Usage-Driven Tool Retrieval in LLLMs: A Multi-Stage Approach

Anonymous ACL submission

Abstract

Recent advancements in function calling and
tool use have significantly enhanced the ca-
pabilities of large language models (LLMs)
by enabling them to interact with external in-
formation sources and execute complex tasks.
However, the limited context window of LLMs
presents challenges when a large number of
tools are available, necessitating efficient meth-
ods to manage prompt length and maintain
accuracy. Existing approaches, such as fine-
tuning LLMs or leveraging their reasoning ca-
pabilities, either require frequent retraining or
incur significant latency overhead. A more effi-
cient solution involves training smaller mod-
els to retrieve the most relevant tools for a
given query, although this requires high-quality,
domain-specific data. To address those chal-
lenges, we present a novel framework for gen-
erating synthetic data for tool retrieval applica-
tions and an efficient data-driven tool retrieval
strategy using small encoder models. Empow-
ered by LLMs, we create ToolBank, a new
tool retrieval dataset that reflects real human
user usages. For tool retrieval methodologies,
we propose novel approaches: (1) Tool2Vec:
usage-driven tool embedding generation for
tool retrieval, (2) ToolRefiner: a staged retrieval
method that iteratively improves the quality of
retrieved tools, and (3) MLC: framing tool re-
trieval as a multi-label classification problem.
With these new methods, we achieve improve-
ments of up to 27.28 in Recall@K on the Tool-
Bench dataset and 30.5 in Recall@K on Tool-
Bank.

1 Introduction

Recently, function calling and tool use has emerged
as a powerful paradigm for using large language
models (LLMs) (Patil et al., 2023; Schick et al.,
2024; OpenAl, 2023; Cai et al., 2023). Rather than
relying solely on the model’s parametric knowl-
edge, function calling and tool use enable the
model to interact with the world (Erdogan et al.,

2024; Chen and Li, 2024). This approach allows
the model to achieve specific tasks, such as ac-
cessing information beyond the LLM’s knowledge
cut-off date, solving complex math problems, and
executing complex planning (Trinh et al., 2024; Sil-
ver et al., 2024; Karpas et al., 2022; Chen et al.,
2022).

However, since function calling requires pass-
ing in the tool’s description and signature into the
model’s context window, it is often infeasible to put
information about potentially thousands of func-
tions due to context window limitations. Addition-
ally, even when using models with longer context
windows, long context inference leads to system-
level and accuracy challenges, necessitating the
need for smaller prompts (Kim et al., 2023; Jha
et al., 2024; Erdogan et al., 2024). Therefore, se-
lectively retrieving tools to present to the model
can greatly reduce prompt lengths while preserving
accuracy.

To address the issue of the limited context win-
dow in LLMs when the number of available tools
exceeds the model’s capacity, several methods have
been proposed. One approach involves fine-tuning
LLMs with new tokens that specify tools (Hao
et al., 2024). However, due to the computational
cost of fine-tuning LLMs, this may not be prac-
tical when new tools are frequently introduced.
Another approach leverages the reasoning capa-
bilities of LLMs, allowing the models to select
the appropriate set of tools from a large pool (Du
et al., 2024; Shinn et al., 2024; Wang et al., 2023;
Yuan et al., 2024). Despite the LLMs’ ability to
learn and choose tools effectively, this method in-
curs significant latency overhead, making it less
practical in various use cases where real-time re-
sponses are critical. Therefore, training a separate
smaller model to retrieve tools that are most rel-
evant to the given query has emerged as an effi-
cient yet powerful solution (Qin et al., 2024; Qu
et al., 2024; Anantha et al., 2023; Zheng et al.,

2024b). This method is the most efficient way to
address the problem of prompt length exceeding the
LLMs’ context window. In addition to circumvent-
ing lengthy prompts, efficient tool retrieval systems
can be developed by training small models spe-
cialized for specific domains (Erdogan et al., 2024;
Chen and Li, 2024). The downside of these systems
is the need of domain-specific data to effectively
train retrieval models.

However, previous work (Erdogan et al., 2024)
has demonstrated that high-quality tool retrieval
data can be generated with LLMs (Lee et al., 2024;
Chen et al., 2024; Wei et al., 2024), and users can
train small and efficient tool retrieval models with
the generated data for tool-augmented LLMs. By
doing so, it not only optimizes the use of the con-
text window but also enhances the performance
and accuracy of LLMs through domain-specific
expertise.

Based on this finding, we introduce a frame-
work for creating large scale synthetic data for
tool retrieval applications, as well as an efficient
data-driven tool retrieval strategy using small en-
coder models. For dataset generation, we utilize
the strong synthetic data generation capabilities of
large language models (OpenAl, 2024; AI@Meta,
2024; Jiang et al., 2024a) to create tool retrieval
dataset, ToolBank. On the tool retrieval side, we
introduce novel approaches: (1) usage-driven tool
embedding generation, Tool2Vec, (2) refining and
improving the tool retrieval result, ToolRefiner. We
show that those methods perform better than prior
work relying on computing similarity between a
user query and tool descriptions (Qin et al., 2024;
Qu et al., 2024; Zheng et al., 2024b; Yuan et al.,
2024).

Additionally, we frame tool retrieval as a multi-
label classification problem and train multiple dif-
ferent classification models, giving way to an effi-
cient staged retrieval method.

In more detail, we make the following contribu-
tions:

* We introduce a framework for creating
domain-specific tool retrieval datasets and in-
stantiate three new datasets for tool retrieval
which, when judged for quality by GPT-4-
turbo, scores a 60% win rate compared to
ToolBench’s queries (section 3).

* We propose usage-based tool retrieval, as op-
posed to description-based tool retrieval. Ad-
ditionally, we hierarchically use classification

models to iteratively improve the quality of
retrieved tools (section 4).

* On the hardest ToolBench split, our method
achieves over 25% higher Recall compared
to ToolBench’s retriever. Additionally, on our
domain-specific datasets, our methods outper-
form description-based retrieval by over 30%
(section 5).

2 Related Work
2.1 Function Calling and Tool Use

Function calling allows LLMs to interact with the
world and agentic environments by filling in param-
eters to API functions and other tools. Typically,
function descriptions and signatures are provided
in the model’s context window. For accurate func-
tion calling, models must be able to choose the
proper functions for the task and be able to fill in
the correct parameters to those functions. Large
models such as GPT-4 have demonstrated impres-
sive function calling capabilities (Kim et al.). How-
ever, smaller models (Patil et al., 2023; Srinivasan
et al., 2023), such as 7B and 13B models, have
also been developed specifically for function call-
ing tasks. The ToolBench (Qin et al., 2024) dataset
is a popular function calling dataset consisting of
real-world APIs that was used to fine-tune a 7B
LLaMA model for tool use.

2.2 Tool Retrieval

As discussed in subsection 2.1, function descrip-
tions and signatures are provided in the model’s
context window for applications relying on func-
tion calling. However, real-world applications of-
ten have hundreds or thousands of tools (Qin et al.,
2024). Providing information about all tools to the
model may not be possible due to context length
limits. Furthermore, even when using models with
longer context windows, providing all the tools in
the prompt leads to significant compute and mem-
ory overheads (Kim et al., 2023). To address this,
various tool retrieval methods have been proposed
to select and provide only the relevant tools for
incoming user queries instead of providing them
all.

A notable approach to enhance tool retrieval per-
formance is leveraging another LLM. AnyTool (Du
et al., 2024) proposes to use GPT-4 for API re-
trieval and to further enhance retrieval performance
through an iterative self-reflection method. Simi-
larly, (Xu et al., 2024) incorporates a refiner LLM

that iteratively refines user queries to boost retrieval
performance. However, using LLMs for tool re-
trieval, along with iterative invocation, results in
significant latency overhead of up to several sec-
onds (Xu et al., 2024), limiting their use in various
real-time applications.

Dense retrieval methods offer an efficient alter-
native, where each tool’s description is embed-
ded using an embedding model, and tools with
the highest similarity to the embedding of the in-
coming user query are retrieved (Qin et al., 2024).
ProTIP (Anantha et al., 2023) adapts a dense
retrieval model for iterative multi-tool selection.
ToolkenGPT (Hao et al., 2024) proposes to learn
an embedding of each tool that can be immediately
used as an input token to LLMs. COLT (Qu et al.,
2024) improves tool retrieval performance by fine-
tuning the pre-trained encoder model through four
distinct stages: semantic learning, collaborative
learning, list-wise learning, and contrastive learn-
ing.

