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Abstract001

Recent advancements in function calling and002
tool use have significantly enhanced the ca-003
pabilities of large language models (LLMs)004
by enabling them to interact with external in-005
formation sources and execute complex tasks.006
However, the limited context window of LLMs007
presents challenges when a large number of008
tools are available, necessitating efficient meth-009
ods to manage prompt length and maintain010
accuracy. Existing approaches, such as fine-011
tuning LLMs or leveraging their reasoning ca-012
pabilities, either require frequent retraining or013
incur significant latency overhead. A more effi-014
cient solution involves training smaller mod-015
els to retrieve the most relevant tools for a016
given query, although this requires high-quality,017
domain-specific data. To address those chal-018
lenges, we present a novel framework for gen-019
erating synthetic data for tool retrieval applica-020
tions and an efficient data-driven tool retrieval021
strategy using small encoder models. Empow-022
ered by LLMs, we create ToolBank, a new023
tool retrieval dataset that reflects real human024
user usages. For tool retrieval methodologies,025
we propose novel approaches: (1) Tool2Vec:026
usage-driven tool embedding generation for027
tool retrieval, (2) ToolRefiner: a staged retrieval028
method that iteratively improves the quality of029
retrieved tools, and (3) MLC: framing tool re-030
trieval as a multi-label classification problem.031
With these new methods, we achieve improve-032
ments of up to 27.28 in Recall@K on the Tool-033
Bench dataset and 30.5 in Recall@K on Tool-034
Bank.035

1 Introduction036

Recently, function calling and tool use has emerged037

as a powerful paradigm for using large language038

models (LLMs) (Patil et al., 2023; Schick et al.,039

2024; OpenAI, 2023; Cai et al., 2023). Rather than040

relying solely on the model’s parametric knowl-041

edge, function calling and tool use enable the042

model to interact with the world (Erdogan et al.,043

2024; Chen and Li, 2024). This approach allows 044

the model to achieve specific tasks, such as ac- 045

cessing information beyond the LLM’s knowledge 046

cut-off date, solving complex math problems, and 047

executing complex planning (Trinh et al., 2024; Sil- 048

ver et al., 2024; Karpas et al., 2022; Chen et al., 049

2022). 050

However, since function calling requires pass- 051

ing in the tool’s description and signature into the 052

model’s context window, it is often infeasible to put 053

information about potentially thousands of func- 054

tions due to context window limitations. Addition- 055

ally, even when using models with longer context 056

windows, long context inference leads to system- 057

level and accuracy challenges, necessitating the 058

need for smaller prompts (Kim et al., 2023; Jha 059

et al., 2024; Erdogan et al., 2024). Therefore, se- 060

lectively retrieving tools to present to the model 061

can greatly reduce prompt lengths while preserving 062

accuracy. 063

To address the issue of the limited context win- 064

dow in LLMs when the number of available tools 065

exceeds the model’s capacity, several methods have 066

been proposed. One approach involves fine-tuning 067

LLMs with new tokens that specify tools (Hao 068

et al., 2024). However, due to the computational 069

cost of fine-tuning LLMs, this may not be prac- 070

tical when new tools are frequently introduced. 071

Another approach leverages the reasoning capa- 072

bilities of LLMs, allowing the models to select 073

the appropriate set of tools from a large pool (Du 074

et al., 2024; Shinn et al., 2024; Wang et al., 2023; 075

Yuan et al., 2024). Despite the LLMs’ ability to 076

learn and choose tools effectively, this method in- 077

curs significant latency overhead, making it less 078

practical in various use cases where real-time re- 079

sponses are critical. Therefore, training a separate 080

smaller model to retrieve tools that are most rel- 081

evant to the given query has emerged as an effi- 082

cient yet powerful solution (Qin et al., 2024; Qu 083

et al., 2024; Anantha et al., 2023; Zheng et al., 084
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2024b). This method is the most efficient way to085

address the problem of prompt length exceeding the086

LLMs’ context window. In addition to circumvent-087

ing lengthy prompts, efficient tool retrieval systems088

can be developed by training small models spe-089

cialized for specific domains (Erdogan et al., 2024;090

Chen and Li, 2024). The downside of these systems091

is the need of domain-specific data to effectively092

train retrieval models.093

However, previous work (Erdogan et al., 2024)094

has demonstrated that high-quality tool retrieval095

data can be generated with LLMs (Lee et al., 2024;096

Chen et al., 2024; Wei et al., 2024), and users can097

train small and efficient tool retrieval models with098

the generated data for tool-augmented LLMs. By099

doing so, it not only optimizes the use of the con-100

text window but also enhances the performance101

and accuracy of LLMs through domain-specific102

expertise.103

Based on this finding, we introduce a frame-104

work for creating large scale synthetic data for105

tool retrieval applications, as well as an efficient106

data-driven tool retrieval strategy using small en-107

coder models. For dataset generation, we utilize108

the strong synthetic data generation capabilities of109

large language models (OpenAI, 2024; AI@Meta,110

2024; Jiang et al., 2024a) to create tool retrieval111

dataset, ToolBank. On the tool retrieval side, we112

introduce novel approaches: (1) usage-driven tool113

embedding generation, Tool2Vec, (2) refining and114

improving the tool retrieval result, ToolRefiner. We115

show that those methods perform better than prior116

work relying on computing similarity between a117

user query and tool descriptions (Qin et al., 2024;118

Qu et al., 2024; Zheng et al., 2024b; Yuan et al.,119

2024).120

Additionally, we frame tool retrieval as a multi-121

label classification problem and train multiple dif-122

ferent classification models, giving way to an effi-123

cient staged retrieval method.124

In more detail, we make the following contribu-125

tions:126

• We introduce a framework for creating127

domain-specific tool retrieval datasets and in-128

stantiate three new datasets for tool retrieval129

which, when judged for quality by GPT-4-130

turbo, scores a 60% win rate compared to131

ToolBench’s queries (section 3).132

• We propose usage-based tool retrieval, as op-133

posed to description-based tool retrieval. Ad-134

ditionally, we hierarchically use classification135

models to iteratively improve the quality of 136

retrieved tools (section 4). 137

• On the hardest ToolBench split, our method 138

achieves over 25% higher Recall compared 139

to ToolBench’s retriever. Additionally, on our 140

domain-specific datasets, our methods outper- 141

form description-based retrieval by over 30% 142

(section 5). 143

2 Related Work 144

2.1 Function Calling and Tool Use 145

Function calling allows LLMs to interact with the 146

world and agentic environments by filling in param- 147

eters to API functions and other tools. Typically, 148

function descriptions and signatures are provided 149

in the model’s context window. For accurate func- 150

tion calling, models must be able to choose the 151

proper functions for the task and be able to fill in 152

the correct parameters to those functions. Large 153

models such as GPT-4 have demonstrated impres- 154

sive function calling capabilities (Kim et al.). How- 155

ever, smaller models (Patil et al., 2023; Srinivasan 156

et al., 2023), such as 7B and 13B models, have 157

also been developed specifically for function call- 158

ing tasks. The ToolBench (Qin et al., 2024) dataset 159

is a popular function calling dataset consisting of 160

real-world APIs that was used to fine-tune a 7B 161

LLaMA model for tool use. 162

2.2 Tool Retrieval 163

As discussed in subsection 2.1, function descrip- 164

tions and signatures are provided in the model’s 165

context window for applications relying on func- 166

tion calling. However, real-world applications of- 167

ten have hundreds or thousands of tools (Qin et al., 168

2024). Providing information about all tools to the 169

model may not be possible due to context length 170

limits. Furthermore, even when using models with 171

longer context windows, providing all the tools in 172

the prompt leads to significant compute and mem- 173

ory overheads (Kim et al., 2023). To address this, 174

various tool retrieval methods have been proposed 175

to select and provide only the relevant tools for 176

incoming user queries instead of providing them 177

all. 178

A notable approach to enhance tool retrieval per- 179

formance is leveraging another LLM. AnyTool (Du 180

et al., 2024) proposes to use GPT-4 for API re- 181

trieval and to further enhance retrieval performance 182

through an iterative self-reflection method. Simi- 183

larly, (Xu et al., 2024) incorporates a refiner LLM 184
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that iteratively refines user queries to boost retrieval185

