State "F" indicates the sink state which can make the task fail. "[]" denotes
the empty output of the labeling function. In (c), the left DFA shows that the prerequisite of "g" is to first
visit "o", and the right DFA shows that the prerequisite of "b" is to fist visit "p" and then "c". In this work,
the task formula is known to the agent while the prerequisites of subgoals are unknown initially.

More specifically, we design an auxiliary reward function based on task progress, measured by a reduction
in the distance to an accepting state within the task automaton. Whenever the agent progresses to a new
stage—i.e., reduces the minimal distance to an accepting state the agent has ever achieved by one hop—the
corresponding auxiliary reward is integrated into the critic function via a maximum operator. We term this
mechanism critic shaping, since it fixes and stabilizes critic values of the target states in all stages. Because
this approach bypasses the reward function, it substantially accelerates policy learning, thus alleviating the
sparse reward issue in temporal logic tasks. The convergence of the critic shaping method is theoretically
proved in Appendix D.

In experiments, we comprehensively evaluate the HDCS framework in terms of subgoal hierarchy discovery
and acceleration in solving DFA tasks. The experiments are conducted in 2D-Minecraft, AssemblyZone and
Button domains, covering both discrete and continuous action spaces. DFA tasks without and with subgoal
hierarchy are both evaluated. The results show that HDCS can learn subgoal hierarchy accurately and
expedite the efficiency of solving the DFA task for 2 or 3 times, compared to the state-of-the-art baselines.

2 Problem Setting

2.1 Definitions

First, we present some basic definitions. An atomic proposition is a variable that takes on a Boolean truth
value. The alphabet of symbols is defined as a subset of all possible combinations over a finite set of atomic
propositions (denoted as P), i.e., 2P . In every working environment, we assume a set of subgoals G which is
a subset of the alphabet, i.e., G ⊂ 2P . The subgoals in G have hierarchical structures which are unknown to
the agent initially.

Deterministic Finite-state Automata (DFA). In this work, we consider solving tasks specified by DFAs.
Specifically, a DFA is defined as a tuple B = (B, Σ, TB,B∗, a0), where B is the set of automaton states, the
alphabet Σ ⊂ 2P denotes the alphabet of propositions, driving deterministic transitions in the automaton, the
function TB : B ×Σ→ B denotes the deterministic transitions of automaton states, B∗ is the set of accepting
states, and a0 is the initial state. A path ξ = (b0, b1, . . .) is a sequence of automaton states in B reached
through sequential transitions governed by TB. In addition, we assume that DFAs for task specification are
only composed by subgoals in G, i.e., Σ = G.

Remark. We focus on DFAs rather than LTL for two main reasons. First, with finite traces, LTL is strictly
less expressive than DFAs—an example being that LTL cannot capture tasks such as “the light switch is
toggled an odd number of times.” Second, both DFAs and LTL tasks form countably infinite sets, so any
distribution over LTL inherently favors certain subclasses. By contrast, the syntactic structure of DFAs
allows these subclasses to be easily distinguished.
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We show an example of DFA task in Figure 2. A robot is navigating in the environment with multiple colored
zones, as shown in Figure 2(a), where subgoals in G = {r, g, b, o, p, c, y} correspond to whether the agent steps
into the red, green, blue, orange, purple, or cyan zones. As shown in Figure 2(b), the task DFA specification
in this example asks the agent to oscillate among the red, yellow, and green zones with a fixed temporal order
while always avoiding the yellow zone.

Definition 3.1 (Satisfaction) A path ξ = (b0, b1, . . .) satisfies a DFA B if an accepting state of B is visited
infinitely often by ξ.

Labeled MDP. In this work, the environment where the agent is working is formulated as a labeled Markov
Decision Process (MDP) M = (S,A, T M, ∆(s0), γ, r, LM), with the state space S, the action space A, the
state transition T M : S ×A → ∆(S) mapping from input state-action pair into a distribution of next states,
an distribution of initial states ∆(s0), a discount factor γ ∈ (0, 1), a reward function r : S×A → [Rmin, Rmax],
and a labeling function LM : S → Σ. The labeling function produces atomic propositions in P which are true
in the input state. If no propositions are true, it produces an empty []. Note that the transition function T M

is unknown to the agent. In this work, we assume that the agent is working in a goal-oriented MDP, where
the labeling function produces propositions which represent subgoals, i.e., Σ = G. We assume that the set G
is known to the agent, but the hierarchy of subgoals in G is unknown initially. The environments used in this
work are deterministic and the output of T M is a distribution whose the support is on a single point only.

2.2 Subgoal Prerequisites and Hierarchy

Hierarchy Formulation. In this work, we assume that subgoals follow a layered structure, where the
prerequisites of visiting a subgoal only depend on lower-level subgoals, under some ordering constraints.
Specifically, subgoals in level 0, denoted as G0, can be achieved without any prerequisites. In level k, subgoals
(denoted as Gk) have prerequisites comprising subgoals from levels 0 through k − 1. We further assume that
subgoals in the level 0 are directly visible in the environment, so that the set G0 is known to the agent initially.
Note that subgoal prerequisites cannot contain higher-level subgoals. Otherwise, circular dependencies can be
created, making the involved subgoals unreachable. For example, if the prerequisite of subgoal "a" depends
on "b," and prerequisite of "b" includes "a," neither "a" or "b" can be achieved.

This kind of subgoal hierarchy exists in many real-world problems. For instance, Figure 1 illustrates an
example from the NetHack game, which is a variant of MineCraft. The goal in the highest level (level 3) is
to get "exorcism", and its prerequisites are to first get a scroll, second visit the necromancer, then build a
fountain. The subgoal of building a fountain is a level-2 subgoal whose prerequisites are to first make a stone
pickaxe, then get a stone and then go to a place with water. In addition, the subgoal of "stone pickaxe" is
in level 1 which requires the agent first get a stone and visit the tool workshop. So, every subgoal in level
1, 2 and 3 has prerequisites under temporal ordering constraints. Except "exorcism", "fountain" and "stone
pickaxe", all the other subgoals are in level 0.

However, except level-0 subgoals, this hierarchical structure of subgoals is often unknown prior to interacting
with the environment. To address this, before tackling the DFA task, we propose to use HRL to first learn
subgoal prerequisites to build the subgoal hierarchy. Subsequently, we need to incorporate the learned subgoal
prerequisites into the DFA task for the agent to follow. Hence, we represent subgoal prerequisites in the
form of DFAs, referred to prerequisite DFAs, which are incorporated into the task specification by making a
product of task DFA and prerequisite DFAs.

Specifically, a prerequisite DFA is a tuple C = (C,G, TC, C∗, c0), where C is the finite set of automaton states,
G is the input alphabet driving the state transition (same as the set of subgoals), TC : C × G → C is the
deterministic transition function, C∗ ⊂ C is the set of accepting states, and c0 is the initial state. Some
example prerequisite DFAs are shown in Figure 2(c). The left DFA illustrates that visiting any green zone
requires visiting an orange zone first, while the right DFA shows that, before visiting a blue zone, the sequence
of visiting a purple zone followed by a cyan zone must be adhered to.
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2.3 Problem Formulation

In this work, we aim to uncover the hierarchical structures of subgoals and subsequently learn a policy
efficiently that generates trajectories meeting the constraints of the task DFA specification B and subgoal
prerequisites represented by prerequisite DFAs C. These two sets of constraints can be integrated with
environmental MDP by formulating a product MDP defined as below.

Definition 3.2 (Product MDP) A product MDP synchronizes the environmental MDP with the task DFA
and the prerequisite DFAs. Denote the task DFA as B and the K prerequisite DFAs as C1,C2, . . . ,CK . Let
MC represent the product MDP with a state space defined as SC = S ×B × C1 × · · · × CK . Policies over this
product MDP are given by Π : SC ×A → ∆([0, 1]). The probabilistic transition function for this product
MDP is then defined as:

T (s′, b′, c′
1, . . . , c′

K |s, b, c1, . . . , cK , a) =
{

T M(s′|s, a), a ∈ A(s), (∗)
0, otherwise

(1)

where the condition (∗) refer to equations b′ = TB(b′|b, L(s′)), c′
1 = TC1(c′

1|c1, L(s′)),
. . . , c′

K = TCK (c′
K |cK , L(s′)), representing state transitions over task DFA and prerequisite DFAs. Denote

the trajectory of state-action pairs in product MDP as τ = ((s0, a0, b0, c1,0, . . . , cK,0), . . .).

Definition 3.3 (Trajectory acceptance) A trajectory τ is defined to be accepted by task DFA B and
prerequisite DFAs C, i.e., τ |=C B, if there exist some (b, c1, . . . , cK) ∈ B∗ × C∗

1 × . . .× C∗
K that are visited by

τ infinitely often.

Definition 3.4 (Constraint satisfaction) We say a policy π ∈ Π satisfies constraints of task DFA B and
prerequisite DFAs C with the probability P[π |=C B] := Eτ∼MC

π
[1τ |=CB], where 1 indicates whether the

trajectory τ is accepted by B and C or not, and MC
π is the distribution of trajectories induced by the policy

π in product MDP MC . In addition, we define Π∗ as the set of policies which maximize the probability of
producing trajectories accepted by both B and C, i.e., Π∗ := {π ∈ Π|P[π |=C B] = maxπ′∈Π P[π′ |=C B]}. The
ultimate goal of this work is to learn a policy in Π∗ accurately and efficiently.