Tool2Vec provides a different view of tool re-
trieval, which is tool embedding generated based
on usage. It uses the user query embedding in-
stead of tool description embedding to generate
tool embeddings for retrieval. A notable work is
EasyTool (Yuan et al., 2024) which enhances tool
leverages LLMs to rewrite tool descriptions, reduc-
ing inconsistency, redundancy, and incompleteness,
ultimately improving retrieval performance. While
EasyTool also proposes LLMs generate usage ex-
amples, these serve to provide in-context examples
rather than directly improving the performance of
the retriever models as in our work.

3 Dataset Generation

We introduce a modular framework for generating
custom datasets tailored for tool retrieval, with the
goals of (1) demonstrating that users can create
sufficiently large domain-specific datasets powered
by LLMs (Lee et al., 2024; Chen et al., 2024) for
small tool retrieval models, and (2) addressing the
limitations inherent in existing benchmarks (Qin
et al., 2024; Chen et al., 2023; Xu et al., 2024;
Du et al., 2024), which often lack coherent tool
integration and query naturalness.

Particularly for the second aspect, current bench-
marks frequently pair tools without considering
their natural co-occurrence, leading to impractical
and inconsistent combinations (Qin et al., 2024,
Huang et al., 2024; Qu et al., 2024). For exam-

Polished vs.
Unpolished 2 23

FakeData vs.
Toolbench 25 17
0 20 40 60 80 100
Percentage

Figure 1: Comparison of naturalness, fluency, and coherence
of queries. We first compare polished and unpolished queries
within ToolBank, with blue/yellow/red bars indicating the
number of times polished queries won, tied, or lost. Then,
we compare queries from ToolBank to those from Toolbench,
using the same color scheme to represent the outcomes. We
randomly sample 100 queries from each dataset and ask GPT-
4-turbo to judge which query is more natural, fluent, and
coherent (Zheng et al., 2024a).

ple, a query from ToolBench— “Search for the
companies that have been modified recently and
fetch the lyrics for the song ‘Bad’ by Michael Jack-
son” pairs the 360 Business Tool tool with the
Chart Lyrics tool, reflecting a clear mismatch
in tool relevance. This is because ToolBench ran-
domly samples multiple tools from the tool pool,
without much consideration of their co-ocurrance.

Moreover, due to the pairing of irrelevant tools,
these benchmarks tend to be overly structured and
verbose, resembling step-by-step queries rather
than the more fluid, natural language typically used
in real-world scenarios. For instance, a query such
as “Please provide me with details of breweries
that are dog-friendly and have a patio, and include
race details for race ID 207660, covering horses,
jockeys, trainers, and their positions,” showcases
an unnatural pairing of unrelated tools, driven by a
rigid, instructional style.

To this end, we introduce a domain-specific tool
retrieval dataset generation framework and accord-
ingly a coherent and natural tool retrieval dataset
ToolBank that addresses limitations of existing
benchmarks. The dataset generation framework
aims to create the tool retrieval dataset that respects
the natural co-occurrence of tools while ensuring
more natural, real-world query queries, which con-
sists of the following two stages:

* Query Generation: In this stage, we first sample
T tools randomly from the entire tool set. In con-
trast to previous works where LLMs are prompted
to use all 7" tools to generate an query (Qin et al.,
2024; Chen et al., 2023; Xu et al., 2024; Du
et al., 2024), we allow them to select M tools,
where M < T, that are coherent and contextu-
ally aligned. This approach promotes the natural
co-occurrence of tools. We used 7" = 10 and
M € [2,5] throughout our generation process,
where we found sufficiently large 7' critical for
LLM:s to select tools that align contextually. Ad-

ToolBench Queries

ToolBank Queries

I'm planning a surprise party for my best friend and | need some unique
translations for invitation cards. Can you search for translations from English
to Italian for the phrase 'You're invited!" using the search translations API?
Also, calculate the love percentage between John and Alice

Reorganize a 3D array of sensor readings into shape (time, sensor, feature)
to identify the indices of the maximum reading values across all sensors for
each time step.

| want to flip a coin to make a decision. Can you provide me with the
outcome of a coin flip, heads or tails? Additionally, I'm curious about the
current exchange rate between two specific currencies, which | will provide
later

Transform customer purchase history data from a broad to a deep format to
identify trends in spending behaviors through percentile values of total
purchase amounts.

Figure 2: Qualitative analysis comparing the queries in Toolbench and ToolBank. We randomly sample 2 examples from each
dataset. Queries in Toolbench often follow an artificial pattern like "Do this, do this, and do this," resulting from random
sampling of multiple tools from RapidAPI Hub. In contrast, ToolBank queries are more natural, resembling real human queries
to LLMs, with coherent and related tools better aligned to user needs.

ditionally, we provided 5 randomly sampled in-
context examples to enhance generation quality
and diversity.

* Query Polish: Despite our query generation pro-
cess improving tool co-occurrence, LLMs often
produce step-by-step queries that seem unnatural.
To address this, we introduce an additional step to
polish these initial, often robotic queries into flu-
ent and concise English that more closely mirrors
user queries in natural settings.

We provide a qualitative analysis comparing
ToolBank against Toolbench (Qin et al., 2024), one
of the most widely adopted benchmarks for tool
retrieval in Figure 1 and 2. The study illustrated
in Figure 1 directly evaluates the naturalness, flu-
ency, and coherence of queries. We randomly sam-
ple 100 queries from both the unpolished and pol-
ished versions of ToolBank, as well as 100 queries
from Toolbench. GPT-4-turbo is then tasked with
judging which queries are superior based on the
aforementioned criteria (Zheng et al., 2024a). The
results demonstrate that query Polish consistently
generates queries that outscore both the baseline
unpolished queries and the queries from the Tool-
bench dataset.

We also provide examples randomly sampled
from Toolbench and ToolBank in Figure 2. We ob-
serve that the format of queries in Toolbench often
follows the pattern “Do this, do this, and do this,"
which results from randomly sampling multiple
tools from RapidAPI Hub. This format is some-
what artificial compared to how real human users
give queries to LLMs for certain tasks. Addition-
ally, some queries directly or indirectly mention the
required APIs, simplifying tool retrieval. In con-
trast, the queries sampled from ToolBank are more
natural, closely resembling how real human users
are likely to ask LLMs to perform tasks. Further-
more, the tools required for each user query task

in ToolBank are more coherent and related to each
other, ensuring better alignment with user needs.
For further detail, please refer to Appendix B.

4 Approaches

In this section, we propose two novel approaches to
the tool retrieval problem: (i) usage-driven embed-
ding generation (Section 4.1) and (ii) reformula-
tion of tool retrieval as a tool classification problem
(Section 4.2). Then, in Section 4.3, we demonstrate
how these two methodologies can be combined to
achieve high-performance tool retrieval.

4.1 Tool2Vec: Usage-Driven Embedding
Generation

Previous tool retrieval methods have relied on tool
descriptions to obtain embeddings of each tool for
dense retrieval (Anantha et al., 2023; Qin et al.,
2024; Qu et al., 2024; Yuan et al., 2024). How-
ever, this approach may be suboptimal due to the
semantic disparity between tool descriptions and
user queries. Figure 3 (Left) illustrates how tool
descriptions and user queries can be disjoint in the
embedding space, making tool retrieval based on
embedding similarity challenging. This issue per-
sists even when the descriptions are augmented
with additional information, such as tool code, to
improve retrieval performance (Yuan et al., 2024;
Zheng et al., 2024b; Du et al., 2024).

To reduce the distributional gap between query
and tool embeddings for retrieval, we propose
Tool2Vec, the usage-driven tool embedding gen-
eration. Instead of using tool descriptions, we pro-
pose to use user queries to obtain tool embeddings.
In more detail, if we have multiple user queries
that use a specific tool, we use the average em-
beddings of those user queries as the Tool2Vec
embedding that represents the tool. For exam-
ple, in Figure 4, we have multiple user queries
that use the tool find_email_address, such as

“What is Anna’s email address?" In this case, we
use an embedding model (e.g., ES (Wang et al.,
2022)) to obtain the embedding for each user
query, and the average of these embeddings is
used as the Tool2Vec embedding for the tool
find_email_address. Likewise, the Tool2Vec
embedding for the tool find_weather can be ob-
tained the same way using the associated user
queries. As shown in the figure, since the Tool2Vec
embeddings of these tools are derived from user
queries, they are closer to the incoming user query
in the embedding space compared to embeddings
derived from tool descriptions.

