
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS FALSE-CLAIM-RESISTANT MODEL OWNER-
SHIP VERIFICATION VIA TARGETED FINGERPRINT

Anonymous authors
Paper under double-blind review

ABSTRACT

The utilization of open-source pre-trained models has become a prevalent practice,
but unauthorized reuse of pre-trained models may pose a threat to the intellectual
property rights (IPR) of the model developers. Model fingerprinting, which does
not necessitate modifying the model to verify whether a suspicious model is reused
from the source model, stands as a promising approach to safeguarding the IPR.
In this paper, we revisit existing model fingerprinting methods and demonstrate
that they are vulnerable to false claim attacks where adversaries falsely assert
ownership of any third-party model. We reveal that this vulnerability mostly
stems from their untargeted nature, where they generally compare the outputs of
given samples on different models instead of the similarities to specific references.
Motivated by these findings, we propose a targeted fingerprinting paradigm (i.e.,
FIT-Print) to counteract false claim attacks. Specifically, FIT-Print transforms the
fingerprint into a targeted signature via optimization. Building on the principles
of FIT-Print, we develop bit-wise and list-wise black-box model fingerprinting
methods, i.e., FIT-ModelDiff and FIT-LIME, which exploit the distance between
model outputs and the feature attribution of specific samples as the fingerprint,
respectively. Extensive experiments on benchmark models and datasets verify the
effectiveness, conferrability, and resistance to false claim attacks of our FIT-Print.

1 INTRODUCTION

Deep learning models, especially deep neural networks (DNNs), have been widely and successfully
deployed in widespread applications (Wang et al., 2024; Li et al., 2022a; He et al., 2023). In general,
obtaining a well-performed model requires considerable computational resources and human expertise
and is, therefore, highly expensive. In particular, some models are released to the open-source
community (e.g., Hugging Face) for academic or educational purposes. However, the development
of model reuse techniques, such as fine tuning (Liu et al., 2018) and transfer learning (Zhuang et al.,
2020), poses a potential threat to the intellectual property rights (IPR) of these models. With these
methods, malicious developers can easily reuse open-source models for commercial purposes without
authorization. How to protect their IPR becomes a vital problem.

Currently, ownership verification stands as a widely adopted post-hoc approach for safeguarding
the IPR of model developers. This method intends to justify whether a suspicious third-party model
has been reused from the protected model (Zhang et al., 2020b; Li et al., 2022d; Sun et al., 2023).
Existing techniques to implement ownership verification can be broadly categorized into two main
types: model watermarking and model fingerprinting. Model watermarking (Adi et al., 2018; Li et al.,
2022d; Yang et al., 2023) involves embedding an owner-specific signature (i.e., watermark) into the
model. The model developer can extract the watermark inside the model to verify its ownership.
On the contrary, model fingerprinting (Cao et al., 2021; Li et al., 2021; Jia et al., 2022) aims to
identify the intrinsic feature (i.e., fingerprint) of the model instead of modifying the protected model.
The fingerprint can be represented as the outputs of some testing samples at a particular mapping
function. Comparing model fingerprints enables comparing the source and suspicious models to
examine whether the latter is a reused version of the former. Arguably, model fingerprinting is more
convenient and feasible than model watermarking since the former does not necessitate any alteration
to the parameters, structure, and training procedure and thus has no negative impact on the model.

In this paper, we reveal that existing model fingerprinting methods, no matter whether they are
bit-wise (Li et al., 2021) or list-wise (Jia et al., 2022) (i.e., extract the fingerprint bit by bit or as a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Fingerprint Space Adversarial Fingerprint

Space

Untargeted Fingerprints Targeted Fingerprints

Source Model Reused Model Independent Model

Fingerprint Space

Target Fingerprint

Transfer to independent models!

Figure 1: The comparison of untargeted and targeted fingerprinting paradigms. Untargeted methods
generally compare the output of given samples. Accordingly, using some transferable samples can
lead to false claims. Targeted fingerprinting calculates the similarity to a specific signature, which
restricts the fingerprint space around the target and, therefore, mitigates false claim attacks.

whole list), are vulnerable to false claim attacks1. In general, false claim attacks allow adversaries to
falsely assert to have the ownership of third-party models that is not a reused model by creating a
counterfeit ownership certificate (i.e., watermark or fingerprint). In particular, false claim attacks can
be treated as finding transferable ownership certificates across models since registering the certificate
with a timestamp can avoid any false claim with a later timestamp.(Liu et al., 2024). We show that
the adversary can conduct false claim attacks by constructing transferably ‘easy’ samples that can be
correctly classified with high confidence (as shown in Section 2.3). Existing fingerprinting methods
tend to compare the outputs of testing samples, and these elaborated easy samples can have similar
high-confident outputs on various models, thus leading to independent models being misjudged as
reused models. We argue that this vulnerability mostly stems from the untargeted nature of existing
methods. Specifically, they generally compare the outputs of any given samples on different models
instead of the similarities to specific references. The untargeted nature enlarges the space of viable
fingerprints. It makes adversaries easily find alternative transferable samples that have similar output
on independent models, as illustrated in Figure 1.

Motivated by the aforementioned understandings, we introduce a new fingerprinting paradigm, dubbed
False-claIm-resistant Targeted model fingerPrinting (FIT-Print), where the fingerprint comparison is
targeted instead of untargeted. Specifically, we optimize the perturbations on the testing samples to
make the output of the fingerprinting mapping function close to a specific signature (i.e., the target
fingerprint). It restricts the (potential) fingerprint space and significantly reduces the probability of a
successful false claim attack. Based on our FIT-Print, we design two targeted model fingerprinting
methods, including FIT-ModelDiff and FIT-LIME, as the representatives of bit-wise and list-wise
methods, respectively. FIT-ModelDiff exploits the distances between outputs, while FIT-LIME
leverages the feature attribution of testing samples as the fingerprint.

Our main contributions are four-fold: (1) We revisit existing model fingerprinting methods and reveal
that existing methods are vulnerable to false claim attacks. (2) We introduce a new fingerprinting
paradigm (i.e., FIT-Print), where we conduct verification in a targeted manner with a given refer-
ence. (3) Based on our FIT-Print, we design two black-box targeted model fingerprinting methods:
FIT-ModelDiff and FIT-LIME. (4) We conduct experiments on benchmark datasets to verify the
effectiveness and conferrability of FIT-Print, and its resistance to false claims and adaptive attacks.

2 REVISITING EXISTING MODEL FINGERPRINTING METHODS

2.1 THREAT MODEL OF MODEL FINGERPRINTING

Following prior works (Liu et al., 2024; Waheed et al., 2024), there are three parties in the threat
model, including the model developer, the model reuser, and the verifier.

Assumptions of the Model Developer and Verifier. The model developer is the true owner of the
source model and can register its model and fingerprint to the trustworthy verifier with a timestamp.
The verifier is responsible for fingerprint registration and verification. In case the model is reused by a
model reuser, the model developer can ask the verifier for ownership verification. In particular, if two

1The concept and definition of false claim attacks was initially introduced in (Liu et al., 2024) and primarily
targeted at attacking model watermarking methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

parties can simultaneously provide fingerprints and verify the ownership of a model, the fingerprint
with a later timestamp will be deemed invalid. The model developer and the verifier are assumed to
have (1) white-box access to its source model and (2) black-box access to the suspicious model.

Assumptions of the Model Reuser. Model reusers aim to avoid having their authorized reuse
detected by the verifier. To achieve this, they can first modify the victim model via various techniques,
such as fine-tuning, pruning, transfer learning, and model extraction, before deployment.

2.2 THE FORMULATION OF EXISTING FINGERPRINTING METHODS

In this section, we primarily focus on black-box instead of white-box model fingerprinting methods
since they are more practical in real-world applications. We outline the formulations of these methods
to aid in the analysis and design process in the subsequent sections of this paper and follow-up
research. In general, existing black-box model fingerprinting methods can be categorized into two
types: adversarial example-based (AE-based) fingerprinting methods and testing-based fingerprinting
methods. We also include a broader discussion about other model fingerprinting in Appendix L.

AE-based Fingerprinting Methods. AE-based fingerprinting methods (Cao et al., 2021; Lukas et al.,
2021; Pautov et al., 2024) assume that the independent model has a unique decision boundary. Based
on this assumption, they exploit adversarial examples (AE) (Ren et al., 2020; Wan et al., 2024) to
characterize the properties of the decision boundary of a model. AE-based fingerprinting methods
validate whether the AEs are misclassified by the source model and the suspicious model. If so, the
suspicious model can be treated as a reused version of the source model. The proposition tested in
AE-based methods can be formulated as follows.
Proposition 1 (Ownership Verification of AE-based Methods). Let Mo be the source model and Ms

be the suspicious model, and g(x) is the function that always outputs the ground-truth label of any
input data x. If for any testing sample x ∈ XT (XT denotes the set of the testing samples) we have

Mo(x) = Ms(x) ̸= g(x), (1)

the suspicious model Ms can be asserted as a reused version of the source model Mo.

Testing-based Fingerprinting Methods. Testing-based fingerprinting methods (Li et al., 2021;
Jia et al., 2022; Guan et al., 2022) aim to compare the suspicious model with the source model on
a specific mapping function f(·). If the outputs of these two models are similar, the suspicious
model can be regarded as being reused from the source model. As such, the core of testing-based
fingerprinting methods is how to design the mapping function f(·). The proposition used in testing-
based methods can be formulated as follows.
Proposition 2 (Ownership Verification of Testing-based Methods). Let Mo be the source model and
Ms be the suspicious model. If for a specific mapping function f(·) and any testing sample x ∈ XT

(XT is the set of the testing samples) we have

1

|XT |
∑

x∈XT

dist(f [Mo(x)], f [Ms(x)]) ≤ τ, (2)

where τ is a small positive threshold and dist(·, ·) is a distance function, the suspicious model Ms

can be asserted as reused from the source model Mo.

2.3 THE FALSE CLAIM ATTACK AGAINST MODEL FINGERPRINTING

Existing model fingerprinting methods primarily assume that the model reuser is the adversary while
paying little attention to the false claim attack (Liu et al., 2024) where the model developer is the
adversary. The definition of the false claim attack is as follows.
Definition 1. A false claim attack refers to a malicious attempt by a malicious model developer
to falsely assert the ownership of an independent model MI by registering some fraudulent testing
samples x̄ that can pass the ownership verification of Proposition 1 or Proposition 2.

Some terms (e.g., ambiguity attack and false positive rate) may have a similar definition to the
false claim attack. We clarify their differences in Appendix M. Since registering the fingerprint
with a timestamp can prevent any false claim after registration, the success of false claim attacks

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: False claim attack against three testing-based methods. It is observed that the distances be-
tween independent models and the source model (Ind. Model Dist.) after the attack are approximately
equal to or less than the average distance between the reused models and the source model (Reused
Model Dist.), demonstrating the vulnerability of existing methods against false claim attacks.

