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ABSTRACT

Pool-based Active Learning (AL) has achieved great success in minimizing labeling costs
by sequentially selecting the most informative unlabeled samples from a large unlabeled
data pool and querying their labels from oracle/annotators. However, existing AL sampling
schemes might not work well under out-of-distribution (OOD) data scenarios, where the
unlabeled data pool contains data samples that do not belong to the pre-defined categories of
the target task. Achieving good AL performance under OOD data scenarios is a challenging
task due to the natural conflict between AL sampling strategies and OOD sample detection
– both more informative in-distribution (ID) data and OOD data in unlabeled data pool
may be assigned high informativeness scores (e.g., high entropy) during AL processes. In
this paper, we propose a Monte-Carlo Pareto Optimization for Active Learning (POAL)
sampling scheme, which selects optimal subsets of unlabeled samples with fixed batch
size from the unlabeled data pool. We cast the AL sampling task as a multi-objective
optimization problem and utilize Pareto optimization based on two conflicting objectives:
(1) the typical AL sampling scheme (e.g., maximum entropy) and (2) the confidence of not
being an OOD data sample. Experimental results show the effectiveness of our POAL on
classical Machine Learning (ML) and Deep Learning (DL) tasks.

1 INTRODUCTION

In real-life applications, huge amounts of unlabeled data are easily obtained, but labeling them would
be expensive (Shen et al., 2004). AL aims to solve this problem – it achieves greater accuracy
with less training data by sequentially selecting the most informative instances and then querying
their labels from oracles/annotators (Zhan et al., 2021b). Current AL methods have been tested on
well-studied datasets (Kothawade et al., 2021) like MNIST (Deng, 2012) and CIFAR10 (Krizhevsky
et al., 2009). These datasets are simple and clean. However, in realistic scenarios, when collecting
unlabeled data, unrelated data (i.e., out-of-domain data) might be mixed in with the task-related data,
e.g., images of letters when the task is to classify images of digits (Du et al., 2021). Most AL methods
are not robust to OOD data scenarios. For instance, Karamcheti et al. (2021) has demonstrated
empirically that collective outliers hurt AL performances under Visual Question Answering (VQA)
tasks. Meanwhile, selecting and querying OOD samples that are invalid for the target model will
waste the labeling cost (Du et al., 2021) and make the AL sampling process less effective.

There is a natural conflict between AL and OOD data detection. Most AL methods, especially
uncertainty-based measures, prefer selecting data that are hardest to be classified by the current basic
classifier (e.g., high entropy of predicted class probabilities). However, in AL, if a basic learner
(e.g., Neural Network with softmax output) performs poorly on ID data, it is more likely to provide
non-informative predicted probabilities (i.e., close to uniform probabilities) on OOD data (Vaze et al.,
2021). During AL processes, the basic learner is not well-trained due to insufficient labeled data,
and insufficient epochs in the case of deep AL. Therefore, the samples selected by AL may contain
both high informative ID and OOD samples. For example, consider the Maximum Entropy (ENT)
approach for AL, which is a classic uncertainty-based method (Lewis & Catlett, 1994; Shannon,
2001) that selects data whose predicted class probabilities have the largest entropy. Meanwhile, ENT
is also a typical OOD detection method – high entropy of the predicted class distribution suggests
that the input may be OOD (Ren et al., 2019). Fig. 1(top) shows an example on the EX8 dataset (Ng,
2008), which further illustrates this conflict – a large percentage of data with high entropy scores are
OOD, and thus ENT-based AL will likely select OOD data for labeling. Thus, additional measures are
needed to detect OOD samples so that they are not selected for AL. For example, in Fig. 1(bottom),
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the negative Mahalanobis distance (Lee et al., 2018) shows a certain negative correlation with entropy
and thus could be used as an ID confidence score.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Entropy

D
en

si
ty

ID data
OOD data

0.2 0.3 0.4 0.5 0.6 0.7
Entropy

N
eg

at
iv

e 
M

ah
al

an
ob

is
 d

is
ta

nc
e

ID data
OOD data

Figure 1: (top) Distribution of en-
tropy for ID and OOD data dur-
ing AL processes on EX8. (bot-
tom) Scatter plot of the AL score
(entropy) and ID confidence score
(negative Mahalanobis distance)
of unlabeled data. Larger ID
score indicates data is more likely
to be ID data.

Although the OOD problem has been demonstrated to affect AL
in real-life applications (Karamcheti et al., 2021), there are only a
few studies on this topic (Kothawade et al., 2021; Du et al., 2021).
SIMILAR (Submodular Information Measures Based Active Learn-
ing) (Kothawade et al., 2021) adopted the submodular conditional
mutual information (SCMI) function as the acquisition function.
They jointly model the similarity between unlabeled and labeled ID
data sets and their dissimilarity with labeled OOD data sets. The
estimation might not be accurate initially since both labeled ID and
OOD data sets are insufficient. CCAL (Contrastive Coding AL)
(Du et al., 2021) needs to pre-train extra self-supervised models like
SimCLR (Chen et al., 2020), and also introduces hyper-parameters
to trade-off between semantic and distinctive scores, whose values
affect the final performance (see Section 4.3 in (Du et al., 2021)).
These two factors limit the range of its application. We compared our
work with SIMILAR and CCAL in detail and showed the superiority
of our method in Appendices C and F.3.

In this paper, we advocate simultaneously considering the AL cri-
terion and ID confidence when designing AL sampling strategies
to address the above issues. Since the two objectives conflict, we
define the AL sampling process under OOD data scenarios as a
multi-objective optimization problem (Seferlis & Georgiadis, 2004).
Unlike traditional methods for handling multiple-criteria based AL,
such as weighed-sum optimization (Zhan et al., 2022a) or two-stage
optimization (Shen et al., 2004; Zhan et al., 2022a), we propose
a novel and flexible batch-mode Pareto Optimization Active Learning (POAL) framework. The
contributions and summarization of this paper are as follows:

1. We propose AL under OOD data scenarios within a multi-objective optimization framework.
2. Our framework is flexible and can accommodate different combinations of AL and OOD

detection methods according to various target tasks. In our experiments, we use ENT as the AL
objective and Mahalanobis distance as ID confidence scores.

3. Naively applying Pareto optimization to AL will result in a Pareto Front with a non-fixed size,
which can introduce a high computational cost. To enable efficient Pareto optimization, we
propose a Monte-Carlo (MC) Pareto optimization algorithm for fixed-size batch-mode AL.

4. Our framework works well on both classical ML and DL tasks, and we propose pre-selecting
and early-stopping techniques to reduce the computational cost on large-scale datasets.

5. Our framework has no trade-off hyper-parameter for balancing AL and OOD objectives. It is
important since: i) AL is data-insufficient, there might be no validation set for tuning parameters;
ii) hyper-parameter tuning in AL can be label-expensive since every change of hyper-parameter
causes AL to label new data, thus provoking substantial labeling inefficiency (Ash et al., 2020).

2 RELATED WORK

Pool-based Active Learning. Pool-based AL has been well-studied in these years (Settles, 2009;
Zhan et al., 2021b; Ren et al., 2021) and widely adopted in various tasks (Duong et al., 2018; Yoo &
Kweon, 2019; Dor et al., 2020; Haussmann et al., 2020). Most AL methods rely on fixed heuristic
sampling strategies, which follow two main branches: uncertainty- and representative/diversity-based
measures (Ren et al., 2021; Zhan et al., 2022a). Uncertainty-based approaches select data that
maximally reduce the uncertainty of the target basic learner (Ash et al., 2020). Typical uncertainty-
based measures that perform well on classical ML tasks like Query-by-Committee (QBC) (Seung
et al., 1992), Bayesian Active Learning by Disagreement (BALD) (Houlsby et al., 2011) have also
been generalized to DL tasks (Wang & Shang, 2014; Gal et al., 2017; Beluch et al., 2018; Zhan et al.,
2022a). Representative/diversity-based methods like k-Means (Zhan et al., 2022a) and Core-Set
approach (Sener & Savarese, 2018) select a batch of unlabeled data most representative of the set.
Uncertainty- and representative-based measures could be combined with weighted-sum or multi-
stage optimization (Zhan et al., 2022a). Weighted-sum optimization combines multiple objectives
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through linear combination with trade-off weights. (Yin et al., 2017) is a typical method that adopts
weighted-sum optimization, selecting the most uncertain and least redundant samples as well as the
most diverse. Two-stage (or multi-stage) optimization first ranks data or selects a subset based on
one objective, then makes final decisions based on the other objective (Shen et al., 2004; Zhao et al.,
2019; Zhan et al., 2022a). (Ash et al., 2020) computes gradient embedding of unlabeled data in the
first stage (uncertainty), then clusters by KMeans++ in the second stage (diversity).

Out-of-Distribution. Detecting OOD data is vital in ensuring the reliability and safety of ML
systems in real-life applications (Yang et al., 2021) since the OOD problem severely influences
real-life decisions. For example, in medical diagnosis, the trained classifier could wrongly classify a
healthy OOD sample as pathogenic (Ren et al., 2019). Existing methods compute ID/OOD confidence
scores based on the predictions of (ensembles of) classifiers trained on ID data, e.g., the ID confidence
can be the entropy of the predictive class distribution (Ren et al., 2019). Hendrycks & Gimpel (2017)
observed that a well-trained neural network assigns higher softmax scores to ID data than OOD data,
i.e., predictions for ID data have lower entropy. Follow-up work ODIN (Liang et al., 2017) amplifies
the effectiveness of OOD detection with softmax score by considering temperature scaling and input
pre-processing. Others (Lee et al., 2018; Cui et al., 2020) propose simple and effective methods for
detecting both OOD and adversarial data samples based on Mahalanobis distance. Due to its superior
performance compared with other OOD strategies (see Table 1 in (Ren et al., 2019)), our POAL
framework uses Mahalanobis distance as the primary criterion for calculating the ID confidence score.
Nonetheless, our framework is general, and any ID confidence score could be adopted.