To further justify the benefits of Tool2Vec’s
usage-driven tool embedding generation, we per-
form an analysis as illustrated in Figure 3. The left
figure is a t-SNE visualization of the embeddings
of the user queries, Tool2Vec, and tool descriptions.
It shows that the query embeddings form clusters,
with Tool2Vec embeddings typically positioned at
the centroids of these clusters. The tool description
embeddings, however, are scattered outside of the
distributions of instruction embeddings. Evidently,
this is due to the semantic gap between the tool
description and user query.

The right figure is the box plots with interquartile
ranges (IQR) of the cosine similarity between the
instruction and tool embeddings. It shows two dis-
tributions: ‘Positive’ for the similarity between in-
struction embeddings and the embeddings of tools
used to process the given instructions, and ‘Neg-
ative’ for the similarity between instruction em-
beddings and the embeddings of tools not used.
For Tool2Vec embeddings, the positive and nega-
tive distributions do not overlap, indicating a clear
distinction. However, the cosine similarity distribu-
tions for tool descriptions show significant overlap
between positive and negative, implying that the
traditional tool description embeddings are less ef-
fective at distinguishing between relevant and irrel-
evant tools compared to the Tool2Vec embeddings.

4.2 Tool Retrieval as a Multi-Label
Classification Problem

In this section, we suggest a reformulation of the
multi-tool retrieval problem as a multi-label classi-
fication problem. Prior work on tool retrieval (Qin
et al., 2024; Qu et al., 2024; Anantha et al., 2023;
Zheng et al., 2024b) relies on metric learning tech-
niques, including contrastive loss (Chopra et al.,
2005) and triplet loss (Hoffer and Ailon, 2015),
to produce useful embeddings from tool descrip-

Similarity between
Query and Tool Embeddings

t-SNE of Embeddings
1.00

0.95

20.90
<

X K] 08
= F085
i | 080 !
. c o
1 Zo7s
o
0.70

0.65

Tool2Vec Tool Description

» Tool Description Query Tool2Vec [Positive [Negative

Figure 3: (Left) t-SNE visualization of embeddings for queries,
Tool2Vec, and tool descriptions. (Right) Cosine similarity be-
tween instruction and tool embeddings. The figure displays
two distributions for both Tool2Vec embeddings and tool de-
scription embeddings: one labeled ’Positive,” representing
cosine similarity between queries and the embeddings of tools
used for those instructions, and the other labeled *Negative,’
representing cosine similarity between instructions and the
embeddings of tools not used for those queries.

tions. However, in settings where instructions and
associated tool labels are abundant, tool retrieval
can alternatively be formulated as a multi-label
classification problem. Furthermore, given the rise
of synthetic data generation methods (Chen et al.,
2024; Lee et al., 2024; Wei et al., 2024; Cao et al.,
2023), it has become possible to construct such
labeled high-quality pairs synthetically with the
competent LLMs (Al@Meta, 2024; OpenAl, 2024;
Jiang et al., 2023, 2024b), as demonstrated in Sec-
tion 3.

Given this classification viewpoint of tool selec-
tion, there are multiple applicable modeling strate-
gies. One straightforward approach involves train-
ing a model that takes the instruction as input and
outputs the classification logits for each tool, as
illustrated in the left figure of Fig.5. When a user
query is provided, such as “What is the weather
today?", we assign a label of 1 to all required tools
and a label of 0 to unused tools to training the multi-
label classifier. In this example, the find_weather
tool receives a label of 1, while other tools receive
a label of 0. To achieve this, we fine-tune the pre-
trained BERT-base model (He et al., 2023; Devlin
et al., 2019), which features a H x T classification
head operating on the output [CLS] token. Here, H
represents the dimension of the [CLS] token, and
T denotes the total number of tools in the dataset.

4.3 ToolRefiner

We introduce ToolRefiner, an approach that en-
hances tool retrieval performance on top of any
tool retrieval method by combining the methods
outlined in 4.1 and 4.2. As a high-level summary,
candidate tools are retrieved with efficient retrieval

Description

« Embeddings find_weather(location: str, datetime: str)
>

- - returns the weather for the given location and datetime

find_email_address(name: str)
returns the email address for the given name

X<--- T
Examples: ? 4 Examples:
. ’ Oc-__' _ s N
[What is Anna’s email address?]\ A0 >N 4 o A ~ 7~ -9 What is the weather like tomorrow at Berkeley?
e A L S g
[Find Bob’s email address. }~ - - - \ I “4 Is it going to be rainy in Palo Alto this Sunday?
\ U - .
Ay ’ TS o ~
[Write an email to John about the morning meeting. }- - '\“\T‘._ _ SN "1 What will the weather be like in Boston on Aug 1st?
Query: - o
Tool2Vec p
Embeddings Can you find David’s email address?

Figure 4: Illustration of how user query embeddings are used as tool embeddings. The embeddings of example queries in the
left side of figure corresponds to the tool find_email_address Tool2Vec embedding. If multiple queries use the same tool,
their embeddings are averaged. Likewise, the Tool2Vec embedding of find_weather is the average of the embeddings from the
examples shown on the right side of the figure. The disjoint embedding distributions reflect the different semantics of the two
sets of examples. However, the description embeddings of those two tools are not close to each cluster because of the semantic
domain gap between query and tool description, which leads to the suboptimal retrieval performance.

E p »)\ Qo1 ®os8 - 0.2
Tool1l Tool 2 Tool N 1 t 1
) (;.1 (V] (;.8 {x] %2 @3 Tool Refiner

/ N-way Classification Head \
¥

Encoder Model
(e.g. DeBERTa)

Tool2Vec é é
Embeddings
T (precomputed) T T
ther today? a
weather togay Tool2Vec Embedding Layer
(]
- f I |
1 N E Tool 1 p Tool 2 - ‘)\Tool N
User Query
(] What is the weather today? Tool2Vec
- J

—
User Query
What is the

Figure 5: (Left) Illustration of MLC: The encoder model (e.g., DeBERTa) takes user query tokens as input and outputs the
probability of each tool. We fine-tune the pre-trained encoder model using binary cross-entropy loss for each tool. (Right)
Iustration of ToolRefiner: The fine-tuned encoder model takes the user query and Tool2Vec embeddings of retrieved tools as
inputs. We precompute the Tool2Vec embeddings and use them in conjunction with the user query. The pre-trained encoder
model is then fine-tuned with softmax loss.

on top of any other retrieval methods to improve
the performance.

methods such as cosine-similarity-based retrieval.
ToolRefiner then classifies whether the retrieved

tools are relevant or not. . .
This approach is analogous to passage rerank-

ing (Nogueira and Cho, 2019; Yilmaz et al., 2019),
which determines the ranking of retrieved docu-
ments based on their similarity to the query. Sim-
ilar to passage reranking, the Tool2Vec is trained

As illustrated in Fig. 5, we compute the
Tool2Vec embedding of each tool by the method in-
troduced in Section 4.1. The tool retriever retrieves
top-N tools based on the user query. Then Tool-

Refiner takes the user query and the Tool2Vec em-
beddings of the retrieved N tools to classify which
tools are needed to process the user query. We
fine-tune the pre-trained DeBERTa-V3 (He et al.,
2023) xsmall model to get ToolRefiner. Similar
to MLC, we assign a label of 1 to all required
tools and a label of O to unused tools. For in-
stance, if the user query is “What is the weather
today?", the find_weather tool receives a label
of 1, while other tools receive a label of 0. We
then calculate and minimize the softmax loss. We
observe that softmax loss performs better than bi-
nary cross-entropy loss. The same trends have
been observed in other domains (Joulin et al., 2016;
Mahajan et al., 2018). Notably, if the Tool2Vec em-
bedding is pre-computed, ToolRefiner can be used

as a classification model. The key difference is
that while traditional passage rerankers evaluate
and order the similarities of retrieved documents
one by one in relation to the query, ToolRefiner
simultaneously reranks all retrieved tools. Further-
more, the reranker operates directly on Tool2Vec
embeddings.

S Experiments

In this section, we describe experimental results
that validate the effectiveness of our proposed meth-
ods, Tool2Vec, MLC, and ToolRefiner on various
benchmarks including ToolBench (Qin et al., 2024)
and ToolBank.