Method→ ModelDiff Zest SAC
Dataset→ SDogs120 Flowers102 SDogs120 Flowers102 SDogs120 Flowers102

Ind. Model Dist.
Before Attack 0.131 0.114 0.177 0.161 0.080 0.094
After Attack 0.093 0.083 0.114 0.098 0.078 0.092

Reused Model Dist. Average 0.108 0.092 0.095 0.072 0.079 0.081

hinges on generating a transferable fingerprint. For AE-based methods, Liu et al. (2024) have
successfully implemented the false claim attacks by constructing transferable AEs. As such, we focus
on implementing false claim attacks against the cutting-edge testing-based methods. Our primary
insight is to craft inverse-AEs x̄ which can be ‘easily’ classified, leading to

Mo(x̄) ≈ MI(x̄) ⇒ dist(f [Mo(x̄)], f [MI(x̄)]) ≈ 0 ≤ τ. (3)

To execute this strategy, motivated by fast gradient sign method (FGSM) (Goodfellow et al., 2015)
for AE generation, we propose to leverage Eq. (4) to generate malicious fingerprinting samples.

x̄ = x− γ · sign(∇J(Mo,x,y)), (4)

where sign(·) denotes the sign function, J(·) represents the loss function associated with the original
task of Mo, and γ signifies the magnitude of the perturbation. More powerful transferable adversarial
attacks can be exploited here but we aim to show that using simple FGSM can also falsely claim to
have ownership of some independent models. We exploit three representative testing-based methods,
ModelDiff (Li et al., 2021), Zest (Jia et al., 2022), and SAC (Guan et al., 2022), to validate the
effectiveness of our false claim attacks. The complete results can be found in Appendix E. As shown
in Table 1, SAC is poor at identifying models of the same tasks, even without attacks. Moreover,
after attacks, the distances between the source model Mo and the independent model MI of all three
methods are approximately equal to or less than the average distances between reused models and the
source model. It indicates that MI will be asserted as reused from Mo, which is a false alarm. The
results demonstrate that existing model fingerprinting methods are vulnerable to false claim attacks.

3 THE PROPOSED METHOD

3.1 DESIGN OBJECTIVES

Following prior works (Lukas et al., 2021; Liu et al., 2024), the objectives of model fingerprinting
methods can be summarized as effectiveness, conferrability, and resistance to false claim attacks.

• Effectiveness: Effectiveness means that the model developer can successfully verify the ownership
of the source model through the model fingerprinting method.

• Conferrability: Conferrability is defined to ensure that the model fingerprint needs to be conferable
to the models that are reused from the source model. In other words, the fingerprints of the reused
models and the source model need to be similar.

• Resistance to False Claim Attacks: It requires that the fingerprints of independently trained
models need to be different. Also, a malicious model developer cannot construct a transferable
fingerprint that can be extracted from independently trained models.

3.2 THE INSIGHT OF OUR FIT-PRINT

As discussed in Section 2.3, existing model fingerprinting methods are vulnerable to false claim
attacks. We argue that the vulnerability stems primarily from the ‘untargeted’ characteristic of the
fingerprinting methods. The untargeted characteristic leads to a large fingerprint space that can
accommodate transferable adversarial fingerprints. In this paper, we propose FIT-Print, a targeted
model fingerprinting framework to mitigate false claim attacks. Our main insight is that although it is
tough to find the space that can only transfer among reused models, we can turn the fingerprint into a
target one to restrict the fingerprinting space and reduce the adversarial transferability of fingerprints.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Testing Sample Extraction

Initial Image 𝒙𝑖
0

Perturbation 𝒓𝑖

Testing Sample 𝒙𝑖 Source Model 𝑀𝑜

Mapping

Function 𝑓

𝑀𝑜(𝒙𝑖)

Metric Vector 𝒗

Target Fingerprint 𝑭

close to

optimize

Testing Sample 𝒙𝑖 Suspicious Model 𝑀𝑠

Mapping

Function 𝑓

𝑀𝑠(𝒙𝑖)

Ownership Verification

Metric Vector 𝒗

Fingerprint 𝑭

BER
≤ 𝜏

Yes
Verified!

Not your model!

No

Figure 2: The pipeline of FIT-Print. In testing sample extraction, FIT-Print optimizes the perturbations
to turn the fingerprint vector close to the target fingerprint. In the ownership verification stage, FIT-
Print extracts the fingerprint from the suspicious model and compares it with the original fingerprint.

Given a mapping function f(·) and a target fingerprint F , our goal is to make the fingerprint vector
v = f(Ms(x)) to be close to F . Thus, the proposition of FIT-Print can be defined as follows.
Proposition 3. Let Ms be the suspicious model. If for a specific mapping function f(·) and testing
sample x ∈ XT (XT is the set of the testing samples), we have

1

|XT |
∑

x∈XT

dist(f [Ms(x)],F) ≤ τ, (5)

where τ is a small threshold and dist(·, ·) is a distance function, the suspicious model Ms can be
asserted as reused from the owner of the fingerprint F .

In FIT-Print, we assume that the target fingerprint F ∈ {−1, 1}k is a binary vector consisting of −1
or 1, and we can get the output logits of Ms(x). The discussion on the label-only scenario where
we can only get the Top-1 label can be found in Appendix G. We assume that the target fingerprint
cannot be arbitrarily chosen and needs to be registered with a third-party institution. As shown in
Fig. 2, FIT-Print can be divided into two stages: testing sample extraction and ownership verification.
The technical details are described as follows.

3.3 TESTING SAMPLE EXTRACTION

In the testing sample extraction stage, we aim to find the optimal testing sample set XT to make any
reused models satisfy Eq. (5) in Proposition 3. Therefore, in FIT-Print, we first initialize the testing
samples XT and the corresponding perturbations R. We denote the i-th element in XT and R as
xi and ri respectively. The element xi is set to an initial value x0

i and we can initialize the testing
samples to any images. The testing samples in XT can be constructed by adding the perturbations to
the initial values, i.e., xi = x0

i + ri. After that, we need to optimize the perturbations R to make the
fingerprint vector v close to the target fingerprint F . We can define the testing sample extraction as
an optimization problem, which can be formalized as follows.

min
R={r1,...,r|R|}

1

|XT |

|XT |∑
i=1

[L(f(Mo(x
0
i + ri),F) + λ · ∥ri∥2], (6)

where ∥ · ∥2 calculates the ℓ2-norm. The first term in Eq. (6) quantifies the dissimilarity between the
output fingerprint vector v and the target fingerprint F . The second term regularizes the extent of the
perturbations R. We utilize the hinge-like loss (Fan et al., 2019) as L(·), as follows.

L(v,F) =

k∑
i=1

max(0, ε− vi · Fi). (7)

In Eq. (7), v is the fingerprint vector, where vi = f [Ms(xi)], and ε is the control parameter. Fi is the
i-th element in F . Optimizing Eq. (7) can make the signs of the corresponding elements in v and F
the same. Moreover, inspired by the insight of (Lukas et al., 2021), we craft some augmented models
by applying model reuse techniques (e.g., fine-tuning, pruning, or transfer learning) and exploit them
to extract the fingerprint to improve the conferrability of FIT-Print. The set of augmented models is
denoted as M. The loss function with augmented models can be defined as Eq. (8).

min
R={r1,...,r|R|}

1

|M| · |XT |
∑

M∈M

|XT |∑
i=1

[L(f(M(x0
i + ri),F) + λ · ∥ri∥2]. (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

By optimizing Eq. (8), we can get the optimal testing samples that are conferrable to reused models
and the model developer can afterward utilize them to verify the ownership.

3.4 OWNERSHIP VERIFICATION

In the ownership verification stage, given a suspicious model Ms, FIT-Print examines whether the
suspicious model Ms is reused from the source model Mo by justifying whether Ms satisfies Eq. (5).
Specifically, we first calculate the fingerprint vector ṽ of the suspicious model Ms using the extracted
testing samples in XT . Each element ṽi = f(Ms(x

0
i + ri)). Since optimizing Eq. (8) makes the

signs of the fingerprint vector ṽ represent the fingerprint F̃ of the model, we need to transform ṽ into
a binary vector by applying the sign function sign(·) to get F̃ , as Eq. (9).

F̃i = sign(ṽi) =

{
1, ṽi ≥ 0

−1, ṽi < 0
. (9)

Subsequently, we leverage the bit error rate (BER) as the distance function dist(·) in Eq. (5) and the
BER is the distance between the extracted fingerprint and the target fingerprint, as follows.

BER =
1

k

k∑
i=1

I{F̃i ̸= Fi}, (10)

where k is the length of the fingerprint and I{·} is the indicator function. As Proposition 3, if the
BER is lower than the threshold τ , the suspicious model Ms can be asserted as a reused model. For
choosing the threshold τ to resist false claim attacks, we have the following Theorem 1.
Theorem 1. Given the security parameter κ and the fingerprint F ∈ {−1, 1}k, if τ satisfy that

⌊τk⌋∑
d=0

(
k
d

)
(
1

2
)k ≤ κ, (11)

where
(
k
d

)
= k!/[d!(k−d)!], the probability of a false alarm, i.e., the BER is less than τ with random

testing samples, is less than κ.

The proof of Theorem 1 can be found in Appendix B. We also conduct an empirical evaluation on the
resistance of FIT-Print against adaptive false claim attacks in Section 4.4.

3.5 DESIGNING THE MAPPING FUNCTION IN FIT-PRINT

Section 3.3-3.4 introduce the stages of FIT-Print. Arguably, its key is how to design the mapping
function f(·). Inspired by Li et al. (2021) and Shao et al. (2024a), we leverage the paradigm of FIT-
Print and design two targeted model fingerprinting methods, including FIT-ModelDiff and FIT-LIME,
as the representatives of bit-wise and list-wise methods, respectively.

3.5.1 FIT-MODELDIFF

FIT-ModelDiff is a bit-wise fingerprinting method that extracts the fingerprint bit by bit. The main
insight of FIT-ModelDiff is to compare the distance between the output logits of perturbed samples
x0
i + ri and benign samples x0

i . The vector of the distances is called the decision distance vector
(DDV). Given the suspicious model Ms, DDV can be calculated as follows:

DDVi = cos_sim(Ms(x
0
i + ri),Ms(x

0
i)) =

Ms(x
0
i + ri) ·Ms(x

0
i)

∥Ms(x0
i + ri)∥ · ∥Ms(x0

i)∥
, (12)

where DDVi represents the i-th element in the DDV and cos_sim(·, ·) is the cosine similarity function.
Since the output logits after softmax of the model Ms is always positive, the range of the DDV is
[0, 1]. As proposed in Section 3.3, we aim to make the sign of the fingerprint vector v to be the same
as the target fingerprint F . Therefore, to achieve this goal, we need to subtract a factor from DDV to
make the range of v including both positive and negative values, as Eq. (13).

vi = f(Ms(x
0
i +ri),Ms(x

0
i)) = DDVi−cos(α) =

Ms(x
0
i + ri) ·Ms(x

0
i)

∥Ms(x0
i + ri)∥ · ∥Ms(x0

i)∥
−cos(α), (13)

where cos(·) is the cosine function and α is the bias parameter. The final fingerprint vector v can be
used for testing sample extraction or ownership verification.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.5.2 FIT-LIME

FIT-LIME is a list-wise method that extracts the fingerprint as a whole list. FIT-LIME implements the
mapping function f(·) via a popular feature attribution algorithm, local interpretable model-agnostic
explanation (LIME) (Ribeiro et al., 2016). LIME outputs a real-value importance score for each
feature in the input sample x. We enhance the LIME algorithm and develop FIT-LIME to better cater
to the needs of ownership verification. The details of FIT-LIME are elaborated as follows.