3 Methodology

This work introduces the HDCS framework to address the issues of unknown subgoal structure and sparse
reward, including two phases. The diagram is shown in Figure 3. In the first phase (introduced in Section
3.1), hierarchical reinforcement learning (HRL) is employed to uncover a hierarchical structure of subgoals.
The first phase is a process of pre-training which makes the agent understand the hidden structure of subgoals
in the environment.

 Subgoal

Hierarchy

Discovery

RL with
Critic Shaping

Subgoal
Prerequisites

Task DFA

Product DFA

Phase 1 Phase 2

Figure 3: Diagram of the HDCS frame-
work

In the second phase (introduced in Section 3.2), to ensure the
agent adheres to the subgoal prerequisites in the discovered hi-
erarchy, whenever the task specification (DFA) is given, these
learned prerequisites are first integrated into the task DFA via
prerequisite DFAs. Then, to address the sparse reward issue in
satisfying the LTL specification, the critic shaping method is
proposed. This approach effectively mitigates the sparse reward
challenge in a simple way, particularly in tasks where the hier-
archy of subgoal prerequisites significantly complicates the task
formula.

3.1 Phase 1: Subgoal Hierarchy Discovery

In this section, we will first present the HRL-based algorithm for
hierarchy discovery, and then discuss how to incorporate learned
subgoal prerequisites into the task specification.
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3.1.1 Discovering Subgoal Hierarchy

We propose to use hierarchical reinforcement learning (HRL) (Dietterich et al., 1998; Nachum et al., 2018)
to learn prerequisites of subgoals, which are pre-conditions of visiting subgoals, and use them to build the
subgoal hierarchy.

Model Architecture. The high-level part is responsible for exploring and learning prerequisites of subgoals.
It is realized by an RNN-based RL agent πh

θ which selects next subgoal from lower levels to explore or achieve
a designated subgoal in the current level. The high-level action space is the set of lower-level subgoals. The
low-level part is a goal-conditioned RL agent πl

θ which is trained to achieve any level-0 subgoal (i.e. G0)
selected by the high-level part. The low-level action space is the primitive action space of the environment.

Discovery Method. The HRL method discovers subgoal prerequisites level-by-level. The discovery starts
from level 0, and proceeds to higher levels incrementally. In level 0, every subgoal g ∈ G0 does not have any
prerequisites and the low-level policy πl

θ(·|g) is trained to achieve g by using goal-conditioned RL algorithm
(Nachum et al., 2018). In level l ≥ 1, the operations are divided into exploration phase and learning phase.
The exploration phase aims to explore and discover subgoals of the current level, while the learning phase
is to learn prerequisites of discovered subgoals. The discovery continues until the prerequisites of all the
subgoals in G of the environment are learned and the subgoal hierarchy is well established. The exploration
and learning phases in level k are introduced with details as below. Both πl

θ and πh
θ are trained with PPO

algorithm (Schulman et al., 2017). The detailed algorithm is shown in Appendix C.

Exploration Phase. In each level k, the HRL model first works in the exploration phase to explore subgoals
of level k. The high-level part of the HRL model uses a stochastic policy to select next lower-level subgoal to
achieve, and the low-level agent uses its policy to achieve the selected subgoal. In the beginning of exploration
phase, the high-level policy πh

θ is re-initialized while the low-level part πl
θ keeps the same. In each episode,

whenever a new subgoal not in lower levels is achieved, the episode ends and this new subgoal is recorded as
a newly discovered subgoal in the level k. Then πh

θ is trained with the reward signal of discovering a new
subgoal. The agent will start a new episode until no new subgoals have been discovered for a number of
episodes. Then, these new subgoals form the subgoal set of level k, i.e., Gk, and the algorithm will proceed to
the learning phase.

Remark. Note that in level k, whenever any subgoal already in Gk is accidentally visited in exploration
phase, this episode ends and this trajectory data is discarded. This is to avoid visiting any subgoals in levels
higher than k.

Learning Phase. In this phase, the agent will learn the prerequisites for subgoals in Gk one-by-one. For
learning each g ∈ Gk, the high-level part πh

θ is first re-initialized. Then, being conditioned on g, the RNN-based
high-level policy πh

θ (·|g) is used to collect trajectories and trained with the reward signal of achieving g, where
πl

θ is fixed and used to achieve the subgoal produced by πh
θ (·|g). After πh

θ (·|g) is well trained, the prerequisites
of achieving g can be obtained as the output of πh

θ (·|g), which are sequences of subgoals in levels lower than k.

Whenever the prerequisites of subgoals in Gk are all well learned, the algorithm will proceed to level k + 1. If
the prerequisites of every subgoal in G are discovered, the algorithm terminates and the subgoal hierarchy is
built.

Remark. The correctness of learned subgoal sequences for prerequisite can be verified easily via interacting
with the environment. After the prerequisite of a target subgoal is learned, the obtained subgoal sequences
can be applied into the environment to check whether the target subgoal can be achieved or not. If not, the
agent needs to learn the sequences for prerequisite again. However, the empirical experience is that it is very
unlikely that the learned subgoal sequences are not correct, since in the learning phase, the high-level policy
is trained with the reward of achieving target subgoal only.

3.2 Phase 2: Policy Learning for Automaton Satisfaction

In the second stage of HDCS framework, when the task specification (DFA) is given, the agent first incorporates
the learned subgoal prerequisites into the task DFA, producing a product DFA A×, then the agent learns
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Figure 4: Example of building the prerequisite DFA for subgoal g. a, b, c, d are lower-level subgoals. (a):
prerequisite sequences of g learned by the HRL method. (b): intermediate DFA. (c): prerequisite DFA. State
"F" denotes sink state. The condition (*) over state 1 is ¬g ∧ ¬a ∧ ¬b.

an optimal policy to satisfy A×, i.e., to achieve an accepting state in A× as often as possible. A thorough
discussion on the motivation of critic shaping is presented in Appendix F.

3.2.1 Incorporating Subgoal Prerequisites

In the subgoal hierarchy, the prerequisites of subgoals are composed by sequences of lower-level subgoals,
which are learned by the HRL method in Section 3.1.1. These prerequisites are incorporated into the task
specification via prerequisite DFAs, which consists of two steps.

First, for each target subgoal g we construct an intermediate DFA C̃ (De la Higuera, 2010; Watanabe et al.,
2021) by using its prerequisite sequences of lower-level subgoals. This C̃ represents all the possible paths
for achieving g. In C̃, there is one initial state and one accepting state denoting the achievement of g. An
example is shown in Figure 4. For the target subgoal g, its learned prerequisite sequences are a → d → e
and b → c → e, denoting two alternative paths to achieve g. Then, these sequences are converted into an
intermediate DFA.

Second, we convert the intermediate DFA C̃ into the prerequisite DFA C. Specifically, this process consists of
three steps:

• First, one sink (rejecting) state is added into C̃ to avoid selecting the target subgoal g before its
prerequisites are satisfied, which is the state "F" in Figure 4(c).

• Then, in order to consider the situation that the agent does not need to satisfy g in task completion,
except the sink state, all the other states in C̃ become accepting states, where the prerequisite of g
are partially satisfied.

• Finally, one more accepting state is added to represent the situation that g is achieved with its
prerequisites satisfied, which is the state 5 in Figure 4(c) as an example. This state is also connected
back to the initial state with an edge label of empty ([]), meaning that after g is achieved, if the
agent wants to achieve it again, its prerequisites have to be satisfied again from the scratch.

Product DFA. After prerequisite DFAs of all the subgoals are obtained, we propose to build a product DFA
to incorporate the subgoal prerequisite into the task specification. By multiplying the task DFA (B) and
all the prerequisite DFAs (C1, . . . ,CK) together, the product DFA is a tuple A× := (S×,A×, T ×,S∗

×, s×
0 ),

where the product automaton state space is S× := B × C1 × . . .× CK , the input alphabet driving the state
transition over A× is A× := Σ×G × . . .×G, the state transition is T × : S× ×A× → S×, the set of accepting
states is S∗

× := B∗ × C∗
1 × . . .× C∗

K , and s×
0 is the initial state over A×. An accepting state in A× is a vector

of accepting states in task DFA and all the prerequisite DFAs, making the RL agent to learn to complete
the task and obey subgoal prerequisites at the same time. An example of product automaton is shown in
Appendix E.
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Figure 5: Example of level, stage and round. The number labeled over every state is its index. Yellow state:
level 0. Purple state: level 1. Green state: level 2. Red line: stage 2. Blue line: stage 1. Dotted line: round 1.
Dashed line: round 2. Self-loops are omitted.

3.2.2 Auxiliary Rewards

Due to the complexity of product DFA A× as constraint, the RL agent may suffer from the issue of sparse
reward. To overcome this issue, we propose a critic shaping method to accelerate the policy learning under
the constraint of an automaton. Different from previous reward shaping methods which add auxiliary rewards
onto the reward function, the proposed method directly shapes the critic function by using an max operator,
encouraging the agent to reach an accepting state in A× more efficiently. We will first introduce the auxiliary
rewards, details of critic shaping operations and finally present its motivation and intuition.

We design auxiliary rewards as intermediate rewards assigned to agent as it makes progress towards the
satisfaction of product automaton A×. Then, we first define concepts of level, stage and round which are
used to formulate the auxiliary rewards RA for critic shaping.