Table 1: Comparison of tool retrieval results on the ToolBench dataset. We compared our methods against two baselines: the
ToolBench retriever (Qin et al., 2024) and COLT (Qu et al., 2024). Evaluation metrics include Recall@K, where K values are 3,
5, and 7. In the table, R@K stands for Recall@K. The best-performing method is highlighted in boldface, while the second-best
performing method is underlined. We reproduce the ToolBench retriever results based on the original codebase. For the other
baseline method, COLT, we report the numbers available in the paper (Qu et al., 2024).

Method Toolbench I1 Toolbench 12 Toolbench I3
R@3 | R@5 | R@7 | R@3 | R@5 | R@7 | R@3 | R@5 | R@7
Baselin ToolBench Retriever 79.97 90.19 93.21 67.25 78.25 85.75 54.07 63.88 73.73
45eme - coLr - - 75.72 | 85.03 76.63 | 85.50 -
Tool2Vec 85.88 93.29 94.42 72.79 79.67 82.75 75.23 84.90 86.60
Ours MLC 91.80 96.00 96.67 80.67 85.63 87.46 81.35 86.27 88.27
ToolRefiner + Tool2Vec 89.63 95.33 96.17 76.83 84.42 86.38 80.58 87.80 89.70
ToolRefiner + MLC 91.84 96.83 97.01 82.89 87.92 88.96 79.83 86.91 88.98

Table 2: We compare tool retrieval outcomes using the ToolBank dataset. The baseline consists of methods that identify tools
based on their descriptions. We evaluate performance using the evaluation metric Recall@K for K values of 3, 5, and 7. The
results are organized into three sections: the first three columns show outcomes using BankNumpy, the following three columns
display the results with BankPandas, and the final three columns present the results for BankAWS. We present the ES-base
results fine-tuned with the tool description as the baseline. The best-performing method is highlighted in boldface, while the
second-best performing method is underlined.

Method BankNumpy BankPandas BankAWS
R@3 | R@5 | R@7 | R@3 | R@5 | R@7 | R@3 | R@5 | R@7
Baseline Description-Based Retriever | 50.82 | 64.09 | 71.84 | 27.86 | 34.90 | 40.00 | 41.92 | 46.46 | 49.13
! COLT 67.43 | 81.32 | 83.31 41.63 | 5245 | 53.71 66.16 | 77.90 | 83.10
Tool2Vec 5297 | 64.18 | 71.11 36.52 | 42.01 4517 | 5538 | 63.14 | 67.98
Ours MLC 7035 | 80.78 | 84.73 | 41.49 | 49.69 | 54.34 | 70.99 | 79.69 | 8291
’ ToolRefiner + Tool2Vec 71.61 79.52 | 8222 | 4294 | 47.65 | 4933 | 69.12 | 74.08 | 7543
ToolRefiner + MLC 73.82 | 84.24 | 87.47 | 47.76 | 55.28 | 59.13 | 7242 | 81.17 | 84.49

5.1 ToolBench

In Table 1, we evaluate our proposed methods in
the ToolBench dataset (Qin et al., 2024), compar-
ing their performance against two established base-
lines: the ToolBench Retriever (Qin et al., 2024),
and COLT (Qu et al., 2024). We observe that our
methods constantly outperform the baselines with
large margins.

5.1.1 Experimental Details

For benchmarking, we use the ToolBench dataset,
which is the current standard benchmark for multi-
tool retrieval. The data set is divided into three sub-
sets (I1, 12, and I3), and each subset corresponds
to different levels in the RapidAPI Hub tool hier-
archy. As the subset number increases from I1 to
13, the tools used are sampled from higher levels
of the hierarchy. This means that I3 involves more
complex or broadly categorized tools compared to
I1 and 12.

For all methods used in these experiments, pre-
trained encoder models are fine-tuned to each sub-
set of the dataset. Specifically, the ToolBench re-
triever is a fine-tuned SentenceBERT (Reimers and
Gurevych, 2019), which itself is a fine-tuned BERT-
base model (Devlin et al., 2019) with a model size
of BERT-base (110M parameters). The COLT re-
triever is a fine-tuned Contriever (Izacard et al.,

2022), which is also a fine-tuned BERT model of
the same size of the BERT base model.

For our methods, MLC and ToolRefiner, we use
DeBERTaV3 (He et al., 2023). Specifically, MLC
uses DeBERTaV3-base (86M parameters) and Tool-
Refiner uses DeBERTaV3-xsmall (22M parame-
ters). To get Tool2Vec embedding, we fine-tune
pre-trained ES-base (Wang et al., 2022) model. The
model is fine-tuned with triplet loss for one epoch.

5.1.2 Result Analysis

Table 1 presents the performance comparison. The
first two rows show the baseline methods: Tool-
Bench retriever (Qin et al., 2024) and COLT re-
triever (Qu et al., 2024). The last four rows display
our methods: Tool2Vec, MLC, ToolRefiner com-
bined with Tool2Vec, and ToolRefiner combined
with MLC. We use Recall@K as the evaluation
metric, with K values of 3, 5, and 7. We do not
include nDCG, as used in (Qin et al., 2024; Qu
et al., 2024), because it is not suitable for the tool
retrieval context where tool relevance is binary and
the order of retrieved tools does not matter. Instead,
we choose Recall as the primary evaluation metric.
The results for the ToolBench retriever are repro-
duced using the original codebase, while the Recall
values for COLT are taken from (Qu et al., 2024)
since the codebase is unavailable to reproduce the

results.

MLC and ToolRefiner consistently outperform
the baseline methods by significant margins across
all ToolBench subsets. Tool2Vec outperforms the
ToolBench retriever across all subsets but falls short
of the COLT retriever. Comparing the third and
fifth rows in Table 1, ToolRefiner achieves up to
3.8 additional Recall@K across all subsets. For
MLC, ToolRefiner shows improvements of up to
2.3 Recall@K for subsets I1 and 12.

5.2 ToolBank

In this section, we benchmark the methods intro-
duced in Section 4 with our new dataset, ToolBank.
The results are summarized in Table 2. The base-
line is a description based retrieval method. Our
methods always perform better than the baseline.

5.2.1 Experimental Details

The baseline used in this experiment is E5-base
model, fine-tuned with the description of tools. The
model is fine-tuned with triplet loss for one epoch.
Similar to Section 5.1, we fine-tune pre-trained en-
coder model for MLC, Tool2Vec, and ToolRefiner.

For all subsets in this data, we split the training
set into an 8:2 ratio for training and validation. We
conduct hyperparameter tuning using the validation
set and report performance on the test set using
the best-performing hyperparameters. To avoid
overfitting, we only evaluate the test set once across
all experiments.

5.2.2 Result Analysis

In Table 2, the first row is the result with the
description-based baseline and other rows are re-
sults with our methods, Tool2Vec, MLC, ToolRe-
finer combined with Tool2Vec, and ToolRefiner
combined with MLC. All of our methods outper-
form the baseline by up to 30 additional Recall @K.
We observe that ToolRefiner improves the retrieval
results consistently for both Tool2Vec and MLC.
Especially, the improvement is remarkable when
ToolRefiner is used with Tool2Vec, which have the
gain up to 21 for Recall@K.

We observe that our models perform worse on
the Pandas dataset; specifically, the ToolRefiner
combined with MLC achieves 25% less Recall@3
on BankPandas dataset than both the BankNumpy
and BankAWS datasets. BankPandas dataset con-
tains various data types like time series, periods,
intervals, and indexes; hence, the model is mostly

confused about which data type to operate on. For
the further detail, please refer to Appendix B.4.2

5.3 Additional Results

ToolLens. ToolLens is another tool retrieval
benchmark (Qu et al., 2024). We compare our
methods to other baselines including description-
based retriever and COLT. ToolRefiner + MLC
outperforms COLT, which is SOTA baseline for
ToolLens by 2.19% for R@3 and 0.98% for R@5.
Details on this experiment is available in Ap-
pendix A.2.

Analysis on Our Methods. We find that Tool-
Refiner + Tool2Vec excels in handling queries of
varying complexity and maintains a more uniform
failure rate across diverse tools, averaging fewer
mistakes. In contrast, Tool2Vec struggles with sim-
pler queries, frequently misclassifies specific tools,
and exhibits a higher overall failure rate. Complete
analyses are available in Appendix A.4.