The first step of FIT-LIME is to generate c samples that are neighboring to the input image x. We also
gather the adjacent pixels in the image into a superpixel. Instead of using a clustering algorithm, we
uniformly segment the input space into k superpixels, where k is the length of the targeted fingerprint.
Assuming that k = µ× ν, the image can be divided into µ rows and ν columns. Then, we randomly
generate c masks where each mask is a k-dimension binary vector, constituting A ∈ {0, 1}c×k. Each
element in each row of the matrix A corresponds to a superpixel in the image x. After that, we exploit
the binary matrix to mask the image x and generate the masked examples Xm. If the element in the
i-th row of the mask A is 1, the corresponding superpixel preserves its original value. Otherwise, the
superpixel is aligned with 0. Each row of the mask can generate a masked sample and the c masked
samples constitute the masked sample set Xm.

The second step is to evaluate the output of the masked samples Xm on the suspicious model Ms.
Different from primitive LIME, we utilize the entropy of the outputs so that it no longer depends on
the label of x. The intuition is that if the important features are masked, the prediction entropy will
significantly increase. Following this insight, we calculate the following equation in this step.

pi = H[Ms(Xm
i)], (14)

where H(·) calculates the entropy, pi is the i-th element in p, and Xm
i) is the i-th masked samples.

After that, the final step is to fit a linear model and calculate the importance score of each superpixel.
The importance scores can be calculated via Eq. (15). The importance score vector will be used as
the fingerprint vector v in testing sample extraction and ownership verification.

v = (ATA)−1ATp. (15)

4 EXPERIMENTS

In this section, we evaluate the effectiveness, conferrability, and resistance to the false claim attack of
our FIT-Print methods. We also include ablation studies on the hyper-parameters in FIT-Print. More
experiments about the resistance to adaptive attacks, FIT-Print with different targets, initializations,
and different numbers of augmented models are shown in Appendix F. We also discuss applying
FIT-Print in the label-only scenario and to other models and datasets in Appendix G and J. The
analysis of the overhead of FIT-ModelDiff and FIT-LIME can be found in Appendix H.

4.1 EXPERIMENTAL SETTINGS

Models and Datasets. Following prior works (Li et al., 2021; Jia et al., 2022), we utilize two
widely-used convolutional neural network (CNN) architectures, MobileNetV2 (Sandler et al., 2018)
(mbnetv2 for short) and ResNet18 (He et al., 2016), in our experiments. We train MobileNetv2 and
ResNet18 using two different datasets, Oxford Flowers 102 (Flowers102) (Nilsback & Zisserman,
2008) and Stanford Dogs 120 (SDogs120) (Khosla et al., 2011), in total 4 source models. We
primarily focus on image classification models in our experiments. In particular, we provide a case
study about implementing FIT-Print to text generation models in Appendix J.3.

Model Reuse Techniques. We evaluate FIT-Print against the following five categories of model
reuse techniques, including copying, fine-tuning, pruning, model extraction, and transfer learning.
We further consider different implementations of these model reuse techniques in various settings and
scenarios. For each source model, we train and craft three fine-tuning models, three pruning models,
two extraction models, and three transfer learning models. These 12 models constitute the set of
reused models. When experimenting on one source model, the other 36 models that are reused from
other source models are treated as independent models. More details can be found in Appendix C.

Baseline Methods. We consider both AE-based and testing-based methods. For the former, we
implement two typical methods, IPGuard (Cao et al., 2021) and MetaV (Pan et al., 2022). While

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Successful ownership verification rates of different model fingerprinting methods. ‘#Models’
denotes the number of reused models and the ‘N/A’ indicates that the method can not be applied to
detect this type of model reuse technique. Our FIT-ModelDiff and FIT-LIME outperform existing
black-box methods and their performance is even on par with that of white-box ModelGiF. In
particular, we mark failed cases (i.e., < 80% or ‘N/A’) in red. Moreover, the BERs of FIT-Print are
all 0.0%, indicating that FIT-Print does not lead to false alarms.

Reuse Task↓ #Models↓ AE-based Testing-based White-box FIT-Print
IPGuard MetaV ModelDiff Zest SAC ModelGiF FIT-ModelDiff FIT-LIME

Copying 4 100% 100% 100% 100% 100% 100% 100% 100%
Fine-tuning 12 100% 100% 100% 100% 100% 100% 100% 100%

Pruning 12 100% 100% 100% 91.67% 100% 100% 100% 100%
Extraction 8 50% 87.5% 50% 25% 100% 100% 100% 100%
Transfer 12 N/A N/A 100% N/A 0% 100% 100% 100%

Independent 144 30.6% 4.8% 4.0% 7.6% 39.6% 0.0% 0.0% 0.0%

Figure 3: The BERs of different source models and their reused models with FIT-ModelDiff and
FIT-LIME. The BERs are all less than the threshold τ marked with a red dashed line, indicating that
FIT-ModelDiff and FIT-LIME can successfully recognize the reused models.

for the latter, we take three different methods, ModelDiff (Li et al., 2021), Zest (Jia et al., 2022),
and SAC (Guan et al., 2022) as the baseline methods. We also include a state-of-the-art (SOTA)
white-box model fingerprinting method, i.e., ModelGiF (Song et al., 2023), for reference.

Target Fingerprint. As default, we select a logo of a file and a pen as the targeted fingerprint F . We
set the default length k of the fingerprint F to be 256 and thus F is resized to 16×16. We set the
security parameter κ = 10−9. According to Eq. (11), the threshold τ is 0.316 in our experiments.

4.2 EVALUATION ON EFFECTIVENESS AND CONFERRABILITY

Table 2 illustrates the percentage of successfully identified reused models (ownership verification rate).
Both FIT-ModelDiff and FIT-LIME can recognize the reused models under five reuse techniques with
100% ownership verification rates, which outperform existing fingerprinting methods and perform on
par with the SOTA white-box method, ModelGiF. Also, FIT-ModelDiff and FIT-LIME achieve 0.0%
ownership verification rates on the independent models, indicating that our methods do not lead to
false alarms. Fig. 3 illustrates the BERs of all the reused models, which are all less than the threshold
τ with a maximum of 0.227. The results validate the effectiveness and conferrability of FIT-Print.

4.3 ABLATION STUDY

4.3.1 EFFECTS OF THE LENGTH OF THE FINGERPRINT

In this experiment, we investigate the impact of varying lengths of the fingerprint F . In addition to
the default length of 256 = 16 × 16, we set the length to be 12 × 12, 20 × 20, and 24 × 24. The
results illustrated in Fig. 4 indicate that both FIT-ModelDiff and FIT-LIME can recognize the reused
models and the independent models with different lengths of fingerprints. Moreover, with the length
of F increases, the BERs of both reused and independent models are more concentrated, signifying
that a larger fingerprint length can reduce the probability of outliers and have better security.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: The BERs of the reused models and independent models with different lengths of fingerprint.
As the length increases, the BERs with reused and independent models become more concentrated.

Table 3: The average distances of reused models (Avg. Reused Model Dist.) and independent models
(Avg. Ind. Model Dist.) and the ℓ2-norm of the perturbations R (ℓ2-norm of Pert.) with different λ.
As the ℓ2-norm coefficient λ increases, the amplitude of perturbations diminishes.

Method→ FIT-ModelDiff FIT-LIME
Metric ↓ λ → 0.0 1.0 5.0 10.0 100.0 0.0 0.5 1.0 2.0 5.0

Avg. Reused Model Dist. 0.024 0.038 0.030 0.032 0.029 0.029 0.029 0.034 0.036 0.047
Avg. Ind. Model Dist. 0.568 0.570 0.561 0.566 0.577 0.505 0.505 0.510 0.506 0.512

ℓ2-norm of Pert. 0.007 0.007 0.007 0.007 0.006 0.020 0.019 0.018 0.017 0.014

Figure 5: The BERs of the independent models while conducting adaptive false claim attacks using
different numbers of independent models as augmented models. The BERs are all larger than the
threshold τ , indicating the failure of false claim attacks against FIT-ModelDiff and FIT-LIME.

4.3.2 EFFECTS OF THE ℓ2-NORM COEFFICIENT

λ is the coefficient of the scale of the perturbations in the loss function Eq. (8). In this experiment,
we study the effect of λ on FIT-Print and adopt FIT-ModelDiff and FIT-LIME with five different λ.
From Table 3, since the scale of the perturbations in FIT-ModelDiff is quite small, varying λ does not
significantly affect the perturbations as well as the distances with reused models. While in FIT-LIME,
a larger λ can lead to a smaller perturbation. The ℓ2-norm of the perturbations reduces from 0.020 to
0.014. In the meantime, the average distances with reused models become larger. Our experiments
also suggest that the effect of λ on the distances with independent models is not significant. The
visualization of the perturbed testing samples with different λ can be found in Appendix I.

4.4 THE RESISTANCE TO ADAPTIVE FALSE CLAIM ATTACK

In this subsection, we consider an adaptive false claim attack where the adversary utilizes Eq. (8) to
optimize the testing samples, but intentionally crafts some independent models as augmented models
to enhance the transferability of the fingerprint. The adversary utilizes the same fingerprint used
for its own model to generate transferable samples. We utilize the models pre-trained on ImageNet
and their corresponding reused models as the augmented models. The results are shown in Fig. 5.
It is demonstrated that adding independent augmented models does not significantly enhance the
transferability of the fingerprint in FIT-Print because the BERs on the independent models are nearly
unchanged. The results indicate that the adaptive false claim attacks do not work in FIT-Print.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: The BERs before and after the adaptive overwriting attack and unlearning attack. The BERs
after attacks are still low enough to be identified as a reused model. Therefore, our FIT-Print is able
to resist the overwriting attack and unlearning attack.

Method Before Attack After Overwriting After Unlearning
FIT-ModelDiff 0.047 0.051 0.149

FIT-LIME 0.000 0.016 0.016

4.5 THE RESISTANCE TO ADAPTIVE FINGERPRINT REMOVAL ATTACKS

In real-world scenarios, the model reuser usually knows which model fingerprinting method is
leveraged by the model developer, and can accordingly design an adaptive attack against the utilized
model fingerprinting method. Generally speaking, there are two different ways to attack a model
fingerprinting method (Yao et al., 2023): (1) fine-tuning the model (i.e., model-based attacks) or (2)
perturbing or preprocessing the input data (i.e., input-based attacks) to obfuscate the fingerprint of
the model. In this section, we primarily focus on the former attack. The details and discussions of the
latter attack can be found in Appendix D.