• Level. First, we divide the states of A× into different levels according to their shortest distances to
the nearest accepting state in A×. The level k only contains states with distance k. An example of
state levels is shown in Figure 5, where the states in the same level have the same color.

• Stage. Then, the stage t is defined as the segment of agent’s trajectory between the first visit to level
t and first visit to level t− 1. The stage essentially divides the trajectory according to the shortest
distance to an accepting state in A× the agent has ever had in this episode. As shown in Figure 5,
before visiting state 4, the stage 1 and 2 are shown in blue and red lines, respectively. Although state
2 is in level 2, the visit to state 2 is already in stage 1, since the state 1 in level 1 was previously
visited and the agent already entered stage 1 at that time.

• Round. In addition, the satisfaction of A× means infinitely many visits to an accepting state in A×.
Hence, we define round i as the segment of a trajectory from (i− 1)-th to i-th visit to an accepting
state or the end of episode (i.e., time limit is exceeded).

Now we introduce auxiliary rewards RA defined in terms of stage and round indices. In any round i, whenever
the agent enters a stage k, there will be an auxiliary reward RA(i, k) > 0 to shape the critic function,
encouraging the agent making progress towards visiting an accepting state. Whenever the agent visits any
accepting state in A× for the i-th time (i.e., the round i ends), it will receive an auxiliary reward RA(i, 0) > 0
and then start the next round i + 1. These auxiliary rewards must satisfy an condition as below, for any i, k
integers such that i > 0 and k > 0,

RA(i, k) < γHRA(i, k − 1), RA(i, 0) < γHRA(i + 1, k) (2)

where γ is the discount factor of environmental MDP. Note that H is the max length of each stage, rather
than the whole episode, which allows the agent to visit accepting states in A× infinitely often. The intuition
behind the condition equation 2 will be introduced in Appendix F.

3.2.3 Critic Shaping

In order to model the multi-stage nature of satisfying DFA constraint, we extend the state representation to
a tuple of four elements, including s (environmental state), s× (state in DFA constraint), i (round index),
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and k (stage index), which are inputs to policy (πθ) and the critic function (V θ
π ). The auxiliary rewards RA

are used only at the boundaries of stages and rounds. Inspired by the max-reward RL (Veviurko et al., 2024),
the target for updating critic function V θ

π is written as below based on Bellman-like equations: whenever the
agent steps into stage k from stage k − 1 in round i

Vπ(st, s×
t , i, k) = Est+1,at∼π[RA(i, k − 1) ∨ γVπ(s, s×

t+1, i, k − 1)|s = st+1] (3)

where s×
t+1 is the next state of the transition driven by symbol L(st+1) over A×, and a ∨ b is max(a, b). If

the agent steps into a new round i + 1, the target for updating V θ
π is computed as below

Vπ(st, s×
t , i, 0) = Est+1,at∼π[RA(i + 1, k′) ∨ γVπ(s, s×

t+1, i + 1, k′)|s = st+1] (4)

where k′ is the stage index of next state s×
t+1 over A×. Otherwise, whenever s×

t+1 and s×
t are in the same

stage and round over A×, it is

Vπ(st, s×
t , i, k) = Est+1,at∼π[γVπ(s, s×

t+1, i, k)|s = st+1] (5)

In implementation, the policy πθ and critic V θ
π are trained with auxiliary rewards by using PPO (Schulman

et al., 2017) or DDPG algorithm (Lillicrap et al., 2015). The motivation of critic shaping is introduced in
Appendix F, and the convergence proof is presented in Appendix D.

3.2.4 Adaptive Design of Auxiliary Reward

Since the agent has little knowledge about the environment initially, any pre-designed auxiliary rewards RA

may not precisely reflect the difficulty of activating desired DFA transitions, leading to sub-optimal policies.
In order to address this issue, we propose an adaptive design for RA which first sets RA to some initial values
in the beginning, and then updates every value of RA adaptively according to the difficulty of achieving the
corresponding stage, which is determined by the empirical performance of achieving that stage in previous
episodes.

We first set every RA(i, k) to its initial value, which is selected empirically for each environment and
satisfies the condition equation 2. For example, in Minecraft, we choose RA = [5, 10, 20, 40, . . .], while in the
AssemblyZone environment, we set initial values of RA to be 10, 100, 1000, . . .

Denote βi,k as a binary label indicating whether the stage k in round i is achieved in the last episode or not.
If yes, βi,k = 0. If not, βi,k = 1. Then, at the end of l-th episode, RA(i, k) is updated as

Rl
A(i, k)←

[
Rl−1

A (i, k) + KIβi,k

]
(Rmin

A
(i,k),Rmax

A
(i,k))

(6)

where KI is a hyper-parameter controlling the update rate of RA, and [·](a,b) is the operator clipping a value
into the interval (a, b). In experiments, we select KI = 1. Besides, we set Rmin

A (i, k) := γ−HRl−1
A (i, k + 1)

and Rmax
A (i, k) := γHRl−1

A (i, k − 1), which is to make sure that the condition equation 2 still holds after l-th
update of RA. This dynamic and adaptive update can make RA have higher values in difficult stage, giving
the agent more encouragement to achieve this kind of stages.

4 Experiments

The experiments will try to examine two questions as below:

1. Can the proposed framework accurately learn the prerequisites and build the hierarchy of subgoals?

2. Can the critic shaping method accelerate the solving of LTL task with and without subgoal hierarchy?

In this section, we will use experimental results and analysis to answer these two questions in 4.1 and 4.2,
respectively. The environments are introduced in Appendix G. The tasks used in experiments are described
in Appendix H. The evaluation of critic shaping in Button domain is in Section 4.3. Ablation study for the
whole framework is presented in Appendix K.
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(a) Minecraft (b) AssemblyZone (c) Minecraft (d) AssemblyZone

Figure 6: Comparison of exploration. The x-axis is the number of samples drawn from the environment.
The y-axis are success rates of reaching target subgoals (a, b) and intermediate subgoals (c, d).

4.1 Hierarchy Discovery Evaluation

The baselines used in the evaluation of subgoal hierarchy discovery are presented in Appendix I.1.

In environments with hard-to-explore hierarchical structures, we first conduct experiments to compare the
exploration capability of HDCS and state-of-the-art baselines. Then, we compare the accuracy of subgoal
hierarchies learned by HDCS and baselines. In addition, more detailed results are presented in Appendix J.

Exploration. In 2D-Minecraft and AssemblyZone, we evaluated the learning efficiency of the HDCS
framework against baseline methods for attaining the highest-level subgoals (specifically, “exorcism” and
“kill zombie” in Minecraft, and p4 and p5 in AssemblyZone), whose success rates are compared in Figure 6
(a,b). In addition, some selected intermediate subgoals which are used as selected exploration milestones.
The success rates of achieving intermediate subgoals are shown in Figure 6 (c,d), where the performances
are evaluated after training with 3e5 and 6e6 environmental steps. As illustrated in Figure 6, the proposed
framework exhibits accelerated learning and surpasses all baselines in both efficiency and success rate. This
improvement is primarily due to its level-by-level acquisition of subgoal prerequisites, in accordance with
the underlying hidden hierarchy. Although the VHRL approach eventually achieves stable attainment of
the target subgoals, it expends an excessive number of samples on intermediate subgoals because it directly
targets the highest-level subgoals, thereby neglecting the hierarchical structure. Moreover, both HAC and
MEGA implement goal-conditioned high-level policies to directly reach various subgoals without considering
the subgoal hierarchy, which ultimately leads to suboptimal performance in achieving the target subgoals
with satisfactory sample efficiency.

Hierarchical Structure Discovery. In our experiments, the accuracy of subgoal hierarchy discovery
is evaluated by computing the Hamming distance between the learned subgoal prerequisites and the true
ones. Figure 7 illustrates a comparative analysis between the proposed framework and baseline methods,
revealing that our approach significantly outperforms both HAC and MEGA. This superior performance is
attributed to the framework’s method of sequentially discovering subgoals, thereby progressively constructing
a subgoal hierarchy that more accurately reflects the inherent structure of the environment. In contrast,
conventional HRL methods like HAC and MEGA rely on exploration-driven subgoal discovery, which overlooks
the hierarchical organization of subgoals.

Note that the targets of experiments in Figure 6 and 7 are different. In Figure 6, the experiments are designed
to evaluate only the exploration capability of the agent trained by the proposed method. In Figure 7, we
compare the proposed and baseline methods for the accuracy of learning prerequisites of all the subgoals.
Therefore, the experiments in Figure 7 need more samples than those in Figure 6.

4.2 Task Completion Evaluation

The baselines used in task completion evaluation are presented in Appendix I.2.

In addition to the subgoal hierarchy discovery, this work proposes the critic shaping method to accelerate the
resolution of the given DFA task, which is the stage 2 of the proposed framework. In this section, we compare
the critic shaping method against some state-of-the-art baselines on the sample efficiency of solving DFA
tasks. The first set of experiments uses regular tasks without subgoal hierarchy, while the second part of

10
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(a) Minecraft (b) AssemblyZone

Figure 7: Comparison of accuracy in subgoal hierarchy discovery. The y-axis is the Hamming distance
between learned and real subgoal prerequisites.

