
Contextual Tokenization for Graph Inverted Indices

Pritish Chakraborty
IIT Bombay

Indradyumna Roy
IIT Bombay

Soumen Chakrabarti
IIT Bombay

Abir De
IIT Bombay

Emails: {pritish, indraroy15, soumen, abir}@cse.iitb.ac.in

Abstract
Retrieving graphs from a large corpus, that contain a subgraph isomorphic to a
given query graph, is a core operation in many real-world applications. While
recent multi-vector graph representations and scores based on set alignment and
containment can provide accurate subgraph isomorphism tests, their use in retrieval
remains limited by their need to score corpus graphs exhaustively. We introduce
CORGII (Contextual Representation of Graphs for Inverted Indexing), a graph
indexing framework in which, starting with a contextual dense graph representation,
a differentiable discretization module computes sparse binary codes over a learned
latent vocabulary. This text document-like representation allows us to leverage
classic, highly optimized inverted indices, while supporting soft (vector) set con-
tainment scores. Pushing this paradigm further, we replace the classical, fixed
impact weight of a ‘token’ on a graph (such as TFIDF or BM25) with a data-driven,
trainable impact weight. Finally, we explore token expansion to support multi-
probing the index for smoother accuracy-efficiency tradeoffs. To our knowledge,
CORGII is the first indexer of dense graph representations using discrete tokens
mapping to efficient inverted lists. Extensive experiments show that CORGII
provides better trade-offs between accuracy and efficiency, compared to several
baselines. Code is in: https://github.com/structlearning/corgii.

1 Introduction
Given a query graph Gq, a common graph retrieval task is to find, from a large corpus of C graphs,
graphs Gc that each contain a subgraph isomorphic to Gq [1]. The ranking relaxation is to find
K graphs that ‘best’ contain Gq, under a suitable notion of approximate subgraph containment
score. This task has several applications, e.g., functional group search in molecular databases [2],
control-flow pattern detection in program analysis [3], semantic search in scene graphs [4], etc.

Graph retrieval faces two challenges. Locally, the exact subgraph isomorphism decision problem
is NP-complete [5] — but this can be circumvented via suitable score approximations, even if
heuristic in nature. The more pressing global challenge is that the best approximations need early
cross-interaction between Gq and Gc, leading to an impractical Ω(C) query time. Our goal is to
devise a novel indexing framework to attack the global bottleneck.

Single vs. multi-vector graph representation tradeoffs Approximate scores for graph containment
may be computed by two families of neural networks. Early methods [6, 7, 8] use a single vector to
represent a whole graph, enabling efficient relevance computation in (hashable/indexable) Euclidean
space, but miss fine-grained structural details. Later methods [9, 10, 11] represent a graph as a set
of node embedding vectors and solve a form of optimal transport [9, 10] between them to get better
score approximations. This parallels the shift in dense text retrieval from late-interaction or “dual
encoder” or “bi-encoder” style that pools a passage into a single vector [12, 13, 14] to multi-vector
representations [15, ColBERT].

Lessons from text retrieval Classical text retrieval used inverted indices keyed on discrete tokens or
words [16, 17, 18] mapping to posting lists of document IDs, with highly optimized implementations
[19, 20, 21] that are still widely used. When word embeddings and neural text encoders became
popular, first-generation dense retrieval systems used single vectors to represent queries and passage,
39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/structlearning/corgii

leading to rapid adoption of approximate nearest neighbor (ANN) indexing methods [22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34].

Mirroring the situation with graphs, late interaction between query and passage embeddings via cosine,
L2 or dot product scores leads to efficient indices, but these scores are not as accurate as those obtained
by early cross-interaction, which are not directly indexable. A notable and effective compromise was
separate contextualization of query and passage words, followed by a novel Chamfer score [35] as an
indexable surrogate of cross-interaction, as in ColBERT [15] and PLAID [36]. These methods probe
the ANN index once per query word, and perform extra decompression and bookkeeping steps for
scoring passages. Thus, even the partial contextualization and limited cross-interaction come at a
performance premium. SPLADE [37] further improves efficiency by pre-expanding documents to
include extra related words, and then use a standard inverted index on these expanded documents. In
case of text, contextual similarity between words provides the signals needed for expansion.

1.1 Our Contributions

In proposing our system, CORGII (Contextual Representation of Graphs for Inverted Indexing),
our goal is to apply the wisdom acquired from the recent history of dense text retrieval to devise a
scalable index for graphs to support subgraph containment queries. In doing so, we want to use a
contextual graph representation that gives accurate containment scores, but also takes advantage of
decades of performance engineering invested in classic inverted indices.

Differentiable graph tokenization We introduce a graph tokenizer network (GTNet) which uses a
graph neural network (GNN) to map each node to a structure-aware token over a latent vocabulary.
At the outset, GTNet computes binary node representations, which serve as discrete tokens, thereby
forming multi-vector discrete graph representations. Our approach is significantly different from
existing continuous graph embedding methods [6, 7, 9, 10, 8, 11], most of which employ Siamese
networks with hinge distance to learn order embeddings. In contrast, inverted indices basically
implement fast sparse dot-product computation. To reconcile this gap, we use separate tokenizer
networks for query and corpus graphs, but allow a symmetric distance between the matched nodes.

Prior works [9, 10] also use injective alignment. However, we find it suboptimal, due to the subtle
inconsistencies introduced by its continuous relaxation. Instead, we compute the Chamfer distance
[35] over discrete node representations, which supports accurate token matching, even without
injective alignment. We use these tokens to build an inverted index, where each token is mapped to
the posting lists of corpus graphs containing it.

Query-aware trainable impact score Text queries and documents represented as pure word sets
(ignoring word counts or rarity) are not as effective for retrieval as vector space models, where each
word has a certain impact on the document, based on raw word frequency, rarity of the word in the
corpus (inverse document frequency or IDF), etc. Thus the query and each document are turned into
sparse, non-negative, real-valued vectors.

We introduce a trainable token impact score that acts as a learned analog of classical term weights
like TFIDF and BM25, but for tokenized graphs instead of text. Given a query node, this score
function takes as input both its continuous and discrete representation and assigns different importance
weights to the same words based on the structural information, captured through the continuous
representation. This enables fine-grained, query-aware scoring while maintaining compatibility with
inverted indexing.

Recall-enhancing candidate generation prior to reranking Identifying the best match for a query
node in a corpus graph typically requires global optimization over all nodes. In contrast, inverted
indexing performs independent per-node matching, often leading to false positives. To tackle this
problem, we introduce a novel co-occurrence based multiprobing strategy, where, given a token, we
probe other tokens with large overlap between their posting lists. Finally, we perform a thresholded
aggregation, which facilitates smooth, tunable control over the trade-off curve between accuracy and
efficiency.

Experiments on several datasets show that CORGII is superior to several baselines. Moreover, the
design of CORGII naturally enables a smooth trade-off between query latency and ranking quality,
which is critical in many applications.

2

2 Preliminaries
Notation. We denote Gq = (Vq, Eq) as a query graph and Gc = (Vc, Ec) as a corpus graph. Let
{G1, G2, ..., GC} be the set C corpus graphs. Each query-corpus pair (Gq, Gc) is annotated with
a binary label yqc ∈ {0, 1}, where yqc = 1 iff Gq ⊆ Gc. Given corpus item indices C = [C] =
{1, .., C}, we define the set of relevant graphs as Cq⊕ = {c : | yqc = 1} and the set of non-relevant
graphs as Cq⊖ = C\Cq⊕. Assuming |Vq| = |Vc| = m obtained after suitable padding, we write
Aq,Ac ∈ {0, 1}m×m as the adjacency matrices for Gq and Gc respectively. [•]+ = max {0, •} is
the ReLU or hinge function. J•K denotes the indicator function which is 1 if predicate • holds and 0
if it does not.

Subgraph isomorphism Given Gq and Gc, the subgraph isomorphism problem seeks to deter-
mine iff Gq ⊆ Gc. This is equivalent to checking whether there exists a permutation matrix P

such that Aq ≤ PAcP
⊤, which results in a coverage loss based relevance distance, defined as:

minP∈Pm
[Aq − PAcP

⊤]+.

Computation of ∆(Gq, Gc) defined above requires solving a quadratic assignment problem (QAP),
which is NP-hard. Therefore, existing works [9, 10] propose a differentiable surrogate of this QAP
using an asymmetric set distance. Given Gq and Gc, they employ a graph neural network (GNN) to
compute the node embeddings hq(u),hc(v) ∈ Rdimh for u ∈ Vq and v ∈ Vc respectively, then collect
them in Hq ∈ Rm×dimh and Hc ∈ Rm×dimh , wherem is the number of nodes (after padding). These
embeddings are fed into a Gumbel-Sinkhorn network [38, 39], which produces a doubly stochastic
matrix P — a relaxed surrogate of the binary permutation matrix — thus providing an approximate,
injective node alignment map. This enables an approximation of minP∈PN

[Aq − PAcP
⊤]+ as the

following surrogate relevance distance:
∆(Gq, Gc) =

∑
i∈[dimh],u∈[m][Hq − PHc]+[u, i], P ∈ [0, 1]m×m is doubly stochastic. (1)

The underlying GNN and Gumbel-Sinkhorn network is trained under the distant supervision of binary
relevance labels, without any demonstration of ground truth permutation matrix P . We shall regard
Hq,Hc and Eqn. (1) as references to compute final scores of qualifying candidates that survive our
index probes.

Pretrained backbone We use an existing subgraph matching model, namely IsoNet [9], which
provides a relevance distance ∆(Gq, Gc) of the form given in Eq. (1) for any query-corpus graph
pair (Gq, Gc). This pre-trained backbone is employed solely at the final stage to compute ∆(Gq, Gc)
for ranking the retrieved candidates. Therefore, we can access Hq,Hc and the corresponding node
alignment map P .

Inverted Index Here, we describe inverted index based retrieval in a general information retrieval
setting with query q and corpus objects wih IDs C = {1, ..., C}. Given a vocabulary ω, we represent
each instance c by a set of discrete tokens ω(c) =

{
τ (1), τ (2), . . .