How OOD influence AL methods? We have introduced the primary categories of AL methods,
the OOD problem, and how OOD data influence AL, like uncertainty-based measures (e.g., ENT).
We next discuss whether other AL methods are also affected by OOD data. As discussed in Section 1,
uncertainty-based AL measures like ENT are not robust to OOD data scenarios since OOD data
are naturally difficult to be classified. Representative/diversity-based methods are also not robust
to OOD data since outliers/OOD samples are far from ID data and thus more likely to be selected
first to cover the whole unlabeled data pool. Combined AL strategies that integrate uncertainty- and
representative-based measures will also be susceptible to OOD data. Weighted-sum optimization
will select data with high uncertainty and representativeness scores, which are likely to be OOD.
The multi-stage optimization adopts uncertainty-based measures to select a subset and then uses
representative-based measures for final selection (or vice versa). For both variants, a large proportion
of OOD data will be selected in the first stage. To address these issues, we proposed our POAL,
which can be adapted to various AL sampling schemes with OOD data. We conducted experiments
on multiple highly-cited AL methods to validate our viewpoints, as shown in Section 4, Fig. 4.

Multi-objective optimization. Many real-life applications require optimizing multiple objectives
that conflict with each other. For example, in the sensor placement problem, the goal is to maximize
sensor coverage while minimizing deployment costs (Watson et al., 2004). Since there is no single
solution that simultaneously optimizes each objective, Pareto optimization can be used to find a
set of “Pareto optimal” solutions with optimal trade-offs of the objectives (Miettinen, 2012). A
decision maker can then select a final solution based on their requirements. Compared with traditional
optimization methods for multiple objectives (e.g., weighted-sum (Marler & Arora, 2010)), Pareto
optimization algorithms are designed via different meta-heuristics without any trade-off parameters
(Zhou et al., 2011; Liu et al., 2021). Besides optimization of the two conflicting objectives (AL score
and ID confidence), we also need to perform batch-mode subset selection. Pareto Optimization Subset
Selection (POSS) (Qian et al., 2015) solves the subset selection problem by optimizing two objectives
simultaneously: maximizing the criterion function and minimizing the subset size. However, POSS
does not support more than one criterion and cannot work with fixed subset size, thus not suitable for
our task. Therefore, we propose Monte-Carlo POAL, which achieves: 1) optimization of multiple
objectives; 2) no extra trade-off parameters for tuning; 3) subset selection with a fixed size.

3 METHODOLOGY

We introduce the problem definition of AL under OOD data scenarios, and details of our POAL.

3.1 PROBLEM DEFINITION AND OVERVIEW

We consider a general pool-based AL process for a K-class classification task with feature space
X , label space Y ∈ {1, ...,K} under OOD data scenarios. We assume that the oracle can provide a
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Figure 2: Overview of POAL. In each iteration, we train basic learner and estimate GMMs (in DL tasks, we
estimate multivariate Gaussian distributions with low-/high- feature levels) to calculate the AL and Mahalanobis
distance-based ID confidence score for unlabeled data. We then construct POAL by randomly generating
candidate solutions with fixed batch size and updating the Pareto set iteratively to get the optimal solution.

fixed number of labels, denoted as budget B. When an OOD sample is queried, the oracle will return
an “OOD” label1 to represent data outside of the specified task. Let B be the number of labels the
oracle can provide, i.e., the budget. We aim to select the most informative B instances with fewer
OOD samples to obtain the best classification performance. To reduce the computational cost, we
consider batch-mode AL, where batches of samples with fixed size b are selected and queried. We
denote the AL acquisition function as α(x;A), where A refers to AL sampling strategy, and the basic
learner/classifier as fθ(x). We denote the current labeled set as Dl = {(xi, yi)}Ni=1 and the large
unlabeled data pool as Du = {xi}Mi=1. The labeled data are sampled i.i.d. over data space D, i.e.,
Dl ∈ D, and N ≪ M . Under OOD data scenarios, active learners may query OOD samples whose
labels are not in Y . To simplify the problem settings, we ignore the queried OOD data since it is not
useful for the classification task, and thus we only add ID samples to Dl.

Motivated by the natural conflict between AL and OOD data detection like Fig. 1 (bottom), we
propose POAL as outlined in Fig. 2. In each AL iteration, we firstly utilize the clean labeled set
that only contains ID data for training a basic classifier fθ(x) and constructing class-conditional
Gaussian Mixture Models (GMMs) for detecting OOD samples in Du. Based on classifier fθ(x),
AL acquisition function α(x;A) and the GMMs, we calculate the informativeness/uncertainty score
U(xi) and ID confidence score M(xi) for each unlabeled sample xi in Du. Let s ∈ {0, 1}M be a
binary vector whose element si = 1 indicates that the i-th unlabeled sample is selected, and si = 0
indicates unselected. In each AL stage, the multi-objective optimization goal is to find an optimal
subset s∗ with b selected samples, simultaneously maximizes the informativeness/uncertainty and ID
confidence score:

s∗ = argmaxs∈{0,1}M (U(s),M(s)) s.t.
∑

si = b, (1)

where U(s) =
∑M

i=1 siU(xi) is shorthand for the aggregated AL score for the selected samples, and
likewise for M(s). U(·) and M(·) will be introduced in Sections 3.2 and 3.3.

3.2 ACTIVE LEARNING SCORE

AL selects data by maximizing the acquisition function a(x;A), i.e., x∗ = argmaxx∈Du
a(x;A)

(Gal et al., 2017). In our work, we use the AL scores for the whole unlabeled pool Du for the
subsequent Pareto optimization. Thus, we convert the acquisition function to a querying density
function via U(xi) =

α(xi;A)∑M
j=1 α(xj ;A)

(Zhan et al., 2022b). In our experiments, we use ENT as our basic

AL sampling strategy, and the acquisition function is αENT(x) = −
∑K

k=1 pθ(y = k|x) log pθ(y =
k|x)), where pθ(y|x) is the posterior class probability using classifier fθ(x). Our framework is
flexible because it can incorporate various AL sampling strategies if their acquisition function
can convert to a querying density function. In general, AL methods that explicitly provide per-
sample scores (e.g., class prediction uncertainty) or inherently provide pair-wise rankings among
the unlabeled pool (e.g., k-Means) can convert to a querying density. Thus, many uncertainty-based
measures like QBC (Seung et al., 1992), BALD (Houlsby et al., 2011; Gal et al., 2017), and Loss
Prediction Loss (LPL) (Yoo & Kweon, 2019) are applicable since they explicitly provide uncertainty
information per sample. Also, k-Means and Core-Set (Sener & Savarese, 2018) approaches are
applicable since they provide pair-wise similarity information for ranking. On the other hand, AL

1In our implementation, the label of OOD data is −1.
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approaches that only provide overall scores for the candidate subsets, such as Determinantal Point
Processes (Bıyık et al., 2019; Zhan et al., 2021a), are unable to be adopted in our framework.

3.3 IN-DISTRIBUTION CONFIDENCE SCORE VIA MAHALANOBIS DISTANCE

Intuitively, ID unlabeled data can be distinguished from OOD unlabeled data since the ID unlabeled
data should be closer to the ID labeled data (Dl) in the feature space. One possible solution is to
calculate the minimum distance between an unlabeled sample and the labeled data of its predicted
pseudo label provided by f(θ) (Du et al., 2021). If this minimum distance is large, the unlabeled
sample will likely be OOD and vice versa. However, calculating pair-wise distances between all
labeled and unlabeled data is computationally expensive. A more efficient method is to summarize the
labeled ID data via a data distribution (probability density function) and then compute the distances
of the unlabeled data to the ID distribution. Since we adopt GMMs to represent the data distribution,
our ID confidence score is based on Mahalanobis distance, as motivated by (Lee et al., 2018). AL
for classical ML tasks focuses on training basic learner fθ(x) with fixed feature representations,
while AL for DL jointly optimizes the feature representation X and classifier fθ(x) simultaneously
(Ren et al., 2021). Considering that these differences can influence the data distributions and further
influence the Mahalanobis distance calculations, we adopt different settings for classical ML and DL.

Classical ML tasks. We represent the data distribution estimated from Dl with GMMs. Specifically,
since we have labels of Dl, we represent each class k with a class-conditional GMM,

pGMM(x|y = k) =
∑Ck

c=1
π(k)
c N (x|µ(k)

c ,Σ(k)
c ), (2)

where (π
(k)
c , µ

(k)
c ,Σ

(k)
c ) are the mixing coefficient, mean vector and covariance matrix of the c-th

Gaussian component with the k-th class, and N (x|µ,Σ) is a multivariate Gaussian distribution with
mean µ and covariance Σ. The class-conditional GMM for class k is estimated from the labeled
data for class k, D(k)

l = {xi|yi = k} using a maximum likelihood estimation (Reynolds, 2009) and
the EM algorithm (Dempster et al., 1977). We then define the ID confidence score M(x) as the
Mahalanobis distance between the unlabeled sample and its closest Gaussian component in any class,

MML(x) = maxk maxc−||x− µ(k)
c ||2Σ(k)

c
. (3)

DL tasks. For DL, we follow (Lee et al., 2018) to calculate M(x), since it makes good use of both
low- and high-level features generated by the deep neural network (DNN) and also applies calibration
techniques, e.g., input-preprocessing (Liang et al., 2018) and feature ensembles Lee et al. (2018) to
improve the OOD detection capability. Specifically, denote fℓ(x) as the output of the ℓ-th layer of a
DNN for input x. A class-conditional Gaussian distribution with shared covariance is estimated for
each layer and for each class k by calculating the empirical mean and shared covariance (µ̂

(k)
ℓ , Σ̂ℓ):

µ̂
(k)
ℓ = 1

|D(k)
l

|

∑
x∈D(k)

l

fℓ(x), Σ̂ℓ =
1

|Dl|

∑
k

∑
x∈D(k)

l

(fℓ(x)− µ̂
(k)
ℓ )(fℓ(x)− µ̂

(k)
ℓ )T . (4)

Next we find the closest class for each layer ℓ via k̂ℓ = argmink ||fℓ(x)− µ̂
(k)
ℓ ||2Σℓ

. To make the ID
and OOD data more separable, an input pre-processing step is applied by adding a small perturbation

to x, x̂ = x+ εsign(∇x||fℓ(x)− µ̂
(k̂ℓ)
ℓ ||2

Σ̂ℓ
), where ε controls the perturbation magnitude2. Finally,

the ID confidence score is the average Mahalanobis distance for x̂ over the L layers,

MDL(x) =
1

L

∑L

ℓ=1
maxk −||fℓ(x̂)− µ̂

(k)
ℓ ||

2
Σ̂ℓ

. (5)

3.4 MONTE-CARLO PARETO OPTIMIZATION ACTIVE LEARNING

Our framework for AL for OOD data contains two criteria, AL and ID confidence score. As
discussed in Section 2, weighted-sum and multi(two)-stage optimization are widely used in multiple-
criteria AL problems. However, both have drawbacks when applied to AL for the OOD data
scenario. In weighted-sum optimization, the objective functions are summed up with weight η:

2In our experiments we follow (Lee et al., 2018) and set ε = 0.01.
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αWeightedSum(x) = ηU(x) + (1 − η)M(x), e.g., as adopted by CCAL (Du et al., 2021). This
introduces an extra trade-off parameter η for tuning, but the true proportion of OOD data in Du is
unknown; thus, we cannot tell which criterion is more important. Furthermore, due to the lack of
data, there is not enough validation data for properly tuning η. For two-stage optimization (Haneveld
& van der Vlerk, 1999; Ahmed et al., 2004; Bindewald et al., 2020; Salo et al., 2022), a subset of
possible ID samples is first selected with threshold M(x) < δ, and then the most informative b
samples in the subset are selected by maximizing U(x). However, suppose δ has not been properly
selected. In that case, we might i) select OOD samples in the first stage (when δ is too large), and
these OOD samples will be more likely to be selected first due to their higher AL score in the second
stage; ii) select ID samples that are close to existing samples (when δ is too small), and due to the
natural conflict between the two criteria, the resulting subset will be non-informative, thus influencing
the AL performance (Zhao et al., 2019).

