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Abstract

Large Language Models (LLMs) have achieved001
remarkable success in various natural language002
processing tasks, yet their ability to generate003
long-form content remains poorly understood004
and evaluated. Our analysis reveals that cur-005
rent LLMs struggle with length requirements006
and information density in long-text generation,007
with performance deteriorating as text length008
increases. To quantitively locate such a perfor-009
mance degradation and provide further insights010
on model development, we present LongEval,011
a benchmark that evaluates long-text generation012
through both direct and plan-based generation013
paradigms, inspired by cognitive and linguistic014
writing models. The comprehensive experi-015
ments in this work reveals interesting findings016
such as that while model size correlates with017
generation ability, the small-scale model (e.g.,018
LongWriter), well trained on long texts, has019
comparable performance.020

1 Introduction021

Large Language Models (LLMs) have revolu-022

tionised Natural Language Processing (NLP),023

achieving remarkable performance across a wide024

range of generation tasks including dialogue gener-025

ation (Abdullin et al., 2024), story creation (Zhao026

et al., 2023), open-ended text generation (Zhou027

et al., 2024), and complex reasoning task (Wu et al.,028

2024). Although LLMs have been increasingly de-029

ployed in real-world applications, their ability to030

handle long-document generation remains under-031

explored despite its significance.032

While there are studies seeking to improve the033

long-text generation ability (Bai et al., 2024; Que034

et al., 2024) and long context understanding ca-035

pability (Li et al., 2024a; Xu et al., 2023; Ding036

et al., 2024; Li et al., 2023a; Zhang et al., 2024d)037

recently, the evaluation of long-text generation has038

been largely overlooked. Most existing bench-039

marks focus solely on long-context retrieval and040
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Figure 1: The information content of LLMs-generated
text and the golden human-authored text. We calculate
information entropy using the frequency of each word
in a document and determine the information content by
multiplying the total word count by information entropy.

understanding tasks (Bai et al., 2024; Zhang et al., 041

2024b; Pham et al., 2024a; Quan et al., 2024; Tang 042

et al., 2024; An et al., 2024). A recent parallel work 043

HelloBench (Que et al., 2024) proposes to evalu- 044

ate the long-text generation by selecting samples 045

from existing tasks (e.g., open-ended QA), where 046

the tasks do not inherently require long generation 047

capability. 048

To set up a prilimary experiment of exploring 049

the long-generation capability of LLMs, we started 050

with collecting a set of long and informative doc- 051

uments and using selected prevalent LLMs to di- 052

rectly reproduce the full documents from given 053

summaries of those long documents. As shown in 054

Figure 1, the information content in the documents 055

is positively related to the length, which suggests 056

the necessity of long text generation ability. Fur- 057

thermore, it could be observed that the prevalent 058

LLMs (with parameters from 1B to 70B) still re- 059

main a large gap to the golden references regarding 060

both information content and length dimensions. 061

We then tried to explore whether the LLMs could 062
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Figure 2: Th relation of the length requirement with the model-generated text length. Given the content plans we
require the LLMs to generate the text under various length requirements ranging from 100 to 32k. Specifically, we
use the ratio of the generated text length to the requested length in the input as a score to evaluate the model’s ability
to follow length instructions.