Other results. We demonstrate reduced la-
tency and GPU memory consumption (see Ap-
pendix A.6). To investigate the importance of
tool retrieval performance, we benchmark ours on
TinyAgent dataset (Erdogan et al., 2024) (see Ap-
pendix A.3). Our approach yields a 3% gain in
R@3 and a 7% increase in success rate compared
to a description-based baseline, highlighting the
critical impact of enhanced tool retrieval on end-to-
end performance.

6 Conclusions

We propose a framework for creating high-quality
synthetic datasets for tool retrieval, as well as
a method for leveraging these datasets to train
small models for usage-based tool retrieval. In or-
der to build specialized tool retrieval applications,
domain-specific dataset generation is critical. Fur-
thermore, to avoid context window limitations and
system overheads caused by long prompts, efficient
tool retrieval with small models is a necessary com-
ponent of many function calling systems. LLMs
demonstrate impressive synthetic dataset genera-
tion capabilities which we used to create special-
ized tool retrieval dataset, ToolBank. Addition-
ally, our data-driven retrieval strategy outperforms
description-based retrieval by as much as 30% on
these datasets. On ToolBench, our retrieval method
achieves over 25% higher Recall than ToolBench’s
description-based retriever.

7 Limitations

While our proposed framework demonstrates
promising results in tool retrieval tasks, several
limitations merit discussion. First, the reliance on
synthetic data generation, although effective for
constructing large, domain-specific datasets, raises
concerns about data quality and representativeness.
LLMs that generate these synthetic examples may
introduce hidden biases, potentially misrepresent-
ing real-world user queries or overfitting to the
model’s inherent language patterns. Second, usage-
based embeddings presuppose the availability of
sufficient usage examples for each tool; in scenar-
ios where certain tools are infrequently utilized or
newly introduced, the limited number of usage sam-
ples can degrade embedding quality and retrieval
accuracy. Third, the multi-stage retrieval strategy,
while more efficient than fully prompting LLMs for
tool selection, still requires careful fine-tuning of
multiple components (e.g., Tool2Vec, MLC, Tool-
Refiner), increasing system complexity. Addition-
ally, although our approach scales better than large-
model-based retrieval methods, maintaining sep-
arate fine-tuned retrievers for different domains
may become resource-intensive when adapting to
a broad array of specialized tool sets. Finally,
the long-tail nature of tool usage—where certain
tools are only needed under niche or highly spe-
cific queries—remains challenging. Future work
may explore more robust methods to handle out-of-
distribution queries and further reduce reliance on
synthetic data, thereby enhancing both the adapt-
ability and reliability of usage-based tool retrieval.

References
Al@Meta. 2024. Llama 3 model card.

Raviteja Anantha, Bortik Bandyopadhyay, Anirudh
Kashi, Sayantan Mahinder, Andrew W Hill, and
Srinivas Chappidi. 2023. Protip: Progressive
tool retrieval improves planning. arXiv preprint
arXiv:2312.10332.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. arXiv preprint arXiv:2305.17126.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao
Sun. 2023. Instruction mining: When data mining
meets large language model finetuning. Preprint,
arXiv:2307.06290.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.

Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.
2024. Alpagasus: Training a better alpaca with fewer
data. In The Twelfth International Conference on
Learning Representations.

Wei Chen and Zhiyuan Li. 2024. Octopus v2: On-
device language model for super agent. arXiv
preprint arXiv:2404.01744.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, et al. 2023.
T-eval: Evaluating the tool utilization capability step
by step. arXiv preprint arXiv:2312.14033.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with ap-
plication to face verification. In 2005 IEEE computer
society conference on computer vision and pattern
recognition (CVPR’05), volume 1, pages 539-546.
IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yu Du, Fangyun Wei, and Hongyang Zhang. 2024. Any-
tool: Self-reflective, hierarchical agents for large-
scale api calls. arXiv preprint arXiv:2402.04253.

Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Se-
hoon Kim, Ryan Tabrizi, Suhong Moon, Coleman
Hooper, Gopala Anumanchipalli, Kurt Keutzer, and
Amir Gholami. 2024. Tinyagent: Function calling
at the edge. https://bair.berkeley.edu/blog/
2024/05/29/tiny-agent/.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2024. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Ad-
vances in neural information processing systems, 36.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
DeBERTav3: Improving deBERTa using ELECTRA-
style pre-training with gradient-disentangled embed-
ding sharing. In The Eleventh International Confer-
ence on Learning Representations.

Elad Hoffer and Nir Ailon. 2015. Deep metric learning
using triplet network. In Similarity-based pattern
recognition: third international workshop, SIMBAD
2015, Copenhagen, Denmark, October 12-14, 2015.
Proceedings 3, pages 84-92. Springer.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2307.06290
https://arxiv.org/abs/2307.06290
https://arxiv.org/abs/2307.06290
https://openreview.net/forum?id=FdVXgSJhvz
https://openreview.net/forum?id=FdVXgSJhvz
https://openreview.net/forum?id=FdVXgSJhvz
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/
https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/
https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhengiang Gong, and Lichao Sun. 2024. Meta-
tool benchmark for large language models: Deciding
whether to use tools and which to use. In The Tivelfth
International Conference on Learning Representa-
tions.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

Siddharth Jha, Lutfi Eren Erdogan, Sehoon Kim, Kurt
Keutzer, and Amir Gholami. 2024. Characterizing
prompt compression methods for long context infer-
ence. arXiv preprint arXiv:2407.08892.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024a.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024b.
Mixtral of experts. Preprint, arXiv:2401.04088.

Armand Joulin, Laurens Van Der Maaten, Allan Jabri,
and Nicolas Vasilache. 2016. Learning visual fea-
tures from large weakly supervised data. In Com-
puter Vision—ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11—
14, 2016, Proceedings, Part VII 14, pages 67—84.
Springer.

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak
Lenz, Opher Lieber, Nir Ratner, Yoav Shoham, Hofit
Bata, Yoav Levine, Kevin Leyton-Brown, et al. 2022.
Mrkl systems: A modular, neuro-symbolic architec-
ture that combines large language models, external
knowledge sources and discrete reasoning. arXiv
preprint arXiv:2205.00445.

Sehoon Kim, Coleman Hooper, Thanakul Wattana-
wong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W
Mahoney, et al. 2023. Full stack optimization of
transformer inference: a survey. arXiv preprint
arXiv:2302.14017.

10

Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas
Lee, Michael W Mahoney, Kurt Keutzer, and Amir
Gholami. An llm compiler for parallel function call-
ing. In Forty-first International Conference on Ma-
chine Learning.

Nicholas Lee, Thanakul Wattanawong, Sehoon Kim,
Karttikeya Mangalam, Sheng Shen, Gopala Anu-
manchipali, Michael W Mahoney, Kurt Keutzer, and
Amir Gholami. 2024. LIm2llm: Boosting llms with
novel iterative data enhancement.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin
Bharambe, and Laurens Van Der Maaten. 2018. Ex-
ploring the limits of weakly supervised pretraining.
In Proceedings of the European conference on com-
puter vision (ECCV), pages 181-196.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with bert. arXiv preprint
arXiv:1901.04085.

OpenAl. 2023. Function calling and other api updates.

OpenAl. 2024. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. Colt: Towards completeness-oriented
tool retrieval for large language models. Preprint,
arXiv:2405.16089.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

https://openreview.net/forum?id=R0c2qtalgG
https://openreview.net/forum?id=R0c2qtalgG
https://openreview.net/forum?id=R0c2qtalgG
https://openreview.net/forum?id=R0c2qtalgG
https://openreview.net/forum?id=R0c2qtalgG
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://arxiv.org/abs/2401.04088
https://openai.com/index/function-calling-and-other-api-updates/
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://arxiv.org/abs/2405.16089
https://arxiv.org/abs/2405.16089
https://arxiv.org/abs/2405.16089
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:201646309

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B
Tenenbaum, Leslie Kaelbling, and Michael Katz.
2024. Generalized planning in pddl domains with
pretrained large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 20256-20264.

Venkat Krishna Srinivasan, Zhen Dong, Banghua Zhu,
Brian Yu, Damon Mosk-Aoyama, Kurt Keutzer,
Jiantao Jiao, and Jian Zhang. 2023. Nexusraven:
a commercially-permissive language model for func-
tion calling. In NeurIPS 2023 Foundation Models for
Decision Making Workshop.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He,
and Thang Luong. 2024. Solving olympiad ge-
ometry without human demonstrations. Nature,
625(7995):476-482.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2022. Text embeddings by
weakly-supervised contrastive pre-training. ArXiv,
abs/2212.03533.