Considering this contradiction between AL and OOD criteria, developing a combined optimization
strategy that does not require manual tuning of this trade-off is vital. Therefore, we propose POAL
for balancing U(x) and M(x) automatically without requiring trade-off parameters. Consider one
iteration of the AL process, where we must select b samples from Du. The search space size is the
number of combinations M choose b, C(M, b), and the search is an NP-hard problem in general.
Inspired by (Qian et al., 2015), we use a binary vector representation of candidate subset: s ∈ {0, 1}M ,
where si = 1 represents i-th sample is selected, and si = 0 otherwise. For the unlabeled set Du, we
denote the vector of AL scores as u = [U(xi)]

M
i=1 and ID confidence scores as m = [M(xi)]

M
i=1.

The two criteria scores for the subset s are then computed as oU (s) = sTu and oM (s) = sTm.3 The
ranking relationships between two candidate subsets s and s′ are as follows:

• s′ ⪯ s denotes that s′ is dominated by s, such that both scores for s′ are no better than those of
s, i.e., oU (s′) ≤ oU (s) and oM (s′) ≤ oM (s).

• s′ ≺ s denotes that s′ is strictly dominated by s, such that s′ has one strictly smaller score (e.g.,
oU (s

′) < oU (s)) and one score that is not better (e.g., oM (s′) ≤ oM (s)).
• s and s′ are incomparable if both s is not dominated by s′ and s′ is not dominated by s.

Our goal (see Eq. 1) is to find optimal subset solution s that dominates the remaining subset
solutions with

∑
s′i = b. The large search space makes traversing all possible subset solutions

impossible. Thus we propose Monte-Carlo POAL for fixed-size subset selection. Monte-Carlo POAL
iteratively generates a candidate solution s at random, and checks it against the current Pareto set
P = {s1, s2, · · · }. If there are no candidate solution in P that strictly dominates s, then s is added to
P and all candidate solutions in P that are dominated by s are removed. In this way, a Pareto set P
is maintained to include the solution(s) that dominate all other candidate solutions so far, while the
solution(s) in P are incomparable with each other4.

Early-stopping. We adopt an early-stopping strategy to automatically terminate POAL when there
is no significant change in P after many successive iterations, which indicates that a randomly
generated s has little probability of changing P since most non-dominated solutions are included in
P (Saxena et al., 2016). Firstly, we need to define the difference between two Pareto sets, P and P ′.
We represent each candidate solution s as a 2-dimensional feature vector, v(s) = (oU (s), oM (s)).
The two Pareto sets can then be compared via their feature vector distributions, V(P) = {v(s)}s∈P
and V(P ′) = {v(s′)}s′∈P′ . We employed the maximum mean discrepancy (MMD) (Gretton et al.,
2006) to measure the difference:

MMD(P,P ′) =
∥∥∥ 1

|P|

∑
s∈P

v(s)− 1
|P′|

∑
s′∈P′

v(s′)
∥∥∥
H
. (6)

MMD is based on embedding probabilities in reproducing kernel Hilbert space H, and here we use
the RBF kernel with various bandwidths (i.e., multiple kernels). At iteration t, we compute the mean
and standard deviation (SD) of the MMD scores in a sliding window of the previous sw iterations,

Mt =
1

sw

∑t

i=t−sw+1
MMD(Pi−1,Pi), St =

1

sw

∑t

i=t−sw+1
(MMD(Pi−1,Pi)−Mt)

2. (7)

If there is no significant difference in the mean and SD after several iterations, e.g., Mt and St do not
change within two decimal points, then we assume that P has converged, and we stop iterating.

3To keep the two criteria consistent, we normalize the ID confidence scores: m← max(m)−m.
4POAL is inspired by POSS (Qian et al., 2015), but have essential differences, see Appendix B for details.
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Final selection. After obtaining the converged set P , we need to pick one s ∈ P as the final solution
(i.e., final subset for querying). Selecting a final solution is still an open question in multi-objective
optimization (see Appendix C.3 for more details).

s∗ = argmins∈P
∑

s′∈P
∥s′ − s∥T = argmaxs∈P

∑
s′∈P

sT s′, (8)

where we use the property sT s = s′
T
s′ = b. In (8), we select the solution with a maximum

intersection with other non-dominated solutions, i.e., we find the solution whose selected samples
are commonly used in all other solutions in P . Each solution in P represents a particular ID-OOD
trade-off since an appropriate choice of weight η in the weighted-sum objective will lead to its
selection. Thus, the maximum intersection operation selects the samples that are common to all
settings of the ID-OOD trade-off. In this sense, POAL bypasses the tuning of ID-OOD trade-off
hyper-parameters by selecting samples that work well for all trade-offs.

Pre-selection for large-scale data. We next consider using POAL on large datasets. The search
space of size C(M, b) is huge for a large unlabeled data pool. We propose an optional pre-selection
technique to decrease the search space size. We select an optimistic subset Dsub from Du, based
on the dominance relationships between different pairs of samples from the original unlabeled data
pool. Firstly, an initial Pareto front Ppre, a set of non-dominated data points, is selected according
to two objectives U(x) and M(x). Since the size of Ppre is not fixed and might not meet our
requirement of the minimum pre-selected subset size sm, we iteratively update Dsub by firstly adding
the data points in Ppre to Dsub, and then excluding Dsub from Du for the next round of selection. The
iteration terminates when |Dsub| ≥ sm. The pre-selected subset size sm is set according to personal
requirements (i.e., the computing resources and time budget). In our experiment, we set sm = 6b.

We summarized POAL with early-stopping and pre-selection in Algorithms 1 and 2 in the Appendix A.
The computational analysis is in Appendix D. More discussions of POAL are in Appendix G.

4 EXPERIMENTS

In the experiments we aim to: 1) evaluate the effectiveness of POAL on both classical ML and DL
tasks under various scales of OOD data scenarios; 2) compare different multi-objective optimization
strategies, i.e., weighted-sum, two-stage, and Pareto optimization; 3) observe how OOD data influence
typical AL methods as discussed in Section 2.

4.1 EXPERIMENTAL DESIGN

Datasets. For classical ML tasks, we use pre-processed data from LIBSVM (Chang & Lin, 2011):

• Synthetic data: EX8 uses EX8a as ID data and EX8b as OOD data (Ng, 2008).
• Real-life data: Vowel (Asuncion & Newman, 2007; Aggarwal & Sathe, 2015) has 11 classes,

and we use 7 classes as ID data and the remaining for OOD data. Letter (Frey & Slate, 1991;
Asuncion & Newman, 2007) has 26 classes, and we use 10 (a-j) as ID data and the remaining
16 classes (k-z) as OOD data. We also construct 16 datasets with increasing ID:OOD ratios,
denoted as letter(a-k), letter(a-l),..., letter(a-z).

For DL tasks, we adopt the following image datasets:

• CIFAR10 (Krizhevsky et al., 2009) has 10 classes, and we construct two datasets: CIFAR10-04
splits the classes with ID:OOD ratio of 6:4, and CIFAR10-06 splits data with ratio as 4:6.

• CIFAR100 (Krizhevsky et al., 2009) has 100 classes, and we construct CIFAR100-04 and
CIFAR100-06 using the same ratios as CIFAR10.

Appendix E.2 shows visualizations of the ID and OOD data in these datasets.

Baselines. Our work helps existing AL methods select more informative ID data samples while
preventing OOD data selection. In our experiments, we adopt ENT as our basic AL sampling strategy
for POAL framework. We compare against two baseline methods considering OOD data: CCAL
(Du et al., 2021) and SIMILAR (with FLVMI submodular function) (Kothawade et al., 2021). We
compare against five normal AL methods without OOD detection: ENT, BALD (Gal et al., 2017)
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and LPL (Yoo & Kweon, 2019) as uncertainty-based measures; k-Means as representative-based
measure and BADGE (Ash et al., 2020) as combined strategy. To show the effectiveness of our
MC Pareto optimization, we compared it against two alternative combination strategies: weighted
sum optimization (WeightedSum) using weights η = {0.2, 0.5, 0.8} and two-stage optimization
(TwoStage) using threshold δ = mean(m). Additionally, we add random sampling (RAND) and
Mahalanobis distance (MAHA) as baselines. Finally, we report the oracle results of ENT where only
ID data is selected first (IDEAL-ENT), which serves as ideal performance of POAL.

Implementation details. The training/test split of the datasets is fixed in the experiments, while
the initial label set and the unlabeled set is randomly generated from the training set. Experiments
are repeated 100 times for classical ML tasks and 3 for DL tasks. We use the same basic classifier
for each dataset (details in Appendix E, Table 1). To evaluate model performance, we measure
accuracy and plot accuracy vs. budget curves to present the performance change with increasing
labeled samples. To calculate average performance, we compute the area under the accuracy-budget
curve (AUBC) (Zhan et al., 2021b), with higher values reflecting better overall performance under
varying budgets. More details about the experiments are in Appendix E, including data information,
dataset splits, ID : OOD ratios, basic learner settings, and AL hyper-parameters (budget B, batch
size b, and initial label set size), etc.
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Figure 3: (a)-(d) are accuracy vs. budget curves for classical ML tasks. The AUBC performances are shown in
parentheses in the legend. To observe the effect of increasing ID:OOD ratio on letter datasets, we plot AUBC vs.
dataset curves in (e). The complete figures (more letter datasets) are shown in Appendix F.1, Figs. 6 and 7.
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Figure 4: Results of POAL with Pre-Selection on DL datasets. (a-d) are accuracy vs. budget curves. We present
the mean and standard deviation (in parentehsis) of AUBC. (e-h) plot the ratio of OOD samples selected.