In model-based adaptive attacks, the model reuser can fine-tune the model attempting to remove the
original fingerprint inside it. Based on the knowledge of the model reuser with the fingerprint of the
model developer, we consider two different model-based adaptive attacks.

• Overwriting Attack: In overwriting attacks, we assume that the model reuser has no knowledge
of the testing samples XT and the target fingerprint F utilized by the model developer. Thereby,
the model reuser can independently generate the testing samples X̂T and the target fingerprint F̂ ,
and then fine-tunes the model to make the outputs of X̂T close to the target fingerprint F̂ . The loss
function can be defined as follows.

min
Mo

1

|X̂T |

∑
x̂∈X̂T

L(f(Mo(x̂), F̂). (16)

• Unlearning Attack: In unlearning attacks, we assume that the model reuser knows the target
fingerprint of the model developer, since it may be registered in a third-party institution and
publically accessible. However, the model reuser still has no knowledge of the testing samples.
As such, the model reuser can construct some independent testing samples to unlearn the target
fingerprint F from the model. The loss function can be defined as follows.

max
Mo

1

|X̂T |

∑
x̂∈X̂T

L(f(Mo(x̂),F). (17)

The results of the two adaptive attacks are demonstrated in Table 4. The results indicate that both two
attacks cannot successfully remove the fingerprint from the model. Due to more knowledge about the
fingerprint F , the unlearning attack is slightly more effective than the overwriting attacks but still not
able to bypass the ownership verification, with a BER of 0.149. The experimental results show that
the model reuser cannot destroy the fingerprint inside the model when having no knowledge of the
testing samples. Our FIT-Print can resist both the overwriting attack and the unlearning attack.

5 CONCLUSION

In this paper, we revisited existing model fingerprinting methods. We designed a false claim attack
by crafting some transferably easy samples and revealed that existing model fingerprinting methods
were vulnerable to the false claim attack. We found that the vulnerability can be attributed to the
untargeted nature that existing methods compare the outputs of any given samples on different models
rather than the similarities to specific signatures. To tackle the above issue, we proposed FIT-Print,
a false-claim-resistant model fingerprinting paradigm. FIT-Print transformed the fingerprint of the
model into a targeted signature by optimizing the testing samples. We correspondingly designed
two fingerprinting methods based on FIT-Print, namely the bit-wise FIT-ModelDiff and the list-wise
FIT-LIME. Our empirical experiments demonstrated the effectiveness, conferrability, and resistance
to false claim attacks of our FIT-Print. We hope our FIT-Print can provide a new angle on model
fingerprinting methods to facilitate more secure and trustworthy model sharing and trading.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

Unauthorized model reuse has posed a serious threat to the intellectual property rights (IPRs) of
the model developers. Model fingerprinting is a promising solution to detect reused models. In this
paper, we propose a new paradigm of model fingerprinting dubbed FIT-Print. Our FIT-Print is purely
defensive and does not discover new threats. Moreover, our work utilizes the open-source dataset and
does not infringe on the privacy of any individual. Our work also does not involve any human subject.
As such, this work does not raise ethical issues in general.

REPRODUCIBILITY STATEMENT

The detailed experimental settings of datasets, models, hyper-parameter settings, and computational
resources can be found in Section 4.1 and Appendix C.2. The codes and model checkpoints for
reproducing our main evaluation results are provided in the supplementary material. We will release
the full codes of our methods upon the acceptance of this paper.

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring. In USENIX
Security, 2018.

Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Ipguard: Protecting intellectual property of deep
neural networks via fingerprinting the classification boundary. In AsiaCCS, 2021.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun, Peng Cheng, Shouling Ji, Xingjun Ma,
Bo Li, and Dawn Song. Copy, right? a testing framework for copyright protection of deep learning
models. In S&P, 2022a.

Yufei Chen, Chao Shen, Cong Wang, and Yang Zhang. Teacher model fingerprinting attacks against
transfer learning. In USENIX Security, 2022b.

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end watermarking
framework for ownership protection of deep neural networks. In ASPLOS, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep neural network ownership verifica-
tion: Embedding passports to defeat ambiguity attacks. In NeurIPS, 2019.

Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang Zhang, Anmin Fu, Surya Nepal, and
Hyoungshick Kim. Backdoor attacks and countermeasures on deep learning: A comprehensive
review. arXiv preprint arXiv:2007.10760, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Jiyang Guan, Jian Liang, and Ran He. Are You Stealing My Model? Sample Correlation for
Fingerprinting Deep Neural Networks. In NeurIPS, 2022.

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. Gradient-based adversarial
attacks against text transformers. In EMNLP, pp. 5747–5757, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jia Guo and Miodrag Potkonjak. Watermarking deep neural networks for embedded systems. In
ICCAD, 2018.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In NeurIPS, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Yiling He, Jian Lou, Zhan Qin, and Kui Ren. Finer: Enhancing state-of-the-art classifiers with feature
attribution to facilitate security analysis. In CCS, 2023.

Zecheng He, Tianwei Zhang, and Ruby Lee. Sensitive-sample fingerprinting of deep neural networks.
In CVPR, 2019.

Hengrui Jia, Mohammad Yaghini, Christopher A Choquette-Choo, Natalie Dullerud, Anvith Thudi,
Varun Chandrasekaran, and Nicolas Papernot. Proof-of-learning: Definitions and practice. In S&P,
2021.

Hengrui Jia, Hongyu Chen, Jonas Guan, Ali Shahin Shamsabadi, and Nicolas Papernot. A Zest of
LIME: Towards Architecture-Independent Model Distances. In ICLR, 2022.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for
fine-grained image categorization. In CVPR Workshop, 2011.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Master’s thesis, University of Tront, 2009.

Xiaochen Li, Yuke Hu, Weiran Liu, Hanwen Feng, Li Peng, Yuan Hong, Kui Ren, and Zhan Qin.
Opboost: a vertical federated tree boosting framework based on order-preserving desensitization.
In VLDB, 2022a.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE Transac-
tions on Neural Networks and Learning Systems, 2022b.

Yiming Li, Linghui Zhu, Xiaojun Jia, Yang Bai, Yong Jiang, Shu-Tao Xia, and Xiaochun Cao. Move:
Effective and harmless ownership verification via embedded external features. arXiv preprint
arXiv:2208.02820, 2022c.

Yiming Li, Linghui Zhu, Xiaojun Jia, Yong Jiang, Shu-Tao Xia, and Xiaochun Cao. Defending
against model stealing via verifying embedded external features. In AAAI, 2022d.

Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu. ModelDiff: Testing-based
DNN similarity comparison for model reuse detection. In ACM SIGSOFT, 2021.

Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. How to prove your model belongs to you:
A blind-watermark based framework to protect intellectual property of dnn. In ACSAC, 2019.

Jian Liu, Rui Zhang, Sebastian Szyller, Kui Ren, and N Asokan. False claims against model ownership
resolution. In USENIX Security, 2024.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring
attacks on deep neural networks. In RAID, 2018.

Xiyao Liu, Shuo Shao, Yue Yang, Kangming Wu, Wenyuan Yang, and Hui Fang. Secure federated
learning model verification: A client-side backdoor triggered watermarking scheme. In SMC,
2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR,
2016.

Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep Neural Network Fingerprinting by
Conferrable Adversarial Examples. In ICLR, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Peizhuo Lv, Pan Li, Shengzhi Zhang, Kai Chen, Ruigang Liang, Hualong Ma, Yue Zhao, and
Yingjiu Li. A robustness-assured white-box watermark in neural networks. IEEE Transactions on
Dependable and Secure Computing, 2023.

Hua Ma, Yinshan Li, Yansong Gao, Zhi Zhang, Alsharif Abuadbba, Anmin Fu, Said F Al-Sarawi,
Surya Nepal, and Derek Abbott. Transcab: Transferable clean-annotation backdoor to object
detection with natural trigger in real-world. In SRDS, 2023.

Pratyush Maini, Mohammad Yaghini, and Nicolas Papernot. Dataset inference: Ownership resolution
in machine learning. In ICLR, 2020.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL
https://www.aclweb.org/anthology/J93-2004.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In ICVGIP, 2008.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Xudong Pan, Yifan Yan, Mi Zhang, and Min Yang. Metav: A meta-verifier approach to task-agnostic
model fingerprinting. In SIGKDD, 2022.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Mikhail Pautov, Nikita Bogdanov, Stanislav Pyatkin, Oleg Rogov, and Ivan Oseledets. Probabilisti-
cally robust watermarking of neural networks. arXiv preprint arXiv:2401.08261, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. Adversarial attacks and defenses in deep learning.
Engineering, 6(3):346–360, 2020.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you? explaining the
predictions of any classifier. In SIGKDD, 2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

Shuo Shao, Yiming Li, Hongwei Yao, Yiling He, Zhan Qin, and Kui Ren. Explanation as a watermark:
Towards harmless and multi-bit model ownership verification via watermarking feature attribution.
arXiv preprint arXiv:2405.04825, 2024a.

Shuo Shao, Wenyuan Yang, Hanlin Gu, Zhan Qin, Lixin Fan, Qiang Yang, and Kui Ren. Fedtracker:
Furnishing ownership verification and traceability for federated learning model. IEEE Transactions
on Dependable and Secure Computing, 2024b.

Jie Song, Zhengqi Xu, Sai Wu, Gang Chen, and Mingli Song. Modelgif: Gradient fields for model
functional distance. In ICCV, 2023.

Yuchen Sun, Tianpeng Liu, Panhe Hu, Qing Liao, Shouling Ji, Nenghai Yu, Deke Guo, and Li Liu.
Deep intellectual property: A survey. arXiv preprint arXiv:2304.14613, 2023.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks into
deep neural networks. In ICMR, 2017.

Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode seeking. In ECCV,
2008.

Asim Waheed, Vasisht Duddu, and N Asokan. Grove: Ownership verification of graph neural
networks using embeddings. In S&P, 2024.

13

https://www.aclweb.org/anthology/J93-2004

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jie Wan, Jianhao Fu, Lijin Wang, and Ziqi Yang. Bounceattack: A query-efficient decision-based
adversarial attack by bouncing into the wild. In S&P, 2024.

Siyue Wang, Xiao Wang, Pin-Yu Chen, Pu Zhao, and Xue Lin. Characteristic examples: High-
robustness, low-transferability fingerprinting of neural networks. In IJCAI, 2021.

Zhenting Wang, Chen Chen, Lingjuan Lyu, Dimitris N Metaxas, and Shiqing Ma. Diagnosis:
Detecting unauthorized data usages in text-to-image diffusion models. In ICLR, 2024.