(a) Minecraft Task 1 (b) Minecraft Task 2 (c) AssemblyZone Task 1 (d) AssemblyZone Task 2

Figure 8: Performance comparison on tasks without subgoal hierarchy. The y-axis is the success rate.

experiments evaluate tasks integrated with subgoal hierarchy, which is the overall evaluation of the proposed
framework. The details of evaluated tasks are presented in Appendix H. The evaluation of critic shaping in a
more challenging domain is shown in Section 4.3. The ablation study specific to critic shaping is presented in
Appendix K

We evaluate the performance using the metric of success rate of task completion, calculated by counting
the frequency of successful episodes where the task is completed. We pause the learning process every 10K
training steps in every domain, then evaluate the current policy in the test environment over 20 episodes. We
ran 5 independent trials for each method. In each plot, the solid curve represents the mean performance
whose standard deviation is shown by the shaded area.

The comparison on tasks without subgoal hierarchy is shown in Figure 8, where only subgoals in the level
0 are used to compose the tasks. The automata of evaluated tasks are presented in Appendix H. Figure 9
presents the performance comparison on tasks with subgoal hierarchy, where subgoals from every level are
used and the subgoal prerequisites learned in the stage 1 of HDCS are incorporated into the task automata
via prerequisite DFAs.

As shown in Figures Figure 8 and Figure 9, the proposed framework significantly outperforms baselines,
demonstrating the effectiveness of the critic shaping method. Every baseline assign intermediate rewards
to the reward function, dependent on the agent’s distance towards task completion on the automaton A×.
Compared with baselines, the critic shaping directly modifies the critic values via a max operator, bypassing

(a) Minecraft Task 3 (b) Minecraft Task 4 (c) AssemblyZone Task 3 (d) AssemblyZone Task 4

Figure 9: Performance comparison on tasks with subgoal hierarchy. The y-axis is the success rate.

11
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(a) Screenshot (b) Task 1 (c) Task 2

Figure 10: Performance comparison in Button domain.

the process of the critic function that assimilates auxiliary rewards. Besides, the rewards in critic shaping set
stable targets for updating the critic function, improving the efficiency of critic training and facilitating the
reward propagation across the state space.

The advantage of the HDCS framework is magnified in Figure 9. This is because the DFA constraints there
are product automata which incorporated prerequisite DFAs of subgoals, and have more complex structures.
Since the agent needs to go through more stages to satisfy more complex DFA constraints, the critic shaping
can have larger margin over baselines based on conventional reward shaping. We can see that the PBRS
method performs almost worst. This is because the auxiliary rewards on too many automaton states can
distract the agent from reaching the real target. Both Naive-RS and Adaptive-RS perform much worse than
the proposed framework, and the performance gap is larger in AssemblyZone environment which has a much
longer horizon. This shows that the effect of shaping the critic is significant and increase in proportion with
the task horizon.

4.3 Evaluation of Critic Shaping in Button Domain

In addition, we evaluate the critic shaping on accelerating the resolution of LTL tasks in the Button domain
which is more challenging than Zone. This environment is from Safety-gymnasium (Ji et al., 2023), where an
agent must press a number of small buttons in a larger space while avoiding cube-shaped ‘gremlins’ that
move in a fixed circular path. A screenshot of this domain is shown in Figure 10(a). The agent is simulated
car (Ji et al., 2023). The task specification (DFA) instructs the agent to press some specific buttons in the
right orders, while avoiding making contact with gremlins. The symbols in this domain include indices of
buttons (i.e., "1", "2", "3" and "4") and "g" for gremlins. The task DFAs are shown in Appendix H.

We use two baselines, i.e. PBRS and Adaptive-RS, introduced in Appendix I.2. In the proposed method, the
critic shaping method is adopted and RA are chosen as [10, 100, 1000, . . .]. The horizon for every stage is
1000 and the discount γ = 0.998, so that RA satisfies the condition in equation 2. The proposed method and
baselines adopt PPO algorithm, where the clipping ϵ should be small, e.g., 0.1.

As shown in Figure 10, critic shaping still shows advantages over PBRS and Adaptive-RS in the high-
dimensional domain. Compared with comparisons in Minecraft and AssemblyZone domains, the advantage
of the proposed method (critic shaping) enlarges here. This is because the agent here is more difficult to
control and the gremlin is moving around. In this case, the stabilization of critic targets brought by the critic
shaping can accelerate the agent’s learning more significantly.

5 Conclusion

In this work, we attempt to solve two important issues of completing temporal logic tasks, i.e. unknown
subgoal hierarchy and sparse rewards, which are largely ignored or inadequately solved in previous works.
First, we propose an HRL-based framework to learn subgoal prerequisites and build a subgoal hierarchy,
significantly facilitating the agent’s learning process. Second, we propose a simple and novel critic shaping
method which can densify the rewards and efficiently accelerate the resolving of the given task. Each
component of the proposed framework is evaluated in various domains, verifying its advantages over baselines.
In the future, we will consider using large language model (LLM) to extract the subgoal hierarchy from text
descriptions of the agent’s behavior and incorporate it into task DFA.
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A Source Code

The source codes are in the following link: https://drive.google.com/drive/folders/
1YziBp049rzDB7SVtRDh0yupKtUe1qFA5?usp=sharing

B Related Work

We investigate a temporal extension of goal-conditioned reinforcement learning (RL) (Schaul et al., 2015)
in which objectives are encoded as automata. Although early work emphasized goals defined solely as
prospective target states, subsequent research has broadened the scope to encompass objectives expressed in
natural language (Bahdanau et al., 2018; Jiang et al., 2019; Luketina et al., 2019; Sontakke et al., 2023) and
temporal logic formulas (Vaezipoor et al., 2021). Conditional deterministic finite automata (cDFAs), while less
expressive than free-form language, strike a useful compromise: they retain much of language’s user-friendly
character yet preserve the precise, unambiguous semantics essential for the growing deployment of AI agents
in safety-critical contexts. In addition, the problem of inferring DFAs has been extensively studied (Angluin,
1987; Gold, 1967; Heule & Verwer, 2010; Lauffer et al., 2022; Oncina et al., 1992; Parekh & Honavar, 2001;
Wieczorek, 2017), and recent advances demonstrate that both DFAs and cDFAs can be learned directly from
natural-language descriptions and expert demonstrations, further narrowing the gap between language-based
and automata-based goal specifications (Vazquez-Chanlatte, 2022; Vazquez-Chanlatte et al., 2024).

On the LTL-constrained policy optimization side, several works have tackled the problem in varying settings
(Cai et al., 2021; Ding et al., 2014; Shah et al., 2024; Voloshin et al., 2023). Adjacent to these efforts, there is
a surge of recent works which have explored LTL specifications and automaton-like models as objectives in
RL (Camacho et al., 2019; Fu & Topcu, 2014; Hasanbeig et al., 2018; Sadigh et al., 2014; Wang et al., 2020;
Vaezipoor et al., 2021; Alur et al., 2022; De Giacomo et al., 2020; Voloshin et al., 2023; Jothimurugan et al.,
2019; 2021). However, none of them tackled the issue of unknown subgoal hierarchy.

Several previous works have tried to address the issue of sparse reward in solving the LTL task. Some
of them applied potential-based reward shaping (PBRS) (Ng et al., 1999) to derive auxiliary rewards for
intermediate progress towards task completion (Grześ, 2017; Jiang et al., 2021; Devidze et al., 2022; Icarte
et al., 2022). However, this method still does not resolve the sparse reward issue adequately. Another method
is to decomposing LTL task and solve it by hierarchical RL (HRL) approaches (Araki et al., 2021; Camacho
et al., 2019; Icarte et al., 2022). However, these HRL-based methods may suffer from the sub-optimality
issues.

C Subgoal Hierarchy Discovery Algorithm

The algorithm for discovering subgoal hierarchy and prerequisites is shown in Algorithm 1.

Remark. The low-level policy πl
θ(·|g) is pre-trained to achieve every subgoal g in level 0 (G0). In pre-training,

conditioned on every g ∈ G0, πl
θ is trained by the PPO algorithm to reach g. Since every g ∈ G0 can be

visited without prerequisites and the set G0 is known to the agent initially, the agent could use πl
θ to achieve

every g directly. For any subgoal in higher levels (i.e., G̃), the agent could leverage the subgoal hierarchy to
decompose it into a sequence of subgoals in level 0, and then apply πl

θ to achieve these decomposed subgoals
one-by-one, meeting the prerequisites.

D Convergence Proof of Critic Shaping

In this section, we provide the convergence proof of the critic shaping method. We will first formulate the
DFA satisfaction based on critic shaping as reward maximization in an extended MDP, and then prove the
convergence of max-Bellman operators used in this extended MDP, implying the convergence of critic shaping
method.
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Algorithm 1 Subgoal Hierarchy Discovery
Require: subgoal set G; goal-conditioned low-level policy πl

θ(·|g); empty subgoal hierarchy H;
1: G̃ := G \ G0; l = 0; H = ;
2: while G̃ is not empty do
3: l← l + 1;
4: initialize high-level policy πh

θ ; # exploration phase starts
5: Gl ← [];
6: while true do
7: explore until a new subgoal is discovered;
8: if no more new subgoal has been discovered for many episodes then
9: break;

10: end if
11: store the new subgoal into Gl;
12: train high-level policy;
13: end while
14: # exploitation phase starts
15: for each g ∈ Gl do
16: initialize high-level policy πh

θ ;
17: train πh

θ (·|g) to reach g;
18: obtain prerequisites of g from the trained; πh

θ (·|g) and store them into H
19: remove g from G̃;
20: end for
21: end while

D.1 Extended MDP

In the formulation in Section 3.2.3, the state representation is extended to a tuple of four elements, including
s (environmental state), s× (state of product DFA A×), i (round index) and k (stage index). To formalize
this extension, we define the extended state space Ŝ := S × S× × Z× Z, where S is the environmental state
space, S× is the set of automaton states on the product DFA A× and Z denotes the set of integers. Besides,
we also define the level function l : S× → Z mapping an automaton state on A× to its level. As defined in
Section 3.2.2, the level of a state means the minimal number of hops to an accepting state over A×).