4.2 RESULT ANALYSIS

Overall performance. We present the overall performance of classical ML and DL tasks in Fig. 3
and Fig. 4, respectively. Considering each dataset (see data visualization in App. E.2), the ideal
performance of POAL is shown on the synthetic dataset EX8 (Fig. 3a), the ID data is non-linearly
separable, and the OOD data is far from ID data. These properties make the calculation of M very
accurate. Meanwhile, OOD and ID data close to the decision boundaries have high entropy scores.
The curve of our POAL is the closest to IDEAL-ENT, which indicates that POAL selects the most
informative ID data while excluding the OOD samples. For real-life classical ML datasets like vowel
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and letter (Fig. 3b-e), POAL also demonstrates its superiority. In letter, we fixed the ID data (letters
a-j) and gradually increase the OOD data (letters k-z). From Figure 3e, we observe that except for
IDEAL-ENT, all methods are influenced by increasing OOD data, e.g., the AUBC of RAND is 0.718
in Fig. 3c, 0.62 in Fig. 3d. Although our method is also influenced by increasing OOD data, it is
still superior to all baselines. POAL also works on large-scale data with DL tasks. Fig. 4 shows
the accuracy-budget curves (along with the AUBC (acc) values) for CIFAR10 and CIFAR100 with
ID:OOD ratios 6:4 and 4:6, together with the number of OOD samples selected during AL processes.
POAL outperforms both uncertainty-, representative/diversity-based and combined AL baselines like
LPL, BALD, k-Means and BADGE on all tasks. We next analyze various aspects of the experiments.

POAL vs. SIMILAR and CCAL. These three methods consider OOD data when selecting samples.
As shown in Fig. 4e-h, the three methods effectively reduce the amount of OOD data that is selected.
POAL outperforms CCAL and SIMILAR (FLVMI) by large margins on more challenging situations
(i.e., ID:OOD ratio is 4:6), POAL selects fewer OOD samples and achieves better AUBC performance
(e.g., the AUBC value of POAL on CIFAR100-06 is 0.525, while the highest baseline SIMILAR
is 0.451). SIMILAR selects data samples close to labeled ID data and dissimilar to OOD data. It
prevents selecting the OOD data, but the selected ID data may not be informative enough. CCAL
utilized weighted-sum optimization to balance the informative and distinctive selections, and the
trade-off parameter heavily affects its performance (also see Section 4.3 in (Du et al., 2021)). Note
that SIMILAR has multiple implementations with various submodular mutual information functions,
and to provide a fair comparison, we also compared the most effective submodular functions (FLCMI)
on the down-sampled CIFAR10 dataset, as shown in the Appendix F.3.

POAL vs. other multi-objective optimization strategies. We compared our Pareto optimization
against weighted-sum, two-stage optimization, and each single objective, i.e., ENT and MAHA. Both
ENT and MAHA are ineffective when used as a single selection strategy under OOD scenarios – in
Fig 3a, ENT always selects OOD data with higher entropy until all OOD data are selected (EX8
contains 210 OOD samples), and it performs even worse than RAND. MAHA prefers to select ID
samples first (see Appendix Fig. 7), but the data samples with smaller Mahalanobis distance are also
easily classified and far from the decision boundary, and thus not informative. POAL outperforms the
other combination strategies, WeightedSum for different η values and TwoStage, on all tasks. This
demonstrates that joint Pareto optimization better handles the two conflicting criteria.

POAL vs. normal AL. We run experiments on normal AL methods, including uncertainty-based
(ENT, LPL and BALD), diversity-based (k-Means) and combined methods (BADGE). Although
LPL performs fairly well on standard CIFAR10 and CIFAR100 datasets (Yoo & Kweon, 2019; Zhan
et al., 2022a), in OOD scenarios, OOD data have larger predicted loss values and thus influence the
selection. Similar phenomena were observed with BALD and ENT. The performances of k-Means are
close to RAND since both methods sampled ID/OOD data with the same ratio. Although k-Means
will not select OOD samples first like uncertainty-based measures, it still failed to provide comparable
performances. POAL performs well by selecting fewer OOD samples during the AL iterations, as
shown in Fig. 4(e-h). BADGE performed similar to k-Means. The first stage of BADGE calculates
the gradient embedding per sample, and use k-Means++ for clustering. These operations results in
both high informative ID and OOD data are mixed together with high gradient values, therefore,
BADGE failed to distinguish ID/OOD data. In DL tasks, we adopted pre-selection to deal with
large-scale datasets. Although it makes the search space smaller, i.e., changes the global solutions to
local solutions, POAL-PS still performs significantly better than baseline AL methods.

Additional experiments including sensitivity analysis of sw, POAL with other AL methods, more
multi-objective optimization methods, POAL vs. SIMILAR (FLCMI) are presented in Appendix F.

5 CONCLUSION

In this paper, we proposed an effective and flexible Monte Carlo POAL framework for improving AL
when encountering OOD data. Our POAL framework i) incorporates various AL sampling strategies;
ii) handles large-scale datasets; iii) supports batch-mode AL with fixed batch size; iv) does not require
tuning a trade-off hyper-parameter; and v) works well on both classical ML and DL tasks. Future
work could improve the OOD detection criterion by introducing OOD-specific feature representations
and other techniques for better distinguishing ID/OOD distributions.
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6 ETHIC STATEMENT

There is a legitimate concern that POAL with pre-selection strategies (POAL-PS) on large-scale
datasets that would induce bias problems. Since the Pre-Selection technique would firstly filter some
unlabeled data samples in one AL iteration, and thus have no probability of being selected. Future
work should concern more about pre-selection techniques. What kind of high informative ID data
samples may we miss? Is the pre-selected subset enough representative?

7 REPRODUCIBILITY STATEMENT

For models, we provide an implementation of POAL in supplementary material, including the
classical ML task and DL task versions. For datasets, all datasets we employed in this paper are
public datasets.
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A PSEUDO CODES OF POAL

We summarize the POAL with an early stopping technique and pre-selection operation in Algorithm 1
and Algorithm 2, respectively. In Algorithm 1. The implementation of MMD is the RBF kernel with
various bandwidths with open-source implementation5.

B MORE DISCUSSIONS OF POAL AND POSS

In this section, we mainly introduce Pareto Optimization for Subset Selection POSS (Qian et al.,
2015) and how our POAL is inspired from POSS. We then discuss the major difference between
POAL and POSS.

5The PyTorch implementation of MMD is: https://github.com/easezyc/
deep-transfer-learning/blob/master/MUDA/MFSAN/MFSAN_3src/mmd.py
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Algorithm 1 Monte-Carlo POAL with early stopping under OOD data scenarios.

Require: Unlabeled data pool Du with size M , criteria U(x) and M(x), batch size b, maximum
repeat time T , population interval pinv, sliding window size sw and final decision function F .

Ensure: A subset Ds of Du where |Ds| = b.
1: Let s = {0}M , P = {s} and t = 1.
2: for t in 1, ..., T do
3: Generate a random solution s with condition

∑
si = b.

4: if ∄z ∈ P such that s ≺ z then
5: Q = {z ∈ P|z ⪯ s}.
6: P = (P \Q) ∪ {s}.
7: end if

{Terminate the loop early if the pareto set P converged.}
8: if t ̸= 0 then
9: Calculate MMDt according to Equation 5.

10: if MOD(t, pinv) = 0 then
11: Calculate Mt and St with interval pinv according to Equation 6 respectively.
12: M̂t = ROUND(Mt, 2), Ŝt = ROUND(St, 2).
13: if M̂t = M̂t−1 = ... = M̂t−sw and Ŝt = Ŝt−1 = ... = Ŝt−sw then
14: Break
15: end if
16: end if
17: end if
18: end for
19: return argmaxs∈P F(s).

Algorithm 2 Pre-selecting technique on large-scale datasets.

Require: Unlabeled data pool Du, criteria U and M, minimum size of subset Sm of pre-selection.
Ensure: A pre-selected subset Dsub of Du with |Dsub| ≥ Sm.

1: Let Dsub = ∅. i = 0.
2: while |Dsub| < sm do
3: Let Dp = ∅.
4: for i in 0, ..., |Du| do
5: if ∄x ∈ Dp such that Di

u ≺ x then
6: Q = {x ∈ Dp| x ⪯ Di

u}.
7: Dp = (Dp \Q) ∪ {Di

u}.
8: end if
9: end for

10: Du = Du \ Dp.
11: Dsub = Dsub ∪ Dp.
12: end while
13: return Dsub.

We briefly introduce POSS first. POSS is originally applied to the subset selection problem, which is
defined as follows:

argmin
S⊆V

f(S) s.t. |S| ≤ k,

where V = {X1, ..., Xn} is a set of variables, f is a criterion function and k is a positive integer. The
subset selection problem aims to select a subset S ⊆ V such that f is optimized with the constraint
|S| ≤ k, where | · | denotes the size of a set. The subset selection problem is NP-hard in general
(Davis et al., 1997).

POSS solves the subset selection by separating the problem into two objectives, namely optimizing
the criterion function and minimizing the subset size. Usually, the two objectives are conflicting.
Thus the problem is transformed into a multi-objective optimization problem:

min
S⊆V

(f(S), |S|).
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Due to different trade-offs of objectives, multi-objective optimization algorithms need to find a Pareto
set P containing Pareto optimal solutions. Specifically, POSS first initializes P with a random
solution and then selects a solution from P to generate a new solution by flipping each bit with
probability 1/n (n is the number of variables). The new solution will be added to P if it is not strictly
dominated by any solution in P , and the solutions in P that are dominated by the new solution will
also be excluded. POSS repeats this iteration for T times, and it is proved to achieve the optimal
approximation guarantee of (1− 1/e) with E[T ] ≤ 2ek2n expected running time.

Our Monte-Carlo POAL is inspired by POSS, but there are two essential differences, as follows:

Firstly, although POSS is in the form of bi-objective optimization, it supports only one criterion
function, e.g., just U(x), while the other criterion is that the subset size does not exceed b (i.e.,∑

i si ≤ b). However, our POAL needs to solve two different criterion functions, which is a much
harder problem.