Lai Wei, Zihao Jiang, Weiran Huang, and Lichao
Sun. 2024. InstructionGPT-4: A 200-instruction
paradigm for fine-tuning miniGPT-4.

Qiancheng Xu, Yongqi Li, Heming Xia, and Wenjie Li.
2024. Enhancing tool retrieval with iterative feed-
back from large language models. arXiv preprint
arXiv:2406.17465.

Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei Yang,
Haotian Zhang, and Jimmy Lin. 2019. Applying bert
to document retrieval with birch. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
19-24.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Kan Ren, Dongsheng Li, and De-
qing Yang. 2024. EASYTOOL: Enhancing LLM-
based agents with concise tool instruction. In /CLR
2024 Workshop on Large Language Model (LLM)
Agents.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024a.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Yuanhang Zheng, Peng Li, Wei Liu, Yang Liu, Jian
Luan, and Bin Wang. 2024b. Toolrerank: Adap-
tive and hierarchy-aware reranking for tool retrieval.
arXiv preprint arXiv:2403.06551.

11

https://api.semanticscholar.org/CorpusID:254366618
https://api.semanticscholar.org/CorpusID:254366618
https://api.semanticscholar.org/CorpusID:254366618
https://openreview.net/forum?id=DNvzCsQG1D
https://openreview.net/forum?id=DNvzCsQG1D
https://openreview.net/forum?id=DNvzCsQG1D
https://openreview.net/forum?id=3TuG3S68bb
https://openreview.net/forum?id=3TuG3S68bb
https://openreview.net/forum?id=3TuG3S68bb

A Additional Results

A.1 Ablation Studies

This section details the ablation studies using the
ToolRefiner introduced in Section. 4.3 on the Tool-
bench dataset. First, we investigate the effective-
ness of Tool2Vec embeddings compared to tool
description embeddings and find that Tool2Vec
consistently outperforms tool description embed-
dings. Then, we explore the impact of the number
of initially retrieved candidate tools on overall re-
triever performance. We observe that increasing the
number of candidate tools consistently enhances
performance up to a certain point, after which the
improvement plateaus and the retrieval metrics de-
grade.

A.1.1 Tool2Vec vs. Tool Description
Embeddings

In this ablation study, we demonstrate the effec-
tiveness of using Tool2Vec embeddings to the tool
description embeddings for ToolRefiner. Specifi-
cally, we train two ToolRefiner models, one with
Tool2Vec embeddings and one with the tool de-
scription embeddings, on Toolbench I3 dataset.
We retrieve top-64 tools first by cosine similarites
between Tool2Vec embeddings and query embed-
dings. We observe that ToolRefiner trained with
Tool2Vec embeddings outperforms ToolRefiner
trained with tool description embeddings across
most retrieval settings. Our results are shown in
Table 3.

A.1.2 Analysis on the Impact of the Number
of Candidate Tools

In this set of experiments, we explore the impact
of the number of candidate tools on the overall re-
trieval performance of ToolRefiner. Specifically,
for each query, we retrieve the top-/V tools either
from the output of MLC or from cosine-similarity-
based retrieval between the user query embedding
and the Tool2Vec. Then, we fine-tune the pre-
trained DeBERTa-v3 xsmall model with these N
tools. We vary the value of IV across 8, 16, 32,
64, and 128 and evaluate performance on the Tool-
bench dataset.

In Table 4, one key observation is the ini-
tial improvement in performance as N increases.
This trend is consistent across all datasets and re-
trieval methods, but the performance improvement
plateaus after a certain N value, with peak per-
formance achieved at N=32 or 64 configurations.

12

Specifically, for Toolbench I1 and I2, the best-
performing NN value is 64 for both retrieval meth-
ods, while for Toolbench I3, the best-performing N
value is 64 for the Tool2Vec-based retriever and 32
for the MLC-based retriever. This is because the re-
trieval performance improves as N increases. How-
ever, the performance of the ToolRefiner method
decreases for large N across all datasets and re-
trieval methods, indicating that including too many
candidate tools can overwhelm the language model
and lead to confusion and suboptimal performance.

Moreover, comparing the performance of differ-
ent retrieval methods, the MLC-based retriever con-
sistently outperforms the Tool2Vec-based retriever
for Toolbench I1 and 12 datasets across most of
the top-NN settings, while the Tool2Vec-based re-
triever outperforms the MLC-based retriever for
the Toolbench I3 dataset. This suggests that the
choice of retrieval method can significantly impact
the performance of the ToolRefiner method, and
the optimal NV value may vary depending on the
dataset and retrieval method used.

From these observations, we can conclude that
it is critical to carefully select the appropriate N
value when training a tool retriever. While lower
N values enable faster inference, they may result
in worse performance when dealing with a large
number of tools. Conversely, including too many
candidate tools can confuse ToolRefiner, leading
to worse performance than the performance with
smaller N. This indicates the importance of bal-
ancing the trade-off between performance and effi-
ciency when designing a tool retriever for a given
dataset.

A.2 ToolLens

We benchmark our methods against two baselines
similar to Section 5. The results from Table 5
demonstrate that our proposed methods substan-
tially improve over the description-based retrieval
baseline on the ToolLens benchmark. Specifically,
the description-based retriever scores an N@3 of
83.68 and R@3 of 83.45, which are substantially
lower compared to both COLT and our approaches.
By contrast, COLT achieves stronger performance
for lower-rank retrieval (e.g., 93.65 in R@3) but
lacks data for R@7.

Among our methods, ToolRefiner + MLC stands
out with the highest R@3 and R@5 scores (95.84
and 98.73, respectively) and also delivers a strong
result at R@7 (98.58). ToolRefiner + Tool2Vec
performs comparably, surpassing COLT in most

Table 3: Performance comparison of ToolRefiner with Tool2Vec embeddings and tool description embeddings on
ToolBench I3. The first row represents ToolRefiner fine-tuned with Tool2Vec tool embeddings using Tool2Vec-based
retrieval, the second row represents ToolRefiner fine-tuned with description embeddings using Tool2Vec-based
retrieval, and the third row represents ToolRefiner fine-tuned with description embeddings using description based
retrieval. For each row, we fine-tune the E5-base embedding model specifically for each use case to compute the

embeddings.

Embedding for ToolRefiner \ Retrieval Method \ Recall @3 Recall @5 Recall @ 7

Tool2Vec
Tool Description
Tool Description

Tool2Vec
Tool2Vec
Tool Description

80.58 87.80 89.70
71.55 82.27 87.28
66.00 74.60 76.55

Table 4: Comparison of ToolRefiner in Section. 4.3 performance on the Toolbench dataset across multiple top-N
candidate tool configurations. We use an MLC-based retriever and a Tool2Vec-based retriever to retrieve a set of N
candidate tools where N varies from 8 to 128. Our evaluation metric is Recall @ K, where K are values 3, 5, and 7.
The best-performing top-/N configuration for each retriever method is highlighted in boldface.

Method ‘ Top-N ‘ Toolbench 11 Toolbench 12 Toolbench 13
R@3 R@5 R@7 | R@3 R@5 R@7 | R@3 R@5 R@7
8 91.18 95.17 96.33 | 81.96 87.54 88.21 | 70.53 8290 86.63
16 91.59 9642 97.08 | 81.96 87.54 8821 | 78.13 8643 8795
MLC Retriever 32 91.43 96.25 97.08 | 81.67 87.33 88.58 | 79.83 86.81 88.98
64 91.84 96.83 97.01 | 82.89 87.92 88.96 | 76.75 85.88 86.80
128 90.67 96.25 96.67 | 80.17 87.17 89.12 | 77.08 85.72 87.98
8 87.01 93.79 9500 | 75.25 81.25 82.75 | 74.00 87.38 89.22
16 89.76 9479 9496 | 77.96 83.21 84.46 | 74.00 87.38 89.22
Tool2Vec Retriever 32 90.05 9446 95.25 | 76.88 83.17 84.33 | 7950 87.77 89.53
64 89.63 9533 96.17 | 76.83 84.42 86.38 | 80.58 87.80 89.70
128 87.84 9487 9542 | 7717 8242 83.87 | 78.17 87.55 89.30

Table 5: Comparison of tool retrieval results on ToolLens. We report NDCG as well as Recall.