produce such long and informative documents by063

simply requiring to generate in specified lengths064

but failed. LLMs tend to exhibit declining length-065

following abilities as the required length increases,066

with significant deterioration observed for texts ex-067

ceeding 1k words, as revealed in Figure 2.068

Inspired by the cognitive writing theory, which069

posits that effective writing emerges from the pro-070

cess of "cooking knowledge stored in long-term071

memory" through planning, translating, and re-072

viewing (Flower and Hayes, 1981), we suspect073

that current generation paradigm of LLMs may074

be misaligned with human writing practices for075

long documents: LLMs often struggle to maintain076

consistency and provide deep insights in one-shot077

long-form writing, compared to plan-based writing.078

Specifically, the planning phase, serves as a cru-079

cial foundation for developing coherent arguments080

and structured thoughts (Scardamalia and Bereiter,081

1987), yet existing studies largely overlook this082

aspect of text generation.083

To address these limitations, we introduce084

LongEval, a comprehensive benchmark designed085

to evaluate LLMs’ long-text generation capabili-086

ties by supporting both direct and plan-based ap-087

proaches. Our framework incorporates two key088

innovations: i) a dual evaluation paradigm that089

assesses both zero-shot direct and plan-based struc-090

tured generation that more closely align with hu-091

man writing practices; ii) reliable automatic evalua-092

tion metrics that focus on content quality, structural093

coherence, and information density across various094

long text generation domains.095

Since scientific texts and popular science arti-096

cles often follow a prescribed writing structure,097

we select three long-text generation domains (i.e., 098

arXiv papers, blogs, and Wikipedia articles) that 099

necessitate that LLMs generate long-form texts (ex- 100

ceeding 2k words) to build the benchmark for sup- 101

porting a robust evaluation. Different from similar 102

work, HelloBench (Que et al., 2024) (300 samples 103

from general tasks) and LongWriter (Bai et al., 104

2024) (120 synthetic samples for evaluation), we 105

collect 166 high-quality human-authored samples 106

that come from the long text generation domain. 107

We design a data production pipeline that leverages 108

an advanced open-source LLM1 to process doc- 109

uments from permissibly licensed sources across 110

these different domains. In each documents, sec- 111

tions are first summarized into comprehensive con- 112

tent as plans, with each major point elaborated in 113

4-5 sentences and verified by human annotators. 114

During the plan-based evaluation, the models are 115

required to generate the full-text section-by-section 116

using the summarized content plans as guidance, 117

whilst required to maintain semantic consistency 118

from previously generated sections. This approach 119

systematically evaluates LLMs’ long-text gener- 120

ation capabilities while aligning with the direct 121

generation paradigm for sections. Additionally, we 122

design eight metrics to evaluate the generated long 123

texts on different dimensions of quality. i) To deter- 124

mine whether the LLM can follow instructions and 125

whether the generated content is reasonable, we 126

design the following domain-agnostic metrics at 127

the Document level: Content-following (Cont-fol), 128

Redundancy (Red), Length (Len), and Consistency 129

(Con). ii) We design domain-specific metrics for 130

1Qwen2.5-72B-Instruct
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the prescriptive domain of arXiv research papers131

