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Abstract

In recent years, pre-trained large language models (LLMs) have demonstrated
remarkable efficiency in achieving an inference-time few-shot learning capability
known as in-context learning. However, existing literature has highlighted the
sensitivity of this capability to the selection of few-shot demonstrations. Current
understandings of the underlying mechanisms by which this capability arises from
regular language model pretraining objectives remain disconnected from the real-
world LLMs. This study aims to examine the in-context learning phenomenon
through a Bayesian lens, viewing real-world LLMs as latent variable models. On
this premise, we propose an algorithm to select optimal demonstrations from a set
of annotated data with a small LM, and then directly generalize the selected demon-
strations to larger LMs. We demonstrate significant improvement over baselines,
averaged over eight GPT models on eight real-world text classification datasets.
We also demonstrate the real-world usefulness of our algorithm on GSM8K, a math
word problem dataset. Our empirical findings support our hypothesis that LLMs
implicitly infer a latent variable containing task information. 1

1 Introduction

Transformer-based [41] pre-trained large language models (LLMs) have demonstrated significant
advancements in a variety of natural language processing (NLP) tasks. As the size of these LLMs
increases, they gain “in-context learning” capabilities, whereby the models achieve state-of-the-art
(SOTA) or near-SOTA performance by conditioning on a small number of demonstration examples
at inference time, without any need for updating model parameters [4]. Below is an example input
sequence for semantic analysis with in-context learning:

Great movie. Positive.\n The worst movie ever. Negative.\n Can’t wait to
see the second movie!

The first two lines are two demonstrations, and the third line is a test input. We expect an LLM to
output the correct label Positive as a continuation.

In-context learning has been demonstrated to be an effective technique for a wide range of NLP tasks.
However, it is sensitive to the choice, format, and even the order of the demonstrations used [29, 20].
This makes achieving optimal performance with in-context learning a significant challenge, requiring
real human effort to adjust the format and selection of demonstration examples. Heuristic solutions,
such as selecting demonstrations based on the similarity between the demonstrations and test input

1Code: https://github.com/WANGXinyiLinda/concept-based-demonstration-selection.
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[19, 37] have been proposed, but a comprehensive understanding of why certain demonstrations
are effective while others are not remains elusive. Additionally, the mechanisms by which LLMs
acquire in-context learning capabilities through training on natural text under the standard language
model pre-training objective are not fully understood. Recent works on understanding in-context
learning provide valuable insights and theoretical results [5, 1, 42, 14, 12], but are limited in scope,
focusing on synthetic experiments to validate their hypotheses, while it remains unclear if these
results generalize to LLMs pre-trained on real-world natural language data. Xie et al. [50] introduced
a prominent result providing a latent topic (concept) variable interpretation for in-context learning.
They showed that the in-context learning predictor approaches the Bayes optimal predictor when the
number of demonstrations approaches infinity, under the assumption that both the pre-training data
distribution and task-specific data distribution are Hidden Markov Models (HMM). However, the
assumption that the data generation process is Hidden Markovian makes extrapolation of the result to
natural language questionable, and restricts empirical verification to synthetic data with toy models.

We are inspired by this prior work and introduce a more general and natural explanation built
on realistic assumptions, which gives rise to a practical demonstration selection algorithm. Our
explanation is inspired by the generation process of a topic model, i.e. a simple latent variable model:

P (w1:T ) =

∫
Θ

P (w1:T |θ)P (θ)dθ

Where θ ∈ Θ represents a potentially high dimensional topic/concept variable, Θ is the space of the
topic/concept variable, and w1:T refers to the token sequence of a piece of text. Note that the topic
model here refers to the modern neural topic models [23, 22]. On the other hand, generative LLMs
model text data according to the general probabilistic decomposition:

P (w1:T ) =

T∏
i=1

P (wi|wi−1, ...,w1)

While in practice, LLMs generate new tokens based on all previous tokens, we investigate whether a
simplified assumption similar to that of topic models can be made for LLMs:

PM (wt+1:T |w1:t) =

∫
Θ

PM (wt+1:T |θ)PM (θ|w1:t)dθ

In this scenario, the generated tokens are assumed to be conditionally independent of previous
tokens, given the latent topic (concept) variable that acts like an approximate sufficient statistic for
the posterior information related to the prompt w1:t. For in-context learning, this concept variable
includes format and task information. By conditioning on an appropriate latent concept variable,
LLMs would generate the desired continuation with P (wt+1:T |θ). As LLMs do not explicitly learn
a latent variable distribution like LDA-style topic models [3], we can instead utilize this formulation
under an Empirical Bayesian formulation inspired by Lester et al. [17] to only approximate the
optimal latent variable value for a desired task, using a small LLM (with less than 1B parameters),
which is computationally efficient.

We empirically validate our explanation by selecting examples (w1:t in the equations) that are
most likely to infer the optimal latent variable value (those with the highest posterior probability
P (θ|wt+1:T )). We then directly use them as demonstrations for in-context learning with other larger
LLMs (up to 175B parameters) and observed a significant performance improvement. The general-
ization of demonstrations between LLMs is likely a result of similar pre-training data distributions.

While our work is inspired by that of Xie et al. [50], our approach differs significantly in both
theoretical analysis and experimental settings. Our main contributions are as follows:

• We assume a general data generation process specified by a three-variable causal graph,
without constraints on the distribution function or the number of demonstrations.

• We prove under these realistic assumptions that the in-context learning predictor can
reach the Bayes optimal predictor with a finite number of demonstrations chosen using the
latent concept variable.

• We introduce an efficient, practical demonstration selection algorithm based on our
theoretical results, which can select demonstrations using a small LLM and then directly
generalize the demonstrations to other LLMs. The effectiveness of our algorithm is em-
pirically validated using real-world LLMs on both text classification tasks and math word
problems.

2



Our goal is to close the gap between theoretical understandings and real-world LLMs. To the best of
our knowledge, our proposed latent variable explanation of in-context learning is the first Bayesian
explanation that yields an effective algorithm in real-world scenarios.

2 Theoretical Analysis

In in-context learning, the prompt w1:t is composed of several demonstrations and a test input. The
generated tokens wt+1:T represent the model’s prediction for the test input.

2.1 Notations and Problem Setting

Suppose the objective of our task is to predict a discrete target variable Y ∈ Y , given a token
sequence X ∈ X , where X is the space of all possible token sequences. θ ∈ Θ is a potentially
high dimensional latent variable, where Θ is the high dimensional space of the variable. Unlike the
traditional topic model, θ is not assumed to be discrete, but continuously distributed over Θ. To
define the data generation process, we posit the existence of an underlying causal relation between
X , Y , and θ. We examine two potential directions of this causal relation, namely X � Y � θ and
Y � X � θ, which can be represented mathematically as the following structural equations:

Y = f(X,θ, ϵ) X = g(Y,θ, ϵ)

Here ϵ ∈ E is an independent noise variable, f : X × Θ × E → Y and g : Y × Θ × E → X are
two deterministic functions. Furthermore, we denote the joint data distribution by X,Y,θ ∼ P , and
assume that Y is sampled from a uniform distribution over Y . The distinction between these two
directions is crucial, as it allows us to utilize the direction in which the child variable (Y or X) is
independent of the other variables, given its parents.

We hypothesize that the causal direction depends on the nature of the task. For instance, in the task of
predicting the sentiment (Y ) of a movie review (X), it is reasonable to assume that the opinion about
the movie is formed before writing the review, thus making Y the cause of X , along with the task
concept of “writing a passage to express one’s opinion about the movie" (θ). Conversely, for the task
of classifying whether a product review (X) is helpful to other customers (Y ), it is the quality of the
review (X) that cause other customers to upvote it (Y ), along with the task concept of “rating the
helpfulness of this review" (θ). In the rest of the paper, we will focus on the X � Y � θ direction
and leave a detailed discussion of the other direction in the Appendix.

Suppose we are interested in a task (e.g. semantic analysis) denoted by d ∈ T , where T is the space
of all possible tasks. We assume there is an injective function between T and Θ. i.e. for each task d,
there is a concept variable θd, such that each data (Xd, Y d) sampled from task d is generated by:

Y d = f(Xd, θd, ϵ)

To perform in-context learning with an LLM (generically denoted by model label M ), we condition
on a fixed set of k demonstration examples (Xd

1 , Y
d
1 ), (X

d
2 , Y

d
2 ), ..., (X

d
k , Y

d
k ) sampled from task d.