For any extended state ŝ = (s, s×, k, i) ∈ Ŝ, the initial distribution of extended states is defined as p̂0(ŝ) :=
p0(s)δ(s×)δ(k − l(s×))δ(i), where p0 is the initial state distribution of environmental MDP, δ(s×) ensures
that the agent starts from the initial state 0 of A×, and other δ terms ensure that the first stage index is the
level of automaton state 0 and the round index starts from 0.

Then, for any extended state ŝ ∈ Ŝ and for an action a ∈ A, the extended transition function
P̂ (·, ·, ·, ·|s, s×, k, i, a) is a PDF over (s′, s′

×, k′, i′) ∈ Ŝ, defined as

P̂ (s′, s′
×, k′, i′|s, s×, k, i, a) := P (s′|s, a) ·δ(s′

×−T ×(s×, L(s′))) ·δ(k′− l(s′
×)∧k) ·δ(i′−(i+1{s′

× ∈ S∗
×})) (7)

where P is the transition function of the environmental MDP, T × is the state transition function of A×, a∧ b
denotes min(a, b), and S∗

× is the set of accepting states of A×. The first two terms in equation 7 denote
the state transitions in environmental MDP and A×. The third term means that the stage index k is the
minimal level the agent has reached in the current round. The last term denotes that the round index i is the
number of accepting visits the agent has made in the current episode. Since we only consider deterministic
environment in this work, P becomes a delta function and hence the distribution produced by P̂ concentrates
on a single point.

In addition, the auxiliary reward function RA is defined in Section 3.2.2 and is used to train the policy
π : Ŝ → ∆(A) to visit accepting states of A× (accepting visit) as often as possible in one episode. Based on
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RA, we can define the reward function for extended state transition (ŝ, a, ŝ′) and action a as below

R̂(ŝ, a, ŝ′) =


RA(k′, i′), if 0 < l(s′

×) < k

RA(k′, i′), if s′
× ∈ S∗

×
0 otherwise

(8)

In the definition of R̂, the first line denotes the situation where a new stage is achieved by ŝ′ and the second
line represents the case when an accepting state is visited in ŝ′. Combining all the discussions above, we can
have the following definition.

Extended MDP. The extended MDP is an MDP M̂ defined by the tuple (Ŝ,A, R̂, P̂ , p̂0, γ). Here A and γ
are action space and discount factor of the environmental MDP M .

D.2 Convergence Proof

As introduced in Section 3.2.3, in the proposed critic shaping method, auxiliary rewards RA are used to
directly shape the critic function via the max operator ∨. So, for any time step t and any extended state
ŝt = (st, s×,t, kt, it), we can define the critic function Q as below,

Qπ(ŝt, at) = E
ŝt+1 ∼ P̂ (·|st, at)
at+1 ∼ π(ŝt+1)

[
max

(
R̂(ŝt, at, ŝt+1), γE

ŝt+2 ∼ P̂ (·|st+1, at+1)
at+2 ∼ π(ŝt+2)

[max(R̂(ŝt+1, at+1, ŝt+2), . . .)]
)]
(9)

= E
ŝt+1 ∼ P̂ (·|st, at)
at+1 ∼ π(ŝt+1)

[
max

(
R̂(ŝt, at, ŝt+1), Qπ(ŝt+1, at+1)

)]
(10)

According to the condition equation 2 of RA values and the definitions of the reward R̂ and the Q function in
equation 8 and equation 9, the objective of visiting accepting states in the DFA A× as often as possible in
a finite episode is equivalent to maximizing the Q value in this extended MDP. So, the optimal policy of
satisfying the product DFA A× can be obtained by training a stationary policy to maximize the Q function
defined in equation 9. Therefore, the convergence of policy optimization based on this Q function implies the
convergence of the critic shaping method.

In order to show the convergence, we first define the max-Bellman evaluation operator and the max-Bellman
optimality operator (Quah & Quek, 2006; Veviurko et al., 2024). Based on a critic function Q : Ŝ × A → R
and for any state-action pair (ŝ, a) ∈ Ŝ × A,

(MπQ)(ŝ, a) = Eŝ′∼P̂ (·|ŝ,a)[max(R̂(ŝ, a, ŝ′), γEa′∼π(·|ŝ′)[Q(ŝ′, a′)])]

(M∗Q)(ŝ, a) = Eŝ′∼P̂ (·|ŝ,a)[max(R̂(ŝ, a, ŝ′), γ max
a′∈A

[Q(ŝ′, a′)])] (11)

Specifically, Mπ andM∗ : (Ŝ ×A → R)→ (Ŝ ×A → R) are operators that take in a Q function and returns
another modified Q function by assigning the Q value of the input state-action pair (s, a), to be the maximum
of the reward obtained at (s, a) and the discounted future expected Q value. In the following, we are going to
show that these two Bellman operators converge to a fixed point, and this fixed point is the optimal policy
which maximizes the Q values. The proofs are variants of convergence proofs in max-reward RL (Quah &
Quek, 2006; Gottipati et al., 2020).
Theorem D.1. The operator M∗ defined in equation 11 have the following properties.

1. Monotonicity: Assume that we have two Q functions Q1, Q2 : Ŝ×A → R such that Q1(ŝ, a) ≥ Q2(ŝ, a)
for any state-action pair (ŝ, a). Then

M∗Q1 ≥M∗Q2 (12)

2. Contraction: both operators are γ-contraction in the supremum norm (∥·∥∞), i.e., for any Q functions
Q1, Q2 : Ŝ × A → R, we have

∥M∗Q1 −M∗Q2∥∞ ≤ γ∥Q1 −Q2∥∞ (13)

19



Under review as submission to TMLR

Proof. We first prove the monotonicity and contraction for M∗.
Monotonicity. Assume Q1 and Q2 are two Q functions such that Q1(ŝ, a) ≥ Q2(ŝ, a) for any (ŝ, a) ∈ Ŝ ×A.
Then, we have

max
a′∈A

Q1(ŝ, a′) ≥ Q2(ŝ, a),∀(ŝ, a) ∈ Ŝ × A

which yields
max
a′∈A

Q1(ŝ, a′) ≥ max
a′∈A

Q2(ŝ, a′),∀ŝ ∈ Ŝ

Based on the definition of operator M∗ in equation 11, we have

M∗Q1(ŝ, a) ≥ γEŝ′∼P̂ (·|ŝ,a)

[
max
a′∈A

Q1(ŝ, a′)
]

Then, it is obvious that

M∗Q1(ŝ, a) ≥ γEŝ′∼P̂ (·|ŝ,a)

[
max
a′∈A

Q2(ŝ, a′)
]

(14)

The definition of M∗ also implies that

M∗Q1(ŝ, a) ≥ Eŝ′∼P̂ (·|ŝ,a)[R̂(ŝ, a, ŝ′)] (15)

Since we only consider deterministic environment in this work (stated in Section 2.1), based on equation 14
and equation 15, we have

M∗Q1(ŝ, a) ≥ Eŝ′∼P̂ (·|ŝ,a)

[
max

(
R̂(ŝ, a, ŝ′), γ max

a′∈A
Q2(ŝ′, a′)

)]
=M∗Q2(ŝ, a) (16)

Contraction. Denote fi(ŝ, a, ŝ′) := γ maxa′∈A Qi(ŝ′, a′). Based on the fact that max(x, y) = 0.5(x + y +
|x− y|),∀x, y ∈ R, we have

max(R̂, f1)−max(R̂, f2) = 0.5(R̂ + f1 + |R̂− f1|)− 0.5(R̂ + f2 + |R̂− f2|)
= 0.5(f1 − f2 + |R̂− f1| − |R̂− f2|)
≤ 0.5(f1 − f2 + |R̂− f1 − (R̂− f2)|)
= 0.5(f1 − f2 + |f1 − f2|)
≤ |f1 − f2| (17)

Then, we can have

∥M∗Q1 −M∗Q2∥∞ = ∥Eŝ′∼P̂ (·|ŝ,a)[max(R̂, f1)−max(R̂, f2)]∥∞

≤ ∥Eŝ′∼P̂ (·|ŝ,a)[f1 − f2]∥∞

= ∥Eŝ′∼P̂ (·|ŝ,a)[max
a′∈A

Q1(ŝ′, a′)−max
a′∈A

Q2(ŝ′, a′)]∥∞

≤ ∥Q1 −Q2∥∞

which proves the γ-contraction of M∗ in equation 13. The left-hand side of this equation represents the
largest difference between the two Q-functions. Since γ is in the range [0, 1), all the differences are guaranteed
to converge to zero in the limit. Based on the Banach fixed point theorem, the operator M∗ admits a fixed
point.

Theorem D.2. The operator Mπ defined in equation 11 have the following properties.