performance. However, using LLMs for tool re-186

trieval, along with iterative invocation, results in187

significant latency overhead of up to several sec-188

onds (Xu et al., 2024), limiting their use in various189

real-time applications.190

Dense retrieval methods offer an efficient alter-191

native, where each tool’s description is embed-192

ded using an embedding model, and tools with193

the highest similarity to the embedding of the in-194

coming user query are retrieved (Qin et al., 2024).195

ProTIP (Anantha et al., 2023) adapts a dense196

retrieval model for iterative multi-tool selection.197

ToolkenGPT (Hao et al., 2024) proposes to learn198

an embedding of each tool that can be immediately199

used as an input token to LLMs. COLT (Qu et al.,200

2024) improves tool retrieval performance by fine-201

tuning the pre-trained encoder model through four202

distinct stages: semantic learning, collaborative203

learning, list-wise learning, and contrastive learn-204

ing.205

Tool2Vec provides a different view of tool re-206

trieval, which is tool embedding generated based207

on usage. It uses the user query embedding in-208

stead of tool description embedding to generate209

tool embeddings for retrieval. A notable work is210

EasyTool (Yuan et al., 2024) which enhances tool211

leverages LLMs to rewrite tool descriptions, reduc-212

ing inconsistency, redundancy, and incompleteness,213

ultimately improving retrieval performance. While214

EasyTool also proposes LLMs generate usage ex-215

amples, these serve to provide in-context examples216

rather than directly improving the performance of217

the retriever models as in our work.218

3 Dataset Generation219

We introduce a modular framework for generating220

custom datasets tailored for tool retrieval, with the221

goals of (1) demonstrating that users can create222

sufficiently large domain-specific datasets powered223

by LLMs (Lee et al., 2024; Chen et al., 2024) for224

small tool retrieval models, and (2) addressing the225

limitations inherent in existing benchmarks (Qin226

et al., 2024; Chen et al., 2023; Xu et al., 2024;227

Du et al., 2024), which often lack coherent tool228

integration and query naturalness.229

Particularly for the second aspect, current bench-230

marks frequently pair tools without considering231

their natural co-occurrence, leading to impractical232

and inconsistent combinations (Qin et al., 2024;233

Huang et al., 2024; Qu et al., 2024). For exam-234

0 20 40 60 80 100
Percentage

Polished vs.
Unpolished

FakeData vs.
Toolbench

75 2 23

60 23 17

Win Rate of Polished FakeData Queries vs. Unpolished
FakeData and Toolbench Queries

Figure 1: Comparison of naturalness, fluency, and coherence
of queries. We first compare polished and unpolished queries
within ToolBank, with blue/yellow/red bars indicating the
number of times polished queries won, tied, or lost. Then,
we compare queries from ToolBank to those from Toolbench,
using the same color scheme to represent the outcomes. We
randomly sample 100 queries from each dataset and ask GPT-
4-turbo to judge which query is more natural, fluent, and
coherent (Zheng et al., 2024a).

ple, a query from ToolBench— “Search for the 235

companies that have been modified recently and 236

fetch the lyrics for the song ‘Bad’ by Michael Jack- 237

son” pairs the 360 Business Tool tool with the 238

Chart Lyrics tool, reflecting a clear mismatch 239

in tool relevance. This is because ToolBench ran- 240

domly samples multiple tools from the tool pool, 241

without much consideration of their co-ocurrance. 242

Moreover, due to the pairing of irrelevant tools, 243

these benchmarks tend to be overly structured and 244

verbose, resembling step-by-step queries rather 245

than the more fluid, natural language typically used 246

in real-world scenarios. For instance, a query such 247

as “Please provide me with details of breweries 248

that are dog-friendly and have a patio, and include 249

race details for race ID 207660, covering horses, 250

jockeys, trainers, and their positions,” showcases 251

an unnatural pairing of unrelated tools, driven by a 252

rigid, instructional style. 253

To this end, we introduce a domain-specific tool 254

retrieval dataset generation framework and accord- 255

ingly a coherent and natural tool retrieval dataset 256

ToolBank that addresses limitations of existing 257

benchmarks. The dataset generation framework 258

aims to create the tool retrieval dataset that respects 259

the natural co-occurrence of tools while ensuring 260

more natural, real-world query queries, which con- 261

sists of the following two stages: 262

• Query Generation: In this stage, we first sample 263

T tools randomly from the entire tool set. In con- 264

trast to previous works where LLMs are prompted 265

to use all T tools to generate an query (Qin et al., 266

2024; Chen et al., 2023; Xu et al., 2024; Du 267

et al., 2024), we allow them to select M tools, 268

where M < T , that are coherent and contextu- 269

ally aligned. This approach promotes the natural 270

co-occurrence of tools. We used T = 10 and 271

M ∈ [2, 5] throughout our generation process, 272

where we found sufficiently large T critical for 273

LLMs to select tools that align contextually. Ad- 274
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ToolBench Queries

I'm planning a surprise party for my best friend and I need some unique
translations for invitation cards. Can you search for translations from English
to Italian for the phrase 'You're invited!' using the search translations API?
Also, calculate the love percentage between John and Alice

ToolBank Queries

Reorganize a 3D array of sensor readings into shape (time, sensor, feature)
to identify the indices of the maximum reading values across all sensors for
each time step.

I want to flip a coin to make a decision. Can you provide me with the
outcome of a coin flip, heads or tails? Additionally, I'm curious about the
current exchange rate between two specific currencies, which I will provide
later

Transform customer purchase history data from a broad to a deep format to
identify trends in spending behaviors through percentile values of total
purchase amounts.

Figure 2: Qualitative analysis comparing the queries in Toolbench and ToolBank. We randomly sample 2 examples from each
dataset. Queries in Toolbench often follow an artificial pattern like "Do this, do this, and do this," resulting from random
sampling of multiple tools from RapidAPI Hub. In contrast, ToolBank queries are more natural, resembling real human queries
to LLMs, with coherent and related tools better aligned to user needs.