Following previous works [24, 26], as we are not using any instruction fine-tuned models, we
do not include a task description in the prompt, with the aim of focusing on the examination of
the demonstrations. To naturally project Y into the token space X , we define injective mappings
τd : Y → X , which are typically defined by human understanding of the task d. e.g. for sentiment
analysis, τd map positive class to the token “positive" and negative class to the token “negative".
Additionally, a delimiter token wd is defined, typically an empty space or a new line token, to separate
the demonstrations when concatenated. We denote the LLM output probability of X , Y , and θ, with
the aforementioned preprocessing applied, by P d

M :

PM (τd(Y )|Xd
1 , τ

d(Y d
1 ),w

d, ..., Xd
k , τ

d(Y d
k ),w

d, X) = P d
M (Y |Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X)

2.2 Problem Analysis and Theoretical Results

Suppose a set of observed data sampled from task d, denoted as Dd, is available, allowing for the
selection of the k most suitable demonstrations from it. For any incoming test example X , we have:

P d
M (Y |Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X) =

∫
Θ

P d
M (Y |θ, X)P d

M (θ|Xd
1 , Y

d
1 , ..., X

d
k , Y

d
k , X)dθ (1)
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Figure 1: An overview of our proposed two-phased algorithm. Demonstration selection and latent
concept learning share the same LLM as demonstration selection needs to reuse the learned concept
tokens, while at the in-context learning time, any other generative LLMs can be used. Here we only
illustrate the X � Y � θ direction. The Y � X � θ direction can be illustrated similarly by
exchanging X and Y in the above figure.

Here, we assume the sampling of the test example is independent of the sampling of the demonstra-
tions, so Y is independent of the demonstrations given θ and X . We also assume that the pre-trained
data distribution P d

M is a suitable approximation of the assumed data distribution P :
Assumption 2.1. Assume that PM (X) = P (X), and P d

M (Y |θ, X) ∝ P (Y |θ, X) for X � Y � θ.

Note that the assumption that a large language model captures the true distribution of language is
fairly common in the literature studying LLMs [50, 34, 47]. With this assumption, we establish:
Proposition 2.2. If task d follows the X � Y � θ direction, then argmaxy∈Y P d

M (Y = y|θd, X) is
the Bayes optimal classifier.

In this case, only when P d
M (θ|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X) completely concentrate on θd, can the in-

context learning classifier become the Bayes optimal classifier [11]:
Theorem 2.3. If task d follows the X � Y � θ direction, then the in-context learning classifier

argmax
y∈Y

P d
M (Y = y|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X)

always has a higher or equal probability of misclassification to the Bayes optimal classifier
argmaxy∈Y P d

M (Y = y|θd, X). Equality only holds when

∀x ∈ X , P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X = x) = 1.

A similar argument can be made for the Y � X � θ direction. 2 Here, Equation (1) would become:

P d
M (X|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y ) =

∫
Θ

P d
M (X|θ, Y )P d

M (θ|Y d
1 , X

d
1 , ..., Y

d
k , X

d
k , Y )dθ (2)

Note that the left-hand side of Equation (1) and Equation (2) are similar to the direct and channel
method introduced by Min et al. [24]. However, our analysis differs from theirs in that we do not
treat (Y � X � θ) as the universally superior channel direction for modeling in-context learning,
rather arguing that depending on the end task, the causal direction (X � Y � θ) is sometimes better.
This view is supported by our empirical results in Appendix B.

3 Method

Here we demonstrate how the proposed theory can be practically applied to select optimal demon-
stration examples. Since latent variable θ encodes both the task and format information, the whole
distribution over Θ is too complex to model. Unlike traditional topic models, we will only focus on
estimating an optimal value θd corresponding to task d.

First, we perform latent concept learning, wherein the task latent θd is learned as a set of new token
embeddings using prompt tuning over the full demonstration candidate set. With this optimal task
latent, we then perform demonstration selection, where a smaller set of demonstrations is chosen to
maximize the likelihood of postfixing the latent concept tokens. We only need to use a small LLM to
do the above steps to obtain an optimal set of demonstrations that can be directly transferred to other
LLMs. Figure 1 is an overall illustration of our proposed method.

2The detailed argument of the Y � X � θ direction can be found in Appendix A.2.
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Algorithm 1 Latent concept learning

Input: Dataset D = {(xi, yi, di)}i associated with a set of tasks S, LLM M , number of concept
tokens per task c, learning rate α, and number of training steps N .
Output: LLM M ′ with fine-tuned concept tokens.
Add c|S| new tokens to the vocabulary. i.e. The concept tokens θ̂d for each task in S. Randomly
initialize their embeddings Enew. Freeze all parameters in M except Enew;
for step = 1 to N do

Sample a random batch B in D and initialize gradient g ← 0;
for each data point (x, y, d) in B do

g = g + ∂ℓ(X,Y ;θ̂d)
∂Enew

;
end for
Enew = Enew − αg;

end for

3.1 Latent Concept Learning

We want to first find the optimal value of the latent concept variable θd corresponding to a task d ∈ T .
As argmaxy∈Y P d

M (Y = y|θd, X) is the Bayes optimal classifier according to Proposition 2.2, θd

should be able to minimize −EX,Y,d[logP
d
M (Y |θd, X)] for the X � Y � θ direction. In practice,

we try to align θd to the token embedding space by adding new tokens to the vocabulary. After this
alignment, we hope to be able to use the learned new tokens of θd as regular tokens.

More specifically, building upon the methodology proposed by Lester et al. [17], for each specific
task d, c new concept tokens (denoted as θ̂d) are added to the original vocabulary of LLM M to
represent the corresponding task concept θd. Subsequently, the embedding of these new tokens
Enew(θ̂

d) is fine-tuned while freezing the remaining parameters of LLM M . The variable c is treated
as a hyperparameter. In practice, in order to condition on θd, the corresponding c concept tokens are
appended to the input X (or Y ) as shown in the example provided below, where c = 2:

<sentiment_token_1><sentiment_token_2> Can’t wait to see the second movie!

By giving the above input tokens, we ask the LLM to predict the correct label Positive for us. Note
that <sentiment_token_1> here is just a label assigned to the newly added concept token. It can
be anything as long as it does not overlap with the original vocabulary of LLM.

The fine-tuning objective would then be minimizing L(θ̂d) = EX,Y [ℓ(X,Y ; θ̂d)], where

ℓ(X,Y ; θ̂d) =

{
− logP d

M (Y |θ̂d, X) if X � Y � θ

− logP d
M (X|θ̂d, Y ) if Y � X � θ.

Theoretically, if we can minimize the above loss function, a Bayes optimal classifier can be obtained,
and the concept tokens would be a reasonable delegate of the real latent concept variable:

Proposition 3.1. When L(θ̂d) is minimized, P d
M (Y |θ̂d, X) = P (Y |θd, X) for X � Y � θ. If the

LLM M is invertible, then θ̂d = θd.3

We denote the LLM M with fine-tuned concept tokens by M ′. Since we add the concept tokens into
the regular token vocabulary, the raw LLM output probability PM ′(θ̂d|w1:t) (w1:t denote a given
prompt) would be in the token sequence space X instead of the concept space Θ. Since learning all
possible θd ∈ Θ is infeasible, we propose to approximate the concept space Θ by sampling a diverse
subset of tasks S ⊆ T . Then the estimated conditional probability of θd would be:

P̂ d
M ′(θ̂d|w1:t) =

P d
M ′(θ̂d|w1:t)∑

t∈S P t
M ′(θ̂t|w1:t)

To obtain the concept tokens for all tasks in S, we fine-tune all tasks together with the loss∑
d∈S L(θd). We summarize the proposed algorithm in Algorithm 1.

3More discussion can be found in Appendix A.3.

5



Algorithm 2 Demonstration selection

Input: dataset Dd for a task d. LLM with fine-tuned concept tokens M ′. The number of
demonstrations k.
Output: A set of selected demonstrations.
for each (Xd, Y d) in Dd do

Compute P̂ d
M (θ̂d|Xd, Y d);

end for
Select top k examples with the largest P̂ d

M (θ̂d|Xd, Y d), denoted as (Xd
1 , Y

d
1 ), ..., (X

d
k , Y

d
k );

Note that the embedding matrix of a generative LLM is shared on both the input and output sides. So
while we only see the concept tokens on the input side at the training time, they can be viewed as
regular word tokens that can be generated on the output side.

3.2 Demonstration Selection

According to Theorem 2.3, for a task d, to make the in-context learning classifier closer to the
Bayes optimal classifier, we need to select demonstrations (Xd

1 , Y
d
1 ), ..., (X

d
k , Y

d
k ) that maximize

P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X) for all X ∈ X . Then our goal then becomes selecting demonstra-

tions that can best infer the task concept for all test inputs on average:

argmax
Xd

1 ,Y
d
1 ,...,Xd

k ,Y
d
k

EX [P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X)]

As test examples are sampled independent of the demonstrations, and PM (X) = P (X) according to
Assumption 2.1, we have

EX [P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X)] = P d

M (θd|Xd
1 , Y

d
1 , ..., X

d
k , Y

d
k )

If we assume each demonstration is also sampled independently, we have:

P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k ) =

∏k
i=1 P

d
M (θd|Xd

i , Y
d
i )

P d
M (θd)k−1

Assuming that θ has a uniform prior, then our goal becomes finding the top k demonstrations that
maximize P̂ d

M ′(θ̂d|Xd
i , Y

d
i ). Note that the independence between demonstrations is a simplified

assumption to reduce the combinatory search space of (Xd
1 , Y

d
1 ), ..., (X

d
k , Y

d
k ). In practice, selected

demonstrations are likely correlated as some demonstrations may work well together but not nec-
essarily work well by themselves. However, it would be too expensive to search the O(|Dd|k)
combinations over the candidate set Dd. In practice, this simplification works reasonably well. We
leave this combinatory search problem to future research.