Secondly, POSS solves the problem with the constraint |S| ≤ k. POSS generates new solutions by
flipping the bits of the solutions from the previous iterations, i.e., solutions in P . This operation may
change the subset size, violating our setting of fixed-size solutions. Thus, we adopt the Monte-Carlo
approach to generate fixed-size solutions unrelated to the solutions from the previous iterations.
However, our POAL needs fixed-size subset solutions, which means the search space is different.

Due to these differences, we proposed Monte Carlo POAL for our AL under OOD data scenarios
tasks. We randomly generate candidate solutions with fixed batch sizes. It 1) controls all candidate
solutions in P have the same fixed size; 2) compared with POSS, Monte Carlo POAL does not depend
on previous selections, which keeps the method free from initialization problems.

POSS cannot satisfy our requirements. Due to these differences in how candidate solutions are
generated and the number of criteria, the theoretical bound on the number of iterations T needed for
convergence of POSS (Qian et al., 2015) cannot be applied to our Monte-Carlo POAL method. Thus,
when should the iterations of our Monte-Carlo POAL terminate? We noticed in previous research
(Qian et al., 2017) that the Pareto set empirically converges much faster than E[T ] (see Fig. 2 in
(Qian et al., 2017)). Therefore, we propose an early-stopping technique, which has been introduced
in Section 3.4.

C RELATED WORK

This section is an extension of the Section 2. We next introduce two methods that consider AL under
OOD data scenarios and the relationship/difference between the scenarios of OOD AL and AL with
biased data. We also discussed the final selection problem in Multi-objective optimization.

C.1 AL UNDER OOD DATA SCENARIOS

We discusse the related work that involves AL under OOD data scenarios. As mentioned in the main
paper, there is little related work on AL under OOD data scenarios. To the best of our knowledge,
there are two published works that discussed AL under OOD data scenarios: Contrastive Coding
for Active Learning (CCAL) (Du et al., 2021) and Submodular Information Measures Based Active
Learning In Realistic Scenarios (SIMILAR) (Kothawade et al., 2021). We next briefly introduce these
two papers and compare them with our work.

C.1.1 POAL VS. CCAL

Du et al. (2021) considers the class distribution mismatch problem in AL. Their goal is to select the
most informative samples with matched categories. CCAL is the first work related to AL for class
distribution mismatch. It proposed a contrastive coding-based method, which extracts semantic and
distinctive features by contrastive learning. Semantic feature refers to category-level features that can
be exploited to filter invalid samples with mismatched categories. Distinctive features describe the
individual level. It is an AL task-specific feature to select the most representative and informative
class-matched unlabeled data samples. CCAL achieves good performance on well-studied datasets,
e.g., CIFAR10 and CIFAR100 datasets. CCAL utilized self-supervised models like SimCLR and CSI.
It is an excellent idea since it will extract semantic and distinctive features compared with normal
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feature representations like the output of the penultimate layer of neural networks. However, it also
brings limitations, that training a self-supervised model has both high computational and timing costs,
especially on large-scale data sets. Based on the release code of CCAL6, we take 3 days to train a
distinctive feature extraction model (with 700 epochs and batch size 32, on CIFAR10 dataset) on
a V100 GPU. Additionally, CCAL adopted weighted-sum optimization to combine semantic and
distinctive scores, whose acquisition function is as follows:

αCCAL = tanh (kSsemantic(x)−t) + Sdistinctive(x),

where the threshold t is for selectively narrowing the semantic scores of samples, and k controls
the slope of the tanh function. αCCAL introduces two hyper-parameters for balancing the semantic
and distinctive scores. As discussed in Section 4.3 in (Du et al., 2021), the choice of the two hyper-
parameters will influence the final performance. The final shortcoming comes from calculating the
distinctive score to obtain representativeness information. CCAL needs pair-wise comparison among
the whole data pool, whicih time and memory-consuming on large-scale datasets.

C.1.2 POAL VS. SIMILAR

SIMILAR is an AL framework using the previously proposed submodular information measures
(SIM) as acquisition functions. Apparently, (Kothawade et al., 2021) is an application of SIM (Iyer
et al., 2021; Kaushal et al., 2021). Kothawade et al. (2021) proposed many SIM variants to deal with
realistic scenarios, e.g., data imbalance, rare-class, OOD, etc. AL under the OOD data scenario is a
sub-task of their work. They adopted a submodular conditional mutual information (SCMI) function
that best matches AL under OOD data scenario tasks, that is, Facility Location Conditional Mutual
Information (FLCMI), and the function is:

If (A,Q|P ) =
∑
i∈V

max(min(max
j∈A

sij , ηmax
j∈Q

sij)− νmax
j∈P

sij , 0),

where they use the currently labeled OOD points as the conditioning, set P , and the currently labeled
in-distribution (ID) points as the query set Q. A is unlabeled data set. It jointly models the similarity
between A and Q and their dissimilarity with P . The advantages and disadvantages of SIMILAR are
both clear. However, the proposed FLCMI is memory-consuming, and it cannot handle large-scale
datasets. For instance, we cannot run experiments on the full CIFAR10 dataset with one V100
GPU with 32GB memory (memory error is reported). In (Kothawade et al., 2021), they conduct
OOD-related experiments on a downsampled version of CIFAR10. They downsample the dataset to
size 15.6K (the size of the whole CIFAR10 dataset for training is 50K).

(Kothawade et al., 2021) provided a partition trick to solve the memory-consuming problem by
randomly separating the unlabeled data into several pieces and running the AL algorithm on every
piece. It is effective but will hurt the final performance, especially when the number of partitions is
large. We do not use the partition trick in our experiments to provide a fair comparison. We conduct
a time and memory-efficient submodular function FLVMI as the baseline in main experiments (see
Fig 4). FLVMI has comparable performance in the experimental part of (?). We also conduct
experiments on the down-sampled CIFAR10 dataset, following the same experimental settings in
Kothawade et al. (2021). The function of FLVMI is:

If (A,Q) =
∑

i∈|Du|

min(max
j∈A

Sij ,max
j∈Q

Sij).

To sum up, the existing research on AL under OOD data scenarios contains the following problems to
be overcome: 1) time/memory cost on large-scale datasets; 2) additional trade-off hyper-parameters
for balancing different (even conflict) criteria need hand-tuning or tuned by extra validation set.
We propose our POAL framework to address these issues. To solve the first problem, we propose
pre-selection and early stopping techniques to reduce the search space to save time and memory
cost. To solve the second problem, we apply Pareto optimization for balancing various (even conflict)
objectives. Therefore, our proposed framework can more easily be adapted to various tasks.

6https://github.com/RUC-DWBI-ML/CCAL
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C.2 AL WITH DATA DISTRIBUTION SHIFT

There are similarities between AL with OOD scenarios and AL with distribution shift scenarios.
Both have a gap between true underlying data distribution and the estimated distribution (estimated
from labeled and unlabeled data pool). The significant difference between Al techniques under
OOD data scenarios and AL techniques with distribution shift lies in the difference between OOD
and distribution shift. Distribution shift (aka dataset shift) refers to the discrepancy between the
data distributions of the training and testing sets (or true underlying data distribution) (Zhan et al.,
2022b). It causes a principle problem during the model fitting step in AL since some regions with
large densities in the unlabeled data pool may not be well represented by the labeled data. For AL
with distribution shifts, some work like (Beygelzimer et al., 2009; Sawade et al., 2010; Ganti &
Gray, 2012; Farquhar et al., 2021; Zhan et al., 2022b) tried first to model the discrepancy between
labeled data and true underlying data distribution based on techniques like importance sampling and
then train unbiased basic learner(s). Some work model the difference/discrepancy between labeled
set and unlabeled set (or the full data pool) to help construct AL sampling strategies. Shui et al.
(2020) utilizes the unlabeled data information by training a discriminator to distinguish labeled and
unlabeled data sets. Sinha et al. (2019) learns the distribution of labeled data in a latent space using a
VAE. A binary adversarial classifier (discriminator) is then trained to predict unlabeled examples.
Mahmood et al. (2021) minimizes the Wasserstein distance between the unlabeled set and the set to
be labeled as AL sampling strategy. de Mathelin et al. (2021) discuss AL for general loss functions
under domain shift and further provide a generalization bound of the target risk involving pairwise
distances between sample points based on localized discrepancy distance. Distribution shifts can be
further applied to train better basic classifiers (Imberg et al., 2020; Farquhar et al., 2021; Zhan et al.,
2022b). However, in AL with OOD data scenarios, OOD samples are hard to be utilized since they
are useless to model training since OOD samples are not in the classes of interest of the classification
task. Thus, the current research aims to detect OOD samples and avoid sampling them.

C.3 FINAL SELECTION IN MULTI-OBJECTIVE OPTIMIZATION

Selecting a solution from a large Pareto set P is potentially intractable for a decision maker. It is an
open question and is still being discussed in the multi-objective optimization field. Previous work
(Chaudhari et al., 2010) has summarized several ways to obtain a final solution: (i) reformulate
the problem as a single objective problem using additional information as required by the decision-
makers, such as the relative importance or weights of the objectives, goal levels for the objectives,
values functions, etc. (ii) Decision makers interact with the optimization procedure typically by
specifying preferences between pairs of presented solutions. (iii) Output a representative set of
non-dominated solutions approximating the Pareto front, e.g., regarding the candidate solutions as
data points, perform clustering and outputting the centroid as a final solution.

Considering our tasks: AL under OOD data scenarios, (i) needs external information, e.g., which
criterion is more important? Alternatively, it needs the extra trade-off parameters of the AL/OOD
criteria. Nevertheless, in our work, we aim to propose a general framework. We must consider the
worst situation; we have no extra information. If extra information is accessible, we can use (i) to get
the final solution. (ii) needs to manually pick a solution or provide the preferences, which is also
inaccessible. (iii) is the only way to select a final solution without additional information, which is
why we adopt it.

D COMPUTATIONAL COMPLEXITY ANALYSIS OF POAL

D.1 MONTE-CARLO POAL

Our proposed Monte-Carlo POAL for fixed-size subset selection used unordered sampling with
replacement. Denote the ground set A with size N . At each iteration, B (batch size, B < N ) samples
are randomly selected. So the search space contains S = CB

N combinations. The worst case of POAL
is to find all Pareto optimal solutions P = {s1, s2, · · · } out of S combinations (each solution is a
subset of B distinct samples out of N samples). Let |P| = M (M ≤ S). Hence, the computational
complexity is the expected number of iterations that all of the M Pareto optimal solutions have been
selected at least once, which is calculated below:
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At each iteration, there is a probability S−1
S that one particular solution si is not selected. So after k

iterations, there is probability (S−1
S )k that solution si has not been selected. Thus, the probability

that solution si has been selected at least once after k iterations is 1− (S−1
S )k. For all M solutions,

the probability that they have all been selected at least once after k iterations is (1 − (S−1
S )k)M .