ditionally, we provided 5 randomly sampled in-275

context examples to enhance generation quality276

and diversity.277

• Query Polish: Despite our query generation pro-278

cess improving tool co-occurrence, LLMs often279

produce step-by-step queries that seem unnatural.280

To address this, we introduce an additional step to281

polish these initial, often robotic queries into flu-282

ent and concise English that more closely mirrors283

user queries in natural settings.284

We provide a qualitative analysis comparing285

ToolBank against Toolbench (Qin et al., 2024), one286

of the most widely adopted benchmarks for tool287

retrieval in Figure 1 and 2. The study illustrated288

in Figure 1 directly evaluates the naturalness, flu-289

ency, and coherence of queries. We randomly sam-290

ple 100 queries from both the unpolished and pol-291

ished versions of ToolBank, as well as 100 queries292

from Toolbench. GPT-4-turbo is then tasked with293

judging which queries are superior based on the294

aforementioned criteria (Zheng et al., 2024a). The295

results demonstrate that query Polish consistently296

generates queries that outscore both the baseline297

unpolished queries and the queries from the Tool-298

bench dataset.299

We also provide examples randomly sampled300

from Toolbench and ToolBank in Figure 2. We ob-301

serve that the format of queries in Toolbench often302

follows the pattern “Do this, do this, and do this,"303

which results from randomly sampling multiple304

tools from RapidAPI Hub. This format is some-305

what artificial compared to how real human users306

give queries to LLMs for certain tasks. Addition-307

ally, some queries directly or indirectly mention the308

required APIs, simplifying tool retrieval. In con-309

trast, the queries sampled from ToolBank are more310

natural, closely resembling how real human users311

are likely to ask LLMs to perform tasks. Further-312

more, the tools required for each user query task313

in ToolBank are more coherent and related to each 314

other, ensuring better alignment with user needs. 315

For further detail, please refer to Appendix B. 316

4 Approaches 317

In this section, we propose two novel approaches to 318

the tool retrieval problem: (i) usage-driven embed- 319

ding generation (Section 4.1) and (ii) reformula- 320

tion of tool retrieval as a tool classification problem 321

(Section 4.2). Then, in Section 4.3, we demonstrate 322

how these two methodologies can be combined to 323

achieve high-performance tool retrieval. 324

4.1 Tool2Vec: Usage-Driven Embedding 325

Generation 326

Previous tool retrieval methods have relied on tool 327

descriptions to obtain embeddings of each tool for 328

dense retrieval (Anantha et al., 2023; Qin et al., 329

2024; Qu et al., 2024; Yuan et al., 2024). How- 330

ever, this approach may be suboptimal due to the 331

semantic disparity between tool descriptions and 332

user queries. Figure 3 (Left) illustrates how tool 333

descriptions and user queries can be disjoint in the 334

embedding space, making tool retrieval based on 335

embedding similarity challenging. This issue per- 336

sists even when the descriptions are augmented 337

with additional information, such as tool code, to 338

improve retrieval performance (Yuan et al., 2024; 339

Zheng et al., 2024b; Du et al., 2024). 340

To reduce the distributional gap between query 341

and tool embeddings for retrieval, we propose 342

Tool2Vec, the usage-driven tool embedding gen- 343

eration. Instead of using tool descriptions, we pro- 344

pose to use user queries to obtain tool embeddings. 345

In more detail, if we have multiple user queries 346

that use a specific tool, we use the average em- 347

beddings of those user queries as the Tool2Vec 348

embedding that represents the tool. For exam- 349

ple, in Figure 4, we have multiple user queries 350

that use the tool find_email_address, such as 351
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“What is Anna’s email address?" In this case, we352

use an embedding model (e.g., E5 (Wang et al.,353

2022)) to obtain the embedding for each user354

query, and the average of these embeddings is355

used as the Tool2Vec embedding for the tool356

find_email_address. Likewise, the Tool2Vec357

embedding for the tool find_weather can be ob-358

tained the same way using the associated user359

queries. As shown in the figure, since the Tool2Vec360

embeddings of these tools are derived from user361

queries, they are closer to the incoming user query362

in the embedding space compared to embeddings363

derived from tool descriptions.364

To further justify the benefits of Tool2Vec’s365

usage-driven tool embedding generation, we per-366

form an analysis as illustrated in Figure 3. The left367

figure is a t-SNE visualization of the embeddings368

of the user queries, Tool2Vec, and tool descriptions.369

It shows that the query embeddings form clusters,370

with Tool2Vec embeddings typically positioned at371

the centroids of these clusters. The tool description372

embeddings, however, are scattered outside of the373

distributions of instruction embeddings. Evidently,374

this is due to the semantic gap between the tool375

description and user query.376

The right figure is the box plots with interquartile377

ranges (IQR) of the cosine similarity between the378

instruction and tool embeddings. It shows two dis-379

tributions: ‘Positive’ for the similarity between in-380

struction embeddings and the embeddings of tools381

used to process the given instructions, and ‘Neg-382

ative’ for the similarity between instruction em-383

beddings and the embeddings of tools not used.384

For Tool2Vec embeddings, the positive and nega-385

tive distributions do not overlap, indicating a clear386

distinction. However, the cosine similarity distribu-387

tions for tool descriptions show significant overlap388

between positive and negative, implying that the389

traditional tool description embeddings are less ef-390

fective at distinguishing between relevant and irrel-391

evant tools compared to the Tool2Vec embeddings.392

4.2 Tool Retrieval as a Multi-Label393

Classification Problem394

In this section, we suggest a reformulation of the395

multi-tool retrieval problem as a multi-label classi-396

fication problem. Prior work on tool retrieval (Qin397

et al., 2024; Qu et al., 2024; Anantha et al., 2023;398

Zheng et al., 2024b) relies on metric learning tech-399

niques, including contrastive loss (Chopra et al.,400

2005) and triplet loss (Hoffer and Ailon, 2015),401

to produce useful embeddings from tool descrip-402
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Figure 3: (Left) t-SNE visualization of embeddings for queries,
Tool2Vec, and tool descriptions. (Right) Cosine similarity be-
tween instruction and tool embeddings. The figure displays
two distributions for both Tool2Vec embeddings and tool de-
scription embeddings: one labeled ’Positive,’ representing
cosine similarity between queries and the embeddings of tools
used for those instructions, and the other labeled ’Negative,’
representing cosine similarity between instructions and the
embeddings of tools not used for those queries.

tions. However, in settings where instructions and 403

associated tool labels are abundant, tool retrieval 404

can alternatively be formulated as a multi-label 405

classification problem. Furthermore, given the rise 406

of synthetic data generation methods (Chen et al., 407

2024; Lee et al., 2024; Wei et al., 2024; Cao et al., 408

2023), it has become possible to construct such 409

labeled high-quality pairs synthetically with the 410

competent LLMs (AI@Meta, 2024; OpenAI, 2024; 411

Jiang et al., 2023, 2024b), as demonstrated in Sec- 412

tion 3. 413

Given this classification viewpoint of tool selec- 414

tion, there are multiple applicable modeling strate- 415

gies. One straightforward approach involves train- 416

ing a model that takes the instruction as input and 417

outputs the classification logits for each tool, as 418

illustrated in the left figure of Fig.5. When a user 419

query is provided, such as “What is the weather 420

today?", we assign a label of 1 to all required tools 421

and a label of 0 to unused tools to training the multi- 422

label classifier. In this example, the find_weather 423

tool receives a label of 1, while other tools receive 424

a label of 0. To achieve this, we fine-tune the pre- 425

trained BERT-base model (He et al., 2023; Devlin 426

et al., 2019), which features a H × T classification 427

head operating on the output [CLS] token. Here, H 428

represents the dimension of the [CLS] token, and 429

T denotes the total number of tools in the dataset. 430

4.3 ToolRefiner 431

We introduce ToolRefiner, an approach that en- 432

hances tool retrieval performance on top of any 433

tool retrieval method by combining the methods 434

outlined in 4.1 and 4.2. As a high-level summary, 435

candidate tools are retrieved with efficient retrieval 436
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find_email_address(name: str)
returns the email address for the given name

find_weather(location: str, datetime: str)
returns the weather for the given location and datetime

What is Anna’s email address?

Find Bob’s email address.

Write an email to John about the morning meeting.

Examples:

What is the weather like tomorrow at Berkeley? 

Is it going to be rainy in Palo Alto this Sunday?

What will the weather be like in Boston on Aug 1st?

Examples:

Can you find David’s email address?

Query:

?

Tool2Vec 
Embeddings

Description 
Embeddings

Figure 4: Illustration of how user query embeddings are used as tool embeddings. The embeddings of example queries in the
left side of figure corresponds to the tool find_email_address Tool2Vec embedding. If multiple queries use the same tool,
their embeddings are averaged. Likewise, the Tool2Vec embedding of find_weather is the average of the embeddings from the
examples shown on the right side of the figure. The disjoint embedding distributions reflect the different semantics of the two
sets of examples. However, the description embeddings of those two tools are not close to each cluster because of the semantic
domain gap between query and tool description, which leads to the suboptimal retrieval performance.