Also, as we are using an LLM to approximate the data distribution, the order of the demonstrations
might matter. We will show in the Experiment section that the order does not matter, so no reordering
of the selected demonstrations is needed. The full selection algorithm is shown in Algorithm 2.

4 Experiments

Datasets. We conduct experiments on eight datasets from five different types of NLP classification
tasks: sentiment analysis, linguistic analysis, topic classification, emotion classification, and hate
speech detection. For sentiment analysis, we choose the Stanford Sentiment Treebank (SST2) dataset
[35] from the GLUE benchmark [43] and the financial phrase bank (FPB) dataset [21]. SST2 is
constructed based on movie reviews labeled “positive" or “negative", and FPB is based on financial
news labeled “positive", “negative", or “neutral". For linguistic analysis, we choose the Corpus
of Linguistic Acceptability (COLA) dataset [46] from the GLUE benchmark, based on sentences
collected from linguistic books, labeled with “acceptable" or “unacceptable". For topic classification,
we choose the DBpedia ontology classification dataset [52], based on DBpedia 2014 [16], labeled
with 14 different ontology classes. For emotion classification, we choose the dataset from Chatterjee
et al. [6] and Saravia et al. [33], both of which are collected from Twitter. Chatterjee et al. [6] (EmoC)
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Figure 2: Accuracy of 4-shot in-context learning using demonstrations selected by our method and
other baselines, averaged over eight datasets. Our demonstrations are selected using GPT2-large, and
the same set of demonstrations is then applied to all other LLMs.

predict emotion given a three-turn contextual dialogue, while Saravia et al. [33] predict emotion given
a Twitter message with clear emotion. For hate speech detection, we choose the online hate speech
detection dataset (ETHOS) [27], collected from online social media platforms. Here we detect two
types of hate speech: sexual orientation (ETHOS-SO) and religion (ETHOS-R). While in Section 2,
we assume that all tasks share the same label space Y , here we relax such assumption and allow a
different number of labels for different tasks. We use minimal formatting to process each example. A
detailed description of the datasets and our data processing procedure can be found in Appendix B.

Experiment settings. To determine the causal direction for each task, we select the direction that can
give higher accuracy when using random demonstrations4. We adopt the Y → X ← θ direction for
sentiment analysis, topic classification, and emotion classification tasks, which is consistent with the
intuition that people usually have some sentiment, topic, or emotion in mind before writing a piece
of text. We adopt the X → Y ← θ direction for the linguistic analysis and hate speech detection
type of tasks. While this is less intuitive, we can understand this as linguistic error and hate speech
detection are more of a post hoc task in contrast to the previous tasks.

Without specification, we use k = 4 number of demonstrations and c = 10 number of concept
tokens per dataset for our experiments, as the context length of GPT2 is 1024, and a larger number of
demonstrations may not be able to completely fit into it. We use GPT2-large to learn the concept
tokens and then compute the probability of each candidate demonstration example. We select our
demonstrations from a randomly selected 100 example subset of the train set as the candidate set
Dd. We use the same set of demonstrations selected by GPT2-large for all other LLMs. We test the
performance of the selected demonstrations using at most 1000 examples randomly sampled from
the test set. Each experiment is repeated for five runs with different random seeds (the randomness
comes from the sampling of the candidate set and the sampling of the test set). We adopt a large
portion of the code from Min et al. [25], which is based on Huggingface [49].

Baselines. We consider the following baselines:

• Uniform: We uniformly select k demonstrations from D for each test example.
• Similar: According to Liu et al. [19], demonstrations that are semantically similar to the

test example would hare more performant. Following their method, we use a pre-trained
sentence Transformer [31] to calculate the cosine similarity between the demonstrations and
test examples. We choose the top k similar demonstrations from D for each test example.

Main results.5 Figure 2 shows our main results averaged over all eight datasets, using the first-
generation GPT2s and GPT3s, without any instruction fine-tuning [28] or Reinforcement Learning
from Human Feedback (RLHF) [36]. Our method significantly outperforms baselines on eight
different LLMs, with 12.5% relative improvement to the uniform selection baseline on average, which
shows the effectiveness of our method. The demonstrations selected by our method are exclusively
based on GPT2-large, while the same set of demonstrations can be generalized to all other GPTs.

Results with non-GPT models. In Figure 3a, we test the demonstrations selected by our method
using GPT2-large on more LLMs (GPT3 [4], GPT3-instruct [28, 36], GPT-J [44], OPT [51], and
LLaMA [38]) with similar sizes (6-7B), and show that the selected demonstrations improve in-context
learning performance of all of them. The fact that GPT3-curie obtains the largest performance
improvement is likely because similar pre-training data distributions help the generalization of the

4Detailed results see Figure 6 in Appendix B.
5The complete results with standard deviations in this section can be found in Appendix B.
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(a) Proposed method v.s. randomly selected demonstrations
(b) Proposed method v.s. using
randomly selected tokens

Figure 3: In-context learning accuracy averaged over all eight datasets.

Uniform Similar Ours w/ Llama 2 (7B) Ours w/ GPT2-XL (1.5B)

Prompt tuning - - 3.7 1.3
Llama 2 (7B) 11.4 13.1 19.3 15.9

Llama 2 (13B) 17.0 18.3 21.6 20.5
Llama 2 (70B) 50.2 53.5 54.3 52.9

ChatGPT (gpt-3.5-turbo) 76.5 78.1 81.2 80.4
Table 1: Prompt tuning and 4-shot in-context learning accuracy on a subset of GSM8K test set. Our
demonstrations are selected with either 7B Llama 2 or GPT2-XL

selected demonstrations. Different-size GPT2 models share the same pre-training corpus [30], while
GPT3s are pre-trained on a dataset expanded from the GPT2 pre-training corpus [4]. Thus the
pre-training distribution of GPT3-curie and GPT2-large can be assumed to be similar.

Results on GSM8K. Since our primary goal is to connect the theory with real-world models and
datasets, we did not try to include harder tasks in the main results in Figure 2. In practice, our
proposed method is most effective with hard tasks that even parameter-efficient fine-tuning with
smaller models cannot outperform in-context learning with the same or larger models. To showcase
the usefulness of our proposed algorithm, We added a new dataset, GSM8K [9], which is a math
word problem-solving dataset with chain-of-thoughts solutions. Table 1 shows the test accuracy of
the final numerical answer with greedy generation. We randomly select a test set of 200 examples
instead of using the full test set for computation efficiency. 6

As shown in the first row of Table 1, prompt tuning with ten new tokens can only obtain less than
4% accuracy on the GSM8K test set. The last four rows show the in-context learning results with
different size Llama 2 models [39] and ChatGPT. Our proposed demonstration selection method (last
two columns) significantly outperformed the Uniform and Similar baseline. We also find that the
demonstrations selected with a larger model (7B) are more effective than those selected with a smaller
model (1.5B). The results show that our demonstration selection method is a good choice under a low
data setting, with a small computing budget and minimal inference latency. Our proposed method
can also potentially be combined with other prompting techniques [8] to boost performance further.

Learned tokens v.s. Random tokens. To confirm the critical role of the latent concept variable in
the proposed demonstration selection algorithm, we compare the performance of using the learned
concept tokens versus using randomly selected tokens from the original vocabulary in Figure 3b. The
demonstrations selected by random tokens only obtain the same performance as randomly selected
demonstrations, showing that the performance gain of our method comes from the learned concept
tokens containing the task and format information, not other elements of our algorithm.

k ablation study. While we use k = 4 demonstrations for all experiments, we also test the
effectiveness of our method using different k. As shown in Figure 4a, our method significantly
outperforms the random selection baseline with k = 2, 4, 8, and 16. To fit in large ks, we use
GPT3-ada with a longer context length (2048). Note that for real-world tasks, it is in general not true
that more demonstrations guarantee higher performance [7]. We can see that the uniform baseline
performance increases from k = 2 to k = 8, then drops a little at k = 16. Our method improves
the uniform baseline by around 5% absolute for all ks, while k = 4 improves the most (6.6%). Our
method appears to have a diminishing effect when k becomes larger, which is likely because the
effect of more demonstrations overwhelms the effect of demonstration choices.

6Note that we did not use a calculator to insert the correct result of each generated math equation during
generation for time efficiency, which resulted in slightly lower scores.
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(a) k ablation study. (b) c ablation study.
Figure 4: In-context learning accuracy of our method versus random
selection baseline averaged over all eight datasets with GPT3-ada.

c ablation study. While
we use c = 10 number of
concept tokens for all ex-
periments, we also investi-
gate the effect of different c
on our method. When c is
small (c = 5), the concept
tokens cannot effectively
capture the task and format
information, thus cannot im-
prove the performance. When c increases from 10 to 20, we observe a drop in the performance. It
is likely because the selectivity of the concept tokens decreases when c increases. The longer the
concept token sequence is, the more likely it will contain meaningless tokens that do not contribute to
demonstration selection.