}
, where each τ (•) ∈ ω. For a

collection of corpus items C, the inverted index maps each token in ω to the set of corpus items con-
taining it. Specifically, each token τ is associated with a posting list PostingList(τ), which consists
of all c ∈ C containing τ , i.e., ω(c) ∋ τ . Formally, we write PostingList(τ) = List({τ | τ ∈ ω(c)}).
In “impact-ordered” posting lists, corpus items are sorted in decreasing order of “impact scores”
that capture the importance of a word in a document. Typically, in text retrieval, impact scores are
modeled using term frequency (TF) and inverted document frequency (IDF) [17]. Given a query xq ,
we obtain the token set ω(q) and then probe the inverted index to traverse across the posting list of
each token τ ∈ ω(q). Finally, we retrieve candidates from all such posting lists and return a subset
from them as top-k candidates.

3 Proposed approach
We now present CORGII: a scalable retrieval system for graph retrieval that takes advantage of
decades of optimization of inverted indices on discrete tokens, and yet supports scoring and ranking
using continuous node embeddings. Starting with the hinge distance (1), we propose a series of steps
that adapt GNN-based contextual node embeddings toward a discrete token space, enabling us to use
inverted indices. Before describing the modules of CORGII, we outline these adaptation steps.
GNN-based node embeddings As described in Section 2, a (differentiable) GNN contextualizes
nodes in their graph neighborhood to output {xq(u)} and {xc(v)}. The (transportation-inspired)
hinge distance between them, found effective for ranking in earlier work, is asymmetric and based

3

Co-occurrence

Multiprobing

Retrieved

graphs
Pre-trained

Figure 1: CORGII block diagram. Each (query, corpus) graph pair (Gq, Gc) is encoded using a shared
GNNθ, followed by separate MLPs (MLPϕ1 and MLPϕ2) to compute soft binary node embeddings
zc(v), zq(u) ∈ (0, 1)D. These are thresholded to obtain discrete binary codes ẑc(v), ẑq(u) ∈
{0, 1}D, mapped to integer-valued latent tokens τ ∈ T = [2D]. Corpus tokens are indexed into
posting lists PostingList(τ), enabling sparse inverted indexing. During retrieval, query tokens
τq(u) are expanded via co-occurrence–based multi-probing (CM) to select similar tokens Nb(τq(u)).
Each expanded token τ contributes to the corpus score through an impact score Impactψ(τ,hq(u)),
producing the overall retrieval score Simpact,CM(Gq, Gc). Graphs with score exceeding a threshold δ
are shortlisted and reranked using the alignment distance ∆(Gq, Gc) (Eq. (1)).

on a (soft) permutation P . These introduce two major hurdles in the way of deploying inverted
indices. CORGII approximates the asymmetric, early-interaction distance (1) with an asymmetric
dual encoder (late interaction) network, but based on a non-injective granular scoring function.
Efficient differentiable (near-)tokenization As a first step toward tokenization, we apply two
(still differentiable, but distinct) networks to xq(u),xc(v), ending with sigmoid activations, which
take the outputs zq(u), zc(v) closer to bit-vector representation of tokens. The GNN, together with
these networks, are trained for retrieval accuracy (and not, e.g., any kind of reconstruction). We also
replace the permutation with a Chamfer distance [35] which brings us closer to inverted indices.
Token discretization and indexing Finally, we round zq(u), zc(v) to 0/1 bit vectors ẑq(u), ẑc(v),
assigning a bit-vector token to each node. Much like text documents, a graph is now represented as a
multiset of discrete tokens. With this step, we lose differentiability, but directly use an inverted index.
Impact weights and multi-probing All tokens should not contribute equally to match scores. Based
on corpus and query workloads, we learn suitable impact weights of these (manufactured) tokens.
We further optimize the performance of CORGII by designing a suitable aggregation mechanism to
prune the posting lists obtained from all the query tokens. Finally, we consider one folklore and one
novel means to explore the ‘vicinity’ of a query token, to provide a smooth trade-off between query
latency and ranking accuracy.

3.1 Graph tokenizer network GTNet

We now proceed to describe the major components of CORGII.

The first stage of GTNet is a standard GNN similar to that described in Section 2, but here we will
train it exclusively for indexing and retrieval. The GNN will share the same parameters θ across
query and corpus graphs. After the GNN, we will append a multi-layer perceptron (MLP) layer with
different parameters ϕ1 and ϕ2 for the query and corpus graphs.

zq(u) = σ(MLPϕ1(xq(u))) for u ∈ Vq where, {xq(u)} = GNNθ(Gq); (2)
zc(v) = σ(MLPϕ2(xc(v))) for v ∈ Vc where, {xc(v)} = GNNθ(Gc). (3)

Rationale behind different MLP networks Unlike exact graph matching, the subgraph matching
task is inherently asymmetric, where Gq ⊂ Gc does not mean Gc ⊂ Gq. To model this asymmetry,
existing works [7, 8, 9, 10] employs hinge distance ∆(Gq, Gc) (1), while sharing a a Siamese
network with the same parameters for query and corpus pairs. However, such approach will preserve
subgraph matching through order embeddings: Zq ≤ SZc. But inverted indexing requires exact
token matching, making order embeddings incompatible with token-based indexing. Therefore, we
retain asymmetry through separate MLPs for queries and corpus.

Introducing Chamfer Distance between graphs An asymmetric Siamese network lets us replace
hinge distance [Hq−PHc]+ with the normed distance ∥Zq−PZc∥1, but, for the sake of indexing,
we need to avoid the permutation P (whose best choice depends on both Hq and Hc), so that
‘document’ graphs can be indexed independent of queries. Moreover, training from relevance labels

4

require P to be modeled as a doubly stochastic soft permutation matrix (see Eq. (1)). However, its
continuous nature of P smears the values in Zq and Zc, leading to poor discretization. Due to these
reasons, we avoid the permutation, and for each query node u, match zq(u) to zc(v) for some corpus
node v, independently of other query nodes, as opposed to the joint matching of all nodes in query
corpus pairs, thus permitting non-injective mappings via the Chamfer distance [35]:

Chamfer(Gq, Gc) =
∑
u∈Vq

minv∈Vc
∥zq(u)− zc(v)∥1, (4)

Ideally, relevant graphs yield Chamfer(Gq, Gc) = 0, but GTNet produces approximate binary
representations, making exact matches unlikely. To ensure a robust separation between the relevant
and non-relevant query-corpus pairs, we seek to impose a margin of separationm: non-relevant graphs
should differ by at least one additional bit per node compared to the relevant graphs, corresponding
to a total Chamfer distance separation of m.

Formally, for a query graph Gq , and the set of relevant and irrelevant (or less relevant) corpus graphs
c⊕ ∈ Cq⊕ and c⊖ ∈ Cq⊖, we require Chamfer(Gq, Gc⊕) +m < Chamfer(Gq, Gc⊖). This yields
the following ranking loss optimized over parameters of GTNet, i.e., θ, ϕ1, ϕ2:

min
θ,ϕ1,ϕ2

∑

q

∑

c⊖∈Cq⊖,c⊕∈Cq⊕

[Chamfer(Gq, Gc⊕)− Chamfer(Gq, Gc⊖) +m]+ (5)

Note that node embeddings Zq,Zc still allow backprop, but are closer to “bit vectors”. Moreover, the
training of θ, ϕ1, ϕ2 is guided not by reconstruction considerations, but purely by retrieval efficacy.

3.2 Discretization and inverted index

Once GTNet is trained, we compute, for each corpus graph and node therein, zc(v), and, from there,
a bit vector ẑc(v) = Jzc(v) > 0.5K as a ‘hard’ representation of each corpus node (and similarly
from zq(u) to ẑq(u) for query nodes u). Given zc(v) ∈ (0, 1)D, this means ẑc(v) ∈ {0, 1}D, i.e.,
each node gets associated with a D-bit integer. Let us call this the token space T = [2D]. Note that
multiple nodes in a graph may get assigned the same token. Thus, each query graph Gq and corpus
graph Gc are associated with multisets of tokens, denoted

ω(Gq) = {{ẑq(u) : u ∈ Vq}} and ω(Gc) = {{ẑc(v) : v ∈ Vc}}. (6)
(If a graph is padded for efficient tensor operations, the tokens corresponding to padded nodes are
logically excluded from the multisets. We elide this code detail for clarity.)

Conceptually, a basic inverted index is a map where the keys are tokens. Each token τ ∈ T is
mapped to the set (without multiplicity) of corpus graphs (analog of ‘documents’) in which it appears:
PostingList(τ) = {c ∈ C : τ ∈ ω(Gc)}. Intuitively, the goal of minimizing the Chamfer distance
(4) in the pre-discretized space corresponds, in the post-discretized space, to locating documents that
have large token overlap with the query, which finally enables us to plug in an inverted index.

Candidate generation using uniform impact At query time, the query graph Gq is processed
as in (6), to obtain ω(Gq). Given the inverted index, each token τ ∈ ω(Gq) is used to retrieve
PostingList(τ). As a simple starting point (that we soon improve), a corpus graph can be scored as

Sunif(Gq, Gc) =
∑
u∈Vq

Jẑq(u) ∈ ω(Gc)K. (7)

(If multiple nodes u have the same token ẑq(u), they are counted multiple times. Belongingness in
ω(Gc) is Boolean, without considering multiplicities.) These scores are used to select a subset of can-
didates from the whole corpus. These qualifying candidates are reranked using the (computationally
more expensive) alignment-based distance ∆(Gq, Gc) (1).

3.3 Impact weight network

The crude unweighted score (7) has some limitations: (1) Information is lost from H to Z to Ẑ.
Nodes with minor differences in neighborhood structure may be mapped to overlapping tokens,
resulting in large candidate pools. (2) Similar to IDF, we need to discriminate against common
graph motifs with poor selectivity. In our setting, the combinatorial explosion of motifs makes the
estimation of motif frequencies intractable [40]. Moreover, unlike IDF in text retrieval [17], frequent
structures cannot be down-weighted, as subgraph retrieval requires matching all query components,
regardless of the frequency of the subgraphs.