Cheng Wei, Yang Wang, Kuofeng Gao, Shuo Shao, Yiming Li, Zhibo Wang, and Zhan Qin. Point-
ncbw: Towards dataset ownership verification for point clouds via negative clean-label backdoor
watermark. arXiv preprint arXiv:2408.05500, 2024.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
In NeurIPS, 2024.

Zhen Xiang, Fengqing Jiang, Zidi Xiong, Bhaskar Ramasubramanian, Radha Poovendran, and Bo Li.
Badchain: Backdoor chain-of-thought prompting for large language models. In ICLR, 2023.

Cheng Xiong, Guorui Feng, Xinran Li, Xinpeng Zhang, and Chuan Qin. Neural network model
protection with piracy identification and tampering localization capability. In ACM MM, 2022.

Wenyuan Yang, Shuo Shao, Yue Yang, Xiyao Liu, Ximeng Liu, Zhihua Xia, Gerald Schaefer, and Hui
Fang. Watermarking in secure federated learning: A verification framework based on client-side
backdooring. ACM Transactions on Intelligent Systems and Technology, 2023.

Hongwei Yao, Zheng Li, Kunzhe Huang, Jian Lou, Zhan Qin, and Kui Ren. Removalnet: Dnn
fingerprint removal attacks. IEEE Transactions on Dependable and Secure Computing, 2023.

Hongwei Yao, Jian Lou, Kui Ren, and Zhan Qin. Promptcare: Prompt copyright protection by
watermark injection and verification. In S&P, 2024.

Shuyang Yu, Junyuan Hong, Yi Zeng, Fei Wang, Ruoxi Jia, and Jiayu Zhou. Who leaked the model?
tracking ip infringers in accountable federated learning. In NeurIPS Workshop, 2023.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing Huang, and Ian
Molloy. Protecting intellectual property of deep neural networks with watermarking. In AsiaCCS,
2018.

Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming Zhang, Wenbo Zhou, Hao Cui, and
Nenghai Yu. Model watermarking for image processing networks. In AAAI, 2020a.

Jie Zhang, Dongdong Chen, Jing Liao, Weiming Zhang, Gang Hua, and Nenghai Yu. Passport-aware
normalization for deep model protection. In NeurIPS, 2020b.

Jie Zhang, Dongdong Chen, Jing Liao, Weiming Zhang, Huamin Feng, Gang Hua, and Nenghai Yu.
Deep model intellectual property protection via deep watermarking. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(8):4005–4020, 2021.

Yue Zheng, Si Wang, and Chip-Hong Chang. A dnn fingerprint for non-repudiable model ownership
identification and piracy detection. IEEE Transactions on Information Forensics and Security, 17:
2977–2989, 2022.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76,
2020.

APPENDIX

A THE DETAILED THREAT MODEL

In this section, we provide a detailed introduction to the threat models of model fingerprinting and
false claim attacks. Three parties involved in the threat models are depicted in Figure 6.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Model Reuse

Model Reuser Model Developer

𝑀𝑠 𝑀𝑜

Verifier

False Claim

Malicious Developer Independent Developer
𝑀𝑜

𝑀𝐼

Verifier

Model Fingerprinting False Claim Attacks

Figure 6: The threat models and detailed processes of model fingerprinting and false claim attacks. In
model fingerprinting, the model developer generates and registers the model and the fingerprint to a
third-party verifier. Once the model is reused by a model reuser, the verifier can determine the model
ownership by comparing the fingerprints. Instead, in false claim attacks, the malicious developer
attempts to register a transferable fingerprint to falsely claim other independent developers’ models.

A.1 DETAILED THREAT MODEL OF MODEL FINGERPRINTING

There are three parties involved in the threat model of model fingerprinting, including the model
developer, the model reuser, and the verifier. The model developer trains a model and the model
reuser attempts to steal and reuse this model. The verifier is responsible for fingerprint registration
and ownership verification. The assumptions of these three parties can be found in Section 2.1.

Process of Model Fingerprinting. Model fingerprinting can be divided into three steps, including
fingerprint generation, fingerprint registration, and ownership verification.

1. Fingerprint Generation: In this step, the model developer trains its source model Mo and
generates the fingerprint of Mo.

2. Fingerprint Registration: After generating the fingerprint, the model developer registers the
fingerprint and the model with a timestamp to a trustworthy third-party verifier.

3. Ownership Verification: For a suspicious model Ms that could be a reused version of Mo, the
verifier will first check the timestamps of these two models. If the registration timestamp of Ms

is later than Mo, the verifier will further check whether the fingerprint of Mo is similar to the
fingerprint Ms. If so, the suspicious model can be regarded as a reused version of Mo.

A.2 DETAILED THREAT MODEL OF FALSE CLAIM ATTACKS

There are three parties involved in the threat model of false claim attacks, including the malicious
developer, the verifier, and an independent developer. The formal definition of false claim attacks can
be found in Section 2.3.

Assumption of the Malicious Developer. In false claim attacks, the malicious developer is the
adversary who aims to craft and register a transferable fingerprint to falsely claim the ownership
of the independent developer’s model MI . The malicious developer is assumed to have adequate
computational resources and datasets to train a high-performance model and carefully craft transfer-
able model fingerprints. The primary goal of the malicious developer is that the registered model
fingerprints can be verified in as many other models as possible. By generating the transferable
fingerprint, the malicious developer can (falsely) claim the ownership of any third-party models (that
are registered later than that of the malicious developer).

Process of False Claim Attacks. The process of false claim attacks can also be divided into three
steps, including fingerprint generation, fingerprint registration, and false ownership verification.

1. Fingerprint Generation: In this step, the model developer trains its source model Mo and
attempts to generate a transferable fingerprint of Mo.

2. Fingerprint Registration: After generating the fingerprint, the model developer registers the
transferable fingerprint and the model with a timestamp to a trustworthy third-party verifier.

3. Falsely Ownership Verification: The adversary tries to use the transferable fingerprint to falsely
claim the ownership of another independently trained model MI . Since the fingerprint is registered
beforehand, the ownership verification won’t be rejected due to the timestamp. Subsequently, the
benign developer may be accused of infringement.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B THE PROOF OF THEOREM 1

Theorem 1. Given the security parameter κ and the fingerprint F ∈ {−1, 1}k, if τ satisfy that

⌊τk⌋∑
d=0

(
k
d

)
(
1

2
)k ≤ κ, (1)

where
(
k
d

)
= k!/[d!(k − d)!], the probability of a successful false claim attack, i.e., the BER is less

than τ with the adversaries testing samples, is less than κ.

Proof. As mentioned in Section 2.2 and Section 2.3, registering the fingerprint with a timestamp can
avoid any afterward false claim attack. As such, the adversary needs to craft the testing samples X̄T

which can transfered to independent models in advance. We assume that the adversary extracts the
fingerprint F̄ from the independent model MI using the testing samples X̄T , as follows.

F̄ = sign(MI(X̄T)), (2)

We assume that F̆ denotes the adversary’s target fingerprint. Since F̄ ∈ {−1, 1}k is a k-bit binary
vector and the adversary has no knowledge of the independent model MI , the probability of any
bit in F̄ to match the corresponding bit in F̆ is 1/2. Thus, to satisfy Eq. (5) in Proposition 3, i.e.,
making the BER between F̄ and F̆ less than τ , there needs to have at least k − ⌊τ · k⌋ bits in F̄

match F̆ . Based on the binomial theorem, we have the probability of the aforementioned scenario,
i.e., a successful false claim attack, is as follows.

Pr{BER(F̄ , F̆) ≤ τ} =

⌊τk⌋∑
d=0

(
k
d

)
(
1

2
)k. (3)

Since the right-hand side of the Eq. (3) is less than κ, the probability of a successful false claim
attack, i.e., the BER is less than τ with the adversarial testing samples, is also less than κ.

C IMPLEMENTATION DETAILS

C.1 DETAILS OF THE MODEL REUSE TECHNIQUES

In our experiments, we evaluate FIT-Print and other different model fingerprinting methods against
the following five categories of model reuse techniques, including copying, fine-tuning, pruning,
model extraction, and transfer learning.

• Copying: Copying refers to the adversary somehow gaining white-box access to the parameters
and architecture of the victim model. Subsequently, the adversary steals the model by directly
copying it. It may occur when the model is open-source and publicly available.

• Fine-tuning: Fine-tuning means the adversary re-trains the victim model with its own dataset which
is related to the primitive task of the victim model. We consider three types of fine-tuning denoted
as Fine-tuning(10%), Fine-tuning(50%), and Fine-tuning(100%), which means
we fine-tune the last 10%, 50%, and 100% layers of the victim models.

• Pruning: Pruning intends to compress the model by removing redundant parameters. We leverage
weight pruning (Han et al., 2015) as our pruning method, which prunes the neurons according
to their activations. We prune 10%, 30%, and 50% parameters of the victim model, denoted as
Pruning(10%), Pruning(30%), and Pruning(50%) respectively.

• Model Extraction: Model extraction attempts to steal the knowledge of the victim model via
only black-box access. The adversary can obtain the output of the victim model to train the
extracted model. In our experiments, we implement the model extraction in two different scenarios.
Extract(same) and Extract(different) refer to utilizing the same or different model
architectures to extract the source model, respectively.

• Transfer Learning: Transfer learning is an ML technique where the victim model trained on one
task is adapted as the starting point for a model on the second related task. In our experiments, we
replace the last layer of the model to fit the second task and fine-tune the model for 200 epochs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Similar to the setting of fine-tuning, we fine-tune the last 10%, 50%, and 100% layers of the
victim models to implement transfer learning. These models are denoted as Transfer(10%),
Transfer(50%), and Transfer(100%) respectively.

C.2 DETAILS OF THE EXPERIMENTAL SETTINGS

In this section, we introduce the details of the experimental settings, including the optimization
details, details of datasets, and computational resources.

Optimization Details. We utilize the stochastic gradient descent (SGD) with momentum as the
optimizer. We set the initial learning rate to 1.2 × 10−2, the momentum to 0.9, and the weight
decay to 5× 10−4. We apply a cosine annealing schedule (Loshchilov & Hutter, 2016) to reduce the
learning rate gradually to a minimum of 4× 10−3. Following (Shao et al., 2024a), we set the control
parameter ε in the hinge-like loss in Eq. (7) to 0.01. We optimize the perturbations on the testing
samples for 300 epochs. In Eq. (13) of FIT-ModelDiff, we set the bias parameter α to be 7π/8.

Details of Datasets. In this paper, we mainly utilize three different datasets, including Flowers102,
SDogs120, and ImageNet. Flowers102 is an image classification dataset consisting of 102 categories
of flowers. Each class consists of between 40 and 258 images. SDogs120 dataset contains images of
120 breeds of dogs from around the world. This dataset has been built using images and annotation
from ImageNet for the task of fine-grained image categorization. SDogs120 includes 20,580 images
in total. ImageNet dataset is a large image database that has images from 1,000 different classes. In
our experiments, we utilize the images from ImageNet as the initial values of the testing samples. For
simplicity, all the images used in our experiments are resized to 224× 224× 3.