Tool2Vec Embedding Layer

Tool 1 Tool 2 Tool N…

Tool2Vec 
Embeddings

(precomputed)User Query

What is the
weather today?

Tool Refiner

0.8 0.20.1

Tool2Vec 

…

…

Encoder Model
(e.g. DeBERTa)

Tool 1 Tool 2 Tool N…

N-way Classification Head

User Query

What is the weather today?

0.8 0.20.1

Figure 5: (Left) Illustration of MLC: The encoder model (e.g., DeBERTa) takes user query tokens as input and outputs the
probability of each tool. We fine-tune the pre-trained encoder model using binary cross-entropy loss for each tool. (Right)
Illustration of ToolRefiner: The fine-tuned encoder model takes the user query and Tool2Vec embeddings of retrieved tools as
inputs. We precompute the Tool2Vec embeddings and use them in conjunction with the user query. The pre-trained encoder
model is then fine-tuned with softmax loss.

methods such as cosine-similarity-based retrieval.437

ToolRefiner then classifies whether the retrieved438

tools are relevant or not.439

As illustrated in Fig. 5, we compute the440

Tool2Vec embedding of each tool by the method in-441

troduced in Section 4.1. The tool retriever retrieves442

top-N tools based on the user query. Then Tool-443

Refiner takes the user query and the Tool2Vec em-444

beddings of the retrieved N tools to classify which445

tools are needed to process the user query. We446

fine-tune the pre-trained DeBERTa-V3 (He et al.,447

2023) xsmall model to get ToolRefiner. Similar448

to MLC, we assign a label of 1 to all required449

tools and a label of 0 to unused tools. For in-450

stance, if the user query is “What is the weather451

today?", the find_weather tool receives a label452

of 1, while other tools receive a label of 0. We453

then calculate and minimize the softmax loss. We454

observe that softmax loss performs better than bi-455

nary cross-entropy loss. The same trends have456

been observed in other domains (Joulin et al., 2016;457

Mahajan et al., 2018). Notably, if the Tool2Vec em-458

bedding is pre-computed, ToolRefiner can be used459

on top of any other retrieval methods to improve 460

the performance. 461

This approach is analogous to passage rerank- 462

ing (Nogueira and Cho, 2019; Yilmaz et al., 2019), 463

which determines the ranking of retrieved docu- 464

ments based on their similarity to the query. Sim- 465

ilar to passage reranking, the Tool2Vec is trained 466

as a classification model. The key difference is 467

that while traditional passage rerankers evaluate 468

and order the similarities of retrieved documents 469

one by one in relation to the query, ToolRefiner 470

simultaneously reranks all retrieved tools. Further- 471

more, the reranker operates directly on Tool2Vec 472

embeddings. 473

5 Experiments 474

In this section, we describe experimental results 475

that validate the effectiveness of our proposed meth- 476

ods, Tool2Vec, MLC, and ToolRefiner on various 477

benchmarks including ToolBench (Qin et al., 2024) 478

and ToolBank. 479
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Table 1: Comparison of tool retrieval results on the ToolBench dataset. We compared our methods against two baselines: the
ToolBench retriever (Qin et al., 2024) and COLT (Qu et al., 2024). Evaluation metrics include Recall@K, where K values are 3,
5, and 7. In the table, R@K stands for Recall@K. The best-performing method is highlighted in boldface, while the second-best
performing method is underlined. We reproduce the ToolBench retriever results based on the original codebase. For the other
baseline method, COLT, we report the numbers available in the paper (Qu et al., 2024).

Method Toolbench I1 Toolbench I2 Toolbench I3
R@3 R@5 R@7 R@3 R@5 R@7 R@3 R@5 R@7

Baseline ToolBench Retriever 79.97 90.19 93.21 67.25 78.25 85.75 54.07 63.88 73.73
COLT - - - 75.72 85.03 - 76.63 85.50 -

Ours

Tool2Vec 85.88 93.29 94.42 72.79 79.67 82.75 75.23 84.90 86.60
MLC 91.80 96.00 96.67 80.67 85.63 87.46 81.35 86.27 88.27
ToolRefiner + Tool2Vec 89.63 95.33 96.17 76.83 84.42 86.38 80.58 87.80 89.70
ToolRefiner + MLC 91.84 96.83 97.01 82.89 87.92 88.96 79.83 86.91 88.98

Table 2: We compare tool retrieval outcomes using the ToolBank dataset. The baseline consists of methods that identify tools
based on their descriptions. We evaluate performance using the evaluation metric Recall@K for K values of 3, 5, and 7. The
results are organized into three sections: the first three columns show outcomes using BankNumpy, the following three columns
display the results with BankPandas, and the final three columns present the results for BankAWS. We present the E5-base
results fine-tuned with the tool description as the baseline. The best-performing method is highlighted in boldface, while the
second-best performing method is underlined.

Method BankNumpy BankPandas BankAWS
R@3 R@5 R@7 R@3 R@5 R@7 R@3 R@5 R@7

Baseline Description-Based Retriever 50.82 64.09 71.84 27.86 34.90 40.00 41.92 46.46 49.13
COLT 67.43 81.32 83.31 41.63 52.45 53.71 66.16 77.90 83.10

Ours

Tool2Vec 52.97 64.18 71.11 36.52 42.01 45.17 55.38 63.14 67.98
MLC 70.35 80.78 84.73 41.49 49.69 54.34 70.99 79.69 82.91
ToolRefiner + Tool2Vec 71.61 79.52 82.22 42.94 47.65 49.33 69.12 74.08 75.43
ToolRefiner + MLC 73.82 84.24 87.47 47.76 55.28 59.13 72.42 81.17 84.49

5.1 ToolBench480

In Table 1, we evaluate our proposed methods in481

the ToolBench dataset (Qin et al., 2024), compar-482

ing their performance against two established base-483

lines: the ToolBench Retriever (Qin et al., 2024),484

and COLT (Qu et al., 2024). We observe that our485

methods constantly outperform the baselines with486

large margins.487

5.1.1 Experimental Details488

For benchmarking, we use the ToolBench dataset,489

which is the current standard benchmark for multi-490

tool retrieval. The data set is divided into three sub-491

sets (I1, I2, and I3), and each subset corresponds492

to different levels in the RapidAPI Hub tool hier-493

archy. As the subset number increases from I1 to494

I3, the tools used are sampled from higher levels495

of the hierarchy. This means that I3 involves more496

complex or broadly categorized tools compared to497

I1 and I2.498

For all methods used in these experiments, pre-499

trained encoder models are fine-tuned to each sub-500

set of the dataset. Specifically, the ToolBench re-501

triever is a fine-tuned SentenceBERT (Reimers and502

Gurevych, 2019), which itself is a fine-tuned BERT-503

base model (Devlin et al., 2019) with a model size504

of BERT-base (110M parameters). The COLT re-505

triever is a fine-tuned Contriever (Izacard et al.,506

2022), which is also a fine-tuned BERT model of 507

the same size of the BERT base model. 508

For our methods, MLC and ToolRefiner, we use 509

DeBERTaV3 (He et al., 2023). Specifically, MLC 510

uses DeBERTaV3-base (86M parameters) and Tool- 511

Refiner uses DeBERTaV3-xsmall (22M parame- 512

ters). To get Tool2Vec embedding, we fine-tune 513

pre-trained E5-base (Wang et al., 2022) model. The 514

model is fine-tuned with triplet loss for one epoch. 515

5.1.2 Result Analysis 516

Table 1 presents the performance comparison. The 517

first two rows show the baseline methods: Tool- 518

Bench retriever (Qin et al., 2024) and COLT re- 519

triever (Qu et al., 2024). The last four rows display 520

our methods: Tool2Vec, MLC, ToolRefiner com- 521

bined with Tool2Vec, and ToolRefiner combined 522

with MLC. We use Recall@K as the evaluation 523

metric, with K values of 3, 5, and 7. We do not 524

include nDCG, as used in (Qin et al., 2024; Qu 525

et al., 2024), because it is not suitable for the tool 526

retrieval context where tool relevance is binary and 527

the order of retrieved tools does not matter. Instead, 528

we choose Recall as the primary evaluation metric. 529

The results for the ToolBench retriever are repro- 530

duced using the original codebase, while the Recall 531

values for COLT are taken from (Qu et al., 2024) 532

since the codebase is unavailable to reproduce the 533
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results.534