To mitigate the above difficulties, we use a notion of token impact weight in the same spirit as in
traditional text retrieval, although there are some crucial differences. We introduce an impact weight
network Impactψ : T × Rdimh → R, parameterized with ψ, where dimh is the dimension of the

5

(a) 2-stage training of CORGII (b) Retrieval and reranking
1: input: graph corpus C, training queries {Gq} with

relevance labels {yqc}
2: ▷ Train GTNet ◁
3: for each query-corpus pair (Gq, Gc) do
4: Compute Zq = GTNet(Gq) (Eq. (2))
5: Compute Zc = GTNet(Gc) (Eq. (3))
6: Compute Chamfer(Gq, Gc) (Eq. (4))
7: Train GTNet by minimizing margin-based ranking

loss on Chamfer(Gq, Gc) (Eq. (5))
8: ▷ Train impact network ◁
9: for each query-corpus pair (Gq, Gc) do

10: Compute Zq = GTNet(Gq)
11: ▷ Compute binary embeddings ◁
12: {ẑq(u)} = JZq > 0.5K
13: ▷ compute impact scores of all query graphs ◁
14: compute Simpact(Gq, Gc) (Eq. (9))
15: Train Impactψ network by minimizing margin-

based ranking loss on Simpact(Gq, Gc) (Eq. (10))

1: inputs: query Gq , threshold t, pre-trained embed-
dings {hq(u)} for Gq .

2: ▷ Obtain approximate binary representation ◁
3: Compute Zq = GTNet(Gq) (Eq. (2))
4: ▷ Compute binary embeddings and tokens ◁
5: {ẑq(u)} = JZq > 0.5K
6: ω(Gq) = ObtainTokenSet({ẑq(u)})
7: ▷ Compute impact weights ◁
8: for each node u ∈ Vq do
9: Compute Impactψ(ẑq(u),hq(u)) (Eq. (8))

10: ▷ Probe index using query node tokens and their
impacts (with optional token expansion) and
aggregate preliminary relevance scores ◁

11: Simpact,CM (Gq, Gc) (Eq. (9))
12: ▷ Shortlist candidates ◁
13: Rq(δ) = {Gc : Simpact,CM (Gq, Gc) ≥ δ} (11)
14: rerank surviving candidates using ∆(Gq, Gc) (1)
15: return top-k corpus graphs

Figure 2: (a) preprocessing and (b) query-time components of CORGII.

pre-trained continuous node embedding hq(•) or hc(•). We often substitute τ with ẑq(u) in the
input to Impactψ depending on context.

Neural architecture of Impactψ Network Impactψ is implemented as a lightweight multi layer
perceptron (MLP). Given input token τ , presented as a binary code from {0, 1}D, and input node
embedding h, we concatenate them and pass the result through a multi-layer perceptron, i.e.,

Impactψ(τ,h) = MLPψ (concat (τ,h)) . (8)
Rather than count all matched tokens uniformly (7), we compute an impact-weighted aggregate:

Simpact(Gq, Gc) =
∑

u∈Vq

Impactψ(ẑq(u),hq(u)) Jẑq(u) ∈ ω(Gc)K (9)

Thus, token matches are weighted according to their learned structural importance rather than treated
uniformly, enabling fine-grained, query-sensitive retrieval over the inverted index.

Training Impactψ Let Cq⊕ and Cq⊖ be the relevant and non-relevant graphs for query Gq . Similar
to Eq. (5), we encourage that SImpact(Gq, Gc⊕) > S(Gq, Gc⊖) + γ for c⊕ ∈ Cq⊕ and c⊖ ∈ Cq⊖,
where γ > 0 is a margin hyperparameter. As before, this leads to a pairwise hinge loss to train ψ:

argmin
ψ

∑

q

∑

c⊕∈Cq⊕

∑

c⊖∈Cq⊖

[
Simpact(Gq, Gc⊖)− Simpact(Gq, Gc⊕) + γ

]
+
. (10)

Note that the networks described earlier, with parameters θ, ϕ1, ϕ2 are frozen before training the
impact parameters ψ. Unlike in classical inverted indices, impact weights are not associated with
documents, or stored in the index. Figure 2(a) shows all the training steps of CORGII.

3.4 Query processing steps and multi-probing

At retrieval time, the query graph Gq is first embedded using the pretrained encoder E to obtain node
embeddings Hq . The graph tokenizer GTNet then discretizes Hq into soft binary codes Zq and later
hard binary codes Ẑ, and Impactψ computes impact weights (if used).

Each query graph token is used to probe the inverted index. Candidate corpus graphs are retrieved by
aggregating impact scores across matching tokens. Graphs with cumulative relevance scores above a
tunable threshold δ form the shortlist:

Rq(δ) = {c ∈ C : S♠(Gq, Gc) ≥ δ} , (11)
where ♠ ∈ {unif, impact}. Here, δ controls the trade-off between the query time and retrieval
accuracy. High δ results in smaller size of Rq(δ), yielding low query time, whereas a low δ gives high
query time. Note that, S♠(Gq, Gc) is used only to obtain Rq . Candidates in Rq are further reranked
using the pretrained alignment-based ‘true’ distance ∆(Gq, Gc) (1). Details are in Figure 2(b).

Limitation of single probe per query node We have described how candidate corpus graphs are
scored using uniform and impact-weighted aggregates. In both methods, each token ẑq(u) from the
query resulted in exactly one probe into the index. Preliminary experiments suggested that a single

6

probe using each query token leads to lost recall, brought on partly by losing signal from continuous
to bit-like node representations, and by replacing permutation-based node alignment with Chamfer
score. We must discover and exploit affinities between tokens while accessing posting lists.

In the rest of this section, we explore two means to this end. The first, Hamming expansion, has
already been used in the literature on locality-sensitive hashing. The second, co-occurrence expansion,
is a proposal novel to CORGII.

Term weighting Single Probe Hamming multiprobe (HM) Co-occurrence multiprobe (CM)
Uniform Sunif Sunif,HM (r = . . .) Sunif,CM (b = . . .)
Impact Simpact Simpact,HM (r = . . .) Simpact,CM (b = . . .) (CORGII)

Table 3: Possible combinations of term weighting and probing strategies. Default CORGII corre-
sponds to Simpact,CM. r and b indicate Hamming radius for HM and number of tokens chosen for CM.

Hamming expansion multiprobe (HM) While exact token matches may be adequate when
query and corpus graphs are locally near-isomorphic, discretization errors and structural noise
can cause relevant corpus graphs to be missed if no exact token match is found. To improve
recall, we “smooth the boundaries of token bit encodings” by introducing a lightweight token
expansion mechanism: given a query token τ ∈ T , we probe the inverted index using not only
τ , but also nearby tokens within a Hamming ball of radius r in the binary space {0, 1}D. Given
ẑ and ẑ are the corresponding binary vectors of τ, τ ′ respectively, we write Br(τ) = {τ ′ : ∥z −
z′∥1 ≤ r}. Simpact from (9) is extended, by summing over the ball, to

Simpact,HM(Gq, Gc) =
∑

u∈Vq

∑

τ∈Br(ẑq(u))

Impactψ(τ,hq(u)) Jτ ∈ ω(Gc)K. (12)

This expansion allows retrieval of corpus graphs containing approximate matches, mitigating the
brittleness of hard discretization without requiring dense alignment. Hamming expansion has the
potential to improve recall, but there is a risk of too many false positive candidates to eliminate
through expensive scoring later.

Co-occurrence expansion multiprobe (CM) In classical text indexing, a token is sometimes
characterized by the set of documents that mention it. Two tokens can then be compared by comparing
their respective posting lists. A large overlap in these posting lists hints that the tokens have high
affinity to each other. Adapting this idea to graph indexing can provide an alternative to Hamming-
based affinity, which can be used either by itself, or in conjunction with Hamming-based token
expansion.

For each query token τ ∈ T , we identify additional tokens τ ′ whose posting lists overlap significantly
with the posting list of τ , i.e., PostingList(τ). Specifically, we define a similarity score between
tokens τ and τ ′ as

sim(τ, τ ′) =
|PostingList(τ) ∩ PostingList(τ ′)|∑

τ⋆∈T |PostingList(τ) ∩ PostingList(τ⋆)|
(13)

and expanded token set Nb(τ) = argmax
(b)
τ ′∈T sim(τ, τ ′), where b is the number of similar tokens.

Similar to Impactψ , we overload the input notation for sim where necessary. Simpact from (9) is then
updated to aggregate over this expanded neighborhood, weighted by similarity:

Simpact,CM(Gc, Gq) =
∑

u∈Vq

∑

τ∈Nb(ẑq(u))

sim(τ, ẑq(u)) Impactψ(τ,hq(u)) Jτ ∈ ω(Gc)K. (14)

This way, a corpus graph Gc can receive a non-zero score for a query node u, if any token τ in the
expanded set Nb(zq(u)) appears in ω(Gc) — not just zq(u) itself. Table 3 lists different variants
including CORGII.

4 Experiments
We assess the effectiveness of CORGII against several baselines on real-world graph datasets and
analyze the effect of different components of CORGII. Appendix G contains additional experiments.

Dataset We evaluate CORGII on four datasets from the TU benchmark suite [41]: PTC-FR,
PTC-FM, COX2, and PTC-MR, which are also used existing works on graph matching [9, 10].

Baselines We compare CORGII against six baselines as follows: (1) FourierHashNet
(FHN) [42]: It is an LSH for shift-invariant asymmetric distance, computed using distance spe-

7

CoRGII FHN IVF-single IVF-multi DiskANN-single DiskANN-multi Random

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.36

0.48

M
A

P

(a) PTC-FR

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.37

0.49

(b) PTC-FM

0 0.25 0.5 0.75 1

k/C →
0.14

0.28

0.42

0.56

(c) COX2

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.36

0.48

(d) PTC-MR
Figure 4: Tradeoff between retrieval accuracy and efficiency for CORGII, FHN [42], IVF-single [25],
IVF-multi [25], DiskANN-single [29], DiskANN [29] and Random, on 20% test queries on all
four datasets. Here, retrieval accuracy is measured in terms of mean average precision (MAP) and
efficiency is measured as fraction of corpus graphs retrieved (k/C).

cific Fourier transform. It takes single vector graph embeddings as aq =
∑
u∈Vq

hq(u)/|Vq| and
ac =

∑
v∈Vc

hc(v)/|Vc| as input and builds LSH buckets for the corpus graphs C. (2) IVF-single:
It is a variant of IVF [25], used for single vector retrieval. Here, we build the inverted index using
single vector dense corpus representations {ac} and perform retrieval by probing once with aq.
(3) IVF-multi: It is a multi-vector variant of IVF [25], similar to [15, ColBert]. Here, we build the
index over individual node embeddings from all corpus graphs, each tagged with its parent graph
ID. During retrieval, we probe the inverted index with each query node embedding and aggregating
the hits by the corresponding graph IDs. (4) DiskANN-single [29]: It is graph-based ANN that
uses HNSW index, over single vector representations. (5) DiskANN-multi [29]: It is a multi-vector
variant of DiskANN analogous to IVF-multi. Note that IVF and DiskANN typically support L2 or
cosine distance. We report the results for the best performing metric. (6) Random: Here, we select
top-k items from C uniformly at random without replacement.