Computational Resources. In our implementations, we utilize PyTorch as the deep learning
framework. All our experiments are implemented with 8 RTX 3090 GPUs.

D THE RESISTANCE TO INPUT-BASED ADAPTIVE ATTACKS

In this type of adaptive attack, the model reuser can deliberately perturb or preprocess the input data
and make the output of any input data away from the target fingerprint F . Since the model reuser
does not know which input is one of the testing samples, it has to perturb all the inputs to bypass the
ownership verification. Although this type of attack may prevent extracting the correct fingerprint
from the suspicious model, we argue that FIT-Print is still practical for the following two reasons.

• Input-based adaptive attack is extremely costly to implement. Perturbing or preprocessing all the
input samples may require enormous computational resources.

• Input-based adaptive attack compromises the functionality of the model. The model reuser also
needs to perturb benign samples, leading to a degradation of the utility of the model.

Table 5: The false positive rates (FPR) of existing model fingerprinting methods and our FIT-
ModelDiff and FIT-LIME before and after false positive attacks.

Metric↓ Method→ IPGurad ModelDiff Zest SAC FIT-ModelDiff FIT-LIME
FPR 30.6% 4.0% 7.6% 39.6% 0.0% 0.0%

FPR After Attacks 61.8% 15.28% 29.51% 51.94% 0.0% 0.0%

E THE OMITTED RESULTS OF FALSE CLAIM ATTACKS

In this section, we present the full results of false claim attacks against existing model fingerprinting
methods and our FIT-ModelDiff and FIT-LIME. Specifically,

• For AE-based methods, designing a false claim attack is equivalent to designing a transferable
adversarial attack. We utilize the false claim attack proposed in Liu et al. (2024).

• For testing-based methods, we design a false claim attack in Section 2.3.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Target-file (b) Target-tick (c) Target-noise

Figure 7: The visualization of the targeted fingerprints. We utilize three different target fingerprints
in our experiments. The ‘Target-file’ fingerprint is used in our main experiments.

Figure 8: The BERs of the reused models and independent models with different target fingerprints.
Regardless of the target fingerprints, our proposed FIT-ModelDiff and FIT-LIME have the capability
to distinguish the reused models and the independent models.

The results in Table 5 show that false claim attacks are effective against existing fingerprinting
methods and demonstrate that performing false claim attacks can significantly increase FPR.

F ADDITIONAL ABLATION STUDY

F.1 FIT-PRINT WITH DIFFERENT TARGET FINGERPRINTS

How to Choose the Target Fingerprint F . We briefly introduce how to choose the target fingerprint.
In our method, the targeted fingerprint is a bit string representing the identity of the model developer
and needs to be registered to the trustworthy verifier. For instance, the company’s logo or personal
identity number can be used as a targeted fingerprint. We note that the choice of the fingerprint does
not affect the model performance. This is because model fingerprinting does not alter the models’
parameters and has no impact on the model performance. This is a key advantage of fingerprinting.

Experiments with Different Target Fingerprints. In the main experiments of our paper, we utilize
an image of a file and a pen as the target fingerprint F . In this section, we explore the use of different
images as the target fingerprint and validate the effectiveness of FIT-Print regardless of the target
fingerprints. Specifically, we choose two target fingerprints, one is a tick image and the other is the
random noise. The visualization of the three fingerprints (resized to 16× 16 bits) is shown in Fig. 7.

The experimental results are shown in Fig. 8. From Fig. 8, we can find that regardless of the target
fingerprints, all the BERs of reused models are lower and the BERs of independent models are larger
than the threshold. This demonstrates that our FIT-Print is effective with different target fingerprints.

F.2 FIT-PRINT WITH DIFFERENT INITIALIZATIONS OF TESTING SAMPLES

In this section, we evaluate whether the initialization of the testing samples influences the effectiveness
of FIT-Print. Drawing inspiration from the design of trigger samples in model watermarking methods,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

FIT-LIMEFIT-ModelDiff

Original Image Perturbed Image Original Image Perturbed Image

Black-edge:

Patch:

Mask:

Original Image Perturbed Image Original Image Perturbed Image

Original Image Perturbed Image Original Image Perturbed Image

Figure 9: The visualization of the original images and perturbed images with different initializations.

Figure 10: The BERs of the reused models and the independent models with different initializations.
Our proposed FIT-Print can work well no matter which initialization method is used.

we consider the following three testing sample initialization methods, denoted as ‘Black-edge’ (Shao
et al., 2024a), ‘Patch’ (Zhang et al., 2018), and ‘Mask’ (Guo & Potkonjak, 2018), respectively.

• Black-edge: ‘Black-edge’ first randomly selects the benign images from the dataset and adds a
black edge around the images. We leverage this initialization method in our main experiments.

• Patch: ‘Patch’ sticks some meaningful patch (e.g., ‘TEST’ or any pattern representing the identity
of the model developer) into the images.

• Mask: ‘Mask’ adds noise to the images. The noise is pseudo-random and the seed to generate the
noise is associated with the identity of the model developer.

The visualization of the four initialization methods and their perturbed version are shown in Fig. 9
and the experimental results are shown in Fig. 10. The results demonstrate that FIT-Print successfully
distinguishes the reused models and the independent models since all the BERs of independent
models are larger than τ and all the BERs of reused models are less than τ . The results indicate the
effectiveness of FIT-Print regardless of the initialization methods.

F.3 FIT-PRINT WITH DIFFERENT NUMBERS OF AUGMENTED MODELS

In the testing sample extraction stage, FIT-Print utilizes the reused models as augmented models to
enhance the conferrability of the fingerprint. In this section, we study to leverage different numbers of

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 11: The BERs of the reused models with different numbers of augmented models. Using more
models for augmentations can have lower BERs.

Table 6: The performance of FIT-ModelDiff and FIT-LIME in the label-only scenario. The results
demonstrate that FIT-Print can still distinguish the reused models with only top-1 labels.

Metric↓ Method→ FIT-ModelDiff FIT-LIME
Avg. BER 0.227 0.135

Ownership Verification Rate 1.000 1.000
Avg. BER of Ind. Models 0.369 0.399

False Positive Rate 0.000 0.000

augmented models to extract the testing samples and test whether FIT-Print maintains a satisfactory
conferrability. Fig. 11 depicts the BERs of the reused models with different numbers of augmented
models. We set the number to 5, 6, 7, 8. From Fig. 11, we can find that as the number of augmented
models increases, the BERs on reused models become smaller and more concentrated, which means
using more reused models as augmented models can enhance the conferability of FIT-Print. In
addition, while using only 5 reused models as augmented models, all the BERs are smaller than the
threshold τ , which signifies the conferrability of FIT-Print.

G FIT-PRINT IN THE LABEL-ONLY SCENARIO

In this section, we investigate the effectiveness of FIT-Print in the label-only scenario. In such a
scenario, the verifier can only obtain the Top-1 label instead of logits as output. Unfortunately,
detecting transfer learning models, which is one of our considered important model reuse settings,
is still an open problem in model ownership verification (Sun et al., 2023). Transfer learning can
change the task of the model and the output classes. It is hard to determine whether a model is
transferred from another with only top-1 labels. Consequently, in the following discussion, we do not
take transfer learning models into account.

FIT-Print can easily be extended to distinguish the reused models (except transfer learning models)
with the top-1 labels. In the label-only scenario, we can construct a binary vector b to replace the
original logits. Assuming that the predicted top-1 class is a, the a-th element in b is set to 1 and the
other elements are 0. The other processes remain unchanged.

To verify the effectiveness, we conduct additional experiments. Table 6 shows the average bit error
rate (Avg. BER) on the reused models and the independent models (Ind. Models). We also present
the ownership verification rates on the reused models and the false positive rates on the independent
models. The results show that our methods are still highly effective under the label-only setting,
although the average BERs of the reused models decrease in this scenario.

H THE OVERHEAD OF FIT-MODELDIFF AND FIT-LIME

Compared with existing model fingerprinting methods, FIT-Print needs to optimize the testing
samples and thus has an extra overhead. We hereby present a detailed analysis of the time and space
complexity of the two fingerprinting methods, FIT-ModelDiff and FIT-LIME. FIT-ModelDiff and

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

FIT-LIME are the representatives of bit-wise and list-wise methods, respectively. As such, they have
different trade-offs in time and space overhead.

During the fingerprint verification stage:

• For FIT-ModelDiff, the space complexity is O(1) and the time complexity is O(k) where k is the
length of the targeted fingerprint. FIT-ModelDiff is a bit-wise fingerprinting method that extracts
the fingerprint bit by bit. It only reads two samples to calculate one bit in the fingerprint in each
step. The fingerprint can be extracted in k steps. Therefore, the space complexity is O(1), and the
time complexity is O(k).

• For FIT-LIME, the space complexity is O(k) and the time complexity is O(k/β) where β is the
batch size. FIT-LIME is a list-wise method that extracts the fingerprint as a whole list. FIT-LIME
needs to read all the samples at the same time to extract the fingerprint. On the other hand, FIT-
LIME can calculate the outputs of an entire batch at the same time. As such, the space complexity
is O(k), and the time complexity is O(k/β).

During the testing samples extraction stage:

In each iteration of optimizing the testing samples, we need to perform one forward propagation
and one backward propagation of the fingerprint verification method. Assuming that we utilize ξ
augmented models during optimization, the time complexities of each iteration of testing sample
extraction in FIT-ModelDiff and FIT-LIME are O(ξ · k) and O(ξ · k/β)**. k is the length of the
targeted fingerprint and β is the batch size. For instance, in our main experiments, we utilize 10
augmented models and a 256-bit targeted fingerprint. It takes nearly 3 seconds for one optimization
iteration in FIT-ModelDiff and 1 second for that in FIT-LIME. As such, our FIT-ModelDiff and
FIT-LIME are efficient in optimization and the overhead is acceptable.

I THE VISUALIZATION OF THE TESTING SAMPLES

In this section, we present the visualization of the extracted testing samples with different λ. As shown
in Figure 12, for both FIT-ModelDiff and FIT-LIME, the perturbations on the testing samples are
nearly visually imperceptible. Moreover, according to our quantitative experiments in Section 4.3.2,
a larger λ can regulate the magnitude of the perturbation and thus lead to a smaller perturbation. This
conclusion can also be confirmed in Figure 12.

J EXTENDING FIT-PRINT TO OTHER MODELS AND DATASETS

In our main experiments, we focus on image classification models and datasets. It is also technically
feasible to extend our FIT-Print to models of any task. In this section, we discuss how FIT-Print can
generalize to different types of models and data.