MLC and ToolRefiner consistently outperform535

the baseline methods by significant margins across536

all ToolBench subsets. Tool2Vec outperforms the537

ToolBench retriever across all subsets but falls short538

of the COLT retriever. Comparing the third and539

fifth rows in Table 1, ToolRefiner achieves up to540

3.8 additional Recall@K across all subsets. For541

MLC, ToolRefiner shows improvements of up to542

2.3 Recall@K for subsets I1 and I2.543

5.2 ToolBank544

In this section, we benchmark the methods intro-545

duced in Section 4 with our new dataset, ToolBank.546

The results are summarized in Table 2. The base-547

line is a description based retrieval method. Our548

methods always perform better than the baseline.549

5.2.1 Experimental Details550

The baseline used in this experiment is E5-base551

model, fine-tuned with the description of tools. The552

model is fine-tuned with triplet loss for one epoch.553

Similar to Section 5.1, we fine-tune pre-trained en-554

coder model for MLC, Tool2Vec, and ToolRefiner.555

For all subsets in this data, we split the training556

set into an 8:2 ratio for training and validation. We557

conduct hyperparameter tuning using the validation558

set and report performance on the test set using559

the best-performing hyperparameters. To avoid560

overfitting, we only evaluate the test set once across561

all experiments.562

5.2.2 Result Analysis563

In Table 2, the first row is the result with the564

description-based baseline and other rows are re-565

sults with our methods, Tool2Vec, MLC, ToolRe-566

finer combined with Tool2Vec, and ToolRefiner567

combined with MLC. All of our methods outper-568

form the baseline by up to 30 additional Recall@K.569

We observe that ToolRefiner improves the retrieval570

results consistently for both Tool2Vec and MLC.571

Especially, the improvement is remarkable when572

ToolRefiner is used with Tool2Vec, which have the573

gain up to 21 for Recall@K.574

We observe that our models perform worse on575

the Pandas dataset; specifically, the ToolRefiner576

combined with MLC achieves 25% less Recall@3577

on BankPandas dataset than both the BankNumpy578

and BankAWS datasets. BankPandas dataset con-579

tains various data types like time series, periods,580

intervals, and indexes; hence, the model is mostly581

confused about which data type to operate on. For 582

the further detail, please refer to Appendix B.4.2 583

5.3 Additional Results 584

ToolLens. ToolLens is another tool retrieval 585

benchmark (Qu et al., 2024). We compare our 586

methods to other baselines including description- 587

based retriever and COLT. ToolRefiner + MLC 588

outperforms COLT, which is SOTA baseline for 589

ToolLens by 2.19% for R@3 and 0.98% for R@5. 590

Details on this experiment is available in Ap- 591

pendix A.2. 592

Analysis on Our Methods. We find that Tool- 593

Refiner + Tool2Vec excels in handling queries of 594

varying complexity and maintains a more uniform 595

failure rate across diverse tools, averaging fewer 596

mistakes. In contrast, Tool2Vec struggles with sim- 597

pler queries, frequently misclassifies specific tools, 598

and exhibits a higher overall failure rate. Complete 599

analyses are available in Appendix A.4. 600

Other results. We demonstrate reduced la- 601

tency and GPU memory consumption (see Ap- 602

pendix A.6). To investigate the importance of 603

tool retrieval performance, we benchmark ours on 604

TinyAgent dataset (Erdogan et al., 2024) (see Ap- 605

pendix A.3). Our approach yields a 3% gain in 606

R@3 and a 7% increase in success rate compared 607

to a description-based baseline, highlighting the 608

critical impact of enhanced tool retrieval on end-to- 609

end performance. 610

6 Conclusions 611

We propose a framework for creating high-quality 612

synthetic datasets for tool retrieval, as well as 613

a method for leveraging these datasets to train 614

small models for usage-based tool retrieval. In or- 615

der to build specialized tool retrieval applications, 616

domain-specific dataset generation is critical. Fur- 617

thermore, to avoid context window limitations and 618

system overheads caused by long prompts, efficient 619

tool retrieval with small models is a necessary com- 620

ponent of many function calling systems. LLMs 621

demonstrate impressive synthetic dataset genera- 622

tion capabilities which we used to create special- 623

ized tool retrieval dataset, ToolBank. Addition- 624

ally, our data-driven retrieval strategy outperforms 625

description-based retrieval by as much as 30% on 626

these datasets. On ToolBench, our retrieval method 627

achieves over 25% higher Recall than ToolBench’s 628

description-based retriever. 629
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7 Limitations630

While our proposed framework demonstrates631

promising results in tool retrieval tasks, several632

limitations merit discussion. First, the reliance on633

synthetic data generation, although effective for634

constructing large, domain-specific datasets, raises635

concerns about data quality and representativeness.636

LLMs that generate these synthetic examples may637

introduce hidden biases, potentially misrepresent-638

ing real-world user queries or overfitting to the639

model’s inherent language patterns. Second, usage-640

based embeddings presuppose the availability of641

sufficient usage examples for each tool; in scenar-642

ios where certain tools are infrequently utilized or643

newly introduced, the limited number of usage sam-644

ples can degrade embedding quality and retrieval645

accuracy. Third, the multi-stage retrieval strategy,646

while more efficient than fully prompting LLMs for647

tool selection, still requires careful fine-tuning of648

multiple components (e.g., Tool2Vec, MLC, Tool-649

Refiner), increasing system complexity. Addition-650

ally, although our approach scales better than large-651

model-based retrieval methods, maintaining sep-652

arate fine-tuned retrievers for different domains653

may become resource-intensive when adapting to654

a broad array of specialized tool sets. Finally,655

the long-tail nature of tool usage—where certain656

tools are only needed under niche or highly spe-657

cific queries—remains challenging. Future work658

may explore more robust methods to handle out-of-659

distribution queries and further reduce reliance on660

synthetic data, thereby enhancing both the adapt-661

ability and reliability of usage-based tool retrieval.662
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A Additional Results901