Evaluation Given the set of queries Q and the set of corpus graphs C, we split Q in 60:20:20 train
(Qtrain), dev (Qdev) and test (Qtest) folds. For each query in Qtest, we retrieve the corpus graphs Rq

that are marked relevant by the corresponding model. We rerank the retrieved candidates using the
pretrained ranking model (1). For each ranked list, we compute average precision (AP) and average
the AP values across test queries Qtest to report on mean average precision (MAP). Given an accurate
ranking model, MAP typically improves as the size of the candidate set Rq increases— larger sets
are more likely to hit most of the relevant items, whereas smaller sets may miss many of them. To
evaluate this trade-off between retrieval quality and efficiency, we measure MAP vs. the average size
of the retrieved set, computed as k = 1

|Qtest|
∑
q∈Qtest

|Rq|. To generate this trade-off curve, for FHN,
we sweep over its training hyperparameters to learn multiple hashcode variants, and vary the number
of hash table buckets during lookup. The implementations of IVF and DiskANN accept k as input.
For these baselines, we directly vary k to obtain the trade-off. Appendix F report the details datasets,
baselines and evaluations.

Hyperparameters We set D = 10, yielding the size of the vocabulary |T | = 210, b = 32 in the
expanded token set Nb(ẑq(u)) used in co-occurrence based multi-probing (CM) in Eq. (14).

4.1 Results

CORGII vs. baselines We first measure retrieval accuracy (MAP) and efficiency (inversely related
to the fraction of corpus retrieved, k/C) across four datasets. Each curve shows how performance
scales as the top-k retrieved candidates vary. Figure 4 summarizes the results. We make the following
observations.

(1) CORGII achieves the best accuracy-efficiency trade-offs among all methods. While FHN is the
strongest among the baselines, CORGII shows particularly large gains in the high-MAP regime.
For example, on the COX2 dataset, CORGII achieves a MAP of ∼0.50 at k/C = 0.5, whereas
FHN saturates around 0.35. (2) Across all datasets, CORGII achieves high MAP, very quickly at
significantly lower retrieval budgets. For example, on PTC-FR, CORGII attains a MAP of ∼ 0.36
by retrieving less than k = 33% corpus graphs, while most baselines require more than 75% of the
corpus to match that level.

(3) Multivector variants of IVF and DiskANN outperform their single-vector counterparts, highlight-
ing the benefit of retaining node-level granularity. However, they still perform poorly compared to
CORGII, largely due to their reliance on symmetric distance functions, which are unsuitable for

8

subgraph matching — a task inherently asymmetric in nature. Single-vector variants perform the
worst, sometimes even below the Random baseline, due to both the coarse nature of single-vector
representations and use of symmetric distance.

HM, r=1

CM, b=8

Single-probing

HM, r=3

CM, b=32 (CoRGII)

HM, r=7

CM, b=64

0.12 0.5 0.75 1

k/C →

0.24

0.36

0.48

M
A

P

(a) PTC-FR

0.10 0.5 0.75 1

k/C →

0.24

0.37

0.49

(b) PTC-FM
Figure 5: Multiprobing: CM vs. HM

Benefits of co-occurrence based multi-probing Here,
we analyze the effect of co-occurence based multiprob-
ing (CM) strategy (14), by comparing it with a tradi-
tional Hamming distance-based multiprobing variant
(HM) (12) (Table 3 2nd vs. 3rd column, second row).

Figure 5 shows the results for HM and CM, with dif-
ferent values r and b, and single probing strategy. We
make the following observations. (1) Single probing
fails to span the full accuracy-efficiency trade-off curve
across all datasets. The retrieved set is noticeably sparse at k/C ≥ 0.50. These results highlight the
necessity of multiprobing to achieve sufficient candidate coverage across varying levels of retrieval
selectivity. (2) CM consistently achieves better trade-off than the corresponding variant of HM and
single-probing strategy, while smoothly spanning the full range of retrieval selectivity. As b increases,
its performance improves consistently but with diminishing gains, saturating beyond b = 32. This
indicates that a moderate number of co-occurrence-based token expansions suffices to approach
near-exhaustive token expansion performance. (3) HM retrieves a broader range of candidates and
spans the selectivity axis more effectively than the base impact score. However, as the Hamming
radius r increases, the expansion becomes increasingly data-agnostic, ignoring semantic alignment
from Impactψ . This leads to degraded MAP at large r.

Sunif, HM (r=3)

Sunif, CM (b=32)

Simpact, HM (r=3)

Simpact, CM (b=32) (CoRGII)

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.36

0.48

M
A

P

(a) PTC-FR

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.37

0.49

(b) PTC-FM
Figure 7: Ablation on impact weight network

Effect of impact weighting network Next, we ana-
lyze the effect of impact weight network, by comparing
with the variants of our model for both co-occurrence
based multiprobing (CM, Eq. (14)) and Hamming dis-
tance based multiprobing (HM, Eq. (12)). This results
in four models whose scores are Sunif,HM, SImpact,HM,
Sunif,CM and SImpact,CM (CORGII). Figure 7 summa-
rizes the results. We observe that addition of impact
weighting network improves the quality of trade-off,
with significant performance gains observed for co-occurrence based multiprobing.

Siamese (HM, r=3)

Siamese (CM, b=32)

Asymmetric (HM, r=3)

Asymmetric (CM, b=32) (CoRGII)

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.36

0.48

M
A

P

(a) PTC-FR

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.37

0.49

(b) PTC-FM
Figure 9: Siamese vs Asymmetric architecture

Siamese vs Asymmetric architecture As discussed in
Section 3.1, GTNet employs an asymmetric network
architecture, which enables exact token matching while
capturing the inherent asymmetry of subgraph match-
ing. Here, we investigate its benefits by comparing
against a Siamese variant of GTNet, which shares the
same MLP across query and corpus graphs. Figure 9
summarizes the results for both co-occurrence based
multiprobing (Eq. (14)) and Hamming based multiprob-
ing (Eq. (12)) We highlight the following key observations: (1) The asymmetric variant of GTNet
consistently outperforms the Siamese variant for both HM and CM. The performance boost is strik-
ingly high for CM. (2) When using the asymmetric network, CM gives notable improvements over
HM. However, for the Siamese variant, CM performs poorly on both PTC-FR and PTC-FM, while
HM also suffers significantly on PTC-FM. This contrast highlights the importance of architectural
asymmetry, especially for effective co-occurrence-based token matching.

Chamfer (CM, b=32) (CoRGII) Injective (CM, b=32)

0 0.25 0.5 0.75 1

k/C →
0.14

0.28

0.42

0.56

M
A

P

(a) COX2

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.36

0.48

(b) PTC-MR
Figure 10: Injective vs. Chamfer

Chamfer distance vs injective mapping Chamfer dis-
tance provides a non-injective mapping. Here, we com-
pare its performance against traditional graph matching
distance with injective mapping, i.e., ∥Zq − PZc∥1,
where P is a soft permutation (doubly stochastic) ma-
trix. Figure 10 shows that Chamfer distance outper-
forms injective alignment-based graph matching. This

9

1 25 50 75 100

ρtoken(τ)→
0

20K

60K

100K

∑
P

os
ti

n
gL

is
t(
τ

)

1 25 50 75 100

ρtoken(τ)→
0

20K

60K

100K

1 25 50 75 100

ρtoken(τ)→
0

20K

60K

100K

1 25 50 75 100

ρtoken(τ)→
0

20K

60K

100K

20K 60K 100K

ρdoc(C)→
0

5

10

15

20

|T
ok

en
s(
C

)|

(a) PTC-FR

20K 60K 100K

ρdoc(C)→
0
5

10
15
20

(b) PTC-FM

20K 60K 100K

ρdoc(C)→
0

5

10

15

(c) COX2

20K 60K 100K

ρdoc(C)→
0
5

10
15
20

(d) PTC-MR
Figure 11: Top row: Posting list length vs descending token rank. Bottom row: Number of unique
tokens vs descending document rank. ρtoken(τ) represents the rank of the token τ when sorted in
descending order of posting list lengths. ρdoc(C) is the rank of the document C when sorted in
descending order of unique token count.

is because injective mappings tightly couple corpus embeddings Zc with query embeddings Zq

preventing effective inverted indexing.

Token rank vs Document frequency We rank each token in the vocabulary by the length of its
posting list,

∑
PostingList(τ), in descending order. Similarly, we rank each document by the number

of unique tokens it contains, i.e., |Tokens(C)|.
In the top row of Figure 11, we plot the posting list lengths of tokens by rank. A small number
of high-frequency tokens are associated with nearly all documents in the whole corpus, while the
vast majority of tokens have short posting lists. The distribution exhibits a steep drop-off with rank,
reminiscent of a Zipfian pattern. Inverted indexes are expected to be efficient in precisely these
settings. In the second row, we plot the ‘fill’ of documents against documents ranked by their fills. A
similar decay trend is observed, showing that most documents have a small number of tokens with
non-zero impacts. Appendix G.4 contains more results.

5 Conclusion
We proposed CORGII, a scalable graph retrieval framework that bridges highly accurate late in-
teraction query containment scoring with the efficiency of inverted indices. By discretizing node
embeddings into structure-aware discrete tokens, and learning contextual impact scores, CORGII
enables fast and accurate retrieval. Experiments show that CORGII consistently outperforms several
baselines. Our work opens up several avenues of future work. It would be interesting to incorporate
richly attributed graphs, capturing temporal dynamics in evolving corpora, learning adaptive token
vocabularies, and exploring differentiable indexing mechanisms for end-to-end training. Another
avenue is to integrate CORGII into large retrieval-augmented systems that require structured subgraph
reasoning at scale.

6 Acknowledgements
Pritish would like to acknowledge funding from the Qualcomm Innovation Fellowship. Indradyumna
would like to acknowledge funding from the Google PhD Fellowship and the Microsoft Research
India PhD Award. Abir would like to acknowledge funding from grants given by Amazon and Google,
and the Bhide Family Chair Endowment Fund. Soumen would like to acknowledge funding from
Amazon and IBM, and the Halepete Family Chair Fund.

10

References
[1] Bingqing Lyu, Lu Qin, Xuemin Lin, Lijun Chang, and Jeffrey Xu Yu. Scalable supergraph search

in large graph databases. In 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), pages 157–168. IEEE, 2016.