Method ‘ ToolLens

| Ne3 R@3 N@5 R@5 N@7 R@7
COLT 9453 93.65 9691 9775 N/A N/A
Description-Based Retriever | 83.68 83.45 91.12 91.92 93.83 94.72
ToolRefiner + Tool2Vec 93.88 93.61 96.43 9720 96.79 97.73
ToolRefiner + MLC 9597 9584 98.14 98.73 97.74 98.58

Table 6: Comparison of tool retrieval (R@3) and success
rate (SR) for a description-based baseline versus our
method.

Method | R@3 SR
Description-based Retrievers | 0.941 0.759
MLC +ToolRefiner 0.972 0.827

metrics, but slightly trails behind the ToolRefiner
+ MLC variant. This consistent outperformance
illustrates the advantages of multi-stage retrieval,
where refined embeddings and classification-driven
reranking work in tandem to improve overall ac-
curacy. By leveraging usage-based embeddings
and iterative refinement, our systems can more pre-
cisely capture the query-tool relationships, thereby
boosting recall across multiple ranking thresholds.

13

A.3 TinyAgent Dataset

We conduct an end-to-end evaluation using the
benchmark introduced in (Erdogan et al., 2024).
This benchmark assesses tool learning performance
for controlling macOS devices using Mac applica-
tions as tools. This benchmark evaluates not only
tool retrieval accuracy but also the correctness of
generated task graphs to measure end-to-end per-
formance.

In the Table 6, we compare the success rate (i.e.
correct execution graph construction) and tool re-
trieval performance of the baseline (description-
based retrieval) against our MLC-based method.
Our approach improves tool retrieval performance
(R@3) by 3%, which directly translates to a signif-
icant 7% increase in the success rate. In summary,
enhanced tool retrieval performance is critical in
overall tool learning performance.

A.4 Analysis on Our Methods

In this section, we conduct a series of analyses to
investigate why the ToolRefiner + Tool2Vec per-
forms better than Tool2Vec across all ToolBank
datasets. Particularly, we aim to pinpoint the spe-
cific tools that both methods struggle with, quantify
the mistakes, and asses how query complexity af-
fects tool retrieval performance. Our results show
that ToolRefiner + Tool2Vec is better able to han-
dle complex queries and maintain consistent perfor-
mance across a diverse set of tools, while Tool2Vec
struggles with simpler queries and makes errors on
certain tools more frequently.

In our initial analysis, we aimed to identify the
tools that ToolRefiner + Tool2Vec and Tool2Vec
most frequently failed to retrieve. Specifically, the
model fails to retrieve a tool when the tool is one of
the ground truth tools but isn’t retrieved. We then
divided the number of these failures by the total
occurrences of each tool in the dataset to calculate
the percentage failure rate for each tool. For all
experiments, we retrieved the top-5 tools, which
is the maximum number of tools any data point in
ToolBank needs to retrieve.

In Table 7, we show the distribution statistics of
the percentage failure rates of all tools in ToolBank
subsets. We observe that ToolRefiner + Tool2Vec
demonstrates a more uniform failure rate distribu-
tion, with a relatively low mean and standard devi-
ation. It rarely makes more than five errors per tool
and averages 2.07 mistakes across all datasets. This
suggests that ToolRefiner + Tool2Vec has a robust
understanding of a broad range of tools, managing
to maintain relatively low failure rates consistently.

On the other hand, Tool2Vec exhibits signifi-
cant variability in its performance. Certain tools
are prone to high failure rates, with some reach-
ing up to 50 mistakes, while others have no errors
at all. From Table 7, we observe that Tool2Vec’s
failure rate distribution is highly skewed, mean-
ing that there are some tools that are responsi-
ble for a majority of Tool2Vec’s errors. Further-
more, on average, Tool2Vec makes 7.86 mistakes
per tool, indicating a less consistent performance
across the board. This variability might be due to
Tool2Vec’s handling of tool embeddings, where it
fails to adequately differentiate between tools with
similar functionalities. In contrast, ToolRefiner +
Tool2Vec effectively separates embeddings of tools
with overlapping or similar use cases, which can be
closely clustered in the Tool2Vec space. By diver-

14

Table 7: Comparison of the distribution of percentage
failure rates of ToolRefiner + Tool2Vec and Tool2Vec
across all tools in ToolBank. We calculate the percent-
age failure rate for a tool as the number of times the
method fails to retrieve the tool divided by the number
of times it was used in the entire dataset.

| ToolRefiner + Tool2Vec | Tool2Vec |

Data

| Mean | Std. | Mean | Std. |
BankNumpy 3.55 6.54 9.04 37.88
BankPandas 2.97 6.24 12.06 26.16
BankAWS 1.42 1.61 7.01 15.13

sifying these embeddings, ToolRefiner + Tool2Vec
reduces the likelihood of confusion and errors, par-
ticularly in complex query scenarios.

In our further analysis in Figure 6, we focus
on the length of the queries where the methods
fail and discover that ToolRefiner + Tool2Vec gen-
erally makes errors on longer queries, averaging
nearly 20 tokens more than those where Tool2Vec
failed. This finding implies that while ToolRefiner
+ Tool2Vec is equipped to handle more complex
and lengthy queries, Tool2Vec tends to struggle
with simpler, shorter queries. The ability of ToolRe-
finer + Tool2Vec to process longer and potentially
more complex queries underscores its enhanced
capability to manage intricate or verbose user re-
quests effectively.

The disparities in percentage failure rate distri-
bution and the correlation with query length sug-
gest that ToolRefiner + Tool2Vec’s superior per-
formance can primarily be attributed to its refined
handling of challenging queries and its robustness
across a diverse set of tools.

A.5 Various Embedding Models

The experiments performed in section 5 rely on ES5-
base as an embedding model. To demonstrate the
effectiveness of Tool2Vec compared to description-
based retrieval, we show the results with other
embedding models in Table 8. Tool2Vec con-
sistently outperforms description-based retrieval
across model families and sizes.

A.6 Resource Consumption

Table 9 reports the retrieval latency and memory
usage of four methods on an NVIDIA A6000 with
ToolBench 13: Tool2Vec, MLC, ToolRefiner, and
a description-based reranker. We observe that
Tool2Vec, MLC, and ToolRefiner are significantly
more resource efficient than the description-based

Table 8: Comparison of Tool2Vec retrieval and description-based retrieval across various embedding models on
ToolBench’s I3 split. Models are evaluated without any fine-tuning. Tool2Vec consistently outperforms description-
based retrieval on both open source and closed embedding models.

Method

| R@3 R@5 Re@7

R@10 R@]2

E5-small + Tool2Vec
E5-small + Descriptions

63.12 7595 8227 8587 86.73
20.62 3045 37.27

4242 46.87

ES5-base + Tool2Vec
ES5-base + Descriptions

6248 76.10 80.17 84.80 86.45
3212 38.97

4392 50.63 54.80

ES5-large + Tool2Vec
ES5-large + Descriptions

60.40
3328 42,12 4845 5648 60.25

7120 7792 84.18 85.93

Mxbai-embed-large + Tool2Vec
Mxbai-embed-large + Descriptions

59.23 67.97
40.03 4825 53.58 60.73 64.93

76.30 80.78 83.68

Text-embedding-3-small + Tool2Vec
Text-embedding-3-small + Descriptions

63.15 7333 80.78 84.13 85.70
41.12 5447 57.65 6567 68.78

Average Token Length of Failed Queries

Lo

u o
o O

S
o

Number of tokens
N w
o o

=
o

AWS

Tool2Vec]

NumPy Pandas

ToolRefiner + Tool2Vec

Figure 6: Illustration of average token length of failed queries
for ToolRefiner + Tool2Vec combined with Tool2Vec and
Tool2Vec on ToolBank is analyzed. We visualize the mean
as a bar plot and the standard deviation as an error bar within
each bar. We observe that Tool2Vec struggles with shorter and
simpler queries, while ToolRefiner + Tool2Vec tends to make
mistakes on longer and more complex queries.

reranker. For the second retrieval stage, ToolRe-
finer takes 21.64 ms and 0.88 GB when ranking
64 candidate tools, while the description-based
reranker approach requires 337.64 ms and 6.17 GB
for the same set of 64 candidates. This is because
ToolRefiner is reranking tool embeddings, while
the description-based reranker is reranking full tool
descriptions.

Method \ Avg Latency (ms) Memory (GB)
Tool2Vec 0.21 0.48
MLC 36.45 0.70
ToolRefiner (64 tools) 21.64 0.88
Description-Reranker (bsz 64) 337.64 6.17

Table 9: Retrieval time and memory usage on Tool-
Bench I3 with an NVIDIA A6000. Our methods con-
sume significantly less compute and memory compared
to a baseline of directly ranking tool descriptions with
respect to their relevance to a search query.