A.1 Ablation Studies902

This section details the ablation studies using the903

ToolRefiner introduced in Section. 4.3 on the Tool-904

bench dataset. First, we investigate the effective-905

ness of Tool2Vec embeddings compared to tool906

description embeddings and find that Tool2Vec907

consistently outperforms tool description embed-908

dings. Then, we explore the impact of the number909

of initially retrieved candidate tools on overall re-910

triever performance. We observe that increasing the911

number of candidate tools consistently enhances912

performance up to a certain point, after which the913

improvement plateaus and the retrieval metrics de-914

grade.915

A.1.1 Tool2Vec vs. Tool Description916

Embeddings917

In this ablation study, we demonstrate the effec-918

tiveness of using Tool2Vec embeddings to the tool919

description embeddings for ToolRefiner. Specifi-920

cally, we train two ToolRefiner models, one with921

Tool2Vec embeddings and one with the tool de-922

scription embeddings, on Toolbench I3 dataset.923

We retrieve top-64 tools first by cosine similarites924

between Tool2Vec embeddings and query embed-925

dings. We observe that ToolRefiner trained with926

Tool2Vec embeddings outperforms ToolRefiner927

trained with tool description embeddings across928

most retrieval settings. Our results are shown in929

Table 3.930

A.1.2 Analysis on the Impact of the Number931

of Candidate Tools932

In this set of experiments, we explore the impact933

of the number of candidate tools on the overall re-934

trieval performance of ToolRefiner. Specifically,935

for each query, we retrieve the top-N tools either936

from the output of MLC or from cosine-similarity-937

based retrieval between the user query embedding938

and the Tool2Vec. Then, we fine-tune the pre-939

trained DeBERTa-v3 xsmall model with these N940

tools. We vary the value of N across 8, 16, 32,941

64, and 128 and evaluate performance on the Tool-942

bench dataset.943

In Table 4, one key observation is the ini-944

tial improvement in performance as N increases.945

This trend is consistent across all datasets and re-946

trieval methods, but the performance improvement947

plateaus after a certain N value, with peak per-948

formance achieved at N=32 or 64 configurations.949

Specifically, for Toolbench I1 and I2, the best- 950

performing N value is 64 for both retrieval meth- 951

ods, while for Toolbench I3, the best-performing N 952

value is 64 for the Tool2Vec-based retriever and 32 953

for the MLC-based retriever. This is because the re- 954

trieval performance improves as N increases. How- 955

ever, the performance of the ToolRefiner method 956

decreases for large N across all datasets and re- 957

trieval methods, indicating that including too many 958

candidate tools can overwhelm the language model 959

and lead to confusion and suboptimal performance. 960

Moreover, comparing the performance of differ- 961

ent retrieval methods, the MLC-based retriever con- 962

sistently outperforms the Tool2Vec-based retriever 963

for Toolbench I1 and I2 datasets across most of 964

the top-N settings, while the Tool2Vec-based re- 965

triever outperforms the MLC-based retriever for 966

the Toolbench I3 dataset. This suggests that the 967

choice of retrieval method can significantly impact 968

the performance of the ToolRefiner method, and 969

the optimal N value may vary depending on the 970

dataset and retrieval method used. 971

From these observations, we can conclude that 972

it is critical to carefully select the appropriate N 973

value when training a tool retriever. While lower 974

N values enable faster inference, they may result 975

in worse performance when dealing with a large 976

number of tools. Conversely, including too many 977

candidate tools can confuse ToolRefiner, leading 978

to worse performance than the performance with 979

smaller N . This indicates the importance of bal- 980

ancing the trade-off between performance and effi- 981

ciency when designing a tool retriever for a given 982

dataset. 983

A.2 ToolLens 984

We benchmark our methods against two baselines 985

similar to Section 5. The results from Table 5 986

demonstrate that our proposed methods substan- 987

tially improve over the description-based retrieval 988

baseline on the ToolLens benchmark. Specifically, 989

the description-based retriever scores an N@3 of 990

83.68 and R@3 of 83.45, which are substantially 991

lower compared to both COLT and our approaches. 992

By contrast, COLT achieves stronger performance 993

for lower-rank retrieval (e.g., 93.65 in R@3) but 994

lacks data for R@7. 995

Among our methods, ToolRefiner + MLC stands 996

out with the highest R@3 and R@5 scores (95.84 997

and 98.73, respectively) and also delivers a strong 998

result at R@7 (98.58). ToolRefiner + Tool2Vec 999

performs comparably, surpassing COLT in most 1000
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Table 3: Performance comparison of ToolRefiner with Tool2Vec embeddings and tool description embeddings on
ToolBench I3. The first row represents ToolRefiner fine-tuned with Tool2Vec tool embeddings using Tool2Vec-based
retrieval, the second row represents ToolRefiner fine-tuned with description embeddings using Tool2Vec-based
retrieval, and the third row represents ToolRefiner fine-tuned with description embeddings using description based
retrieval. For each row, we fine-tune the E5-base embedding model specifically for each use case to compute the
embeddings.

Embedding for ToolRefiner Retrieval Method Recall @ 3 Recall @ 5 Recall @ 7

Tool2Vec Tool2Vec 80.58 87.80 89.70
Tool Description Tool2Vec 71.55 82.27 87.28
Tool Description Tool Description 66.00 74.60 76.55

Table 4: Comparison of ToolRefiner in Section. 4.3 performance on the Toolbench dataset across multiple top-N
candidate tool configurations. We use an MLC-based retriever and a Tool2Vec-based retriever to retrieve a set of N
candidate tools where N varies from 8 to 128. Our evaluation metric is Recall@K, where K are values 3, 5, and 7.
The best-performing top-N configuration for each retriever method is highlighted in boldface.

Method Top-N Toolbench I1 Toolbench I2 Toolbench I3
R@3 R@5 R@7 R@3 R@5 R@7 R@3 R@5 R@7

MLC Retriever

8 91.18 95.17 96.33 81.96 87.54 88.21 70.53 82.90 86.63
16 91.59 96.42 97.08 81.96 87.54 88.21 78.13 86.43 87.95
32 91.43 96.25 97.08 81.67 87.33 88.58 79.83 86.81 88.98
64 91.84 96.83 97.01 82.89 87.92 88.96 76.75 85.88 86.80
128 90.67 96.25 96.67 80.17 87.17 89.12 77.08 85.72 87.98

Tool2Vec Retriever

8 87.01 93.79 95.00 75.25 81.25 82.75 74.00 87.38 89.22
16 89.76 94.79 94.96 77.96 83.21 84.46 74.00 87.38 89.22
32 90.05 94.46 95.25 76.88 83.17 84.33 79.50 87.77 89.53
64 89.63 95.33 96.17 76.83 84.42 86.38 80.58 87.80 89.70
128 87.84 94.87 95.42 77.17 82.42 83.87 78.17 87.55 89.30

Table 5: Comparison of tool retrieval results on ToolLens. We report NDCG as well as Recall.

Method
ToolLens

N@3 R@3 N@5 R@5 N@7 R@7

COLT 94.53 93.65 96.91 97.75 N/A N/A
Description-Based Retriever 83.68 83.45 91.12 91.92 93.83 94.72
ToolRefiner + Tool2Vec 93.88 93.61 96.43 97.20 96.79 97.73
ToolRefiner + MLC 95.97 95.84 98.14 98.73 97.74 98.58

Table 6: Comparison of tool retrieval (R@3) and success
rate (SR) for a description-based baseline versus our
method.

Method R@3 SR

Description-based Retrievers 0.941 0.759
MLC +ToolRefiner 0.972 0.827

metrics, but slightly trails behind the ToolRefiner1001

+ MLC variant. This consistent outperformance1002

illustrates the advantages of multi-stage retrieval,1003

where refined embeddings and classification-driven1004

reranking work in tandem to improve overall ac-1005

curacy. By leveraging usage-based embeddings1006

and iterative refinement, our systems can more pre-1007

cisely capture the query-tool relationships, thereby1008

boosting recall across multiple ranking thresholds.1009

A.3 TinyAgent Dataset 1010

We conduct an end-to-end evaluation using the 1011

benchmark introduced in (Erdogan et al., 2024). 1012

This benchmark assesses tool learning performance 1013

for controlling macOS devices using Mac applica- 1014

tions as tools. This benchmark evaluates not only 1015

tool retrieval accuracy but also the correctness of 1016

generated task graphs to measure end-to-end per- 1017

formance. 1018

In the Table 6, we compare the success rate (i.e. 1019

correct execution graph construction) and tool re- 1020

trieval performance of the baseline (description- 1021

based retrieval) against our MLC-based method. 1022

Our approach improves tool retrieval performance 1023

(R@3) by 3%, which directly translates to a signif- 1024

icant 7% increase in the success rate. In summary, 1025

enhanced tool retrieval performance is critical in 1026

overall tool learning performance. 1027
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A.4 Analysis on Our Methods1028