J.1 THE EXTENSION TO OTHER MODELS

We argue that our FIT-Print can generalize to models with different architectures and tasks. For
models with different architectures, since we do not make any assumptions about the architecture of
the models and we also do not need to alter or fine-tune the model, our method can fundamentally
generalize to models with other architectures (e.g., transformers) as well. For models with different
tasks, the major difference between models with different tasks is the output format. For instance, the
image generation model outputs a tensor consisting of a sequence of logits. FIT-ModelDiff calculates
the cosine similarity between the outputs and FIT-LIME calculates the average entropy of the output.
The two calculation methods can be applied to any output format (e.g., 1-D vectors, 2-D matrices, or
tensors). As such, our methods are naturally feasible for models with different tasks.

J.2 THE EXTENSION TO OTHER (TYPES OF) DATASETS

Our FIT-Print can also generalize to other types of datasets. Our primitive FIT-Print aims to optimize
a perturbation r on the input x to make the mapping vector close to the targeted fingerprint. The
main part of the loss function is as Eq. (4).

minL(f(Mo(x+ r),F). (4)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Original Image 𝜆 = 0.0

FIT-LIME

𝜆 = 0.5 𝜆 = 1.0 𝜆 = 2.0 𝜆 = 5.0

FIT-ModelDiff

Original Image 𝜆 = 0.0 𝜆 = 1.0 𝜆 = 5.0 𝜆 = 10.0 𝜆 = 100.0

Original Image 𝜆 = 0.0 𝜆 = 1.0 𝜆 = 5.0 𝜆 = 10.0 𝜆 = 100.0

Figure 12: The visualization of the original images and the perturbed testing samples with different λ.

However, for the discrete data (e.g., text data), it is not feasible to directly add the perturbation to it.
Thus, a rewriting function g(x) can be introduced to rewrite the characters, words, or sentences. The
loss function can be changed to Eq. (5).

minL(f(Mo(g(x)),F). (5)

Arguably, the main challenge lies in how to design an effective optimization method to find a rewriting
function g(xxx) which minimizes the above loss function. There are already some existing works (Guo
et al., 2021; Yao et al., 2024; Wen et al., 2024) to fulfill this task. Accordingly, our FIT-Print can be
adapted to other data formats (e.g., text or tabular).

J.3 CASE STUDY ON TEXT GENERATION MODEL

In this section, we conduct a case study on implementing FIT-ModelDiff and FIT-LIME on text
generation models. Text generation models (OpenAI, 2023) have become the most famous models
in recent years and have been widely applied in various domains. Specifically, the text generation
model predicts the next token in a sequence of tokens, i.e., the output of the text generation models is
a sequence of logits. Given an input sequence s = {s1, s2, ..., sq}, where q is the number of tokens
in the sequence, and a vocabulary V , the text generation model outputs a sequence o ∈ Rq×|V|. The
i-th element in o is the probability logit of the tokens in the vocabulary.

To implement FIT-Print on text generation models, we need to optimize Eq. (5) to generate the
testing samples. Arguably, our FIT-ModelDiff and FIT-LIME can easily generalize to protect text
generation models. Specifically, the mapping functions used in FIT-ModelDiff and FIT-LIME (i.e.,
cosine similarity and average entropy) can be directly applied to text generation models. This
is because text generation models differ from classification models only in the output dimension
and these two functions are inherently able to calculate data with different dimensions. The main
challenge is to optimize the discrete text data to minimize Eq. (5). To achieve this goal, we can exploit
existing text optimization methods (Guo et al., 2021; Wen et al., 2024). Specifically, we implement
the optimization method proposed in (Wen et al., 2024). It optimizes the embeddings of the text
sequences and then finds the nearest token in the embedding space to replace the original token.

We further conduct experiments to verify the effectiveness of our FIT-ModelDiff and FIT-LIME on
text generation models. We use two popular text generation models (i.e., GPT-2 (Radford et al.,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 7: The bit error rates (BER) of applying FIT-ModelDiff and FIT-LIME to text generation
models (lower is better).

Method→ FIT-ModelDiff FIT-LIME
Dataset↓ Model→ GPT-2 BERT GPT-2 BERT

ptb-text-only 0.188 0.188 0.031 0.000
lambada 0.188 0.125 0.062 0.000

2019) and BERT (Devlin et al., 2018)) and two datasets (i.e., ptb-text-only (Marcus et al., 1993)
and lambada (Paperno et al., 2016)) for our case study. Table 7 shows the bit error rates (BERs)
of applying our methods to text generation models. The BERs are all lower than the threshold
τ = 0.227, indicating that FIT-Print is also applicable to protect the IPR on other data formats.

K DISCUSSION ON THE GENERALIZATION OF FIT-PRINT

In this section, we discuss the generalization of our proposed FIT-Print.

How to Transform Existing Fingerprinting methods into the FIT-Print Paradigm. In Section 3.5,
we propose two targeted model fingerprinting methods as the representatives of bit-wise fingerprinting
and list-wise fingerprinting. Based on the insight of these two methods, any existing testing-based
model fingerprinting methods can be transformed into the FIT-Print paradigm within two steps.

• First, for the bit-wise fingerprinting methods that extract the fingerprint bit by bit, we need to
formulate a sort or location mapping rule to confirm the position of each bit in the fingerprint F .
The rule can ensure the fingerprint of the model is uniquely determined. The list-wise fingerprinting
methods are not necessitated to do so since the fingerprint is extracted as a whole, and the position
of the bits in the fingerprint is already determined.

• Second, we need to transform the value range of each element in the fingerprint vector v into an
interval containing both positive and negative values by a linear transformation.

After the above two steps, we can utilize the transformed mapping function to develop a new FIT-Print
model fingerprinting method and leverage the procedures introduced in Section 3.3 and Section 3.4
to extract the testing samples and ownership verification.

The Design Criteria for a Mapping Function. The design criteria for a good mapping function are
from the following four main aspects.

• Distinguishable: Different models need to exhibit different outputs in the output space of the
mapping function. This can guarantee that applying the mapping function can distinguish different
independent models.

• Task-agnostic: The mapping function needs to be able to process the outputs of models with
different tasks (e.g., with different number of classes).

• Robust: The outputs of the mapping function on a model need to be robust against various model
reusing techniques, i.e., the outputs do not change significantly after model reusing.

• Efficient: The calculation of the mapping function needs to be efficient and take a small overhead.

L RELATED WORK

L.1 MODEL WATERMARKING

Model watermarking methods aim to embed an owner-specific signature (i.e., watermark) into the
models. In case the watermarked model is reused or stolen by the adversary, the model developer
can extract the watermark inside the adversary’s suspicious model. If the extracted watermark is
similar to the watermark of the model developer, the model developer can accuse the adversary of
infringement. Broadly, model watermarking methods can be divided into two categories, white-box
model watermarking and black-box model watermarking (Sun et al., 2023; Shao et al., 2024b).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

White-box Model Watermarking Methods: White-box model watermarking methods assume that
the model developer can get full access to the suspicious model during ownership verification. It
usually occurs when the adversary publishes the model as an open-source model. White-box model
watermarking methods directly embed the watermark into the parameters of the models. For instance,
Uchida et.al (Uchida et al., 2017) proposed to add a watermark regularization term into the loss
function during fine-tuning to embed the watermark. Darvish et.al (Darvish Rouhani et al., 2019)
chose to embed the watermark into the intermediate outputs of the protected models. The watermark
can also be embedded into the model by adjusting the architecture of the models (Fan et al., 2019;
Lv et al., 2023) or embedding external features (Li et al., 2022c). White-box model watermarking
methods need to know the parameters of the suspicious models during ownership verification. This
assumption is difficult to realize in practical scenarios because the model is usually deployed in the
cloud and can only be accessed via API. Such a limitation restricts the application of the white-box
model watermarking methods in the real world.

Black-box model watermarking methods: Black-box model watermarking methods assume that
the model developer can only observe the outputs from the suspicious models (Adi et al., 2018; Wei
et al., 2024). Due to such a constraint, black-box methods are primarily based on backdoor attacks (Li
et al., 2022b; Xiang et al., 2023; Gao et al., 2020). Backdoor-based model watermarking methods
leverage backdoor attacks to force the model to remember specific patterns and their corresponding
target labels (Ma et al., 2023). For ownership verification, the model developer can embed a specific
dataset in which each data has a wrong label as watermarks into the model. The trigger set is
unique to the watermarked model. The model developer can trigger the misclassification to verify its
ownership. Backdoor-based methods can apply to various tasks, such as image classification (Adi
et al., 2018; Li et al., 2019), image processing (Zhang et al., 2020a; 2021), federated learning (Liu
et al., 2021; Yu et al., 2023), and prompt (Yao et al., 2024). For non-backdoor black-box methods,
Miani et al. (Maini et al., 2020) proposed Dataset Inference to implement ownership verification.
Recently, Shao et al. (Shao et al., 2024a) proposed embedding a multi-bit watermark into the feature
attribution explanations of some specific samples, which can tackle the harmfulness and ambiguity of
the backdoor-based model watermarking methods.

However, since model watermarking methods need to embed the watermark into the model through
fine-tuning, they inevitably have a negative impact on the functionality of the protected models.
Model watermarking methods might reduce the practical value of the models. In addition, as the
parameter scale of the model gets larger (e.g., large foundation models (Chang et al., 2024)), it is
more costly for the model developer to fine-tune the models, limiting the practical application of
model watermarking methods in real world.

L.2 MODEL FINGERPRINTING OR MODEL FUNCTIONAL DISTANCE

In this section, we provide a comprehensive discussion on model fingerprinting. Some existing
studies have been developed to compute the functional distance between different models. Although
these works serve a different purpose from model fingerprinting for ownership verification, they
share technical similarities. Therefore, we collectively refer to these works as model fingerprinting.
Similar to model watermarking methods, model fingerprinting methods can also be categorized into
white-box and black-box (Sun et al., 2023).

White-box Model Fingerprinting Methods: in the white-box scenario, since the model developer
can get access to the parameters of the suspicious model, a direct way to compare the models
is to compare the weights (or their hash values) of the models. Some existing white-box model
fingerprinting methods leveraged the path of model training (Jia et al., 2021), the random projection
of model weights (Zheng et al., 2022), or the learnable hash of the model weights (Xiong et al., 2022).
Some recent works also explored utilizing the deep representations (e.g., gradients (Song et al., 2023))
or the intermediate results (Chen et al., 2022a) of the testing samples as the fingerprint. However,
similar to white-box model watermarking methods, the application of white-box fingerprinting
methods in real-world scenarios is also limited.

Black-box Model Fingerprinting Methods: in the black-box scenario, the model developer is
assumed to have only API access to the suspicious model. Existing black-box model fingerprinting
methods can be classified into adversarial-example-based (AE-based) methods (Cao et al., 2021;
Wang et al., 2021; Lukas et al., 2021) and testing-based methods (Li et al., 2021; Chen et al., 2022b;a)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

and we have presented their formulations in Section 2.2. AE-based methods craft adversarial examples
to identify the decision boundary of different models (Cao et al., 2021). Lukas et.al (Lukas et al.,
2021) proposed to craft some reused models as augmented models to improve the conferrability of
the fingerprint. On the contrary, testing-based methods compare the model behavior on the testing
samples at the specific mapping function. ModelDiff (Li et al., 2021) and SAC (Guan et al., 2022)
utilized the distances between the output logits of different input samples, while Zest (Jia et al., 2022)
took the feature attribution map output by LIME (Ribeiro et al., 2016) as the mapping function. In
addition, Chen et.al (Chen et al., 2022a) proposed a series of mapping functions to calculate model
similarity. Compared to AE-based methods, testing-based methods have the capability to compare
models across different tasks and output formats, thereby attracting greater attention.