that evaluate the following sections: Introduction132

(Intro), Related Work (RW), Method (ME), and133

Experimental Analysis (EA).134

2 Related Work135

Long Text Generation Recent research on long136

text generation has primarily focused on enhanc-137

ing model performance (Bai et al., 2024; Zhang138

et al., 2024b; Pham et al., 2024a; Quan et al.,139

2024; Tang et al., 2024; Quan, 2024). A com-140

mon approach involves constructing large-scale141

instruction-following datasets tailored for long-142

text generation and employing various optimiza-143

tion strategies to improve the capabilities of LLMs.144

Beyond direct model training, plan-based meth-145

ods have gained traction for long-text generation.146

LongWriter (Bai et al., 2024) demonstrates that147

synthetic datasets, generated using a structured148

planning approach with GPT-4o, can effectively149

enhance LLMs’ ability to produce extended text.150

Similarly, Wang et al. (2024) propose a framework151

for generating survey papers section by section,152

while Lu et al. (2024) employ a similar strategy153

to generate entire scientific articles. These studies154

suggest that structured generation methods can im-155

prove coherence and control over long-text outputs.156

Long Context Understanding A key challenge157

in long-text generation is ensuring that LLMs ef-158

fectively comprehend and utilize long contexts.159

Research in this area has focused on enhancing160

models’ long-context understanding while extend-161

ing their input length, leveraging their strong in-162

context learning capabilities (Jin et al., 2024; Zhang163

et al., 2024a; Ding et al., 2024; Li et al., 2023b;164

Jiang et al., 2023; Chen et al., 2023). These ef-165

forts primarily target tasks such as reading com-166

prehension, where models extract relevant infor-167

mation from lengthy inputs, as exemplified by168

benchmarks like LongICLBench (Li et al., 2024a),169

∞BENCH (Zhang et al., 2024d), and LonGLE (Li170

et al., 2023a). Despite these advancements, prior171

work has largely overlooked the challenge of gen-172

erating coherent and contextually consistent long-173

form text beyond mere retrieval or summarization.174

Long Text Evaluation Evaluating long-form text175

remains an open challenge. HelloBench (Que et al.,176

2024) attempts to address this by selecting long-177

text samples of general tasks and evaluating LLMs178

through using direct generation method. Most ex-179

isting evaluation frameworks rely on LLM-based 180

scoring, but their robustness and reliability remain 181

debated. As an alternative, Zhang et al. (2024c) 182

propose a reward model specifically designed for 183

long-text evaluation. 184

Additionally, several datasets have been devel- 185

oped to support long-text evaluation. Suri (Pham 186

et al., 2024b) employs a plan-based approach and 187

backtranslation (Li et al., 2024b; Köksal et al., 188

2024) to generate instructional texts, though its 189

focus is primarily on creative writing and blogs 190

rather than academic content. In contrast, Köksal 191

et al. (2024) construct a long-text dataset based on 192

Wikipedia and CommonCrawl, prioritizing direct 193

text generation over structured planning. These 194

studies highlight the need for high-quality datasets 195

and evaluation metrics that account for both plan- 196

based and direct-generation methods, particularly 197

in domains requiring structured and coherent long- 198

form outputs. 199

3 The LongEval Benchmark 200

To fill the gap of the evaluation of long document 201

generation, we propose LongEval, a benchmark 202

built upon a unified framework for long-text genera- 203

tion, and introduce a comprehensive evaluation sys- 204

tem. Compared with similar studies, LongEval pro- 205

vides a robust evaluation system distinct across the 206

dimension of data collection, generation paradigms, 207

domain-specific and hierarchical metrics, as shown 208

in Table 1. In this section, we first introduce a uni- 209

fied perspective of long text generation paradigms, 210

and then describe the accordingly designed evalua- 211

tion systems. 212

3.1 Long Text Generation Paradigms 213

The cognitive writing theory underscores the sig- 214

nificance of planning in human writing (Flower 215

and Hayes, 1981), and the plan-based paradigm 216

has been effectively used to generate synthetic 217

long-text data for training LLMs (Bai et al., 2024). 218

Therefore, generating ultra-long texts segment by 219

segment is the mainstream paradigm (Wang et al., 220

2024; Bai et al., 2024). In this regard, this paper 221

uses two methods (i.e., direct generation and plan- 222

based generation) for long-text generation. 223

Direct Generation Although the direct genera- 224

tion method is applied to most NLP tasks, as shown 225

in Figure 2, most LLMs cannot directly generate 226

text that exceeds 1k words. In this work, we also 227

evaluate the end-to-end long text generation ca- 228
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Figure 3: The Framework of our Long Text Generation method. Part (a) is the Plan-based method and part (b) is the
Long Text Evaluation method.

Benchmarks Characteristics

Real Data Plan Based Domain Specific Section & Document Level

LongReward ✗ ✗ ✗ ✗
LongWriter ✗ ✓ ✗ ✗
HelloBench ✓ ✗ ✓ ✗
LongEval (Ours) ✓ ✓ ✓ ✓

Table 1: Comparison of different long-text generation benchmarks.