In this section, we conduct a series of analyses to1029

investigate why the ToolRefiner + Tool2Vec per-1030

forms better than Tool2Vec across all ToolBank1031

datasets. Particularly, we aim to pinpoint the spe-1032

cific tools that both methods struggle with, quantify1033

the mistakes, and asses how query complexity af-1034

fects tool retrieval performance. Our results show1035

that ToolRefiner + Tool2Vec is better able to han-1036

dle complex queries and maintain consistent perfor-1037

mance across a diverse set of tools, while Tool2Vec1038

struggles with simpler queries and makes errors on1039

certain tools more frequently.1040

In our initial analysis, we aimed to identify the1041

tools that ToolRefiner + Tool2Vec and Tool2Vec1042

most frequently failed to retrieve. Specifically, the1043

model fails to retrieve a tool when the tool is one of1044

the ground truth tools but isn’t retrieved. We then1045

divided the number of these failures by the total1046

occurrences of each tool in the dataset to calculate1047

the percentage failure rate for each tool. For all1048

experiments, we retrieved the top-5 tools, which1049

is the maximum number of tools any data point in1050

ToolBank needs to retrieve.1051

In Table 7, we show the distribution statistics of1052

the percentage failure rates of all tools in ToolBank1053

subsets. We observe that ToolRefiner + Tool2Vec1054

demonstrates a more uniform failure rate distribu-1055

tion, with a relatively low mean and standard devi-1056

ation. It rarely makes more than five errors per tool1057

and averages 2.07 mistakes across all datasets. This1058

suggests that ToolRefiner + Tool2Vec has a robust1059

understanding of a broad range of tools, managing1060

to maintain relatively low failure rates consistently.1061

On the other hand, Tool2Vec exhibits signifi-1062

cant variability in its performance. Certain tools1063

are prone to high failure rates, with some reach-1064

ing up to 50 mistakes, while others have no errors1065

at all. From Table 7, we observe that Tool2Vec’s1066

failure rate distribution is highly skewed, mean-1067

ing that there are some tools that are responsi-1068

ble for a majority of Tool2Vec’s errors. Further-1069

more, on average, Tool2Vec makes 7.86 mistakes1070

per tool, indicating a less consistent performance1071

across the board. This variability might be due to1072

Tool2Vec’s handling of tool embeddings, where it1073

fails to adequately differentiate between tools with1074

similar functionalities. In contrast, ToolRefiner +1075

Tool2Vec effectively separates embeddings of tools1076

with overlapping or similar use cases, which can be1077

closely clustered in the Tool2Vec space. By diver-1078

Table 7: Comparison of the distribution of percentage
failure rates of ToolRefiner + Tool2Vec and Tool2Vec
across all tools in ToolBank. We calculate the percent-
age failure rate for a tool as the number of times the
method fails to retrieve the tool divided by the number
of times it was used in the entire dataset.

Data ToolRefiner + Tool2Vec Tool2Vec

Mean Std. Mean Std.

BankNumpy 3.55 6.54 9.04 37.88
BankPandas 2.97 6.24 12.06 26.16
BankAWS 1.42 1.61 7.01 15.13

sifying these embeddings, ToolRefiner + Tool2Vec 1079

reduces the likelihood of confusion and errors, par- 1080

ticularly in complex query scenarios. 1081

In our further analysis in Figure 6, we focus 1082

on the length of the queries where the methods 1083

fail and discover that ToolRefiner + Tool2Vec gen- 1084

erally makes errors on longer queries, averaging 1085

nearly 20 tokens more than those where Tool2Vec 1086

failed. This finding implies that while ToolRefiner 1087

+ Tool2Vec is equipped to handle more complex 1088

and lengthy queries, Tool2Vec tends to struggle 1089

with simpler, shorter queries. The ability of ToolRe- 1090

finer + Tool2Vec to process longer and potentially 1091

more complex queries underscores its enhanced 1092

capability to manage intricate or verbose user re- 1093

quests effectively. 1094

The disparities in percentage failure rate distri- 1095

bution and the correlation with query length sug- 1096

gest that ToolRefiner + Tool2Vec’s superior per- 1097

formance can primarily be attributed to its refined 1098

handling of challenging queries and its robustness 1099

across a diverse set of tools. 1100

A.5 Various Embedding Models 1101

The experiments performed in section 5 rely on E5- 1102

base as an embedding model. To demonstrate the 1103

effectiveness of Tool2Vec compared to description- 1104

based retrieval, we show the results with other 1105

embedding models in Table 8. Tool2Vec con- 1106

sistently outperforms description-based retrieval 1107

across model families and sizes. 1108

A.6 Resource Consumption 1109

Table 9 reports the retrieval latency and memory 1110

usage of four methods on an NVIDIA A6000 with 1111

ToolBench I3: Tool2Vec, MLC, ToolRefiner, and 1112

a description-based reranker. We observe that 1113

Tool2Vec, MLC, and ToolRefiner are significantly 1114

more resource efficient than the description-based 1115
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Table 8: Comparison of Tool2Vec retrieval and description-based retrieval across various embedding models on
ToolBench’s I3 split. Models are evaluated without any fine-tuning. Tool2Vec consistently outperforms description-
based retrieval on both open source and closed embedding models.

Method R@3 R@5 R@7 R@10 R@12

E5-small + Tool2Vec 63.12 75.95 82.27 85.87 86.73
E5-small + Descriptions 20.62 30.45 37.27 42.42 46.87

E5-base + Tool2Vec 62.48 76.10 80.17 84.80 86.45
E5-base + Descriptions 32.12 38.97 43.92 50.63 54.80

E5-large + Tool2Vec 60.40 71.20 77.92 84.18 85.93
E5-large + Descriptions 33.28 42.12 48.45 56.48 60.25

Mxbai-embed-large + Tool2Vec 59.23 67.97 76.30 80.78 83.68
Mxbai-embed-large + Descriptions 40.03 48.25 53.58 60.73 64.93

Text-embedding-3-small + Tool2Vec 63.15 73.33 80.78 84.13 85.70
Text-embedding-3-small + Descriptions 41.12 54.47 57.65 65.67 68.78

NumPy Pandas AWS0

10

20

30

40

50

60

Nu
m

be
r o

f t
ok

en
s

Average Token Length of Failed Queries

ToolRefiner + Tool2Vec Tool2Vec

Figure 6: Illustration of average token length of failed queries
for ToolRefiner + Tool2Vec combined with Tool2Vec and
Tool2Vec on ToolBank is analyzed. We visualize the mean
as a bar plot and the standard deviation as an error bar within
each bar. We observe that Tool2Vec struggles with shorter and
simpler queries, while ToolRefiner + Tool2Vec tends to make
mistakes on longer and more complex queries.

reranker. For the second retrieval stage, ToolRe-1116

finer takes 21.64 ms and 0.88 GB when ranking1117

64 candidate tools, while the description-based1118

reranker approach requires 337.64 ms and 6.17 GB1119

for the same set of 64 candidates. This is because1120

ToolRefiner is reranking tool embeddings, while1121

the description-based reranker is reranking full tool1122

descriptions.1123

Method Avg Latency (ms) Memory (GB)

Tool2Vec 0.21 0.48
MLC 36.45 0.70
ToolRefiner (64 tools) 21.64 0.88
Description-Reranker (bsz 64) 337.64 6.17

Table 9: Retrieval time and memory usage on Tool-
Bench I3 with an NVIDIA A6000. Our methods con-
sume significantly less compute and memory compared
to a baseline of directly ranking tool descriptions with
respect to their relevance to a search query.