[2] Robert P Sheridan and Simon K Kearsley. Why do we need so many chemical similarity search
methods? Drug discovery today, 7(17):903–911, 2002.

[3] Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan, Tengfei Ma, Fangli Xu, Alex X Liu,
Chunming Wu, and Shouling Ji. Deep graph matching and searching for semantic code retrieval.
ACM Transactions on Knowledge Discovery from Data (TKDD), 15(5):1–21, 2021.

[4] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein,
and Li Fei-Fei. Image retrieval using scene graphs. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3668–3678, 2015.

[5] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph
matching in pattern recognition. International journal of pattern recognition and artificial
intelligence, 18(03):265–298, 2004.

[6] Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec, et al. Neural
subgraph matching. arXiv preprint arXiv:2007.03092, 2020.

[7] Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy, Yogish Sab-
harwal, and Sayan Ranu. Greed: A neural framework for learning graph distance functions.
In Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, November 29-Decemer 1, 2022, 2022.

[8] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching
networks for learning the similarity of graph structured objects. In International conference
on machine learning, pages 3835–3845. PMLR, 2019. URL https://arxiv.org/abs/1904.
12787.

[9] Indradyumna Roy, Venkata Sai Velugoti, Soumen Chakrabarti, and Abir De. Interpretable
Neural Subgraph Matching for Graph Retrieval. AAAI, 2022.

[10] Ashwin Ramachandran, Vaibhav Raj, Indradyumna Roy, Soumen Chakrabarti, and Abir De.
Iteratively refined early interaction alignment for subgraph matching based graph retrieval.
Advances in Neural Information Processing Systems, 37:77593–77629, 2024.

[11] Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization.
Advances in Neural Information Processing Systems, 35:30181–30193, 2022.

[12] Aliaksei Severyn and Alessandro Moschitti. Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’15, page 373–382, New
York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450336215. doi:
10.1145/2766462.2767738. URL https://doi.org/10.1145/2766462.2767738.

[13] Zhe Dong, Jianmo Ni, Dan Bikel, Enrique Alfonseca, Yuan Wang, Chen Qu, and Imed Zitouni.
Exploring dual encoder architectures for question answering. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang, editors, Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 9414–9419, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.640.
URL https://aclanthology.org/2022.emnlp-main.640/.

[14] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769–
6781, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v
1/2020.emnlp-main.550. URL https://aclanthology.org/2020.emnlp-main.550/.

11

https://arxiv.org/abs/1904.12787
https://arxiv.org/abs/1904.12787
https://doi.org/10.1145/2766462.2767738
https://aclanthology.org/2022.emnlp-main.640/
https://aclanthology.org/2020.emnlp-main.550/

[15] Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextual-
ized late interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, pages 39–48, 2020.

[16] Gerard Salton. Modern information retrieval. (No Title), 1983.

[17] C.D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. An
Introduction to Information Retrieval. Cambridge University Press, 2008. ISBN 9780521865715.
URL https://books.google.co.in/books?id=GNvtngEACAAJ.

[18] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. ACM Press,
2nd edition, 1999.

[19] Otis Gospodnetic, Erik Hatcher, and Michael McCandless. Lucene in action. Simon and
Schuster, 2010.

[20] Clinton Gormley and Zachary Tong. Elasticsearch: the definitive guide: a distributed real-time
search and analytics engine. " O’Reilly Media, Inc.", 2015.

[21] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, and Rodrigo
Nogueira. Pyserini: A python toolkit for reproducible information retrieval research with sparse
and dense representations. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’21, page 2356–2362, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450380379. doi:
10.1145/3404835.3463238. URL https://doi.org/10.1145/3404835.3463238.

[22] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for similarity search:
A survey. arXiv preprint arXiv:1408.2927, 2014.

[23] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824–836, 2018.

[24] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv
Kumar. Accelerating large-scale inference with anisotropic vector quantization. In International
Conference on Machine Learning, 2020. URL https://arxiv.org/abs/1908.10396.

[25] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv
preprint arXiv:2401.08281, 2024.

[26] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via
hashing. In Vldb, volume 99, pages 518–529, 1999.

[27] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard
Harshman. Indexing by latent semantic analysis. Journal of the American society for information
science, 41(6):391–407, 1990.

[28] Christos Faloutsos and Douglas W Oard. A survey of information retrieval and filtering methods.
Citeseer, 1995.

[29] Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, Gopal Srinivasa, Suhas Jayaram
Subramanya, Andrija Antonijevic, Dax Pryce, David Kaczynski, Shane Williams, Siddarth
Gollapudi, Varun Sivashankar, Neel Karia, Aditi Singh, Shikhar Jaiswal, Neelam Mahap-
atro, Philip Adams, Bryan Tower, and Yash Patel. DiskANN: Graph-structured indices
for scalable, fast, fresh and filtered approximate nearest neighbor search, 2023. URL
https://github.com/Microsoft/DiskANN.

[30] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Communications of the ACM, 51(1):117–122, 2008.

[31] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 793–801, 2015.

12

https://books.google.co.in/books?id=GNvtngEACAAJ
https://doi.org/10.1145/3404835.3463238
https://arxiv.org/abs/1908.10396
https://github.com/Microsoft/DiskANN

[32] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal lsh for angular distance. Advances in neural information processing
systems, 28, 2015.

[33] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search
with the navigating spreading-out graph. arXiv preprint arXiv:1707.00143, 2017.

[34] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin.
Approximate nearest neighbor search on high dimensional data—experiments, analyses, and
improvement. IEEE Transactions on Knowledge and Data Engineering, 32(8):1475–1488,
2019.

[35] Ainesh Bakshi, Piotr Indyk, Rajesh Jayaram, Sandeep Silwal, and Erik Waingarten. A near-linear
time algorithm for the chamfer distance, 2023. URL https://arxiv.org/abs/2307.03043.

[36] Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. Plaid: an efficient
engine for late interaction retrieval. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages 1747–1756, 2022.

[37] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. Splade: Sparse lexical and
expansion model for first stage ranking. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 2288–2292, 2021.

[38] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26:2292–2300, 2013.

[39] Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent per-
mutations with gumbel-sinkhorn networks. arXiv preprint arXiv:1802.08665, 2018. URL
https://arxiv.org/pdf/1802.08665.pdf.

[40] Number of simple connected graphs on n unlabeled nodes. Online. URL https://oeis.or
g/A001349.

[41] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663, 2020.

[42] Indradyumna Roy, Rishi Agarwal, Soumen Chakrabarti, Anirban Dasgupta, and Abir De.
Locality sensitive hashing in fourier frequency domain for soft set containment search. Advances
in Neural Information Processing Systems, 36:56352–56383, 2023.

[43] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural information
processing systems, 26, 2013.

[44] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[45] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

[46] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

[47] Vaibhav Raj, Indradyumna Roy, Ashwin Ramachandran, Soumen Chakrabarti, and Abir De.
Charting the design space of neural graph representations for subgraph matching. In The
Thirteenth International Conference on Learning Representations, 2025.

[48] Indradyumna Roy, Soumen Chakrabarti, and Abir De. Maximum common subgraph guided
graph retrieval: late and early interaction networks. Advances in Neural Information Processing
Systems, 35:32112–32126, 2022.

13

https://arxiv.org/abs/2307.03043
https://arxiv.org/pdf/1802.08665.pdf
https://oeis.org/A001349
https://oeis.org/A001349

[49] Eeshaan Jain, Indradyumna Roy, Saswat Meher, Soumen Chakrabarti, and Abir De. Graph
edit distance with general costs using neural set divergence. Advances in Neural Information
Processing Systems, 37:73399–73438, 2024.

[50] Indradyumna Roy, Eeshaan Jain, Saswat Meher, Soumen Chakrabarti, and Abir De. Graph
edit distance with general costs using neural set divergence. In The Third Learning on Graphs
Conference, .

[51] Indradyumna Roy, Saswat Meher, Eeshaan Jain, Soumen Chakrabarti, and Abir De. Position:
Graph matching systems deserve better benchmarks. In Forty-second International Conference
on Machine Learning Position Paper Track, .

[52] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824–836, 2018.

[53] Antonella Falini. A review on the selection criteria for the truncated svd in data science
applications. Journal of Computational Mathematics and Data Science, 5:100064, 2022.

[54] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive data sets.
Cambridge university press, 2020.

14

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim that we have developed a novel indexing and retrieval system for
graphs over a latent vocabulary, with sparse binary codes. The rest of the paper provides
experiments and data to corroborate these claims. Please see figure 1 for an overview of the
system, and section 4 for results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitations in Appendix section B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include theoretical results in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.

15

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide code, configurations/hyperparameters and instructions on how to
run our experiments in the supplementary. Additionally, we provide the hyperparameters to
our experiments in the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the link of these items.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pub
lic/guides/CodeSubmissionPolicy) for more details.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These details are provided in the experiments section 4 and will be included in
greater detail in Appendix section F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not required in our experiments. This is because we have
provided scatter plots where each point represents data collected from the experiment run
for a separate configuration, for a wide variety of configurations. That is, our plot data is not
in the form of aggregates.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: These details have been provided in experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted follows the ethics guidelines laid out by NeurIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] ,
Justification: Provided in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not pose such risks of misuse.

18

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have provided citations wherever possible to any baseline or dataset that
we have used in this paper. We have also ensured license compliance.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide sufficient documentation for all our assets, including for e.g. code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not utilized in core research in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

A Broader Impact
Graph retrieval is a key enabler in many real-world domains where structured relationships are central.
Our work on CORGII contributes to subgraph-based retrieval, offering benefits across a range of
applications:

• Drug discovery and molecular search: Efficient subgraph containment enables rapid screening
of compounds containing functional motifs, aiding in virtual screening pipelines.

• Program analysis and code intelligence: Retrieval over control-flow or abstract syntax graphs
can improve vulnerability detection and semantic code search.

• Scene understanding and vision-language systems: Graph-based representations of scenes or
object relationships benefit from scalable matching of structured queries.

• Scientific knowledge extraction: Structured retrieval over citation or concept graphs supports
discovery in large corpora of scientific knowledge.

By enabling fast and accurate retrieval of graphs under substructure containment, our work has the
potential to improve the scalability and responsiveness of systems that rely on structured search over
large graph collections. The proposed method, CORGII, contributes toward democratizing structure-
aware search by bridging discrete indexing methods with neural representations, making such systems
more accessible to low-resource settings where dense model inference may be prohibitive.