pability of LLMs. Specifically, we additionally229

perform direct generation by inputting the section230

content plan p, the article’s length l, and other pos-231

sible writing materials (e.g., experimental results232

exp, references ref ) into LLMs.233

Plan-Based Generation The plan-based meth-234

ods are applied to generate long-length text due235

to its better performance than direct method (Bai236

et al., 2024; Lu et al., 2024). Our experiments also237

analyze the length-following abilities of LLMs. To238

better understand the models’ limitations, we con-239

duct an in-depth investigation of LLM-generated240

content across different domains. Figure 1 illus-241

trates our quantitative analysis of the relationship242

between text length and information content, us-243

ing human-written texts as a baseline. Therefore,244

as suggested by Figure 2, we assume that current245

LLMs cannot meet the requirements of users who246

want to generate text with a large amount of infor-247

mation. We design a unified plan-based generation248

method that uses the LLM to generate long text249

by section which ensures LLMs can generate text250

aligned with the length requirement.251

As for each sample, we input the content plan p252

of a section and the length requirement l to make253

LLMs generate the whole article by section. We254

additionally consider domain-specific writing re-255

quirements (e.g., for the arXiv paper domain, we256

use the experimental results as extra input to gener-257

ate the results analysis section and for Wikipedia 258

articles, we input the references to ensure the au- 259

thenticity of the content). A detailed description of 260

our plan-based generation method can be found in 261

Appendix B. 262

3.2 Evaluation System and Prompts 263

Previous works have primarily focused on studying 264

the long-context understanding ability of LLMs (Li 265

et al., 2024a; Jin et al., 2024; Xu et al., 2023; 266

Zhang et al., 2024d). Most of these tasks resem- 267

ble reading comprehension tasks and have standard 268

answers (e.g., asking questions like ‘How old is 269

Jack?’ based on a long context). Although Hel- 270

loBench (Que et al., 2024) has also evaluated the 271

long-text generation ability of LLMs, their evalu- 272

ation metrics do not take into account the charac- 273

teristics of ultra-long text generation (such as the 274

instruction-following ability in ultra-long text gen- 275

eration). In this work, we evaluate the generation 276

of long articles both at the Document level and the 277

Section level. 278

3.2.1 Domain-Agnostic Document-level 279

Metrics 280

Content-following (Cont-fol) Score. The input 281

for generating long texts includes the writing out- 282

line (i.e., the content plan generated in §4.2) of the 283

entire article. Whether the model-generated text 284

adheres to the requirements of the outline is a key 285
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factor in evaluating the quality of the generated text.286

Therefore, as shown in Figure 4 in Appendix A, we287

designed specialized prompts and input each sec-288

tion of the model-generated text along with the cor-289

responding prompts to evaluate the model’s ability290

to follow instructions for long-text generation.291

Length-following (Len) Score For each section,292

we use the following method to calculate the length293

score:294

s =

{
lgen
lreq

, if lgen < lreq,

1, otherwise.
295

where lgen represents length of generated text, and296

lreq represents length requirement in the prompt.297

For section-level metrics, the final score is obtained298

by averaging the scores of all individual sections.299

Redundancy (Red) Score. When generating300

long texts, LLMs tend to treat each section as be-301

ing independent, leading to potential redundancy302

across sections by repeating content. To address303

this, as shown in Figure 4, we specifically designed304

a prompt to evaluate whether content generated by305

the model contains redundant elements.306

Consistency (Con) Score. For long-text writing,307

ensuring the connection between sections and para-308

graphs is crucial. Therefore, for model-generated309

text, as shown in Figure 4 in Appendix A, we de-310

signed a prompt to evaluate its consistency.311

3.2.2 Domain-Specific Section-Level Metrics312

Due to some domains being more prescriptive in313

their format than others, we design a range of eval-314

uation criteria for the arXiv research paper and315

Wikipedia article domains that consider expected316

structures of these more prescriptive formats.317

Introduction (Intro) & Related Work (RW)318

Scores. Since we provide a detailed writing out-319

line and relevant references, we design a prompt320

to evaluate the Introduction and Related Work sec-321

tions of arXiv papers, as shown in Figure 4 in Ap-322

pendix A. Using the original paper as the gold refer-323

ence, we employed an LLM to assess the similarity324

between the generated text and the gold answer.325

The blog writing format does not require the in-326

clusion of references. While only papers contain327

specific related work sections, Wikipedia articles328

require extensive references throughout to ensure329

the authenticity of their content. Therefore, we330

treat the entire content of a Wikipedia article as a331

single related work section for evaluation.332

GT_len Input_len ICR Num

arXiv 4,754.28 1,038.46 21.84 50
Wikipedia 3,323.54 844.09 25.40 68
Blog 2,623.10 766.19 29.21 48

Table 2: Data comparison across arXiv, Wikipedia, and
blogs. IC presents Information Compression Ration.