B Details on Dataset Generation 1124

B.1 Tool Selection Criteria 1125

For tool collection, we crawl each library’s offi- 1126

cial API reference and retrieve detailed informa- 1127

tion about function descriptions, arguments, and 1128

example code snippets. For NumPy, we exclude 1129

the numpy.ctypeslib, numpy.dtypes, numpy.emath, 1130

numpy.rec, and numpy.version modules since they 1131

don’t provide rich functions or are outdated. For 1132

Pandas, we only use the public sub-packages and 1133

exclude the pandas.core, pandas.compat, and pan- 1134

das.util modules. For Boto3, we include functions 1135

for five popular AWS services: EC2, RDS, IAM, 1136

S3, and SNS. 1137

B.2 Parameters and LLMs to Generate 1138

Dataset 1139

For dataset generation, we used T = 10 and 1140

M = 2 − 5, which means that at each iteration, 1141

we sample 10 tools from the tool pool and let the 1142

language model choose 2-5 tools to generate in- 1143

structions. For both the Instruction Generation 1144

and Instruction Polish stages, we use Llama-3-70B- 1145

Instruct (AI@Meta, 2024). 1146

B.3 Dataset Statistics 1147

We collect 520 NumPy tools, 1600 Pandas tools, 1148

and 1000 Boto3 tools and curate 20,000 NumPy 1149

queries, 70,000 Pandas queries, and 73,000 AWS 1150

queries. There are 19530 tool combinations in 1151

our NumPy dataset, 69550 in Pandas dataset, and 1152

70816 in AWS dataset. This means that almost all 1153

of our data represents distinct usage scenarios and 1154

queries. 1155
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B.4 Qualitative Analysis1156

B.4.1 Comparing Polished and Unpolished1157

Queries1158

We provide a qualitative analysis of ToolBank and1159

investigate the effect of the Query Polish step. We1160

randomly sample three queries from ToolBank and1161

present them before and after the polishing step1162

in Figure 7. The left column in Figure 7 shows1163

the queries before applying the Query Polish step,1164

while the right column shows the queries after pol-1165

ishing. Before applying Query Polish, the queries1166

exhibit a rigid and instructional style, similar to1167

the Toolbench examples in Table 2. However, after1168

applying Query Polish, the queries become more1169

natural and user-friendly, better reflecting how real1170

human users would interact with LLMs.1171

B.4.2 Qualitative Analysis on ToolBank1172

In this section, we compare BankNumpy, BankPan-1173

das, and BankAWS, which are subsets of ToolBank,1174

and provide insights into why the tool retrieval1175

performance on BankPandas is worse than on the1176

other subsets. This performance degradation can1177

largely be attributed to the similarity between op-1178

erations in BankPandas. Specifically, BankPandas1179

contains various data types like time series, peri-1180

ods, intervals, and indexes. For these data types,1181

there are some common set of operations that apply1182

to all of them such as .equals, .argmin, or .all.1183

This results in instructions that are very close to1184

each other in meaning but use different data types.1185

Hence, the model gets confused about which data1186

type to operate on. For example, the first part of1187

“Load a delimited data file with specific columns1188

and data types, counting the total number of en-1189

tries, for the next fiscal quarter starting from the1190

first business day of the year based on a given times-1191

tamp.” query requires a call to pandas.read_csv1192

tool which returns a pandas.DataFrame object1193

and a subsequent call to pandas.DataFrame.size1194

tool to count the total number of entries. How-1195

ever, ToolRefiner + Tool2Vec model makes the1196

mistake of calling pandas.Series.size after call-1197

ing pandas.read_csv. This doesn’t become1198

an issue with BankNumpy and BankAWS since1199

BankNumpy tools operate almost entirely on the1200

array type and BankAWS contains only the 5 most1201

popular AWS services, creating a clear distinction1202

between tools.1203

B.5 Prompt for Data Generation 1204

B.5.1 Query Generation 1205

The following prompt is used to generate user query 1206

for ToolBank. 1207

B.5.2 Query Polish 1208

The following prompt is used to polish user query 1209

for ToolBank. 1210
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Before Query Polish

Determine the upper triangular elements of a square matrix, compute the
average of these elements excluding zero values, and store the result in a
compressed archive file.

After Query Polish

Transform a daily weather dataset into a uniform array for analysis, ensuring
correct time zone information, and then calculate the 25th percentile of
temperature readings over the entire dataset while ignoring non-numeric
entries.

Create a new IPAM scope, grant permission to attach a network interface to
an instance, and modify the instance's placement attributes to use the new
IPAM scope.

Compute the average of the non-zero upper triangular elements of a square
matrix and store the result in a compressed archive file.

Calculate the 25th percentile of temperature readings in a uniform daily
weather dataset, ignoring non-numeric entries and ensuring correct time
zone information.

Create a new IPAM scope for attaching a network interface to an instance
with modified placement attributes.

Figure 7: Qualitative analysis comparing the queries before and after the Query Polish stage. We randomly sample an example
from each of BankNumpy, BankPandas, and BankAWS datasets.

You are an expert in utilizing a library of functions and generating diverse scenarios where a
set of selected functions are applied to solve real-world problems. You will be provided with
a set of functions and their descriptions, and will be tasked with selecting a subset of these
functions to craft detailed scenarios. You will generate clear and detailed user instructions,
list the names of the relevant functions, and explain how these functions can be applied to
complete the task. These tasks should demonstrate a wide range of functionalities and real-life
applications to ensure variety and utility.
Guidelines:
- The instructions must be clear and comprehensive, allowing users to understand how to apply the
functions without ambiguity. However, the instructions shouldn’t be robotic and shouldn’t sound
like ’step-by-step’ instructions. For example, instead of writing “Calculate the non-negative
square root of an array element-wise, then round the resulting array to the nearest even value,
and return the indices that would sort the array along a specified axis.” which breaks down each
step mechanically, you MUST instead write a more natural and fluid instruction like “Sort the
array along a specified axis after calculating the non-negative square root of each element and
rounding the result to the nearest even value.
- You MUST select and sequence the functions in a way that demonstrates their interdependency.
Ideally, a function’s output should be the input to another function (or multiple functions),
creating a chain of operations that solve the task at hand. In other words, the functions you
select must not be selected randomly but instead be used to solve coherent multi-step problems.
- The explanations should logically connect the functions to the tasks, demonstrating the workflow
clearly.
- Your response should be returned as a single JSON object, representing a unique user instruction.
Diversity in function use and application context is crucial; avoid repetition of similar tasks
or functional applications to ensure a broad coverage of the capabilities of the functions.
Here is an example output of a list of JSON objects representing very distinct and detailed
tasks:
examples
You MUST only return a single JSON object - do not add any extra text before and after the json
object. The instructions that you generate MUST be very diverse and distinct from each other and
MUST be as different as possible from the examples above.
library − specific− instructions

Figure 8: Query Generation Prompt
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You are an expert at refining user instructions to make them more coherent and less robotic. You
will be given a user instruction and will be tasked to refine the user instruction if it:
- Sounds too robotic or step-by-step like saying ’Do this, do that, and then do this’. In other
words, the instructions shouldn’t break down each step mechanically but be more fluid. For
example, instead of writing "Analyze the lyrics of the song ’XYZ’, generate a playlist based on
the emotions and themes found, and create a Spotify playlist with the recommended songs." you
would write "Create a Spotify playlist based on the emotions and themes found in the lyrics of
the song ’XYZ’.
- Has conditional statements like ’if this, then do that’ or ’when this happens, do that’. It
should be more direct and non-conditional.
If none of the above applies to an instruction, you should mark it as good, and provide a
reasoning for why it is good. Here example outputs of a JSON object representing a refined user
instruction:
incontextexamples

Figure 9: Query Polish Prompt
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