Effect of demonstrations’ order. We find that the demonstrations selected by our method are
insensitive to their order in most cases.7 An exception is the EmoC dataset, where our method has a
high variance. On the contrary, Lu et al. [20] found that the order of the demonstration matters, and
a good ordering cannot be transferred between different LLMs. We suspect that the ordering only
matters when the demonstration selection method is not robust. Since Lu et al. [20] randomly selects
one set of demonstrations for the whole test set, the variance in performance is high with different
demonstrations, thus ordering matters. And since such ordering is not transferable while our selected
demonstrations are highly transferable, we suspect the core task information is stored in the content
of the demonstrations, while the ordering mainly captures model-specific artifacts.

Figure 5: t-SNE plot of the learned concept tokens for each
task. Concept tokens that can be explained by similar tokens
are summarized in the graph.

Qualitative analysis. In Figure 5, we
provide a t-SNE [40] projection of
the learned concept token embeddings.
The tokens corresponding to semanti-
cally similar tasks are close together.
Note that this result only aims to pro-
vide a straightforward illustration of
concept tokens. The effect of concept
tokens should be understood by the
previous quantitative results.8

We also list the top 4 selected demon-
strations in Table 14 in Appendix B.
Compared to the examples with lower
scores, the selected examples for
GSM8K have more deductive reason-
ing (i.e. with the connecting words
‘so’, ‘then’, ‘thus’, etc.), instead of
listing parallel conditions. For SST2,
the selected examples are longer and
more complex, sometimes including a
‘but’. This can be understood as these
harder examples can represent the task more comprehensively. This conclusion also aligns with the
findings in [13] that hard examples in the pre-training data contribute to in-context learning the most.
The label distribution of the selected demonstrations is usually balanced in class, which reduces the
possible biases introduced by the demonstrations.

5 Related Work

Heuristic solutions, such as selecting demonstrations based on the similarity between the demonstra-
tions and test input [19, 37, 32] have been proposed. [20] propose to reorder the demonstration based
on the entropy of the predicted labels. In this paper, we use the similarity-based selection method

7Detailed results see Figure 9 in Appendix B.
8The list of similar tokens for these concept tokens can be found in Table 13 in Appendix B.
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as a baseline while do not include the label entropy-based reordering method as we show that the
ordering of the demonstrations does not matter for our method.

Previous research on the phenomenon of in-context learning in Transformers has identified a number
of pre-training data distributions that can lead to the emergence of this capability, including a Hidden
Markov Model distribution [50] and a skewed Zipfian distribution with high burstiness [5]. Other
studies have sought to understand the underlying mechanisms of in-context learning by making
connections with gradient descent [42, 10, 1], formalizing it as an algorithm learning problem [18],
or proposing a latent variable theory similar as ours [14, 12, 50]. While providing valuable insights
on how in-context learning works, these works are limited to synthetic datasets and toy Transformers,
while it remains unclear if these results generalize to LLMs pre-trained on real-world text data and
whether these results can help in-context learning performance. In contrast, we propose a Bayesian
explanation of in-context learning that can be verified with real-world LLMs on various NLP datasets.
Dai et al. [10] provide a practical algorithm based on the understanding that the Transformer has a
dual form of gradient descent. However, their empirical results are smaller in scale, with six datasets
and only one model (350M), and has less significant improvements (5.4% relative to baseline).

There are also works trying to understand in-context learning from an empirical perspective [2, 24].
Min et al. [26] found demonstrations’ ground truth labels do not matter for in-context learning, which
we find is not entirely accurate in Appendix B. On the other hand, chain-of-thoughts prompting
[48, 53, 45] find that providing step-by-step explanations improves in-context learning performance.

6 Conclusion

In this work, we endeavor to comprehend large language models (LLMs) through a Bayesian lens and
posit them as implicit topic models that infer a latent conceptual variable from prompts. Motivated
by this understanding, we propose a two-step algorithm that first extracts latent conceptual tokens
from a small LLM and then selects demonstrations that have the greatest probability of predicting the
corresponding conceptual tokens. The selected demonstrations can then be directly generalized to
other LLMs. The efficacy of our algorithm across various text classification datasets and GPT models
validates our explanation of in-context learning.
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A Proofs

A.1 Direct direction

Assumption A.1. (Assumption 2.1) Assume that PM (X) = P (X), and P d
M (Y |θ, X) ∝ P (Y |θ, X)

for X � Y � θ.

Proposition A.2. (Proposition 2.2) If task d follows the X � Y � θ direction, argmaxy∈Y P d
M (Y =

y|θd, X) is the Bayes optimal classifier.

Proof. Since the data generation of the task d can be written as Y = f(X, θd, ϵ), we have

P d(Y |X) = P (Y |θd, X).

And by Assumption A.1, we have

argmax
y∈Y

P d
M (Y = y|θd, X) = argmax

y∈Y
P (Y = y|θd, X).

Thus argmaxy∈Y P d
M (Y = y|θd, X) is the Bayes optimal classifier.

Theorem A.3. (Theorem 2.3) If task d follows the X � Y � θ direction, then the in-context learning
classifier

argmax
y∈Y

P d
M (Y = y|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X)

always has a higher or equal probability of misclassification to the Bayes optimal classifier
argmaxy∈Y P d

M (Y = y|θd, X). Equality only takes when

∀x ∈ X , P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X = x) = 1.

Proof. Recall that in Equation (1), we have

P d
M (Y |Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X) =

∫
Θ

P d
M (Y |θ, X)P d

M (θ|Xd
1 , Y

d
1 , ..., X

d
k , Y

d
k , X)dθ.

By Proposition A.2, argmaxy∈Y P d
M (Y = y|θd, X) is the Bayes optimal classifier. Let Cθ(X) =

argmaxy∈Y P d
M (Y = y|θ, X), then the risk is defined as the probability of misclassification

R(Cθ) = P (Cθ(X) ̸= Y ) = EXY [1Cθ(X) ̸=Y ].

Denote the in-context learning classifier argmaxy∈Y P d
M (Y = y|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X) by Ck(X).

We then have

R(Ck) = EXY [1Ck(X )̸=Y ] = EX [
∑
y∈Y

(1− P d
M (Y = y|θd, X))1Ck(X)=y].

Such risk is minimized if and only if Ck(X) = Cθd(X), which only holds when
P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X = x) = 1 for all x ∈ X .

A.2 Channel direction

Assumption A.4. Assume that PM (X) = P (X), and P d
M (X|θ, Y ) ∝ P (X|θ, Y ) for the Y �

X � θ direction.

Proposition A.5. If task d follows the Y � X � θ causal direction, argmaxy∈Y P d
M (X|θd, Y = y)

is the Bayes optimal classifier when the label assignment is balanced.

Proof. Since the data generation of the task d can be written as X = g(Y, θd, ϵ), we have

P d(X|Y ) = P (X|θd, Y )
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When the label is balanced, i.e. P d(Y ) = 1
|Y| , we have

P d(Y |X) =
P d(X|Y )P d(Y )

P (X)
∝ P d(X|Y )

And by Assumption A.4, we have

argmax
y∈Y

P d
M (X|θd, Y = y) = argmax

y∈Y
P (X|θd, Y = y).

Thus argmaxy∈Y P d
M (X|θd, Y = y) = argmaxy∈Y P d(Y = y|X) is the Bayes optimal classifier.

Theorem A.6. If task d follows the Y � X � θ direction, then the in-context learning classifier

argmax
y∈Y

P d
M (X|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y = y)

always has a higher or equal probability of misclassification to the Bayes optimal classifier
argmaxy∈Y P d

M (X|θd, Y = y). Equality only takes when

∀y ∈ Y, P d
M (θd|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y = y) = 1.

Proof. This theorem can be proved similarly as Theorem A.3. Recall that in Equation (2), we have

P d
M (X|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y ) =

∫
Θ

P d
M (X|θ, Y )P d

M (θ|Y d
1 , X

d
1 , ..., Y

d
k , X

d
k , Y )dθ.

By Proposition A.5, argmaxy∈Y P d
M (X|θd, Y = y) is the Bayes optimal classifier. Let Cθ(X) =

argmaxy∈Y P d
M (X|θ, Y = y), then the risk is defined as the probability of misclassification

R(Cθ) = P (Cθ(X) ̸= Y ) = EXY [1Cθ(X) ̸=Y ].

Denote the in-context learning classifier argmaxy∈Y P d
M (X|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y = y) by Ck(X).

We then have

R(Ck) = EXY [1Ck(X )̸=Y ] = EX [
∑
y∈Y

(1− P d
M (X|θd, Y = y))1Ck(X)=y].

Such risk is minimized if and only if Ck(X) = Cθd(X), which only holds when
P d
M (θd|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y = y) = 1 for all y ∈ Y .