To obtain the probability that these M solutions have been selected at least once exactly after k
iterations (i.e., not before k iterations), we need to subtract the probability that it is completed after
k − 1 iterations: (1− (S−1

S )k)M − (1− (S−1
S )k−1)M . Hence, the expected number of iterations is:

E[T ] =

∞∑
k=0

k · (1− (
S − 1

S
)k)M − (1− (

S − 1

S
)k−1)M

=

∞∑
k=0

1− (1− (
S − 1

S
)k)M .

For small datasets, the size is tolerable, so the ground set A is just the unlabeled dataset Du with size
n, and the search space size S = CB

n . In practice, we applied an early-stopping strategy, which can
obtain a good enough solution with much fewer iterations.

D.2 PRE-SELECTION FOR LARGE-SCALE DATASETS

We designed a pre-selection technique for large-scale datasets to reduce the search space of POAL.
As introduced in the last paragraph in Section 3.4, we iteratively select Pareto optimal samples from
the unlabeled data. The worst case is that all unlabeled samples are Pareto optimal samples, so the
number of comparisons is 0 + 1 + 2 + · · ·+ (n− 1) = n2

2 − n. The computational complexity of
the pre-selection is O(n2).

We pre-selected sm = αB samples out of n unlabeled samples (α is set according to the computing
resources and time budget, we set α = 6 in our experiment) for the subsequent Monte-Carlo POAL.
Therefore, N = αB ≪ n, and the search space size S is reduced from CB

n to CB
αB . Also, with an

early-stopping strategy, our POAL can achieve a good enough solution with an acceptable number of
iterations in practice.

E EXPERIMENTAL SETTINGS

E.1 DATASETS

We summarize the datasets we adopted in our experiments in Table 1, including how to split the
datasets (initial labeled data, unlabeled data pool, and test set), dataset information (number of
categories, number of feature dimensions), and task-concerned information (maximum budget, batch
size, numbers of repeated trials and basic learners adopted in each task). Primarily, we recorded the
ID : OOD ratio in each task. We down-sampled the letter dataset and controlled that each category
only has 50 data samples in the training set.

Here we list the licence of the datasets used in our experiments:

• EX8a and EX8b (Ng, 2008): Not listed.
• vowel (Asuncion & Newman, 2007; Aggarwal & Sathe, 2015; Dua & Graff, 2017): Aucune

licence fournie.
• letter (Frey & Slate, 1991; Asuncion & Newman, 2007; Dua & Graff, 2017): Not listed.
• CIFAR10 and CIFAR100 (Krizhevsky et al., 2009): MIT Licence.
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Table 1: Datasets used in the experiments.

Dataset # of
ID

classes

# of feature
dimension

# of
initial

labeled
set

# of un-
labeled

pool

# of test
set

# of
Maxi-
mum

Budget

ID : OOD
Ratio

batch
size b

# of
repeat
trials

basic
learner

EX8 2 2 20 650 306 500 46 : 21 10 100 GPC
vowel 7 10 25 503 294 500 336 : 192 10 100 GPC
letter(a-k) 10 16 30 520 500 550 10 : 1 10 100 LR
letter(a-l) 10 16 30 570 500 550 10 : 2 10 100 LR
letter(a-m) 10 16 30 620 500 550 10 : 3 10 100 LR
letter(a-n) 10 16 30 670 500 550 10 : 4 10 100 LR
letter(a-o) 10 16 30 720 500 550 10 : 5 10 100 LR
letter(a-p) 10 16 30 770 500 550 10 : 6 10 100 LR
letter(a-q) 10 16 30 720 500 550 10 : 7 10 100 LR
letter(a-r) 10 16 30 870 500 550 10 : 8 10 100 LR
letter(a-s) 10 16 30 920 500 550 10 : 9 10 100 LR
letter(a-t) 10 16 30 970 500 550 10 : 10 10 100 LR
letter(a-u) 10 16 30 1020 500 550 10 : 11 10 100 LR
letter(a-v) 10 16 30 1070 500 550 10 : 12 10 100 LR
letter(a-w) 10 16 30 1120 500 550 10 : 13 10 100 LR
letter(a-x) 10 16 30 1170 500 550 10 : 14 10 100 LR
letter(a-y) 10 16 30 1220 500 550 10 : 15 10 100 LR
letter(a-z) 10 16 30 1270 500 550 10 : 16 10 100 LR
CIFAR10-04 6 32×32×3 1000 49000 6000 20000 6 : 4 500 3 ResNet18
CIFAR10-06 4 32×32×3 1000 49000 4000 15000 4 : 6 500 3 ResNet18
CIFAR100-04 60 32×32×3 1000 49000 6000 25000 6 : 4 500 3 ResNet18
CIFAR100-06 40 32×32×3 1000 49000 4000 20000 4 : 10 500 3 ResNet18
Down-sampled CIFAR10 8 32×32×3 1600 14000 8000 2250 8:2 125 3 ResNet18

E.2 VISUALIZATION OF DATASETS

E.2.1 CLASSICAL ML TASKS.

We visualize the datasets of classical ML tasks using t-Distributed Stochastic Neighbor Embedding (t-
SNE)7, as shown in Figure 5. We split ID/OOD data by setting OOD data samples as semitransparent
grey dots to better observe the distinction between the ID and OOD data distributions.

E.2.2 DL TASKS.

We also visualize the discrepancy using MMD in DL tasks since the raw features of DL tasks are
hard to visualize, like Figure 5. We calculate the MMD distance within the ID data and the MMD
distance between the ID and OOD data. To extract the feature representations in DL tasks, we utilized
a ResNet50 which is pre-trained on ImageNet dataset8. After extracting the features (the output of
the penultimate layer of the pre-trained ResNet50) of ID and OOD samples, we next calculate the
MMD scores, which is the same as the MMD settings in our early-stopping technique. Calculating
the MMD score between these ID and OOD data samples is memory-consuming (CIFAR10 and
CIFAR100 have 50, 000 training sets). To calculate the ID-ID MMD score, we randomly sampled
1, 000× 2 instances in ID data and calculated the MMD score. We repeated this operation 100 times
and took the average score. For calculating the ID-OOD score, we perform the same operation. The
MMD scores of CIFAR10-04, CIFAR10-06, CIFAR100-04 and CIFAR100-06 are shown in Table 2.
Note that we did not calculate the MMD scores of ID-ID and ID-OOD during each stage of the
AL process, since calculating the MMD scores on large-scale data with high-dimensional feature
representations is time- and memory-consuming.

Table 2: MMD scores of ID-ID and ID-OOD data in DL tasks.

ID-ID ID-OOD
CIFAR10-04 0.00608 0.04645
CIFAR10-06 0.00596 0.03565
CIFAR100-04 0.00603 0.01305
CIFAR100-06 0.00604 0.01659

7https://scikit-learn.org/stable/modules/generated/sklearn.manifold.
TSNE.html

8https://pytorch.org/vision/main/models/generated/torchvision.models.
resnet50.html
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Figure 5: Visualization of data sets in classical ML tasks by t-SNE. We set the semitransparent grey dots to
represent OOD data samples, the remaining colorful dots are ID data samples.

E.3 BASELINES AND IMPLEMENTATIONS

We introduce the baselines and the implementation details in this section.

For the basic learner/classifier, we adopted Gaussian Process Classifier (GPC), Logistic Regres-
sion (LR), and ResNet18 in our experiments. We did not choose GPC in the letter dataset since
the accuracy-budget curves based on GPC are not monotonically increasing. The requirement of
selecting a basic classifier is: that the basic classifier can provide soft outputs, that is, predictive
class probabilities to calculate the uncertainty of each unlabeled sample, e.g., entropy. We use the
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implementation of the GPC with RBF kernel9 and LR10 of scikit-learn library (Pedregosa et al., 2011)
with default settings. For ResNet18, we employed ResNet18 (He et al., 2016) based on PyTorch with
Adam optimizer (learning rate: 1e− 3) as the basic learner in DL tasks. In CIFAR10 and CIFAR100
tasks, we set the number of training epochs as 30, the kernel size of the first convolutional layer in
ResNet18 is 3× 3 (consistent with PyTorch CIFAR implementation11). Input pre-processing steps
include random crop (pad = 4), random horizontal flip (p = 0.5) and normalization.

For the implementation of the classical ML baselines, we have introduced it in the main paper.

For the baselines in DL tasks, we use the implementation of DeepAL+12(Zhan et al., 2022a). We
provide simple introductions of BALD, LPL and BADGE as follows:

• Bayesian Active Learning by Disagreements (BALD) (Houlsby et al., 2011; Gal et al., 2017): it
chooses the data points that are expected to maximize the information gained from the model
parameters, i.e., the mutual information between predictions and model posterior.

• Loss Prediction Loss (LPL) (Yoo & Kweon, 2019): it is a loss prediction strategy by attaching a
small parametric module that is trained to predict the loss of unlabeled inputs concerning the
target model by minimizing the loss prediction loss between predicted loss and target loss. LPL
picks the top b data samples with the highest predicted loss.

• Batch Active learning by Diverse Gradient Embeddings (BADGE) (Ash et al., 2020): it first
measures uncertainty as the gradient magnitude for the parameters in the output layer in the first
stage; it then clusters the samples by k-Means++ in the second stage.

For CCAL, We utilize the open-source code implementation of CCAL13. We train SimCLR (Chen
et al., 2020), the semantic/distinctive feature extractor, which is provided by CCAL’s source code.
We train the two feature extractors with 700 epochs and a batch size of 32 on a single V100 GPU.

We run all our experiments on a single Tesla V100-SXM2 GPU with 16GB memory except for
running SIMILAR (FLCMI) related experiments. Since SIMILAR (FLCMI) needs much memory.
We run the experiments (SIMILAR on down-sampled CIFAR10) on another workstation with Tesla
V100-SXM2 GPU with 94GB memory in total.

F EXPERIMENTS

This section is an extension of Section 4 in the main paper. We provide additional experimental
results analysis and more experiments that do not appear in the main paper due to the page limit.