While CORGII offers efficiency and interpretability advantages, like any retrieval system, it may
raise concerns when applied to sensitive graph-structured data—such as personal social networks or
proprietary molecular datasets—potentially risking privacy or intellectual property leakage. Moreover,
since training relies on learned embeddings, there remains a possibility of inherited biases from
the underlying data. Practitioners are advised to apply appropriate safeguards, including privacy-
preserving techniques and fairness auditing, when deploying the system in sensitive domains.

B Limitations
While CORGII demonstrates strong performance in scalable graph retrieval, several aspects offer
room for further improvement. We outline them below as avenues for future exploration:

• Static token vocabulary: Our framework relies on a fixed latent vocabulary defined by binary
token length. Learning adaptive or dynamic vocabularies could improve representation flexibility
and efficiency.

• Lack of support for attributed or heterogeneous graphs: CORGII currently operates on purely
structural information. Extending the framework to incorporate rich node/edge attributes and
heterogeneous graph types is a natural next step.

• Limited handling of evolving corpora: The inverted index assumes a static corpus. Incorporating
update-friendly indexing or continual learning mechanisms would enable deployment in dynamic
settings, such as codebases or scientific repositories.

Addressing these limitations can further improve the adaptability, expressivity, and deployment
readiness of CORGII in diverse graph-based retrieval settings.

C Clarifications
In this section, we provide few clarifications as follows.

• Sparse vs dense representations. In text retrieval, a "sparse" index is keyed on discrete tokens.
Sparse text indexes use inverted posting lists [16, 17, 18], in which the number of document (IDs)
is vastly smaller than the corpus size, hence the name "sparse". In contrast, in a "dense" text
index [25, 26, 27, 28, 29, 30, 31, 32, 33, 34], a text encoder converts text into continuous vectors
and then they are indexed. Such dense representations are used for IVF, LSH (e.g., FHN) or
DiskANN. Dense indexes are larger and slower to navigate than inverted indexes.

• Latent token structure and token collisions. The latent vocabulary is structured in the form
of a posting list matrix PL ∈ {0, 1}1024×100K . Each row of this matrix represents a token and
each column a corpus item. The tokens themselves are not interpretable as they usually are in
text indexing. However, the expectation from our pipeline and training scheme is that distinctive

21

subgraph motifs will be mapped to the same or strongly correlated groups of tokens. It is possible
that different nodes from different graphs are mapped onto the same latent token, based on initial
dense representation characteristics. This is further expanded upon in Appendix G.4.

D Related Work
D.1 A Brief History of Text-based Retrieval Architectures

Early information retrieval (IR) systems for text, relied on sparse lexical matching using bag-of-words
(BoW) representations. Documents were encoded as high-dimensional sparse vectors over a fixed
vocabulary, with inverted indices mapping each term to its corresponding document sets. Statistical
term-weighting schemes like TF-IDF and BM25 were used to estimate relevance, prioritizing terms
that were both frequent within a document yet discriminative across the corpus. Decades of research
culminated in highly optimized sparse retrieval systems, such as Lucene [19] and Elasticsearch [20],
which remain industry standards for lexical search.

Despite their efficiency, lexical methods are fundamentally limited by their reliance on surface-level
token matching, failing to capture deeper semantic similarity. To address this, dense neural IR models
were proposed, using learned embeddings–initially static (e.g., Word2Vec [43], GloVe [44]) and later
contextual (e.g., BERT [45])– to encode text into compact, low-dimensional vector spaces that support
semantic retrieval. As these dense representations are incompatible with inverted indices, retrieval
relies on Approximate Nearest Neighbor (ANN) search techniques such as LSH [22], HNSW [23],
and IVF [46], with efficient implementations provided by libraries like FAISS [25] and ScaNN [24].

Early dense retrieval systems typically compressed entire texts into single-vector representations,
but this proved suboptimal for longer inputs due to over-compression, which obscures token-level
distinctions. This limitation motivated a shift toward multi-vector representations, which preserve
token-level information and enable more precise semantic alignment. Architectures such as Col-
BERT [15] and PLAID [36] adopt late interaction mechanisms that allow scalable token-wise retrieval.
However, these methods still rely on ANN search as a subroutine, which—despite its effectiveness in
dense settings—is slower than inverted indexing in practice.

To bridge the gap between dense semantic modeling and efficient retrieval, recent work has revisited
sparse representations through a neural lens. Sparse neural IR models seek to combine the semantic
expressiveness of dense models with the scalability and efficiency of traditional inverted indices.
Approaches like SPLADE [37] learn document-specific, term-weighted sparse vectors by projecting
inputs onto a high-dimensional vocabulary space. Crucially, this space is not limited to surface-level
input tokens; the model can activate latent or implicitly relevant terms through learned expansions,
effectively enriching the document representation beyond what is explicitly present in the text.
This allows for semantically-informed exact matching within classical IR frameworks, effectively
narrowing the gap between dense retrieval and sparse indexing.

D.2 A Briefer History of Neural Graph-Containment Scoring Models

Graph containment—determining whether a query graph Gq is (approximately) embedded within
a corpus graph Gc—has long been a central problem in graph-based search. Traditional methods
rely on combinatorial algorithms and subgraph isomorphism solvers, which are computationally
expensive and scale poorly to large graph corpora. To address this, recent neural methods propose
differentiable surrogates for containment using graph neural networks (GNNs). Raj et al. [47] provides
a comprehensive analysis on different design components of neural models for subgraph isomorphism.

NeuroMatch [6] introduced a Siamese GNN with a hinge loss over aggregated node embeddings,
but its global pooling loses fine structural detail. IsoNet [9] addresses this by retaining node-level
embeddings Hq,Hc, computing soft alignments via a Gumbel-Sinkhorn network to produce a doubly
stochastic matrix P , and scoring relevance using an asymmetric hinge loss [Hq − PHc]+. This
better models subgraph containment and achieves improved empirical performance. IsoNet++ [10]
extends this with early-interaction message passing for richer local-global representation. However,
both IsoNet and IsoNet++ require dense, pairwise alignment across the corpus, limiting scalability.
[48, 49, 50] use similar approaches for other type of graph similarities. Other recent works, such
as [11, 7, 8], model graph similarity via node-level interactions using matching networks or soft
attention. While these approaches capture structural alignment to some extent, they are tailored for
general-purpose similarity tasks, making them less suited for subgraph containment and less scalable
to large graph corpora.

22

E Additional details about our model and training
E.1 Pre-trained backbone

We use Isonet [9] for final scoring mechanism. IsoNet has two components: (1) a GNN and (2) a
permutation network. GNN comprises of feature initialization network F1; a message computation
network F2 and an embedding update (or combination) network F3. Specifically, for the query graph
Gq , we execute L mesage passing layers as follows:

hq,0(u) = F1(Feature(u)) for all u ∈ Vq (15)

hq,k+1(u) = F3


hq,k(u);

∑

v:(u,v)∈E

F2(hq,k(u),hq,k(v))


 , for all u ∈ Vq, k ∈ {0, .., L− 1}

(16)
We use the same procedure to compute the embeddings hc,k for corpus graphs. We collect these em-
beddings in Hq,Hc ∈ Rm×dimh . These embeddings are finally used fed into multilayer perceptron,
followed by dot product, to obtain an affinity matrix MLP(Hq)MLP(Hc)

⊤ which is then provided
as input into a node alignment network to obtain P . Given a temperature hyperparameter temp, this
network outputs a soft-permutation matrix using Sinkhorn iterations [38].

P = Sinkhorn(MLP(Hq)MLP(Hc)
⊤/temp) (17)

Gumbel-Sinkhorn network consists of iterative row-column normalization as follows:
P 0 = exp(MLP(Hq)MLP(Hc)

⊤/temp) (18)
P t+1 = RowNormalize (ColumnNormalize(P t)) 0 ≤ t ≤ T − 1. (19)

As T → ∞ P T approaches as doubly stochastic matrix and as temp → 0, T → ∞, the matrix P T

approaches a permutation matrix.

In our work, we set dimh = 10. Here, F1 is 10-dimensional encoder; F2 consists of a combination of
a propagator layer with a hidden dimension of 20 and a GRU layer at the output, with final dimension
10; and F3 consists of an aggregator layer with hidden dimension 20 and output dimension 10. The
MLPs used in Sinkhorn network, are linear-ReLU-linear networks. Each MLP has a hidden layer of
25 dimensions, and the output is of 25 dimensions. Finally, we minimize the ranking loss to obtain
the parameters of F1, F2 and F3 (Eq. (15)– (16)); and MLP used in Eq. (19)∑

q

∑

c⊕∈Cq⊕

∑

c⊖∈Cq⊖

[
∆(Gq, Gc⊕)−∆(Gq, Gc⊖) + Margin

]
+
. (20)

We used a margin of 0.5. Note that ∆ is only used in the final stage of ranking. In Sinkhorn network,
we set the number of iterations T = 10 and temparature 0.1.

E.2 Details about CORGII

Architecture of GTNet and Impactψ The GNN in GTNet consists of same architecture as in
Eqs. (15)– (16), with the same number of layers and hidden dimensions. Here, we set dim(x•) = 10.
Each of the MLPs in GTNet, i.e., MLPϕ1

,MLPϕ2
in Eqs. (2) and (3) consist of a linear-ReLU-linear

network with input dimension 10, hidden layer of size 64 and output dimension 10. Note that GTNet
does not share any components with the pre-trained backbone.

MLPψ used in Eq. (8) to model the impact scorer admits a similar architecture as MLPϕ1 ,MLPϕ2 .
It consists of a linear-ReLU-linear network with input dimension 10, hidden layer of size 64 and
output dimension 10.

Optimization and Early Stopping. We train both models using the Adam optimizer with a learning
rate of 1× 10−3 and a batch size of 3000. During GTNet training, early stopping is performed at the
sub-epoch level (i.e., across batches) with a patience of 30 steps and validation every 30 steps. For
Impactψ , early stopping is applied at the epoch level with a maximum of 20,000 epochs and patience
set to 50. Validation is conducted every epoch, with a default tolerance threshold of 5 × 10−3. In
both cases, the model is evaluated using the score function aligned with its training objective.