A.3 Method

Proposition A.7. (Proposition 3.1) When L(θ̂d) is minimized, P d
M (Y |θ̂d, X) = P (Y |θd, X) for

X � Y � θ, and P d
M (X|θ̂d, Y ) = P (X|θd, Y ) for Y � X � θ. If the LLM M is invertible, then

θ̂d = θd.

Proof. The proof of this proposition is straightforward.

Since

L(θ̂d) = H(P (Y |θd, X)) +KL(P (Y |θd, X)||P d
M (Y |θ̂d, X))

when L(θ̂d) is minimized, we have P d
M (Y |θ̂d, X) = P (Y |θd, X) for X � Y � θ, and

P d
M (X|θ̂d, Y ) = P (X|θd, Y ) for Y � X � θ.

If M is invertible, since the embedding matrix is invertible with or without new concept tokens,
P d
M (Y |θ̂, X) = P d

M (Y |θ̂′, X) implies that θ̂ = θ̂′. Thus θ is identifiable, which means θ̂d = θd.
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Table 2: Prompt template and label mapping for the datasets we use. Since almost all sentences from
ETHOS contain offensive content, we mask out the key offensive words in the examples below.

Dataset Prompt Label Mapping

SST-2 sentence: well worth revisiting as many times
positive negative/positive

FPB
The company anticipates its turnover for the whole 2010 to
surpass that of the previous year when it was EUR 67.1 million .
positive

negative/neutral/positive

COLA It is this hat that I know the boy who is wearing.
unacceptable acceptable/unacceptable

DBPedia
The Nucet River is a tributary of the Chiojdeanca
River in Romania.
NaturalPlace

Album/Animal/Artist/
Athlete/Building/Company/
EducationalInstitution/Film/
MeanOfTransportation/
NaturalPlace/OfficeHolder/
Plant/Village/WrittenWork

EmoC
fast i mean fastingis a way of skipping meals i mena
you move on too fast
others

angry/happy/others/sad

EmoS i feel this place was tragic
sadness

anger/fear/joy/love/
sadness/surprise

ETHOS-SO [Masked] should be removed from the face of the earth
true false/true

ETHOS-R
I hate being a [Masked], wish I was a [Masked]
and no [Masked] on earth existed
false

false/true

B Experiments

Dateset. In Table 2, we show how we process the text classification datasets into prompts. For each
dataset, we take at most 16384 examples from the training set for training, and uniformly sample
at most 1000 examples from the test set to test the in-context learning performance. In Table 3, we
show the train size and test size we used for each dataset. We also list the set of diverse tasks trained
with each dataset, which are denoted by their name in Huggingface datasets.9 The license for SST2,
ETHOS-SO and ETHOS-R is GNU General Public License v3. FPB is under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License. Note that these two datasets are
hate speech detection datasets for different kinds of hate speech and contain many offensive texts.
COLA is excerpted from the published works available on the website, and the copyright (where
applicable) remains with the original authors or publishers. DBpedia is under a Creative Commons
Attribution-ShareAlike License and the GNU Free Documentation License. EmoC and EmoS should
be used for educational and research purposes only.

Experiment details. We run our experiments on A100, V100, and A6000 GPUs. We adopt a large
portion of the code from the MetaICL repository [25]10. The training takes around 20 to 40 hours on
a single GPU. We use a learning rate of 1e-4 and a batch size of 16, and train for 10k steps in total.

Main results. In Table 4, we list the detailed results of our method and baselines with different LLMs
on different datasets in Figure 2.

Causal direction results. The detailed results with anti-causal direction (the opposite direction to
what we described in Section 4 are in Table 7) are shown in Table 7, corresponding to Figure 6 in the
main text.

Other LLMs results. The detailed results with other LLMs are shown in Table 6, corresponding to
Figure 3a in the main text.

Random token results. The detailed results with random tokens are shown in Table 5, corresponding
to Figure 3b in the main text.

9https://huggingface.co/docs/datasets/index
10https://github.com/facebookresearch/MetaICL
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datset d train size test size task set S

SST2 (glue-sst2) 16384 1000 glue-cola/glue-mnli/glue-qqp/
glue-mrpc/glue-qnli/glue-rte/glue-sst2/glue-wnli

FPB (financial_phrasebank) 1811 453

glue-sst2/glue-mnli/math_qa/sciq/
social_i_qa/wino_grande/glue-qqp/
ag_news/financial_phrasebank/
poem_sentiment/anli/quarel/quartz/
medical_questions_pairs/paws/dbpedia_14

COLA (cola-sst2) 8551 1000 glue-cola/glue-mnli/glue-qqp/glue-mrpc/
glue-qnli/glue-rte/glue-sst2/glue-wnli

DBpedia (dbpedia_14) 16384 1000

glue-sst2/glue-mnli/math_qa/sciq/
social_i_qa/wino_grande/glue-qqp/
ag_news/financial_phrasebank/
poem_sentiment/anli/quarel/quartz/
medical_questions_pairs/paws/dbpedia_14

EmoC (emo) 16384 1000

glue-sst2/amazon_polarity/
financial_phrasebank/poem_sentiment/
yelp_polarity/glue-cola/blimp/ag_news/
dbpedia_14/ethos/emo/emotion

EmoS (emotion) 16000 1000

glue-sst2/amazon_polarity/
financial_phrasebank/poem_sentiment/
yelp_polarity/glue-cola/blimp/ag_news/
dbpedia_14/ethos/emo/emotion

ETHOS-SO (ethos-sexual_orientation) 346 87

glue-sst2/amazon_polarity/
financial_phrasebank/poem_sentiment/
yelp_polarity/glue-cola/blimp/ag_news/
dbpedia_14/ethos/emo/emotion

ETHOS-R (ethos-religion) 346 87

glue-sst2/amazon_polarity/
financial_phrasebank/poem_sentiment/
yelp_polarity/glue-cola/blimp/ag_news/
dbpedia_14/ethos/emo/emotion

Table 3: Dataset details

Figure 6: Accuracy of randomly selected demonstrations averaged over seven different LLMs except
for GPT3-davinci, using the adopted causal direction and the anti-causal direction.

k-ablation study results. The detailed results of k ablation study are shown in Table 10, correspond-
ing to Figure 4a in the main text. In this experiment, we do not reorder the selected demonstrations
according to Equation (3), as we need to use GPT2-large for the reordering, and it cannot fit in all the
demonstrations. Instead, we order the selected demonstrations from the largest P̂ d

M (θd|Xd, Y d) to
the smallest.

c-ablation study results. The detailed results of c ablation study are shown in Table 11, corresponding
to Figure 4b in the main text.

Effect of using ground truth labels. According to [26], the ground truth label is not necessary
for demonstrations to have a good in-context learning performance, which we found is not entirely
true for all the tasks. We compare our method with the randomly selected demonstration baseline
under three scenarios: (a) Original: demonstrations with the correct labels; (b) Random words:
using a random label projection map τd instead of a meaningful one. i.e., map each label to a fixed
random word. In this case, the mapping from the input tokens X to the labels Y is still preserved; (c)
Random labels: assign a random label to each demonstration, with the original label projection map
τd. As shown in Figure 7, by using a random label projection map or randomly assigning the labels,
the performance of the randomly selected demonstration baseline drops considerably. And randomize
the label assignment gives a larger performance drop than only using a random label projection map,
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Figure 7: In-context learning accuracy of our method versus random selection baseline, with (a)
ground truth labels (original), (b) random label mapping (random words), or random label assignments
(random label), averaged over all eight datasets. Numbers are obtained with GPT2-large.

Figure 8: Accuracy of in-context learning using our method versus the theoretical maximum accuracy
obtained using the learned concept tokens as prefixes. Numbers are obtained with GPT2-large.

which shows that the mapping between X and Y in the demonstrations matters. This indicates that
in-context learning infers the mapping between X and Y from the demonstrations instead of merely
invoking some learned function stored in the LLM parameters based on the appearance of X and
Y . We also show that the demonstrations selected by our method represent the X − Y mapping
better, as under the Random words condition, our method performs better than the random selection
baseline, while our method does not improve the random selection baseline under the Random labels
condition. The detailed results with random words and random labels are shown in Table 8

Optimal performance As stated in Theorem 2.3, the optimal performance of an in-context learning
classifier is the Bayes optimal classifier argmaxy∈Y P d

M (Y = y|θd, X), which is approximated by
using the learned concept tokens as prefixes. Note that this approximated Bayes optimal classifier
cannot be transferred across different LLMs, as the learned concept tokens embeddings are aligned
with a specific LLM. The advantage of in-context learning with our method is that the demonstrations
can be transferred to any LLMs without training. Here we only compare the accuracy of in-context
learning with our method and the approximated Bayes optimal classifier using GPT2-large, as it is
the LLM that concept tokens are fine-tuned with. As shown in Figure 8, our method comes close
to the optimal accuracy on many datasets, while there are some datasets that our method is lagging.
This indicates that there are two ways to improve our method: the first is to improve the performance
of the optimal classifier, by introducing a better latent concept learning algorithm. The other way
is to reduce the performance gap between our method and the optimal classifier, by improving the
demonstration selection algorithm. The detailed results using the learned concept tokens as prefixes
are shown in Table 9.