F.1 EXPERIMENTS ON CLASSICAL ML TASKS

We present the complete accuracy vs. budget curves and numbers of OOD samples selected vs.
budget curves during AL processes in Figure 6 and Figure 7 respectively. We observe from Figure 5,
Figure 6, and Figure 7 that the capability of Mahalanobis distance is limited by the distinction
between ID data distribution and OOD data distribution. EX8 has distinct ID/OOD data distributions
(see Figure 5-a), thus the Mahalanobis distance well distinguishes ID and OOD data, and reaches the
optimal performance (Figure 7-a, MAHA has the same curve with IDEAL-ENT). However, for vowel
and letter dataset, the ID/OOD data distributions are not as distinct as EX8 (see Figure 5 b-r), thus
the performance of MAHA is influenced. Furthermore, it affects the performance of our POAL. It
makes our POAL behaves less perfectly on vowel and letter datasets than on the EX8 dataset. Similar
conclusions appear in (Ren et al., 2019). This is our future work to find better ways to differentiate
ID and OOD data distributions.

9https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_
process.GaussianProcessClassifier.html

10https://scikit-learn.org/stable/modules/linear_model.html#
logistic-regression

11https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
12https://github.com/SineZHAN/deepALplus
13https://github.com/RUC-DWBI-ML/CCAL/
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Figure 6: Accuracy vs. budget curves for classical ML tasks. The AUBC performances are shown in parentheses
in the legend.

F.2 EXPERIMENTS ON DL TASKS

The comparative results are shown in Figure 8. It is an enlarged version of Fig. 4, with the same
contents. We have moderately better performance than CCAL on CIFAR10-04 dataset, i.e., our
POAL has 0.762 AUBC performance and CCAL is 0.754. Note that in Figure 8-c, POAL has
similar efficiency with CCAL on preventing selecting OOD data samples on CIFAR10-04 dataset.
In CIFAR10-06 task, as the OOD ratio increases, our POAL outperforms CCAL, i.e., our POAL
has 0.84 AUBC performance while CCAL is only 0.819. And POAL selects less OOD samples
than CCAL, as shown in Figure 8-d. On CIFAR100 datasets, the advantages are more significant.
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Figure 7: Numbers of OOD samples selected vs. budget curves for classical ML tasks during AL processes.

POAL selected less OOD data than CCAL. Both POAL and CCAL perform better than normal AL
sampling schemes (i.e., ENT, LPL, BALD, k-Means, BADGE and RAND) on both CIFAR10-04 and
CIFAR10-06 datasets.

F.3 ADDITIONAL EXPERIMENTS (1): POAL VS. SIMILAR (FLCMI)

In the main paper, we have compared the SIMILAR with FLVMI as submodular mutual information.
Referring to its comparable performance on CIFAR10 dataset (see Figure 5a and Figure 5b in
(Kothawade et al., 2021) as reference). We choose FLVMI as baselines in our main paper since it is
both time and memory efficient. However, FLVMI performs worse than FLCMI, since FLCMI is

25



Under review as a conference paper at ICLR 2023

specially designed for AL under OOD data scenarios. However, FLCMI is both time and memory-
consuming. In (Kothawade et al., 2021), they adopted down-sampled experiments. Although the
partition trick could be applied to solve this time/memory-consuming problem, the partition will
influence the final performance due to the randomness. To provide a fair comparison. We conduct
additional experiments on the down-sampled CIFAR10 dataset on SIMILAR (FLCMI), following the
experimental settings in (Kothawade et al., 2021).

The comparison experiments are shown in Figure 9. Besides our POAL and SIMILAR (FLCMI), we
also provide more baselines as reference, i.e., IDEAL-ENT, ENT, Margin (Wang & Shang, 2014) and
RAND. As shown in Figure 9, both SIMILAR (FLCMI) and POAL have better performance than
normal AL sampling strategies. From the aspect AUBC evaluation metric, our model has comparable
performance with SIMILAR, 0.667 vs 0.669. Nevertheless, we have a lower standard deviation value
than SIMILAR, so our POAL is more stable. From the aspect of Accuracy vs. Budget curves, in
early stages (e.g., Budget < 2,500), our POAL is better than SIMILAR (FLCMI) and in latter stages
SIMILAR (FLCMI) exceeds POAL. The reason is that in SIMILAR (FLCMI), they calculate the
similarities between the ID labeled set and the unlabeled pool and the dissimilarities between the
OOD labeled set and the unlabeled pool. In the early stages, the OOD data is insufficient. Thus
SIMILAR(FLCMI) will select more OOD samples, as shown in Figure 9-b. From this experiment, we
find that SIMILAR (FLCMI) only performs well when we have enough information on both ID and
OOD data samples, which results in more OOD data sample selection. Our POAL only considers the
distance between unlabeled samples and labeled ID samples, so we are more efficient in preventing
OOD sample selection. Additionally, our POAL is more widely adopted since we could be adopted
on large-scale datasets. However, SIMILAR is limited by the computation condition. Our method is
also more time efficient than SIMILAR (FLCMI), as shown in Table 3. SIMILAR (FLCMI) runs five
times longer than our POAL.

Table 3: The mean and standard deviation of running time (in seconds) of the comparative experiments with 3
repeated trials between our POAL and SIMILAR.

Method POAL-PS SIMILAR IDEAL-ENT ENT Random Margin
Time 6419.0 (109.9) 32837.7 (897.7) 2225.0 (12.6) 1690.0 (15.3) 1507.7 (5.8) 1573.7 (9.8)

F.4 ADDITIONAL EXPERIMENTS (2): SENSITIVITY ANALYSIS OF HYPER-PARAMETERS

In our main paper and Algorithm 1, we have a hyper-parameter sw (sliding window size) to control
the early stopping condition. Large sw refers to a more strict early stop condition and vice versa. If
there is no significant change within sw × pinv iterations/populations, then we can stop early. In our
experiments, we set sw = 20. In this section, we conduct an ablation study to see if less strict or more
strict conditions influence the final performance, as shown in Table 4. We found that sw = 10 (less
strict) does not affect the model performance (there is no significant difference of AUBC performance
between sw = 20 and sw = 10). Less strict early stopping also requires less running time, e.g., in
CIFAR100-04 dataset, we have 66,880.7 seconds average running time with sw = 20 and 4,932.3
seconds average running time with sw = 10.

Besides sw, we have another hyper-parameter sm, which controlts the minimum pre-selected subset
size. sm is designed to adapt to various computational resource constraints but not for controlling the
AL/OOD trade-off. Larger sm can be used when more computational resources/time are available,
while smaller sm can save computational cost but may lead to slightly sub-optimal solutions. In our
experiments, we set sm = 6b based on our computational resource situation, which works well in
practice.

Although the numbers of hyper-parameters of POAL are similar to the weighted sum, their purposes
are fundamentally different. In the weighted sum optimization, hyper-parameters relate to the weight-
ing of the two objectives, significantly influencing the result. In contrast, the two hyper-parameters of
POAL are about the efficient approximation (concerning computational resources), which mainly
affects the initialization and stopping criteria, possibly resulting in sub-optimal approximate solutions.
Note that we do not need to tune these parameters for various tasks.
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Table 4: The hyper-parameter sensitivity of sliding window size sw , including mean and standard deviation (SD)
of AUBC performance and running time.

CIFAR10-04 AUBC Time (seconds)
POAL with sw = 20 0.7620 (0.0033) 62082.7 (7371.9)
POAL with sw = 10 0.7613 (0.0024) 56107.0 (3364.2)

CIFAR10-06 AUBC Time
POAL with sw = 20 0.8400 (0.0029) 34946.0 (4860.2)
POAL with sw = 10 0.8403 (0.0029) 47362.0 (188.7)

CIFAR100-04 AUBC Time
POAL with sw = 20 0.4807 (0.0009) 66880.7 (1583.5)
POAL with sw = 10 0.4797 (0.0017) 4932.3 (1891.2)

CIFAR100-06 AUBC Time
POAL with sw = 20 0.5253 (0.0005) 62762.0 (4277.4)
POAL with sw = 10 0.5270 (0.0008) 55955.3 (5162.4)

F.5 ADDITIONAL EXPERIMENTS (3): MORE MULTI-OBJECTIVE OPTIMIZATION STRATEGIES

In the main paper, we have introduced weighted-sum optimization, widely adopted in multiple-
criteria/objective optimization problems. There is another available similar method called Weighted-
Product Model (WPM). WPM is a popular multi-criteria decision-making (MCDM) method, similar
to the weighted-sum optimization model. The main difference between weighted-sum and weighted-
product is that instead of adding in the main mathematical operation, it uses multiplication. We
wrote WPM in AL with OOD data scenario as as αWeightProd = argmaxs = U(s)η ×M(s)(1−η).
We conduct single experiments to show the performance on classical ML tasks (i.e., EX8 dataset).
There is no significant difference between weighted-sum and weighted-product optimization (Gupta,
2022) (especially on subset selection, since the ranking of data samples are similarly produced by
weighted-sum and weighted-product). The experimental results are shown in Table 5. The results
using weighted product optimization is similar to weighted-sum optimization.

Table 5: The comparison between weighted-sum and weighed-product optimization method. We test the
performance on EX8 dataset.

Method AUBC (acc)
WeightedSum - η = 0.5 0.692
WeightedSum - η = 0.2 0.685
WeightedSum - η = 0.8 0.685
WeightedProd - η = 0.5 0.688
WeightedProd - η = 0.2 0.688
WeightedProd - η = 0.8 0.691

F.6 ADDITIONAL EXPERIMENTS (4): POAL INCORPORATED WITH OTHER AL METHODS

To present the flexibility of our POAL, e.g., is able to incorporate more AL sampling schemes, we
conduct a simple experiment on classical ML tasks, we incorporate QBC (Seung et al., 1992) and
LAL (Konyushkova et al., 2017), these two methods come from high-cited AL-related publications.
The selection of basic AL sampling strategies is according to the comparative survey (Zhan et al.,
2021b), in which both QBC and LAL show competitive performance across multiple tasks and AL
sampling strategies. We repeat the trials ten times in each experiment. The results are presented in
Figure 10. We conduct experiments on EX8 and vowel datasets. This experiment shows that our
POAL is flexible to handle various AL sampling strategies.

F.7 SUMMARISING EXPERIMENTS RESULTS ON DL TASKS

To observe the efficiency of each AL sampling strategy in our experiments, we summarized the
overall performance across all models and datasets we adopted, including the mean and standard
deviation (SD) of AUBC performance and running time. We record the running time from the start
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Table 6: Overall comparison across all AL sampling strategies of all DL tasks, including mean and standard
deviation (SD) of AUBC performance and running time across three repeated trials.