Margin Hyperparameter Tuning. For the Chamfer-based ranking loss in Eq. (5), we experiment
with margin values of {0.01, 0.1, 1.0, 10, 30}. The best-performing margins are 10 for PTC-FR and
PTC-FM, and 30 for COX2 and PTC-MR. For the impact network loss in Eq. (10), tested margins

23

include {0.01, 0.1, 1.0}. Margins of 0.01, 0.01, 1.0, and 0.1 work best for PTC-FR, PTC-FM,
COX2, and PTC-MR, respectively.

Training Under Co-Occurrence Expansion. During training with co-occurrence multiprobing,
the token neighborhood Nb(ẑq(u)) in Eq. (14) is replaced with the full vocabulary T . This allows
Impactψ to learn a relevance-aware importance score for every token. At retrieval time, top-b tokens
are selected based on sim, using the learned impact scores.

Reproducibility. All experiments are run with a fixed random seed of 42 across libraries and frame-
works. We leverage PyTorch’s deterministic execution setting and CuBLAS workspace configuration
to ensure reproducible execution.

F Additional details about experiments
Dataset min(|VC |) max(|VC |) E[|VC |] min(|EC |) max(|EC |) E[|EC |]
PTC-FR 16 25 18.68 15 28 20.16
PTC-FM 16 25 18.70 15 28 20.13
COX2 16 25 19.65 15 26 20.23
PTC-MR 16 25 18.71 15 28 20.17

(a) Corpus graph statistics.

Dataset min(|VQ|) max(|VQ|) E[|VQ|] min(|EQ|) max(|EQ|) E[|EQ|] E[|y=1|
|y=0|]

PTC-FR 6 15 12.64 6 15 12.41 0.11
PTC-FM 7 15 12.58 7 15 12.34 0.12
COX2 6 15 13.21 6 16 12.81 0.11
PTC-MR 6 15 12.65 7 15 12.41 0.12

(b) Query graph statistics and average positive-to-negative label ratio (E[|y=1|
|y=0|]).

Table 12: Statistics of sampled subgraph datasets used in our experiments. Each dataset consists of
500 query graphs and 100,000 corpus graphs.

F.1 Datasets

All experiments are performed on the following datasets: PTC-FR, PTC-FM, COX2 and PTC-
MR [9, 51]. From each dataset, we extract corpus and query graphs using the sampling procedure
outlined in [9], such that |C| = 100000 and |Q| = 500. The queryset is split such that |Qtrain| = 300,
|Qdev| = 100 and |Qtest| = 100. Each dataset has its relevant statistics outlined in Table 12, including
the minimum, maximum and average number of nodes and edges in both the corpus set and the
queryset. Additionally, the table also lists the per-query average ratio of positive ground truth
relationships to negative ground truth relationships.

F.2 Baselines

We provide a detailed description of each of the baselines used in our experiments.
FourierHashNet It is a Locality-sensitive Hashing (LSH) mechanism designed specifically for
the set containment problem [42], applied to subgraph matching. In particular, it overcomes the
weaknesses of symmetric relevance measures. Earlier work employed measures such as Jaccard
similarity, cosine similarity and the dot product to compute similarity between a pair of items, which
do not reflect the asymmetric nature of the problem. FHN, on the other hand, employs a hinge-
distance guided dominance similarity measure, which is further processed using a Fourier transform
into the frequency domain. The idea is to enable compatibility with existing fast LSH techniques by
leveraging inner products in the frequency domain, while retaining asymmetric notion of relevance.

We adopt the original architecture and training settings of FourierHashNet [42] without modification.
The model employs 10 sampled Fourier frequencies to compute learned asymmetric embeddings,
which are then optimized using a binary cross-entropy loss over embedding vectors of dimension 10.
The final hash representation consists of 64-bit codes. For training, we perform a full grid sweep over
the hyperparameter configurations proposed in the original work, including all specified loss weights.

24

To study the trade-off between retrieval accuracy and index efficiency, we vary the number of hash
table buckets at query time, ranging from 21 to 260.
IVF The FAISS library provides facilities for inverted file indexing (IVF) [25]. IVF clusters the
corpus of vectors using a suitable quantization method. The quantization method produces centroid
vectors for each corpus vector, and each centroid represents a cluster. Internally, the library stores the
vectors assigned to each cluster in the form of (possibly compressed) contiguous postings lists. To
search this construction, a query vector is transformed into its corresponding centroid to match with
the given cluster. Depending on the number of probes argument given during search time, one may
expand their search into multiple neighboring clusters. We implement single-vector and multi-vector
variants of IVF.

Note that we use the faiss.IndexFlatIP as the quantizer and faiss.IndexIVFFlat as the
indexer.
DiskANN To tackle the challenge of having to store search indices in memory for strong recall,
DiskANN introduces efficient SSD-resident indices for billion-scale datasets [29]. To this end, the
authors develop a graph construction algorithm inspired by methods such as HNSW [52], but which
produce more compact graphs (smaller diameter). They construct smaller individual indices using this
algorithm on overlapping portions of the dataset, and then merge them into a single all-encompassing
index. These disk-resident indices can then be searched using standard techniques. One of the key
benefits of DiskANN is that it requires modest hardware for the construction and probing of their
disk-resident indices. We implement single-vector and multi-vector variants. Note that we test against
the memory-resident version of DiskANN.

We employ a graph degree of 16, complexity level of 32, alpha parameter of 1.2 during indexing.
During search, we use an initial search complexity of 221.

F.3 Evaluation metric

We report Mean Average Precision (MAP) and the average number of retrieved candidates to
characterize the efficiency–accuracy tradeoff. Retrieved candidates are reranked using the pretrained
alignment model for consistent evaluation. For a query q with relevant corpus set Cq⊕ and a retrieved
ranking πq , we define the average precision (AP) as

1

|Cq⊕|

|πq|∑

r=1

Prec@r · relq(r) (21)

where relq(r) ∈ {0, 1} indicates whether the r-th ranked item is relevant to q and Prec@r is the
precision at rank r. MAP is the mean of AP over all queries. This formulation penalizes high
precision with low recall, ensuring models are rewarded only when most number of relevant items
are retrieved with high retrieval accuracy.

F.4 System configuration

All experiments were conducted on an in-house NAS server equipped with seven 48GB RTX A6000
GPUs respectively. All model training is done on GPU memory. Further, the server is equipped with
96-core CPU and a maximum storage of 20TB, and runs Debian v6.1. We found that this hardware
was sufficient to train CORGII.

F.5 Licenses

Our code will be released under the MIT license. DiskANN, FAISS and FourierHashNet are all
released under the MIT license.

25

G Additional experiments
We present additional experimental results covering the comparison between co-occurrence-based
multiprobing (CM) and Hamming multiprobing (HM), the ablation study on the impact scorer
Impactψ, and the effect of using a Siamese versus asymmetric architecture in GTNet. We also
include supporting analyses on posting list statistics—such as token frequency distributions and
posting list co-occurrence patterns—as well as extended results for various CORGII variants.

G.1 CM vs HM

Figure 5 in the main paper compares co-occurrence multiprobing (CM) with Hamming multiprobing
(HM) on the PTC-FR and PTC-FM datasets. Here, we present additional results on the COX2 and
PTC-MR datasets.

Figure 13 confirms that CORGII remains the best-performing method overall, though the gap between
CM and HM narrows on PTC-MR. (1) On COX2, HM fails to sweep the entire selectivity axis;
even with r = 7, it only reaches up to k/C = 0.6. (2) CM steadily improves with increasing b,
approaching exhaustive coverage, and saturates beyond b = 32. (3) On PTC-MR, while the difference
between HM (r = 7) and CM (b = 32) is less pronounced, HM still does not cover the full selectivity
range. (4) The trends and conclusions drawn in Section 4.1 remain consistent across these datasets.

HM, r=1

CM, b=8

Single-probing

HM, r=3

CM, b=32 (CoRGII)

HM, r=7

CM, b=64

0.12 0.5 0.75 1

k/C →

0.24

0.36

0.48

M
A

P

(a) PTC-FR

0.10 0.5 0.75 1

k/C →

0.24

0.37

0.49

(b) PTC-FM

0.12 0.5 0.75 1

k/C →
0.28

0.42

0.56

M
A

P

(c) COX2

0.15 0.5 0.75 1

k/C →

0.24

0.36

0.48

(d) PTC-MR
Figure 13: Comparison of Hamming expansion multiprobing (HM) against co-occurrence expansion
multiprobing (CM) across four real-world datasets and across several values of r (Hamming ball
radius) and b (number of topmost co-occurring tokens). Each plot consists of tradeoffs between
selectivity (k/C) and MAP, for different values of r and b. b = 32 is sufficient for CM to outperform
HM variants. To deal with the crowding and overlapping problem in the plots, we have applied point
sub-sampling on CORGII.

26

G.2 Impact weight network ablation

Figure 7 in the main paper examines the impact of the weighting network on the PTC-FR and
PTC-FM datasets. We now extend this analysis to COX2 and PTC-MR in Figure 14, with the
following observations: (1) CORGII continues to outperform all other variants across the full retrieval
budget spectrum on both datasets. (2) On COX2, uniform aggregation with Hamming multiprobing
(HM) briefly approaches CORGII at low k/C values, but quickly falls behind as selectivity increases.
(3) Removing impact weights causes a significant drop in CM performance across both datasets,
underscoring the value of learned token-level importance. (4) Uniform aggregation under CM fails to
deliver competitive trade-offs, confirming that context-aware impact scoring is essential for effective
retrieval.

Sunif, HM (r=3)

Sunif, CM (b=32)

Simpact, HM (r=3)

Simpact, CM (b=32) (CoRGII)

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.36

0.48

M
A

P

(a) PTC-FR

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.37

0.49

(b) PTC-FM

0 0.25 0.5 0.75 1

k/C →
0.14

0.28

0.42

0.56

M
A

P

(c) COX2

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.36

0.48

(d) PTC-MR
Figure 14: Effect of ablation on the impact weight network across four datasets. Each subplot com-
pares four retrieval variants: uniform aggregation with Hamming multiprobing (Sunif, HM), uniform
aggregation with co-occurrence multiprobing (Sunif, CM), impact-weighted Hamming multiprobing
(Simpact, HM), and impact-weighted co-occurrence multiprobing (Simpact, CM, the default CORGII).

27

G.3 Siamese vs Asymmetric networks

Figure 9 in the main paper analyzes the contribution of CORGII’s asymmetric architecture on the
PTC-FR and PTC-FM datasets. Figure 15 complements this analysis with results on COX2 and
PTC-MR.