Reordering results. We reorder the selected demonstrations to maximize the posterior of the concept
tokens:

argmax
π∈Π

P̂ d
M (θd|π((Xd

1 , Y
d
1 ), ..., (X

d
k , Y

d
k ))) (3)

Where π((Xd
1 , Y

d
1 ), ..., (X

d
k , Y

d
k )) is a permutation of (Xd

1 , Y
d
1 ), ..., (X

d
k , Y

d
k ). Π is the set of all

possible permutations of the k demonstrations. The detailed results with and without reordering are
shown in Table 12, corresponding to Figure 9.

Similar tokens. We show the top ten similar tokens to some learned concept tokens in Table 13, as
summarized in Figure 5 in the main text.
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Figure 9: In-context learning accuracy of our method versus random selection baseline, with and
without reordering. The red error bars represent the standard deviation across five runs. Numbers are
obtained with GPT2-large.

Table 4: Accuracy of selected demonstration. Our demonstrations are selected using GPT2-large,
and the same set of demonstrations is applied to all different LLMs. All LLMs are pre-trained only
with the language modeling objective, while the pre-training data size of GPT2s is much smaller than
GPT3s.

LLM Method SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

GPT2 Uniform 69.7 ± 1.8 52.9 ± 2.3 61.9 ± 1.4 48.0 ± 0.7 35.3 ± 1.7 26.4 ± 1.0 64.1 ± 4.8 71.0 ± 1.8 53.7
(124M) Similar 69.5 ± 0.6 55.9 ± 1.7 63.2 ± 1.2 44.7 ± 3.1 36.4 ± 2.0 26.6 ± 1.3 77.7 ± 2.7 80.0 ± 3.7 56.8

Ours 76.8 ± 2.9 64.5 ± 3.2 69.1 ± 0.2 53.5 ± 2.95 37.2 ± 11.1 30.6 ± 4.8 80.9 ± 1.9 76.8 ± 2.6 61.2
GPT2-m Uniform 70.8 ± 1.3 52.0 ± 1.7 57.8 ± 1.3 49.3 ± 2.0 34.2 ± 1.8 34.2 ± 1.8 76.3 ± 4.9 74.7 ± 2.2 56.2
(355M) Similar 75.0 ± 1.9 57.7 ± 2.0 57.5 ± 2.2 47.9 ± 6.0 37.2 ± 3.6 35.2 ± 1.8 86.9 ± 2.9 84.6 ± 4.3 60.3

Ours 81.2 ± 1.3 59.3 ± 4.3 69.0 ± 0.2 52.9 ± 2.3 40.4 ± 21.5 37.2 ± 2.4 83.7 ± 1.1 76.8 ± 1.1 62.6
GPT2-l Uniform 77.1 ± 1.2 51.3 ± 2.4 62.7 ± 0.8 54.4 ± 0.9 38.7 ± 2.1 34.5 ± 1.2 67.6 ± 4.3 72.9 ± 2.8 57.4
(774M) Similar 80.7 ± 1.6 54.8 ± 3.8 50.9 ± 1.4 51.1 ± 5.2 39.9 ± 2.6 35.1 ± 2.1 80.9 ± 2.8 84.4 ± 2.6 59.7

Ours 86.2 ± 1.4 60.4 ± 2.5 69.1 ± 0.2 56.5 ± 3.2 48.4 ± 17.0 38.6 ± 2.8 82.5 ± 1.5 76.6 ± 1.2 64.8
GPT2-xl Uniform 74.7 ± 0.9 53.2 ± 1.9 55.8 ± 1.6 53.0 ± 1.9 38.2 ± 1.5 38.2 ± 1.5 67.8 ± 6.4 72.6 ± 4.1 56.7
(1.5B) Similar 80.6 ± 1.3 53.0 ± 2.5 55.0 ± 2.5 51.6 ± 5.9 39.9 ± 2.0 32.9 ± 2.1 82.8 ± 2.2 83.9 ± 4.5 60

Ours 83.1 ± 3.6 62.0 ± 2.5 68.9 ± 0.2 58.6 ± 3.3 43.6 ± 16.4 43.6 ± 16.4 83.0 ± 1.3 77.9 ± 1.3 65.1
GPT3-a Uniform 76.9 ± 0.7 56.6 ± 1.1 53.1 ± 1.8 62.1 ± 1.4 38.6 ± 1.4 27.7 ± 1.3 65.5 ± 5.7 74.0 ± 3.0 56.8
(350M) Similar 78.7 ± 1.0 52.2 ± 2.7 53.1 ± 1.8 54.6 ± 1.7 42.4 ± 3.5 37.2 ± 1.1 84.1 ± 2.2 87.8 ± 3.5 61.3

Ours 85.4 ± 1.7 61.9 ± 10.5 58.2 ± 7.0 64.0 ± 4.4 43.0 ± 7.2 37.9 ± 2.3 84.4 ± 1.4 78.9 ± 0.9 64.2
GPT3-b Uniform 80.8 ± 0.6 55.2 ± 3.3 46.8 ± 2.0 66.5 ± 1.4 42.0 ± 0.7 27.0 ± 1.2 71.0 ± 4.6 72.6 ± 3.1 57.7
(1.3B) Similar 83.9 ± 1.3 56.2 ± 2.3 45.1 ± 1.8 59.8 ± 1.8 42.9 ± 3.5 38.1 ± 1.7 86.7 ± 3.0 86.4 ± 3.0 62.4

Ours 87.3 ± 2.0 64.3 ± 5.9 67.2 ± 0.9 70.2 ± 3.2 43.6 ± 13.0 38.9 ± 5.0 84.6 ± 0.9 78.9 ± 1.2 66.9
GPT3-c Uniform 84.2 ± 1.4 52.6 ± 1.8 59.1 ± 1.5 70.6 ± 0.8 44.3 ± 2.5 32.3 ± 1.9 77.5 ± 4.7 77.5 ± 0.6 62.3
(6.7B) Similar 85.7 ± 1.4 62.2 ± 0.9 58.0 ± 1.7 62.2 ± 2.0 47.4 ± 4.3 39.8 ± 1.7 89.2 ± 1.4 89.7 ± 1.9 66.8

Ours 88.8 ± 0.7 64.1 ± 5.7 69.0 ± 0.3 73.6 ± 2.9 50.3 ± 11.9 43.1 ± 4.6 86.2 ± 0.0 78.2 ± 0.0 69.2
GPT3-d Uniform 86.5 ± 0.9 59.2 ± 2.4 45.5 ± 2.8 73.6 ± 1.9 39.4 ± 0.7 40.6 ± 1.7 77.2 ± 2.6 76.8 ± 3.5 62.4
(175B) Similar 88.5 ± 0.8 55.4 ± 3.3 45.4 ± 1.5 67.2 ± 1.8 37.6 ± 1.6 39.8 ± 1.4 86.9 ± 2.4 89.0 ± 3.8 63.7

Ours 87.8 ± 3.4 62.7 ± 3.3 58.5 ± 8.2 75.5 ± 2.4 41.3 ± 3.6 42.7 ± 3.9 85.1 ± 0.0 79.3 ± 0.0 66.6
Avg Uniform 77.6 54.1 55.3 59.7 38.8 32.6 70.9 74.0 57.9

Similar 80.3 55.9 53.5 54.9 40.5 35.6 84.4 85.7 61.4
Ours 84.6 62.4 66.1 63.1 43.5 39.1 83.8 77.9 65.0

Likelihood histogram. We also show histograms of the probability of each example predicting
corresponding concept tokens in different datasets. We can see that the probability of prediction
concept tokens can well differentiate examples in a dataset.

Selected demonstrations. Table 14 shows the selected top 4 demonstration by our proposed
algorithm.