1. Monotonicity: Assume that we have two Q functions Q1, Q2 : Ŝ×A → R such that Q1(ŝ, a) ≥ Q2(ŝ, a)
for any state-action pair (ŝ, a). Then

MπQ1 ≥MπQ2 (18)
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2. Contraction: both operators are γ-contraction in the supremum norm (∥·∥∞), i.e., for any Q functions
Q1, Q2 : Ŝ × A → R, we have

∥MπQ1 −MπQ2∥∞ ≤ γ∥Q1 −Q2∥∞ (19)

Proof. Now we prove the monotonicity and contraction for Mπ.
Monotonicity. Assume Q1 and Q2 are two Q functions such that Q1(ŝ, a) ≥ Q2(ŝ, a) for any (ŝ, a) ∈ Ŝ ×A.
Then, we have

γEŝ′∼P̂ (·|ŝ,a),a′∼π(·|ŝ′)[Q1(ŝ′, a′)] ≥ γEŝ′∼P̂ (·|ŝ,a),a′∼π(·|ŝ′)[Q2(ŝ′, a′)],∀(ŝ, a) ∈ Ŝ × A

Based on the definition of operator Mπ in equation 11, we have

MπQ1(ŝ, a) ≥ γEŝ′∼P̂ (·|ŝ,a),a′∼π(·|ŝ′)[Q1(ŝ′, a′)]

Then, it is obvious that
MπQ1(ŝ, a) ≥ γEŝ′∼P̂ (·|ŝ,a),a′∼π(·|ŝ′)[Q2(ŝ′, a′)] (20)

The definition of Mπ also implies that

MπQ1(ŝ, a) ≥ Eŝ′∼P̂ (·|ŝ,a)[R̂(ŝ, a, ŝ′)] (21)

Since we only consider deterministic environment in this work (stated in Section 2.1), based on equation 20
and equation 21, we have

MπQ1(ŝ, a) ≥ Eŝ′∼P̂ (·|ŝ,a)

[
max

(
R̂(ŝ, a, ŝ′), γEa′∼π(·|ŝ′)Q2(ŝ′, a′)

)]
=M∗Q2(ŝ, a) (22)

which shows the monotonicity of Mπ.
Contraction. Denote fi(ŝ, a, ŝ′) := γEa′∼π(·|ŝ′)Qi(ŝ′, a′). Based on the fact that max(x, y) = 0.5(x + y +
|x− y|),∀x, y ∈ R, we have

max(R̂, f1)−max(R̂, f2) = 0.5(R̂ + f1 + |R̂− f1|)− 0.5(R̂ + f2 + |R̂− f2|)
= 0.5(f1 − f2 + |R̂− f1| − |R̂− f2|)
≤ 0.5(f1 − f2 + |R̂− f1 − (R̂− f2)|)
= 0.5(f1 − f2 + |f1 − f2|)
≤ |f1 − f2| (23)

Then, we can have

∥MπQ1 −MπQ2∥∞ = ∥Eŝ′∼P̂ (·|ŝ,a)[max(R̂, f1)−max(R̂, f2)]∥∞

≤ ∥Eŝ′∼P̂ (·|ŝ,a)[f1 − f2]∥∞

= ∥Eŝ′∼P̂ (·|ŝ,a)[Ea′∼π(·|ŝ′)Q1(ŝ′, a′)− Ea′∼π(·|ŝ′)Q2(ŝ′, a′)]∥∞

≤ ∥Q1 −Q2∥∞

which proves the γ-contraction of M∗ in equation 19. The left-hand side of this equation represents the
largest difference between the two Q-functions. Since γ is in the range [0, 1), all the differences are guaranteed
to converge to zero in the limit. Based on the Banach fixed point theorem, the operator Mπ admits a fixed
point.

According to equation 11 and equation 10, the fixed point of Mπ is Qπ. Denote the fixed point of M∗

operator as Q∗. In the following, we will show that Q∗ corresponds to the optimal action-value function
which maximizes the reward R̂ obtained in one episode, i.e., Q∗ = maxπ Qπ

Theorem D.3. Define the deterministic policy π∗ as π∗(ŝ) = arg maxa∈A Q∗(ŝ, a),∀ŝ ∈ Ŝ. Then, π∗

is the optimal policy and for any stationary policy π and any state-action pair (ŝ, a) ∈ Ŝ × A, we have
Qπ∗(ŝ, a) = Q∗(ŝ, a) ≥ Qπ(ŝ, a).
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Figure 11: Example of task DFA B and prerequisite DFA C for the product automaton A×. Self-loops are
omitted.

Proof. Based on the definition of π∗ and Q∗, we have Mπ∗
Q∗ =M∗Q∗ = Q∗. It shows that Q∗ is the fixed

point of Mπ∗ , which implies that Q∗ is the value function of π∗.

For any Q function Q : Ŝ × A → R and any stationary policy π, we have M∗Q ≥ MπQ. Based on the
monotonicity of operators, we have

(M∗)2Q ≥M∗(Mπ)Q ≥ (Mπ)2Q

Then, by using induction, we can show that for any n we have (M∗)nQ ≥ (Mπ)nQ. Based on the contracting
properties of M∗ and Mπ, both (M∗)nQ and (Mπ)nQ converge to Q∗ and Qπ when n→∞, respectively.
Then, we show that Q∗ ≥ Qπ element-wisely.

According to theorems above, we show that both the optimality M∗ and evaluation Mπ operators, defined
based on the max-Bellman operator used in the critic shaping, converge to their fixed points, and the fixed
point of M∗ is the optimal policy. Therefore, we show that policy optimization based on the critic shaping
method can converge to the optimal policy which maximizes the number of visits to accepting states of A×
in a finite episode.

Levels States in A×

0 (4, 0), (4, 1), (4, 2), (4, 3)

1 (3, 0), (3, 1), (3, 2), (3, 3)

2 (2, 2)

3 (1, 2), (2, 1)

4 (2, 0), (1, 1), (0, 2)

5 (1, 0), (0, 1), (1, 3)

6 (0, 0), (0, 3)

Table 1: Dividing states in product automaton A× into levels.

E Example of Product Automaton and Levels

Additionally, as shown in Figure 11, we give another example for the levels in a product automaton A×. The
prerequisite DFA states that the pre-condition of visiting subgoal "e" is visiting "c" first and then "f". The
state of product automaton (sB , sC) is a tuple of state sB in task DFA B and state sC in prerequisite DFA
C. Then, the states in product automaton are divided into different levels as shown in Table 1.

States in level 0 are accepting states in A×. States in level k are k hops away from any accepting state
following the shortest path over A×. Note that the state (2, 3) can never be reached from initial state (0, 0),
since the conditions of transiting from state 2 to 3 coincide in both B and C, which is visiting "e". States (0, 3)

22



Under review as submission to TMLR

and (1, 3) are in level 6 and 5 respectively, since the agent goes to these states by visiting "e" redundantly
and has to visit "e" by satisfying its causal constraint again.

F Discussion: Reward vs Critic Shaping

In comparison to previous reward shaping approaches (Ng et al., 1999; Grześ, 2017; Jiang et al., 2021; Devidze
et al., 2022; Icarte et al., 2022), the critic shaping proposed in HDCS offers three primary advantages.

• First, the auxiliary rewards in critic shaping depend solely on the stages and rounds, making them
simpler to compute than those in PBRS (Ng et al., 1999) which need a potential function (see Figure
12).

• Second, because the policy is trained using critics rather than rewards, critic shaping directly modifies
the critic function, thereby expediting policy learning more effectively than previous reward shaping
methods. In prior techniques, auxiliary rewards are first added to the original reward function and
then incorporated into the critic function, which can lead to inefficient sample usage and slower
policy learning.

• Third, critic shaping provides stable targets for learning the critic function, preventing the agent
from being influenced by other subgoals and thus stabilizing the overall policy learning process. This
aspect is particularly important for satisfying DFA constraints, as DFAs consist of multiple subgoals,
many of which do not have progress toward the DFA satisfaction and can destabilize the agent’s
learning process. As illustrated in Figure 12, in reward shaping the second visit to state 1 yields an
auxiliary reward of −1.02 that affects the target for updating critic function at state 2. However,
in critic shaping, since the second visit to state 1 there is no progression to a new stage, this visit
receives an auxiliary reward of 0, which does not influence the critic target at state 2 and thereby
maintains greater stability in the critic and policy learning processes.

Remark. Another example of the benefit of critic shaping about stability is shown in Figure 13. When
the agent is not well trained, especially in early training period, the critic values in every stage are almost
small, as shown by the blue curve in Figure 13. In this case, the high value of RA(i, k) and the max operator
in equation 3 and equation 4 can prevent the agent’s learning in stage k from being influenced by the
poorly-learned critic values in stage k−1 (blue curve). It essentially inserts a barrier at the boundary between
stages k and k − 1, and fixes the critic value of target states in stage k at RA(i, k). This barrier can make
the agent’s learning of stage k focus on going to stage k − 1, stabilizing its learning behavior.

If we simply use "+" in equation 3 and equation 4, RA(i, k) cannot work like a barrier and the small values in
stage k − 1 will be added to critic targets in stage k, destabilizing and slowing down the agent’s learning in
stage k. Therefore, RA(i, k) can stabilize the critic’s learning in stage k and accelerate the policy learning.
This effect can be extended to other stages with other RA.