B Details on Dataset Generation

B.1 Tool Selection Criteria

For tool collection, we crawl each library’s offi-
cial API reference and retrieve detailed informa-
tion about function descriptions, arguments, and
example code snippets. For NumPy, we exclude
the numpy.ctypeslib, numpy.dtypes, numpy.emath,
numpy.rec, and numpy.version modules since they
don’t provide rich functions or are outdated. For
Pandas, we only use the public sub-packages and
exclude the pandas.core, pandas.compat, and pan-
das.util modules. For Boto3, we include functions
for five popular AWS services: EC2, RDS, IAM,
S3, and SNS.

B.2 Parameters and LLMs to Generate
Dataset

For dataset generation, we used 7' = 10 and
M = 2 — 5, which means that at each iteration,
we sample 10 tools from the tool pool and let the
language model choose 2-5 tools to generate in-
structions. For both the Instruction Generation
and Instruction Polish stages, we use Llama-3-70B-
Instruct (AI@Meta, 2024).

B.3 Dataset Statistics

We collect 520 NumPy tools, 1600 Pandas tools,
and 1000 Boto3 tools and curate 20,000 NumPy
queries, 70,000 Pandas queries, and 73,000 AWS
queries. There are 19530 tool combinations in
our NumPy dataset, 69550 in Pandas dataset, and
70816 in AWS dataset. This means that almost all
of our data represents distinct usage scenarios and
queries.

B.4 Qualitative Analysis

B.4.1 Comparing Polished and Unpolished
Queries

We provide a qualitative analysis of ToolBank and
investigate the effect of the Query Polish step. We
randomly sample three queries from ToolBank and
present them before and after the polishing step
in Figure 7. The left column in Figure 7 shows
the queries before applying the Query Polish step,
while the right column shows the queries after pol-
ishing. Before applying Query Polish, the queries
exhibit a rigid and instructional style, similar to
the Toolbench examples in Table 2. However, after
applying Query Polish, the queries become more
natural and user-friendly, better reflecting how real
human users would interact with LLMs.

B.4.2 Qualitative Analysis on ToolBank

In this section, we compare BankNumpy, BankPan-
das, and BankAWS, which are subsets of ToolBank,
and provide insights into why the tool retrieval
performance on BankPandas is worse than on the
other subsets. This performance degradation can
largely be attributed to the similarity between op-
erations in BankPandas. Specifically, BankPandas
contains various data types like time series, peri-
ods, intervals, and indexes. For these data types,
there are some common set of operations that apply
to all of them such as .equals, .argmin, or .all.
This results in instructions that are very close to
each other in meaning but use different data types.
Hence, the model gets confused about which data
type to operate on. For example, the first part of
“Load a delimited data file with specific columns
and data types, counting the total number of en-
tries, for the next fiscal quarter starting from the
first business day of the year based on a given times-
tamp.” query requires a call to pandas.read_csv
tool which returns a pandas.DataFrame object
and a subsequent call to pandas.DataFrame.size
tool to count the total number of entries. How-
ever, ToolRefiner + Tool2Vec model makes the
mistake of calling pandas.Series.size after call-
ing pandas.read_csv. This doesn’t become
an issue with BankNumpy and BankAWS since
BankNumpy tools operate almost entirely on the
array type and BankAWS contains only the 5 most
popular AWS services, creating a clear distinction
between tools.

16

B.5 Prompt for Data Generation

B.5.1 Query Generation

The following prompt is used to generate user query
for ToolBank.
B.5.2 Query Polish

The following prompt is used to polish user query
for ToolBank.

Before Query Polish After Query Polish

Determine the upper triangular elements of a square matrix, compute the | Compute the average of the non-zero upper triangular elements of a square
average of these elements excluding zero values, and store the result in a | matrix and store the result in a compressed archive file.
compressed archive file.

Transform a daily weather dataset into a uniform array for analysis, ensuring | Calculate the 25th percentile of temperature readings in a uniform daily
correct time zone information, and then calculate the 25th percentile of | weather dataset, ignoring non-numeric entries and ensuring correct time
temperature readings over the entire dataset while ignoring non-numeric | zone information.

entries.

Create a new IPAM scope, grant permission to attach a network interface to | Create a new IPAM scope for attaching a network interface to an instance
an instance, and modify the instance's placement attributes to use the new | with modified placement attributes.
IPAM scope.

Figure 7: Qualitative analysis comparing the queries before and after the Query Polish stage. We randomly sample an example
from each of BankNumpy, BankPandas, and BankAWS datasets.

You are an expert in utilizing a library of functions and generating diverse scenarios where a
set of selected functions are applied to solve real-world problems. You will be provided with
a set of functions and their descriptions, and will be tasked with selecting a subset of these
functions to craft detailed scenarios. You will generate clear and detailed user instructions,
list the names of the relevant functions, and explain how these functions can be applied to
complete the task. These tasks should demonstrate a wide range of functionalities and real-life
applications to ensure variety and utility.

Guidelines:

- The instructions must be clear and comprehensive, allowing users to understand how to apply the
functions without ambiguity. However, the instructions shouldn’t be robotic and shouldn’t sound
like ’step-by-step’ instructions. For example, instead of writing “Calculate the non-negative
square root of an array element-wise, then round the resulting array to the nearest even value,
and return the indices that would sort the array along a specified axis.” which breaks down each
step mechanically, you MUST instead write a more natural and fluid instruction like “Sort the
array along a specified axis after calculating the non-negative square root of each element and
rounding the result to the nearest even value.

- You MUST select and sequence the functions in a way that demonstrates their interdependency.
Ideally, a function’s output should be the input to another function (or multiple functions),
creating a chain of operations that solve the task at hand. In other words, the functions you
select must not be selected randomly but instead be used to solve coherent multi-step problems.
- The explanations should logically connect the functions to the tasks, demonstrating the workflow
clearly.

- Your response should be returned as a single JSON object, representing a unique user instruction.
Diversity in function use and application context is crucial; avoid repetition of similar tasks
or functional applications to ensure a broad coverage of the capabilities of the functions.
Here is an example output of a list of JSON objects representing very distinct and detailed
tasks:

examples

You MUST only return a single JSON object - do not add any extra text before and after the json
object. The instructions that you generate MUST be very diverse and distinct from each other and
MUST be as different as possible from the examples above.

library — speci fic — instructions

Figure 8: Query Generation Prompt

17

You are an expert at refining user instructions to make them more coherent and less robotic. You
will be given a user instruction and will be tasked to refine the user instruction if it:

- Sounds too robotic or step-by-step like saying ’Do this, do that, and then do this’. In other
words, the instructions shouldn’t break down each step mechanically but be more fluid. For
example, instead of writing "Analyze the lyrics of the song ’XYZ’, generate a playlist based on
the emotions and themes found, and create a Spotify playlist with the recommended songs." you
would write "Create a Spotify playlist based on the emotions and themes found in the lyrics of
the song ’XYZ’.

- Has conditional statements like ’if this, then do that’ or ’when this happens, do that’. It
should be more direct and non-conditional.
If none of the above applies to an instruction, you should mark it as good, and provide a

reasoning for why it is good. Here example outputs of a JSON object representing a refined user
instruction:

incontextexamples

Figure 9: Query Polish Prompt

18

	Introduction
	Related Work
	Function Calling and Tool Use
	Tool Retrieval

	Dataset Generation
	Approaches
	Tool2Vec: Usage-Driven Embedding Generation
	Tool Retrieval as a Multi-Label Classification Problem
	ToolRefiner

	Experiments
	ToolBench
	Experimental Details
	Result Analysis

	ToolBank
	Experimental Details
	Result Analysis

	Additional Results

	Conclusions
	Limitations
	Additional Results
	Ablation Studies
	Tool2Vec vs. Tool Description Embeddings
	Analysis on the Impact of the Number of Candidate Tools

	ToolLens
	TinyAgent Dataset
	Analysis on Our Methods
	Various Embedding Models
	Resource Consumption

	Details on Dataset Generation
	Tool Selection Criteria
	Parameters and LLMs to Generate Dataset
	Dataset Statistics
	Qualitative Analysis
	Comparing Polished and Unpolished Queries
	Qualitative Analysis on ToolBank

	Prompt for Data Generation
	Query Generation
	Query Polish