There are also some existing works exploring other applications of model fingerprinting. For instance,
He et al. (2019) attempts to verify whether the model parameters are altered by the adversary.
Specifically, He et al. (2019) aims to generate a fragile fingerprint that can be destroyed when the
model is modified by others.

Unlike model watermarking methods, model fingerprinting does not need to alter the parameters,
architectures, and training processes of the models. The efficiency of the extraction and verification
of model fingerprinting methods is also much higher than model watermarking methods. As such,
currently model fingerprinting may be a promising way to protect the IPR of the valuable models.

M THE COMPARISON TO SIMILAR WORKS

M.1 THE COMPARISON OF FALSE CLAIM ATTACK TO OTHER WORKS

Differences between False Claim Attack and Ambiguity Attack. Similar to the false claim
attack (Liu et al., 2024), ambiguity attack (Fan et al., 2019) is another attack attempting to forge
the ownership certificate and falsely claim to have ownership of another party’s model. The major
difference between these two attacks is that the ambiguity attack is conducted on a given trained
model while the false claim attack aims to create a transferable certificate to claim the ownership of
the third-party models trained afterward. Existing literature Liu et al. (2024); Waheed et al. (2024)
demonstrates that the registration of ownership certificates (e.g., watermarks or fingerprints) can
effectively mitigate ambiguity attacks but is not effective in defending against the false claim attack.
As such, the false claim attack can be considered as an improved version of the ambiguity attack and
we mainly focus on the false claim attack in this paper.

Differences between False Claim Attack and False Positive Rate. Some existing works (Li et al.,
2021; Chen et al., 2022a) may involve the false positive rate, which evaluates whether a fingerprint
can be extracted or verified on an independent model (instead of the reused model). The major
difference is that the false claim attack is designed to maliciously generate a transferable fingerprint.
Contrarily, when calculating the false positive rate, the fingerprint is extracted innocently. Arguably,
achieving resistance to the false claim attack is more difficult than a low false positive rate. We also
present the false positive rates of FIT-Print in Table 2.

M.2 THE COMPARISON OF FIT-PRINT TO EXISTING FINGERPRINTING METHODS

Connections and Differences with ModelDiff: The insight of ModelDiff and FIT-ModelDiff
is to compare the output differences between perturbed samples and original samples. However,
primitive ModelDiff calculated the cosine similarity of these outputs as the similarity score. Since
the value range of cosine similarity with positive vectors is always larger than 0, ModelDiff cannot
be directly applied to FIT-Print. Also, ModelDiff cannot recognize the models extracted from the
source model. FIT-ModelDiff tackled these issues by designing a value range transformation and
leveraging augmented models to improve conferrability. The details can be found in Section 3.5.1.

Connections and Differences with Zest: In our FIT-LIME, we exploit the feature attribution output
by LIME as the fingerprint. An existing fingerprinting method, Zest (Jia et al., 2022), utilizes
primitive LIME to compare different models. However, primitive LIME has two drawbacks in
ownership verification: (1) LIME first clusters the pixels into several groups called superpixels
via Quickshift (Vedaldi & Soatto, 2008). The clustering algorithm is time-consuming and these
superpixels are irregular and unordered, making it hard to transform them into a bit string that

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

represents the fingerprint. (2) Primitive LIME depends on the label of the input to calculate the
importance scores, which is not applicable when the suspicious model has different predicted classes
from the source model. Our proposed FIT-LIME has tackled the above issues, and the technical
details can be found in Section 3.5.2.

Connections and Differences with MetaV: MetaV(Pan et al., 2022) introduces two critical compo-
nents, the adaptive fingerprint and the meta-verifier. The adaptive fingerprint is a set of adversarial
examples. The meta-verifier takes the suspicious model’s output of the adaptive fingerprint and
outputs whether the suspicious model is reused from the original model. MetaV accomplishes such
an objective by simultaneously optimizing the adaptive fingerprint (i.e., adversarial perturbations)
and the meta-verifier (i.e., a fully-connected neural network). In conclusion, MetaV provided a
task-agnostic fingerprinting framework. However, MetaV is vulnerable to false claim attacks. MetaV
is an AE-based fingerprinting method and the adversary can craft transferable adversarial examples to
achieve false claim attacks. This proposition is also presented in Liu et al. (2024). Moreover, MetaV
cannot detect transfer learning models, which is one of the realistic stealing settings. MetaV depends
on a pre-trained meta-verifier. Transfer learning models may have different output formats, e.g., the
number of classes. Therefore, the meta-verifier which has a fixed input format is not able to process
the changed outputs of the suspicious model and detect whether it is reused from the original model.

N POTENTIAL SOCIETAL IMPACT

In terms of positive societal impact, this paper aims to address the challenges associated with false
claim attacks in ownership verification through the utilization of targeted model fingerprinting meth-
ods. Our FIT-Print, as a method for protecting intellectual property rights (IPR) related to models,
will assist both academia and industry in safeguarding the costly models’ IPRs and preventing unau-
thorized model reuse and theft. Furthermore, FIT-Print has the potential to facilitate the emergence of
new business models such as model trading.

On the other hand, one potential negative societal impact is that the insight of FIT-Print is to some
extent similar to those of targeted adversarial attacks. Therefore, the insight of FIT-Print might also
apply to adversarial attacks. However, FIT-ModelDiff changes the difference between the outputs
and FIT-LIME changes the explanation. Neither of them directly turns the prediction classes into a
target class. As such, although the insight might be transferred to adversarial attacks, the negative
impact of this attack is negligible to most of the AI applications.

O POTENTIAL LIMITATIONS AND FUTURE DIRECTIONS

One potential limitation of our FIT-Print is that FIT-Print depends on a trustworthy third-party
institution to register the fingerprint with a timestamp. However, we argue that the existing intellectual
property office (IPO) or artificial intelligence regulator (AIR) can be responsible for this duty. First,
it is common for developers to register their intellectual property, including valuable models, with the
IPO for copyright protection. Second, many countries and regions are in the process of establishing or
have established the AIR (e.g., as exemplified in the EU Artificial Intelligence Act) to ensure security
and transparency before deploying the AI models. As such, it is also feasible for the AIR to manage
model registrations and ensure that the new models do not infringe on other’s legal copyrights.

Another potential limitation is that FIT-Print does not provide formal proof of the resistance to false
claim attacks. As such, a more powerful adversary may still be able to conduct a successful false
claim attack. We will investigate how to achieve a certified robust model fingerprinting method
against false claim attacks in our future work.

Furthermore, as discussed in Appendix J, for deterministic models that do not involve randomness
(e.g., CNN and LLM), our FIT-Print can generalize to different types of models and datasets. However,
for non-deterministic models that involve randomness (e.g., diffusion models), we have to admit that
we do not know whether our methods and existing fingerprinting methods can be adapted to them
since they have a completely different inference paradigm. We will conduct a comprehensive study
in our future work.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

P DISCUSSION ON RESULTS OF THE BASELINE FINGERPRINTING METHODS

In our main experiments, we take five different model fingerprinting methods, IPGuard (Cao et al.,
2021), ModelDiff (Li et al., 2021), Zest (Jia et al., 2022), SAC (Guan et al., 2022), and Model-
GiF (Song et al., 2023), as our baseline methods. Except for IPGuard, we all use the open-source
code provided in the papers for the experiments. These methods work well in their benchmarks but
for the sake of fairness, we propose a new benchmark of model reuse and test them in our benchmark.
Our benchmark utilizes two datasets (Flowers102 and SDogs120) with a large number of classes
(compared with Cifar-10 (Krizhevsky et al., 2009) in SAC) and we also take the independently
trained models which have the same task with the source model into account. As such, some existing
methods may not work well in our benchmark. For instance, in Table 1, SAC fails to identify the
independent models with the same task.

Q DISCUSSION ON ADOPTED DATA

The data utilized in this paper are sourced from open-access datasets (e.g., Flowers102 (Nilsback
& Zisserman, 2008), SDogs120 (Khosla et al., 2011), ImageNet (Deng et al., 2009)), ptb-text-
only (Marcus et al., 1993), and lambada (Paperno et al., 2016). Our research adheres to the terms
of their open-source licenses. The ImageNet dataset may include some personal elements, such as
human faces. However, our study treats all objects equally and does not intentionally exploit or
manipulate these elements. Therefore, our work complies with the requirements of these datasets and
should not be construed as a violation of personal privacy.

27

	Introduction
	Revisiting Existing Model Fingerprinting Methods
	Threat Model of Model Fingerprinting
	The Formulation of Existing Fingerprinting Methods
	The False Claim Attack against Model Fingerprinting

	The Proposed Method
	Design Objectives
	The Insight of our FIT-Print
	Testing Sample Extraction
	Ownership Verification
	Designing the Mapping Function in FIT-Print
	FIT-ModelDiff
	FIT-LIME

	Experiments
	Experimental Settings
	Evaluation on Effectiveness and Conferrability
	Ablation Study
	Effects of the Length of the Fingerprint
	Effects of the 2-norm Coefficient

	The Resistance to Adaptive False Claim Attack
	The Resistance to Adaptive Fingerprint Removal Attacks

	Conclusion
	The Detailed Threat Model
	Detailed Threat Model of Model Fingerprinting
	Detailed Threat Model of False Claim Attacks

	The Proof of Theorem 1
	Implementation Details
	Details of the Model Reuse Techniques
	Details of the Experimental Settings

	The Resistance to Input-based Adaptive Attacks
	The Omitted Results of False Claim Attacks
	Additional Ablation Study
	FIT-Print with Different Target Fingerprints
	FIT-Print with Different Initializations of Testing Samples
	FIT-Print with Different Numbers of Augmented Models

	FIT-Print in the Label-only Scenario
	The Overhead of FIT-ModelDiff and FIT-LIME
	The Visualization of the Testing Samples
	Extending FIT-Print to Other Models and Datasets
	The Extension to Other Models
	The Extension to Other (Types of) Datasets
	Case Study on Text Generation Model

	Discussion on the Generalization of FIT-Print
	Related Work
	Model Watermarking
	Model Fingerprinting or Model Functional Distance

	The Comparison to Similar Works
	The Comparison of False Claim Attack to Other Works
	The Comparison of FIT-Print to Existing Fingerprinting Methods

	Potential Societal Impact
	Potential Limitations and Future Directions
	Discussion on Results of the Baseline Fingerprinting Methods
	Discussion on Adopted Data