We observe: (1) CORGII consistently outperforms both Siamese variants (with CM and HM probing),
reaffirming the importance of architectural asymmetry for subgraph containment. (2) Among the HM
variants, the asymmetric network achieves a better tradeoff curve compared to the Siamese counter-
part, particularly evident in the mid-selectivity range. (3) Despite this, HM-based variants—both
asymmetric and Siamese—fail to span the full selectivity axis, highlighting the limitations of Ham-
ming multiprobing for recall. (4) These results further validate the need for asymmetry in the encoder
architecture to accurately reflect containment semantics under both probing schemes.

Siamese (HM, r=3)

Siamese (CM, b=32)

Asymmetric (HM, r=3)

Asymmetric (CM, b=32) (CoRGII)

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.36

0.48

M
A

P

(a) PTC-FR

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.37

0.49

(b) PTC-FM

0 0.25 0.5 0.75 1

k/C →
0.14

0.28

0.42

0.56

M
A

P

(c) COX2

0 0.25 0.5 0.75 1

k/C →
0.12

0.24

0.36

0.48

(d) PTC-MR
Figure 15: Ablation comparing Siamese and asymmetric network architectures under different
probing strategies. Each variant combines one of two network architectures—Siamese (shared MLP
for query and corpus) and Asymmetric (separate MLPs)—with one of two probing strategies: HM
(Hamming multiprobing with radius r = 3) or CM (Co-occurrence multiprobing with b = 32).
CORGII corresponds to the Asymmetric + CM configuration, shown as black circles.

28

G.4 Insights into token co-occurrence

Drawing parallels from natural language and retrieval systems, the structure of posting lists and
corresponding token co-occurrence statistics are of key interest. In this section, we examine how
these properties vary across datasets.

Co-occurrence statistics Table 16 reports structural statistics of the posting list matrix across
all datasets. Let the posting list matrix be PL ∈ {0, 1}1024×100K , where each row represents
a token and each column a document. The corresponding co-occurrence matrix is defined as
C = PL ·PL⊺ ∈ Z1024×1024

+ .

We list both the actual rank and the effective rank of PL, the latter computed using the energy-
preserving criterion from truncated singular value decomposition (SVD) [53, 54]. Let σ1, . . . , σn
denote the singular values of PL. The effective rank is the smallest K such that

∑K
i=1 σ

2
i∑n

i=1 σ
2
i
> γ,

with γ = 0.95. Since rank(PL) = rank(C) but rankeff(PL) ≥ rankeff(C), the effective rank of PL
serves as an informative upper bound for that of C.

The large gap between the actual and effective rank across datasets—particularly the low effective
rank—indicates that token co-occurrences lie on a low-dimensional manifold. This suggests that both
PL and C are highly compressible, enabling projection onto a lower-dimensional subspace without
significant loss of information. This again resembles the behavior of text corpora, where the discrete
word space may be in the tens or hundreds of thousands, but a few hundred dense dimensions suffice
to encode words and documents [27].

Dataset Actual Rank Effective Rank
PTC-FR 393 4
PTC-FM 498 9

COX2 250 7
PTC-MR 232 3

Table 16: Actual and effective rank (95% SVD energy threshold) of the posting list matrix PL for
each dataset.

29

G.5 End-to-End Training vs Frozen Backbone for Sunif, CM and Sunif, HM

A key design consideration is whether GTNet benefits from end-to-end training using its own GNN
encoder, or whether comparable results can be obtained using frozen embeddings from a pretrained
backbone. Figure 17 compares the performance of Sunif, CM and Sunif, HM under both configurations.

We observe that: (1) End-to-end training consistently yields better MAP–selectivity tradeoffs for
both CM and HM variants, indicating that learning task-specific embeddings improves token discrim-
inability. (2) The frozen backbone variant spans a wider range of selectivity values (k/C), suggesting
looser token matching and higher recall, but at the cost of reduced precision. (3) End-to-end models
tend to retrieve fewer candidates for the same threshold, reflecting tighter, more precise tokenization.

Sunif, HM (r=3) (end-to-end)

Sunif, CM (b=32) (end-to-end)

Sunif, HM (r=3) (pre-trained)

Sunif, CM (b=32) (pre-trained)

0 0.25 0.5 0.75 1

k/C →
0.14

0.28

0.42

0.56

M
A

P

(a) PTC-FR

0 0.25 0.5 0.75 1

k/C →
0.14

0.28

0.42

0.56

(b) PTC-FM

0 0.25 0.5 0.75 1

k/C →
0.14

0.28

0.42

0.56

M
A

P

(c) COX2

0 0.25 0.5 0.75 1

k/C →
0.14

0.28

0.42

0.56

(d) PTC-MR
Figure 17: Comparison of end-to-end training versus using a frozen backbone for Sunif, CM and
Sunif, HM, with r = 3 and b = 32. End-to-end training refers to learning the GTNet encoder jointly,
while the frozen variant reuses pretrained embeddings.

In the next set of ablations, we show that the impact network does not need pre-trained IsoNet
embeddings of the given dataset to maintain superior tradeoffs.

G.6 Using pre-trained IsoNet embeddings of different dataset as input to Impactψ
Instead of using pre-trained IsoNet embeddings h on the same dataset, we use h trained on the
PTC-FM dataset as input to the impact network for PTC-FR, and likewise use h trained on PTC-MR
and apply to the impact network for COX2. Table 18 shows the efficiency in terms of fraction of
graphs k/C retrieved to achieve atleast a certain MAP=m∗. Lower k/C is better and indicates higher
efficiency. _ denotes places where the method is unable to achieve the target MAP.

G.7 Using intermediate embeddings x of GTNet as input to Impactψ
Next, instead of pre-trained embeddings h, we use x as input to the impact scoring model
(Impactψ(τ, x)), (8)), where x is the embedding from the GTNet GNN, (which is not pretrained and
trained as a part of the CORGII scheme).

The following Table 19 shows the efficiency in terms of fraction of graphs k/C retrieved to achieve
atleast a certain MAP=m∗ for PTC-FR (first subtable) and COX2 (second subtable) datasets. Lower
k/C is better and indicates higher efficiency.

30

m∗ CORGII FHN IVF
current (h trained on PTC-FM) default (h trained on PTC-FM) default (h trained on PTC-FM)

0.38 0.38 0.42 0.51 0.97 0.76 0.81
0.40 0.44 0.47 0.81 1.0 0.89 0.81
0.45 0.645 0.69 0.99 1.0 0.96 0.91

(a) k/C values for PTC-FR.

m∗ CORGII FHN IVF
current (h trained on PTC-MR) default (h trained on PTC-MR) default (h trained on PTC-MR)

0.36 0.31 0.27 0.61 1.0 0.64 0.57
0.38 0.35 0.29 0.71 – 0.64 0.81
0.40 0.45 0.37 0.99 – 0.83 0.81

(b) k/C values for COX2.

Table 18: k/C values comparing CORGII, FHN, and IVF with and without transferring h across
datasets. CORGII outperforms the baselines even when the pre-trained h of a different dataset is
used.

m∗ CORGII FHN DiskANN-multi IVF-multi
(current) (use x)

0.38 0.38 0.37 0.51 0.87 0.76
0.4 0.44 0.43 0.81 0.87 0.89

0.45 0.64 0.62 0.99 0.93 0.96

(a) k/C for PTC-FR.

m∗ CORGII FHN DiskANN-multi IVF-multi
(current) (use x)

0.36 0.31 0.42 0.61 0.55 0.64
0.38 0.35 0.48 0.71 0.82 0.64
0.42 0.45 0.58 0.99 0.82 0.83

(b) k/C for COX2.

Table 19: k/C values comparing CORGII (current h vs. using x), FHN, DiskANN-multi, and
IVF-multi. CORGII outperforms each of the baselines even when not using h as impact network
input.

G.8 Using pre-trained Graph Embedding Network embeddings as input to Impactψ
We pre-train a different model called Graph Embedding Network (GEN) [8], which is different from
the final reranking model. Table 20 contains the results, with _ denoting places where the method is
unable to achieve target MAP:

m∗ Ours FHN DiskANN-multi IVF-multi
(current) (pretrained GEN-embed.) (current) (pretrained GEN-embed.) (current) (pretrained GEN-embed.) (current) (pretrained GEN-embed.)

0.38 0.38 0.38 0.51 1.0 0.87 0.82 0.76 0.82
0.40 0.44 0.44 0.81 – 0.87 0.88 0.89 0.94
0.45 0.64 0.65 0.99 – 0.93 0.98 0.96 0.94

(a) k/C for PTC-FR.

m∗ Ours FHN DiskANN-multi IVF-multi
(current) (pretrained GEN-embed.) (current) (pretrained GEN-embed.) (current) (pretrained GEN-embed.) (current) (pretrained GEN-embed.)

0.36 0.31 0.25 0.61 0.60 0.55 0.65 0.64 0.65
0.38 0.35 0.29 0.71 0.60 0.82 0.76 0.64 0.76
0.40 0.45 0.35 0.99 0.80 0.82 0.76 0.83 0.76

(b) k/C for COX2.

Table 20: k/C values comparing CORGII, FHN, DiskANN-multi, and IVF-multi models under
both current and pretrained GEN-embedding settings. CORGII outperforms other methods when the
impact network is not conditioned on pre-trained IsoNet embeddings.

31

	Introduction
	Our Contributions

	Preliminaries
	Proposed approach
	Graph tokenizer network GTNet
	Discretization and inverted index
	Impact weight network
	Query processing steps and multi-probing

	Experiments
	Results

	Conclusion
	Acknowledgements
	Broader Impact
	Limitations
	Clarifications
	Related Work
	A Brief History of Text-based Retrieval Architectures
	A Briefer History of Neural Graph-Containment Scoring Models

	Additional details about our model and training
	Pre-trained backbone
	Details about CoRGII

	Additional details about experiments
	Datasets
	Baselines
	Evaluation metric
	System configuration
	Licenses

	Additional experiments
	CM vs HM
	Impact weight network ablation
	Siamese vs Asymmetric networks
	Insights into token co-occurrence
	End-to-End Training vs Frozen Backbone for S_unif,CM and S_unif,HM
	Using pre-trained IsoNet embeddings of different dataset as input to Impact
	Using intermediate embeddings x of GTNet as input to Impact
	Using pre-trained Graph Embedding Network embeddings as input to Impact