Task Selected demonstrations
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GSM8K Question: It takes Bryan 5 minutes to walk from his house
to the bus station. Then he rides the bus for 20 minutes.
After that, he walks 5 minutes from the bus station to his
job. It takes the same amount of time in the morning and
the evening. How many hours per year does Bryan spend
traveling to and from work, if he works every day? Bryan
spends 5+20+5 =«5+20+5=30»30 minutes traveling to work. He
does this twice a day, so he spends 30*2=«30*2=60»60 minutes
traveling per day. Thus, he spends 60/60=«60/60=1»1 hour
traveling to and from work every day. Thus, he spends 1
hour*365 days =«1*365=365»365 hours traveling per year. The
answer is: 365

GSM8K Question: Cherry put up a delivery service. She charges
$2.50 for a 3-5 kilograms cargo and $4 for a 6-8 kilograms
cargo. If she delivers four 5 kilograms cargo and two
8 kilograms cargo per day, how much money will she earn
in a week? Cherry earns $2.50 x 4= $«2.5*4=10»10 after
delivering four 5 kilograms of cargo per day. She earns $4
x 2= $«4*2=8»8 after delivering two 8 kilograms of cargo per
day. So, her total earning per day is $8+$10= $«8+10=18»18.
Therefore, she will earn $18 x 7= $«18*7=126»126 in a week.
The answer is: 126

GSM8K Question: Bill is laying power cable for a new neighborhood.
There are going to be 18 east-west streets that are 2 miles
long and 10 north-south streets that are four miles long.
It takes 5 miles of cable to electrify 1 mile of street. If
cable costs $2000/mile, what is the total cost of cable
for the neighborhood? First find the total distance
of the east-west streets: 18 streets * 2 miles/street
= «18*2=36»36 miles. Then find the total distance of
the north-south streets: 10 streets * 4 miles/street =
«10*4=40»40 miles. Then add the number of miles from each
type of street to find the total distance: 36 miles + 40
miles = «36+40=76»76 miles. Then multiply that number by
5 to find the number of miles of cable needed: 76 miles
street * 5 miles cable/mile street = «76*5=380»380 miles of
cable. Then multiply that number by the cost of one mile
of cable to find the total cost: 380 miles * $2000/mile =
$«380*2000=760000»760,000. The answer is: 760000

GSM8K Question: John buys a gaming PC for $1200. He decides to
replace the video card in it. He sells the old card for
$300 and buys a new one for $500. How much money did he
spend on his computer, counting the savings from selling
the old card? He spent an extra 500-300=$«500-300=200»200
on the video card. That means the total cost was
1200+200=$«1200+200=1400»1400. The answer is: 1400

SST2 sentence: faced and spindly attempt at playing an ingenue
makes her nomination as best actress even more of a an a
positive

SST2 sentence: holofcener’s film offers just enough insight to
keep it from being simpleminded, and positive

SST2 sentence: i’m not a fan of the phrase ‘ life affirming’
because it usually means ‘ schmaltzy,’ but real women have
curves truly is life affirming negative
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SST2 sentence: the script is about as interesting as a recording
of conversations at the wal-mart checkout line negative

DBpedia OfficeHolder Lucie Papin (born September 7 1936) is a former
Canadian politician who served in both the House of Commons
and Senate.

DBpedia Village Kunkalamarru is very renowned village under
Karamchedu Mandal which is located about 15 km from the
busy commercial town of Chirala in Prakasam district in the
state of Andhra Pradesh India.Its neighbouring villages are
Karamchedu Veerannapalem.

DBpedia EducationalInstitution The Pontifical Catholic University
of Puerto Rico at Mayagez is a university located in the
city of Mayagez Puerto Rico. It is part of the Pontifical
Catholic University of Puerto Rico. The university began
as an extension of the Catholic University of Puerto Rico
in the early 1960s. In 1982 it was awarded the official
title of Center and later it became the Mayagez Campus of
the Pontifical Catholic University of Puerto Rico at Mayagez
in 1996.

DBpedia Artist Choi Dong-wook [citation needed]; born November 9
1984) better known by his stage name Se7en is a South Korean
singer from YG Entertainment. He has also advanced into
Japan China and the United States.

Table 14: Selected demonstrations by our method.

C Limitations and Future Work

While the assumption that a large language model captures the true distribution of language is
fairly common in the literature studying LLMs [50, 34], this assumption is not entirely accurate in
practice. According to [15], LLMs systematically underestimate rare text sequences, which constitute
a significant portion of the long-tail distribution of language. Although this assumption is adequate to
achieve favorable empirical results, it is expected that more accurate language models will, in theory,
lead to improved outcomes.

The selection of the accompanying diverse tasks S is currently left to the user’s discretion. A better
approach to constructing such a task set is needed to gain a deeper understanding of latent concept
variables and to improve the latent concept learning algorithm.

Our algorithm currently only applies to classification tasks. More complex latent variables could
be designed to improve the in-context learning performance of more complex tasks like math word
questions and logical reasoning problems.

D Broader Impact

The utilization of language models (LLMs) for specific tasks is often hindered by the high cost
associated with training or fine-tuning them. However, the in-context learning paradigm offers a
cost-effective and convenient alternative for utilizing the power of pre-trained LLMs. Our work has
demonstrated a significant improvement in the performance of in-context learning through a relatively
low-cost and simple approach, thus making the use of LLMs more accessible for individuals with
limited resources.

However, it is important to consider the broader implications of the increasing use of LLMs. As
LLMs are not infallible and may make mistakes, it is crucial to explicitly warn users of the potential
for misleading output and to regulate the distribution of LLMs in order to prevent any negative
societal impact. Additionally, it is possible that LLMs could be intentionally misused, thus it is
important to consider the ethical implications of their use and to take appropriate measures to mitigate
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Table 5: Accuracy of selected demonstration. Our demonstrations are selected using GPT2-large,
and the same set of demonstrations is applied to all different LLMs. All LLMs are pre-trained only
with the language modeling objective, while the pre-training data size of GPT2s is much smaller than
GPT3s.

LLM Method SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

GPT2 Uniform 69.7 ± 1.8 52.9 ± 2.3 61.9 ± 1.4 48.0 ± 0.7 35.3 ± 1.7 26.4 ± 1.0 64.1 ± 4.8 71.0 ± 1.8 53.7
(124M) Random 69.8 ± 3.3 51.1 ± 1.7 69.0 ± 0.1 49.0 ± 4.5 33.7 ± 15.5 24.2 ± 7.6 66.4 ± 17.5 66.2 ± 16.2 53.7

Ours 76.8 ± 2.9 64.5 ± 3.2 69.1 ± 0.2 53.5 ± 2.95 37.2 ± 11.1 30.6 ± 4.8 80.9 ± 1.9 76.8 ± 2.6 61.2
GPT2-l Uniform 77.1 ± 1.2 51.3 ± 2.4 62.7 ± 0.8 54.4 ± 0.9 38.7 ± 2.1 34.5 ± 1.2 67.6 ± 4.3 72.9 ± 2.8 57.4
(774M) Random 81.9 ± 4.5 46.5 ± 4.7 64.9 ± 7.8 50.3 ± 4.3 42.5 ± 16.7 36.1 ± 6.5 67.6 ± 20.4 67.8 ± 15.0 57.2

Ours 86.2 ± 1.4 60.4 ± 2.5 69.1 ± 0.2 56.5 ± 3.2 48.4 ± 17.0 38.6 ± 2.8 82.5 ± 1.5 76.6 ± 1.2 64.8

Table 6: We test our method on other similar sizes (6-7B) LLMs.
LLM Method SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

GPT2-l Random 77.1 ± 1.2 51.3 ± 2.4 62.7 ± 0.8 54.4 ± 0.9 38.7 ± 2.1 34.5 ± 1.2 67.6 ± 4.3 72.9 ± 2.8 57.4
Ours 86.2 ± 1.4 60.4 ± 2.5 69.1 ± 0.2 56.5 ± 3.2 48.4 ± 17.0 38.6 ± 2.8 82.5 ± 1.5 76.6 ± 1.2 64.8

GPT3-c Random 84.2 ± 1.4 52.6 ± 1.8 59.1 ± 1.5 70.6 ± 0.8 44.3 ± 2.5 32.3 ± 1.9 77.5 ± 4.7 77.5 ± 0.6 62.3
Ours 88.8 ± 0.7 64.1 ± 5.7 69.0 ± 0.3 73.6 ± 2.9 50.3 ± 11.9 43.1 ± 4.6 86.2 ± 0.0 78.2 ± 0.0 69.2

GPT-J Random 78.5 ± 1.0 53.1 ± 1.7 58.3 ± 2.2 55.6 ± 1.2 38.5 ± 2.0 33.3 ± 1.5 76.6 ± 3.7 76.6 ± 1.4 58.8
Ours 87.8 ± 1.9 56.7 ± 4.3 69.1 ± 0.2 60.0 ± 3.6 32.5 ± 16.1 33.2 ± 2.8 85.3 ± 0.5 77.0 ± 0.0 62.7

OPT Random 72.4 ± 0.8 32.8 ± 0.3 34.8 ± 0.6 29.4 ± 1.4 67.1 ± 1.8 36.9 ± 0.6 86.2 ± 0.0 78.2 ± 0.0 54.7
Ours 74.2 ± 3.0 34.1 ± 6.1 35.7 ± 3.1 28.8 ± 2.1 76.7 ± 4.1 39.0 ± 3.4 86.2 ± 0.0 78.2 ± 0.0 56.6

LLaMA Random 57.7 ± 1.5 23.7 ± 1.3 30.8 ± 0.2 15.8 ± 0.8 4.4 ± 0.7 35.2 ± 0.7 66.2 ± 5.8 57.2 ± 5.1 36.4
Ours 60.5 ± 4.7 19.1 ± 1.9 30.8 ± 0.2 16.9 ± 1.3 4.3 ± 0.7 35.3 ± 0.6 77.2 ± 13.6 56.3 ± 10.8 37.6

any potential negative effects. We posit that these regulations and measures should be put in place at
the time of distributing LLMs to ensure the safe and responsible use of these models. Furthermore,
as we publicly release our code, we will also provide clear warnings and guidelines to users to ensure
that the potential risks associated with the use of our method are fully understood and addressed.
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Table 7: We test random selection baseline with anti-causal direction.
LLM SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R
GPT2 57.4 ± 1.9 56.6 ± 2.1 55.9 ± 1.7 11.3 ± 1.0 24.6 ± 2.4 22.1 ± 1.1 64.1 ± 4.8 58.6 ± 5.5