Intuition of equation 2. Due to the discount factor γ of the MDP, the auxiliary reward RA(i, k) can be
attenuated exponentially when the critic function is updated according to equation 3 and equation 5. If the
trajectory is long, RA may become small at earlier stages, say stage k + 1. If the condition equation 2 is
violated, i.e., γT RA(i, k) < RA(i, k + 1) (T denotes the number of time steps from stage k + 1 to k), the
reward information in stage k cannot back-propagate to stage k + 1 and earlier stages, which makes the
agent’s policy learning in stage k + 1 be unaware of rewards in stage k and lose optimality. Therefore, we
have to make sure that the condition of RA in equation 2 holds. This condition guarantees that the reward
information in every stage and round can back-propagate till the beginning of the trajectory (initial state),
which can make the agent’s policy learning reach optimality.

The examples of RA and their discounted values are shown in Figure 13. The solid lines show that values of
RA satisfy the condition equation 2. The red dashed line shows the case where equation 2 is violated, where
the red line can block the back-propagation of reward information and make the return estimation at stage k
inaccurate, deviating the policy learning from its optimal solution.
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Figure 12: Comparison of reward and critic shaping. A task DFA in the example environment (Figure 2(a)) is
shown in (a) and (b). The red line denotes the agent’s path (r, g, y) on the DFA, where state 2 is visited twice
by mistake. (a): Assume that the potential function of states are ϕ(0) = −3, ϕ(1) = −2, ϕ(2) = −1, ϕ(3) = 0
and discount factor γ = 0.98. Based on PBRS, the auxiliary rewards are computed as ϕ(s′)− γ · ϕ(s) and
denoted as red and blue numbers. (b): state 1, 2 and 3 are in stage 3, 2 and 1, respectively. The auxiliary
rewards in terms of stage are denoted as red and blue numbers. Note that in (a) the critic value of state 2
will be influenced by the second visit to state 1. But in (b), it will be fixed as 10, no matter where the agent
goes after visiting state 2 (except state 3 in a better stage).

k

Vπ

k − 1 k − 2

RA(i, k)

RA(i, k − 1)

RA(i, k − 2)

time t

Figure 13: Examples of auxiliary rewards RA. Each RA is shown as a solid line, which is discounted over
one stage in back-propagation, and its discounted value is shown as a dotted line. The dashed arrow denotes
the direction of reward back-propagation process. k, k − 1 and k − 2 denote stage indices. i is the index of
a round. The vertical axis is the value of critic function. The red line denotes a wrong choice of RA value
which blocks the back-propagation of reward information. The blue dashed line denote the situation that
the critic values are small in stage k − 1 when the critic function is not well trained. In this case, the max
operator can make the high value of RA(i, k) a barrier and prevent the agent from being influenced by the
critic values in stage k − 1, stabilizing the agent’s learning in stage k.
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Figure 14: Map of Minecraft. Only subgoals in the level 0 are shown. Higher-level subgoals become visible
after their prerequisites are satisfied.

G Environments

We evaluate the proposed framework in two domains, including 2D-Minecraft and AssemblyZone. These
domains all have complex hierarchical structures of subgoals with very sparse rewards, covering both discrete
and continuous state-action spaces. The task is specified by the user in the form of LTL specification. Different
from previous papers (Sohn et al., 2018; Hu et al., 2022), we consider the hierarchical subgoal structures
containing prerequisites under temporal ordering constraints, which are common in many real-world scenarios.
Note that every subgoal has multiple copies in the map, requiring the agent to decide which copy is the
optimal to visit.

G.1 2D-Minecraft

2D-Minecraft is a modified 2D version of the famous Minecraft (Guss et al., 2019). In one episode with limited
number of steps, the agent must navigate the map, pick up various materials, and craft tools to complete
the task. Compared with original Minecraft game (Guss et al., 2019; Hu et al., 2022), we add some more
objects to complicate their relationships. As shown in Figure 14, in a 12× 12 grid-world there are 11 objects
corresponding to the subgoals of level 0, including wood, stone, water, scroll, tool workshop, iron workshop,
wizard, necromancer, iron ore, coal and zombie (verbs are omitted). There are other subgoals in the higher
levels, including stone pickaxe, iron, stone sword, fountain, iron pickaxe, iron sword, exorcism and killing
zombie. Visiting some lower-level subgoals in certain orders can unlock and enable subgoals in higher levels.

The subgoal hierarchical structures are shown Figure 15, which are unknown to the agent initially. For
example, when the agent first visits the stone and then tool workshop, the subgoal of making a stone pickaxe
becomes feasible at the workshop, which can produce a stone pickaxe if selected. In order to make iron,
coal and iron ore can be collected in any order and then fed into the iron workshop to produce iron. The
prerequisites of both stone and iron swords contain wizard, since adding some magic to the raw materials
can make the swords more effective. Asking the necromancer to process the stone sword can make it strong
enough to kill the zombie. As shown in the highest level, the ultimate goal of this game is to use the sword
to kill zombie or produce exorcism to drive away zombie. The LTL task in this domain is composed by all
the subgoals from level 0 to level 3.

G.2 AssemblyZone

This domain is modified from the Zone domain (Vaezipoor et al., 2021) where the subgoal hierarchy is added.
It is a simulated robotic environment where the robot dynamics is implemented by the Safety Gym (Ray et al.,
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Figure 15: The subgoal hierarchy in Minecraft. Prerequisite sequences of subgoals are connected by arrows
whose directions show the ordering constraints.

(a) Screenshot (b) Map

Figure 16: Screenshot (left) and Map (right) of AssemblyZone.

2019). Specifically, the agent is the point robot with actions for steering and forward/backward acceleration.
It observes lidar information towards the zones and other sensory data (e.g., accelerometer, velocimeter),
where the observation is a real-valued vector with 92 dimensions. The zones and the robot are randomly
positioned on the plane at the start of each episode. The agent is navigating in the map to visit zones in
different colors in an order specified the LTL task, including red ("R"), blue ("B"), yellow ("Y"), green ("G")
and white ("W"), as shown in Figure 16.

This domain is created to simulate the warehouse robot in practice. Zones in the same color contain same
kind of parts. Whenever the agent visits a zone, it collects the corresponding part and gets a letter as
a symbol. Collecting and assembling different parts in certain orders, which form sequences of symbols,
can create new products. In addition, some products can be combined to produce more complex products.
Therefore, parts in zones and products can form hierarchical structures of subgoals, as shown in Figure 17.
The products numbered from 1 to 5 (short for "p1" to "p5") are categorized into two levels. The prerequisites
of a product only contain products in lower levels. For example, after visiting the red, blue and green zones
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Figure 17: Hierarchical structures of subgoals in AssemblyZone. The subgoal prerequisites are connected by
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Figure 18: Task automaton compose by primitive subgoals. "wo", "st", "ne", "wa", "t.w.", and "sc" represent
wood, stone, necromancer, water, tool workshop, and scroll, respectively. "R", "G", "B", "W" and "Y" are
short for red, green, blue, white and yellow zones, respectively.

sequentially, the subgoal of producing product 1 ("p1") is unlocked and the agent can produce "p1" directly
without taking any other actions. The prerequisites of products in level 2 contain products in level 1. For
instance, in order to produce "p4", the agent needs to first produce "p3" and then "p2". The LTL task in this
domain is composed by letters of both parts ("r", "b", "y", "g", "w") and products ("p1", ..., "p5").

H Evaluation Tasks

The tasks composed by primitive subgoals are shown in Figure 18, where subgoals can be visited without
satisfying any prerequisites. In the 2D-Minecraft environment, the task 1 for evaluation is to keep collecting
wood, stone and scroll in a fixed order and collect collect a coal can go back to a previous automaton
state. The task 2 is to first collect wood, second collect stone, then visit necromancer, and first collect
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Figure 19: Task automaton compose by higher-level subgoals. In addition to Figure 18, "ir", "s.p." and "i.p."
are short for iron, stone pickaxe and iron pickaxe, respectively.
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Figure 20: Task DFA in Button domain. Here numbers are indices of buttons and "g" represents the moving
gremlin.
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water, second visit tool workshop, then collect scroll, where these 6 items can be done in any orders as
long as the ordering constraints are satisfied. Specifically, the task 2 of Minecraft can be represented as
♢(wo ∧ ♢(st ∧ ♢ne)) ∧ ♢(wa ∧ ♢(t.w. ∧ ♢sc)) in the form of LTL formula. The task 1 in AssemblyZone
environment is to keep visiting red, then green, then yellow zones in a fixed order without visiting blue zone
at any time. It can be written as □(R ∧ ♢(G ∧ ♢Y )) ∧□(¬B). The task 2 in AssemblyZone is to visit green,
then yellow, then blue and finally red zone for only once, and visiting white zone can go back to a previous
automaton state.

The tasks with subgoal hierarchy are shown in Figure 19, where visiting some subgoals needs to satisfy
prerequisites first. The agent needs to form a product automaton to complete the task, which multiplies
the task automaton and prerequisite automaton together, as an example shown in Figure 4. In Minecraft
environment, task 3 and 4 are formed by replacing some subgoals in task 1 and 2 with higher-level subgoals.
In AssemblyZone, task 3 and 4 are formed in similar ways.

The tasks in Button domain are shown in Figure 20.

I Baselines

I.1 Baselines for Hierarchy Discovery

In order to evaluate the performance on the exploration and discovery of subgoal hierarchy, we compare the
stage 1 of HDCS with three baselines. Every method is evaluated in the same subgoal set G. Subgoals in level
0, stored in the set G0, do not have any prerequisites to visit and are visible in the map, while visiting subgoals
in higher levels has prerequisites in the form of subgoal sequences. The first baseline is used to evaluate
the capability of exploration only, while other baselines are designed for both exploration and discovery of
subgoal hierarchy.