CIFAR10-04 CIFAR10-06
AUBC Time (seconds) AUBC Time (seconds)

RAND 0.7500 (0.0014) 10805.3 (148.0) 0.8080 (0.0008) 5217.7 (348.0)
IDEAL-ENT 0.8007 (0.0029) 14578.0 (838.2) 0.8737 (0.0019) 9398.0 (696.4)
POAL (sw = 20) 0.7620 (0.0033) 62082.7 (7371.9) 0.8400 (0.0029) 34946.0 (4860.2)
POAL (sw = 10) 0.7613 (0.0024) 56107.0 (3364.2) 0.8403 (0.0029) 47362.0 (188.7)
CCAL 0.7543 (0.0009) 76129.3 (5853.7) 0.8190 (0.0037) 35715.3 (328.5)
SIMILAR (FLVMI) 0.7397(0.0012) 13942.7(116.2) 0.7947(0.0037) 8550.0(231.3)
ENT 0.7350 (0.0029) 10155.3 (872.3) 0.7960 (0.0057) 5485.7 (655.4)
LPL 0.7510 (0.0071) 12384.7 (1555.9) 0.7873 (0.0103) 3783.3 (326.9)
BADGE 0.7437 (0.0029) 41646.0 (12723.5) 0.8063 (0.0037) 17539.3 (628.0)
KMeans 0.7440 (0.0014) 18785.7 (2571.3) 0.8100 (0.0022) 8627.3 (407.2)
BALD 0.7480 (0.0022) 10478.3 (679.7) 0.8060 (0.0022) 4158.3 (431.1)
TwoStage 0.7300 (0.0029) 8342.3 (1059.4) 0.7970 (0.0028) 5524.7 (821.3)
WeightedSum-1.0 0.7337 (0.0019) 9489.7 (454.5) 0.8033 (0.0033) 2006.3 (13.8)
WeightedSum-5.0 0.7327 (0.0029) 11892.3 (1733.9) 0.8060 (0.0045) 7998.3 (81.6)
WeightedSum-0.2 0.7340 (0.0045) 8249.3 (2019.2) 0.8063 (0.0012) 5751.0 (795.3)

CIFAR100-04 CIFAR100-06
AUBC Time (seconds) AUBC Time (seconds)

RAND 0.4560 (0.0016) 11563.3 (985.5) 0.4453 (0.0026) 11075.3 (1198.2)
IDEAL-ENT 0.5250 (0.0008) 17736.7 (1694.7) 0.5707 (0.0017) 19098.0 (1458.8)
POAL (sw = 20) 0.4807 (0.0009) 66880.7 (1583.5) 0.5253 (0.0005) 62762.0 (4277.4)
POAL (sw = 10) 0.4797 (0.0017) 4932.3 (1891.2) 0.5270 (0.0008) 55955.3 (5162.4)
CCAL 0.4400(0.0008) 21253.0(2171.9) 0.4467(0.0024) 65303.0(1676.6)
SIMILAR (FLVMI) 0.4377(0.0026) 20732.7(662.1) 0.4510(0.0024) 13137.0(396.7)
ENT 0.4267 (0.0034) 11202.3 (2484.7) 0.4100 (0.0036) 10940.0 (1318.4)
LPL 0.4140 (0.0037) 17797.0 (4093.8) 0.4087 (0.0042) 5633.0 (252.3)
BADGE 0.4530 (0.0000) 58877.7 (13876.3) 0.4430 (0.0008) 58046.3 (17296.9)
KMeans 0.4527 (0.0005) 34944.3 (4121.3) 0.4413 (0.0021) 17465.0 (3570.3)
BALD 0.4467 (0.0040) 14699.0 (2675.9) 0.4313 (0.0061) 4574.3 (140.5)
TwoStage 0.4347 (0.0021) 11484.3 (4360.1) 0.4137 (0.0017) 3234.3 (91.1)
WeightedSum-1.0 0.4267 (0.0025) 12722.0 (4164.8) 0.4103 (0.0005) 9455.3 (468.5)
WeightedSum-5.0 0.4287 (0.0039) 14822.3 (6249.7) 0.4073 (0.0050) 11309.3 (1303.4)
WeightedSum-0.2 0.4290 (0.0022) 11736.7 (4394.3) 0.4097 (0.0033) 8865.7 (1230.1)

of the AL process to the output of the final basic learner. From Table 6, we can observe that our
model outperforms all baselines (except for the ideal model – IDEAL-ENT) in terms of AUBC
performance. For running time, compared with normal AL sampling strategies, both POAL and
CCAL are incomparable. Among POAL, CCAL and SIMILAR, which are designed specific to AL
under OOD data scenarios, the running cost of our POAL is affordable. Especially, as mentioned
in the previous section of hyper-parameter sensitivity, the running timing cost of our POAL can be
reduced by loosing the early stop conditions (less sw).

F.8 VISUALIZATION OF THE SUBSET SELECTION OF POAL

A direct way to validate the efficiency of POAL is to measure the difference between the selected
subset by POAL and truly Pareto set. However, on normal datasets, the searching space of the optimal
subset selection is too large, as analysed in Section 3.4, it is a combination-level – C(M, b). Therefore,
we use the subset selected by typical Pareto optimization (the operation is the same as the operation
of the first round of pre-section technique in Section 3.4) to represent the optimal subset selection
instead. We visualize the subset selection on data and multi-objective space, as shown in Figure 11.
Using typical Pareto optimization would i) select a subset with non-fixed subset size and ii) possibly
include many OOD data samples since the entropy score of OOD data samples are relatively large.
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POAL select more informative ID data less OOD samples based on current basic learners in Figure 11.

We conduct a toy experiments to show whether the subset selection generated by POAL is similar
to the output generated Truly Pareto Optimization for subset selection. We down-sampled the size
unlabeled data pool to 50 and set the batch size as 5, the searching space is C(50, 5) = 2, 118, 760,
which is acceptable. We transverse the whole searching space and use the same Final-selection method
as in POAL to generate a single final solution. As shown in Figure 12-g, We could observe that the
candidate Pareto set P generated by POAL is close to the selection of Truly Pareto Optimization. In
Figure 12-g, the solutions generated by POAL are located on Pareto Curve (or very close to Pareto
Curve), in which Pareto Curve is generated by the truly pareto optimization. Observing Figure 12a-f,
the subset selection generate by POAL is better. This is because Truly Pareto Optimization finally
selects the subset with higher entropy and lower ID score, thus might select OOD samples.

G DISCUSSIONS OF POAL

G.1 DISCUSSIONS ABOUT HOW POAL WORKS

In our work, choosing Mahalanobis distance-based measure to calculate ID confidence score has
many reasons. Besides the superiority of OOD detection performance as introduced in (Ren et al.,
2019), similar to combined strategies in AL, which has been introduced in Section 2 in the main
paper, we combine uncertainty-based and distance-based criteria together. This allows us to analyze
the data in different aspects: task-agnostic aspect, refers to the uncertainty-based measure (e.g., ENT)
and geometric aspect, refers to the relative distance / pair-wise similarity of unlabeled data samples.
This guarantees a comparable performance under various OOD data scenarios.

We have demonstrated the effectiveness of POAL on various ratio of OOD data scenarios, as shown
in Figure 6c-r. We have also conduct simple experiment on clean unlabeled data pool (no OOD data),
POAL still works. We conduct a simple experiment on the vowel dataset, where we use all training
data with 11 classes as ID data and there is no OOD data. (Note that in the AL+OOD setting, only 7
ID classes are used). On this pure ID data, the AUBC (acc) of ENT is 0.454, and our POAL is 0.465.
Compared with normal AL, our POAL still maintains good performance when there are no OOD
samples in the unlabeled data pool. This is because even if there are no OOD data in the unlabeled
pool, POAL still be able to detect some outliers based on Mahalanobis distance and prevent selecting
them, thus making better subset selection for AL (avoiding overfitting on outliers).

Our POAL is easily to be extended to any number of score functions, by extending the dominance
relationship in Section 3.4 in the main paper, and the vector scores for the early stopping criteria.
Thus, it is possible to adopt multiple AL or ID scores.

G.2 LIMITATIONS

Currently, our POAL has several limitations: (1) The accuracy of Mahalanobis distance-based ID
confidence score calculation; and (2) the Monte-Carlo sampling scheme in our POAL for seeking non-
dominated fixed-sized subset solutions is not high-efficiency. In future work, we will try more suitable
feature representations to construct more distinct ID-/OOD- data distributions and more convenient
features like semantic and distinctive feature representations in (Du et al., 2021). Regarding the
efficiency of the Monte-Carlo sampling scheme, although many sampling schemes like (adaptive)
importance sampling and metropolis-hastings sampling would be more efficient than Monte-Carlo
sampling, these methods might suffer from initialization problems. Since the newly generated
possible candidate solutions would rely on previous selections (e.g., P), which easily fall into local
minima. Monte-Carlo sampling has no such problem. In future work, we will try to propose more
efficient sampling methods for finding non-dominated subset solutions.
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Figure 8: The comparative experiments between our POAL-PS and baseline methods on CIFAR10 and CIFAR100
datasets. This is an enlarged version of Fig. 4 in the main paper.
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Figure 9: The comparative experiments between our model and SIMILAR on down-sampled CIFAR10 dataset.
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(b) Vowel: Accuracy vs. Budget
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(c) EX8: OOD num vs. Budget
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(d) Vowel: OOD num vs. Budget

Figure 10: Flexibility: POAL incorporates various AL sampling strategies, including LAL and QBC.
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(c) Typical Pareto Optimization
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Figure 11: The subset selection generated by POAL and Typical Pareto Optimization. The selection results
are presented on data space and multi-objective space respectively. The experimental settings are the same as
Figure 1 in the main paper.
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(a) Truely Pareto Optimization
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(b) Typical Pareto Optimization
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(d) Truely Pareto Optimization
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(e) Typical Pareto Optimization
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Figure 12: The subset selection generated by POAL, Truely Pareto Optimzation and Typical Pareto Optimization
on down-sampled EX8 dataset. The selection results are presented on data space and multi-objective space
respectively. Figure a-f are based on single data point level, Figure-g is based on subset level, where each
element of pareto set is a selected subset with fixed batch size. The x-axis and y-axis are U andM respectively.
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