GPT2-m 56.7 ± 1.6 48.7 ± 2.1 55.3 ± 1.8 13.9 ± 1.2 22.4 ± 1.9 24.9 ± 2.3 44.8 ± 1.9 45.5 ± 3.5
GPT2-l 58.7 ± 0.7 33.7 ± 1.3 50.8 ± 1.6 13.6 ± 1.3 28.2 ± 3.6 26.2 ± 2.7 48.7 ± 3.7 53.6 ± 5.3

GPT2-xl 54.2 ± 0.5 46.8 ± 1.2 50.6 ± 1.1 12.6 ± 1.5 31.4 ± 2.8 25.9 ± 3.2 65.5 ± 4.9 61.8 ± 1.5
GPT3-a 55.8 ± 0.9 58.9 ± 2.1 51.6 ± 1.4 14.3 ± 0.8 54.2 ± 3.1 27.7 ± 1.3 49.2 ± 3.3 54.9 ± 6.4
GPT3-b 64.4 ± 1.6 58.9 ± 2.6 53.4 ± 1.1 14.6 ± 1.1 52.0 ± 2.5 27.0 ± 1.3 48.3 ± 2.7 51.0 ± 4.0
GPT3-c 78.2 ± 1.6 52.3 ± 2.3 53.7 ± 0.7 23.0 ± 2.5 49.1 ± 2.6 32.2 ± 1.9 57.9 ± 2.7 64.1 ± 5.0

Avg 60.8 50.8 53 14.8 37.4 26.6 54.1 55.6

Table 8: We test our method with random words and random labels using GPT2-large.
Method SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

R words Random 54.1 ± 4.2 43.4 ± 1.9 62.2 ± 4.9 11.2 ± 0.9 32.4 ± 5.2 19.1 ± 1.8 80.7 ± 4.8 77.0 ± 3.6 47.5
Ours 50.3 ± 1.3 44.9 ± 4.2 69.2 ± 0.2 13.9±1.2 37.8 ± 12.1 23.5 ± 7.4 86.0 ± 0.5 77.9 ± 0.5 50.5

R labels Random 51.5 ± 0.9 32.5 ± 1.2 49.3 ± 3.0 6.7 ± 1.0 25.1 ± 0.6 17.2 ± 0.9 48.0 ± 2.5 56.8 ± 3.1 35.9
Ours 49.6 ± 0.9 36.2 ± 2.5 49.3 ± 1.6 6.6± 0.2 24.7 ± 0.6 16.6 ± 1.0 51.0 ± 4.9 48.7 ± 3.5 35.3

Table 9: Accuracy using concept tokens as prefixes.
SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R

90.3 ± 0.0 86.1 ± 0.0 75.0 ± 0.1 92.6 ± 0.6 57.3 ± 1.8 53.8 ± 0.7 86.2 ± 0.0 78.2 ± 0.0

Table 10: k ablation study using GPT2-large, without reordering.
Method SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

k = 2 Random 74.4 ± 1.0 48.5 ± 1.1 48.9 ± 1.6 52.9 ± 2.0 42.8 ± 0.6 37.1 ± 1.2 66.9 ± 4.7 66.4 ± 6.8 54.7
Ours 78.1 ± 4.5 50.1 ± 2.9 54.3 ± 8.8 57.3 ± 5.1 41.1 ± 9.8 36.1 ± 2.6 84.6 ± 1.6 76.8 ± 4.5 59.8

k = 4 Random 76.9 ± 0.7 56.6 ± 1.1 53.1 ± 1.8 62.1 ± 1.4 38.6 ± 1.4 27.7 ± 1.3 65.5 ± 5.7 74.0 ± 3.0 56.8
Ours 86.2 ± 1.4 59.7 ± 2.8 69.1 ± 0.2 56.5 ± 3.2 38.2 ± 21.8 37.7 ± 2.5 83.0 ± 1.3 76.6 ± 1.2 63.4

k = 8 Random 79.9 ± 0.2 57.1 ± 1.6 51.3 ± 1.0 66.5 ± 1.2 37.6 ± 1.5 36.2 ± 0.6 68.5 ± 3.5 72.9 ± 3.3 58.8
Ours 87.0 ± 2.4 59.9 ± 3.3 55.3 ± 9.7 67.0 ± 0.9 39.9 ± 5.3 38.8 ± 2.6 77.0 ± 11.1 78.9 ± 0.9 63

k = 16 Random 79.9 ± 1.1 54.9 ± 2.7 54.5 ± 2.8 69.1 ± 1.1 33.7 ± 2.2 33.5 ± 1.4 64.8 ± 4.0 69.0 ± 3.2 57.4
Ours 84.6 ± 1.9 60.4 ± 6.4 62.0 ± 7.0 71.0 ± 1.9 37.2 ± 6.1 37.1 ± 2.2 72.4 ± 7.6 74.7 ± 4.7 62.4

Table 11: c ablation study using GPT2-large
SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

c = 5 78.9 ± 2.4 59.8 ± 10.8 34.3 ± 5.0 62.9 ± 2.4 44.9 ± 9.5 38.1 ± 2.4 71.7 ± 5.9 62.1 ± 19.7 56.6
c = 10 85.4 ± 1.7 61.9 ± 10.5 58.2 ± 7.0 64.0 ± 4.4 43.0 ± 7.2 37.9 ± 2.3 84.4 ± 1.4 78.9 ± 0.9 64.2
c = 15 80.1 ± 1.4 64.3 ± 7.7 63.1 ± 9.4 58.7 ± 3.2 36.4 ± 11.5 38.6 ± 1.9 80.9 ± 3.9 76.3 ± 5.9 62.3
c = 20 78.5 ± 4.1 51.8 ± 8.0 66.5 ± 2.3 58.0 ± 3.4 36.3 ± 4.3 41.8 ± 5.8 80.7 ± 4.5 73.8 ± 5.4 60.92

Table 12: Reorder versus not reorder using our method, with GPT2-large.
SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

reorder 86.2 ± 1.4 60.4 ± 2.5 69.1 ± 0.2 56.5 ± 3.2 48.4 ± 17.0 38.6 ± 2.8 82.5 ± 1.5 76.6 ± 1.2 64.8
not reorder 86.2 ± 1.4 59.7 ± 2.8 69.1 ± 0.2 56.5 ± 3.2 38.2 ± 21.8 37.7 ± 2.5 83.0 ± 1.3 76.6 ± 1.2 63.4
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Table 13: We list the top 10 similar words (tokens) to some of the learned concept tokens.
concept token similar words

FPB-2 milo coordinate notify rendering benefiting routing EntityItem routed Messages Plot
FPB-3 unlocked updating deleting dropping damage updates drops Gained taken dropped
FPB-4 FX Safari Fixes advertisers Links Coins Operator marketers Guidelines
FPB-5 674 592 693 696 498 593 793 504 691 683

COLA-1 exha trunc curv fragmented elong iterator initialized bounds Iter filament
COLA-2 Sp spa contributed cerv borrower paper tiger Erica USH Schwartz
COLA-7 democr Barack WH ophobic neum Democrats Rachel WH Democrats

DBpedia-4 often impede blockade incarcerated LEASE pollutants pesticides uphe lawmakers fossils
DBpedia-5 categorized closes therapies antidepressant retrospective clinically physicians therapists randomized clinicians
DBpedia-7 JS provided Killed richness Compet Nevertheless Probably Proceedings horizontally

ETHOS-SO-3 Revolution Spread itu Million Pascal stabil Indy Georgian Figure resy
ETHOS-R-2 council Chocobo Shant uyomi aditional cumbers subur ThumbnailImage araoh Pharaoh
ETHOS-R-8 seems outlines emitted grin outline circuitry sized flips emits flipped
ETHOS-R-9 223 asel Cyrus Sith Scorpion Snape Jas Leia Ned Morty

EmoC-6 behavi checkpoints unintention crib eleph looph np mosquit blat pione
EmoC-8 depressed bullied choked stricken devastated unsuccessful cheated distraught troubled failing
EmoS-1 frightened rebellious depressed careless bullied restless reluctant distraught clumsy disgruntled
EmoS-5 obsessive crappy demonic delusions psychosis psychotic childish stupidity reckless insanity
EmoS-7 benevolent charismatic perfected volunte unintention pione innocuous fearless glamorous ruthless
EmoS-9 whispers pundits Sadly horribly curiously noticeably Sadly gaping painfully shockingly
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(a) SST2 (b) FBP

(c) COLA (d) DBpedia

(e) EmoC (f) EmoS

(g) ETHOS-SO (h) RTHOS-R

Figure 10: Historgrams of the probability of train examples in each dataset predicting corresponding
concept tokens.
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