• Vanilla HRL (VHRL). This is implemented as a two-level HRL agent. Specifically, in the low
level, there is a goal-conditioned policy trained to achieve subgoals in G0 selected by the high-level
part. The low-level action is the primitive environmental action. In the high level, an RNN-based
policy is trained to learn sequences of subgoals in G0 to reach the final target of the environment
(i.e., subgoals in the highest level), where the action space is G0 and the observation is the symbolic
observation denoting the subgoal achieved by the agent.

• HAC (Levy et al.). This method is a two-layer HRL similar as VHRL. The low-level part is same
as that of VHRL. In contrast to VHRL, the high-level part is an goal-conditioned RNN-based policy
trained to achieve a subgoal in G \ G0 by using sequences of subgoals in G0. Besides, HAC discovers
subgoal hierarchy with a randomness-driven exploration paradigm (Levy et al.). We also use HER
(Andrychowicz et al., 2017) to augment the training of the high-level part.

• MEGA (Pitis et al., 2020). This baseline is designed to use curriculum learning to improve HAC.
MEGA train subgoals in G \ G0 in the order of their training progress, where the subgoal in every
episode is selected according to the principle of minimum density approximation. Other parts are
same as HAC.

In every method evaluated in experiments, there is a pre-training phase which trains the low-level part to
achieve subgoals in G0 in a fixed number of time steps. In HAC and MEGA, whenever well trained, the
prerequisites of every subgoal can be obtained as the output sequences of the high-level policy conditioned on
that subgoal, building the subgoal hierarchy.

I.2 Baselines for Task Completion Evaluation

In every baseline, auxiliary reward is added to the original reward function of the environment, and the
backbone is the PPO algorithm (Schulman et al., 2017) whose hyper-parameters are set same as the proposed
framework. In Appendix 4.3, we compare critic shaping with these baselines in the Button domain, where
the backbone is DDPG (Lillicrap et al., 2015).
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(a) Minecraft Exorcism (b) Minecraft Kill Zombie (c) AssemblyZone p4 (d) AssemblyZone p5

Figure 21: Performance comparison on the exploration capability of reaching a single final target of each
domain. The success rate (y-axis) is about reaching one specific target denoted in the caption.

(a) Minecraft 1.5e5 (b) Minecraft 4e5 (c) AssemblyZone 3e6 (d) AssemblyZone 8e6

Figure 22: Performance comparison on reaching intermediate subgoals given fixed number of training samples.
The number of training samples is denoted in the caption.

• PBRS. The first baseline is the PPO augmented with auxiliary rewards computed by using PBRS
method (Ng et al., 1999; Jiang et al., 2021). The potential function is defined in terms of the
automaton state, i.e., Φ(s). Specifically, Φ(s) is equal to the negative of distance from s to its closest
accepting state, multiplied by a scaling parameter κ = 10. An example with κ = 1 is shown in Figure
12(a).

• Naive-RS. Moreover, we adopt a naive baseline which rewards transitions over task automaton that
reduce the distance to the accepting state, short as Naive-RS. For any state u in task automaton Aφ,
the distance to its closest accepting state over Aφ is represented by the potential function Φ(u). For
any transition (⟨s, u⟩, a, ⟨s′, u′⟩), the auxiliary reward is 10 if Φ(u) > Φ(u′) is otherwise 0.

• Adaptive-RS. The third baseline we use is an adaptive variation of Naive-RS. It works in the
same way as Naive-RS, but it adaptively adjusts auxiliary rewards of each stage by using the
method introduced in Section 3.2.4, making every auxiliary reward adaptive to the difficulty of its
corresponding stage.

J Subgoal Hierarchy Discovery

In this section, as a supplement to Section 4.1, we present more detailed results on the performance comparison
about the discovery of subgoal hierarchy.

As shown in Figure 21, the proposed HRL-based method outperforms baselines in every highest-level subgoal
of each domain, reaching every subgoal faster than baselines. Besides, given different number of training
samples from the environment, we also evaluate the efficiency of the proposed and baseline methods on
reaching some intermediate subgoals, as shown Figure 22. We can see that the proposed method still reaches
intermediate subgoals faster than baselines. Note that baselines can reach highest-level subgoals with some
probability in the early learning stage. This is because these baselines select the target subgoals to train the
high-level agent with some randomness, ignoring the hierarchical nature of the subgoal space. However, this
ignorance makes these baselines be outperformed by the proposed method finally.
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(a) Minecraft (b) AssemblyZone

Figure 23: Ablation study on subgoal hierarchy discovery. The tasks for evaluation are both task 4 in
Minecraft and AssemblyZone domains.

(a) Minecraft (b) AssemblyZone

Figure 24: Optimality comparison. y-axis is the return (discounted accumulated rewards).

K Ablation Study

In this section, we will conduct some ablation studies on the HDCS framework. We first investigate the
performance of task completion without subgoal hierarchy discovery, and then compare different choices of
auxiliary rewards which may violate the condition equation 2, showing the importance of various components
of the algorithm design.

K.1 Effect of Hierarchy Discovery

In order to study the effect of hierarchy discovery, we design a baseline "No Discovery" which directly uses
the second part of HDCS framework, i.e., critic shaping and PPO, to solve the task 4 of Minecraft and
AssemblyZone. These two tasks contain subgoals which have prerequisites to satisfy. The performance
comparison is shown in Figure 23. We can see that the baseline almost cannot solve the given task, showing
the significance of subgoal hierarchy discovery.

K.2 Ablation Study for Optimality

A simple idea is to use the low-level policies trained in phase 1 to directly solve the given DFA task in phase
2, without using critic shaping to train any new policies. However, this method can have the sub-optimality
issue in the found solutions. We term this method as "baseline", and compare its optimality with the proposed
HDCS framework. The comparison is shown in Figure 24.

In Figure 24, we first compare the baseline and HDCS in task 1 and 2 in 2D-Minecraft domain, short as
Minecraft-1 and Minecraft-2. We also compare the optimality in task 1 and 2 in AssemblyZone domain, short
as Zone-1 and Zone-2. The DFA of these tasks are presented in H. The final reward RF , is given at the last
visit to an accepting state in task DFA, where RF = 15 in Minecraft and 100 in AssemblyZone. Auxiliary
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(a) (b)

Figure 25: Ablation study on different auxiliary rewards in AssemblyZone domain. (a): The red path shows
the optimal solution of the task. (b): performance comparison for abalation study.

rewards are not counted when computing the return. The higher the return is, the less time steps are used in
task completion.

In baseline, no policies are trained in the phase 2. In HDCS, the return is evaluated when the agent is trained
with 5e5 and 10e6 environmental samples in Minecraft and AssemblyZone domains, respectively. We can see
that the HDCS outperform the baseline in every evaluated task. This is because every symbol has multiple
copies in both domains and the policies in HDCS are trained from scratch to select the optimal symbol to
visit.

K.3 Effect of Auxiliary Reward Condition

In this section, we study the importance of the auxiliary reward condition equation 2. We design a new task
in the AssemblyZone domain by introducing some causal relationship. As shown in Figure 25(a), the task is
to first visit the red, then green, and finally blue zones, where each zone has fixed position in every episode.
There is a yellow key (relized by a yellow zone) fixed at the upper left corner of the map. The sizes of map
and zones are chosen smaller than previous experiments in AssemblyZone domain.

However, we assume that the agent can only visit blue zone with a yellow key which can be picked up by
visiting the yellow zone. The agent does not know this causal relationship initially, and it has to learn this by
interacting with the environment. The horizon of every stage is 300 and discount factor is 0.998. In this
case, we apply critic shaping and PPO , which is the stage 2 of HDCS, to solve the given task and evaluate
different choices of auxiliary rewards RA. The proposed framework chooses RA = [10, 20, 40] for three stages
in task DFA. Additionally, we have [10, 10, 10] as choice-1, and [10, 30, 10] as choice-2.

The performance comparison is shown in Figure 25(b). We can see that these two choices perform poorly and
cannot solve the task at all. The reason is that the auxiliary rewards of stage 2 and 3 do not satisfy condition
equation 2 and prevent the reward information of stage 3 (i.e., reaching the blue zone) from back-propagating
to stage 2. This can make the agent only focuses on reaching green zone in stage 2 and ignore picking up the
key, so that the blue zone can never be reached in stage 3. If the reward cannot back-propagate across every
stage smoothly, the optimal solution cannot be learned.

K.4 Effect of Max Operator

In addition, we further conduct ablation studies on the max operators in critic shaping. The baseline
method replaces the max operator in equation 3 and equation 4. The environment is the AssemblyZone
domain and the tasks are task 1 and 2 without subgoal hierarchy (introduced in Appendix H). We choose
RA = [10, 20, 40, . . .]. The performance comparison is shown in Figure 26.
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(a) Task 1 (b) Task 2

Figure 26: Ablation study on the max operator of critic shaping in the AssemblyZone domain.

We can see that if the proposed method replaces the max operator with the addition used in conventional
reward shaping methods, the performance degrades. The reason is that, although auxiliary rewards RA

are large enough to satisfy equation 2, the values produced by the critic function are usually small in the
early learning stage. Using the max operator can prevent the learning in one stage from being influenced by
the values of next stage. Hence, it stabilizes the targets of the learning of critic function and improves the
learning efficiency of both critic and policy. This is visualized and demonstrated by the blue curve in Figure
13 at Section F.
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