Experiment Analysis (EA) Score. In the re- 333

search paper domain, based on our observation, 334

current LLMs struggle to determine which sections 335

require the use of experimental results (e.g., they 336

would use the results of the experiment in method). 337

Furthermore, LLMs tend to merely reiterate the 338

key points outlined without delving into the un- 339

derlying reasons or connecting the causes behind 340

different experimental results. Therefore, as shown 341

in Figure 4 in Appendix A, we design an evalua- 342

tion prompt to compare the experimental analysis 343

sections of the original article with those generated 344

by the model. 345

Method (ME) Score. For method descriptions, 346

the content generated by LLMs often consists of 347

vague descriptions of methods without providing 348

detailed design plans or formulaic explanations. To 349

address this, as shown in Figure 4 in Appendix A, 350

we specifically designed a prompt to compare the 351

method section of the original article with that gen- 352

erated by the model. 353

4 Dataset Curation 354

In previous studies (Que et al., 2024), one way to 355

build the dataset for long-text generation evaluation 356

is to filter long texts2 from existing tasks such as 357

dialogue continuation. Some of these tasks typi- 358

cally do not require long-text writing, making it 359

difficult to fully assess the model’s long-text gener- 360

ation capabilities in realistic scenarios. Long-form 361

content is prevalent across various domains, par- 362

ticularly in academic papers, blogs, and Wikipedia 363

articles. Therefore, we construct a benchmark for 364

long-text generation using data from these three 365

domains to evaluate generation capabilities on nat- 366

urally lengthy content. 367

4.1 Data Collection Pipeline 368

We design an automatic pipeline that collects doc- 369

uments from web pages without copyright restric- 370

tions and splits them into different sections ac- 371

2The HelloBench study uses texts that are at least 1000
words long.
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cording to predefined rules. We collect data from372

arxiv.org for papers, wikipedia.org for articles, and373

HuggingFace for blogs. These sources have pre-374

missible copyright licenses. To ensure the quality375

of our benchmark, we hired one Postgrad student,376

who is familiar with the NLP, to manually check377

the processed data. Specifically, we delete the sam-378

ples that do not follow a predefined format (e.g., a379

paper that does not have a abstract or a blog that380

misses an introduction).381

4.2 Content Plan Generation382

In order to support the plan-based long text-383

generation method introduced in §3.1, we use384

Qwen2.5-72B-Instruct to generate a content plan.385

Specifically, we pass each section of a document386

into the model and design a prompt to make the387

model summarize each section into 4-5 sentences.388

This forms the content plan for the section.389

4.2.1 Human Evaluation of Generated390

Content Plans391

To assess whether the content plans preserve the392

key points of a document, we hire a postgradu-393

ate student specializing in NLP to manually eval-394

uate 10% of the documents from each domain.395

Specifically, if the content plan for each section396

cannot capture sufficient relevant information, we397

regard it as an unqualified sample. On Wikipedia,398

Blog, and arXiv, our manual evaluation accuracy is399

88.6%, 91.4%, and 86.2%, respectively. On aver-400

age, 88.7% of the manually reviewed content plans401

contain adequate information, indicating that the402

content plans retain enough information for LLMs403

to faithfully (re)generate the content in the original404

document.405

4.3 Dataset Characteristics406

As shown in Table 2, we analyze the average length407

of original samples (Ground Truth Length) and gen-408

erated content plans across three domains. Among409

these domains, academic papers have the longest410

content plans, followed by Wikipedia articles and411

blogs. This pattern aligns with the inherent writing412

complexity of each domain: academic papers de-413

mand rigorous presentation, Wikipedia articles fo-414

cus on popular science exposition, and blogs adopt415

a more informal style. This observation suggests a416

strong correlation between writing complexity and417

text length within each domain.418

Our dataset maintains approximately 50 samples419

per domain, with the original text (ground truth)420

exceeding 2,000 words in each case. To evaluate 421

the efficiency of our content plans, we introduced 422

the Information Compression Ratio (ICR), defined 423

as ICR = LGT/LInput, where GT represents the 424

ground truth text and Input denotes the summa- 425

rized content plan used as input for LLMs. The 426

ICR consistently ranges between 20% and 30% 427

across all domains, indicating that, to some extent, 428

our content plans will not only retain the main con- 429

tent but also avoid disclosing too many details to 430

the model. 431

5 Experiments and Result Analysis 432

We evaluate current mainstream LLMs on our 433

LongEval benchmark. All inference and evalua- 434

tion were performed over four days on 8 A800 435

GPUs. API-based evaluation incurred a cost of 436

approximately $100 in GPT-4o tokens. 437

5.1 Baseline 438

We use a range of open-source LLMs, in- 439

cluding Llama3 (Llama3.2-1B, Llama3.2-3B, 440

Llama3.3-70B)(AI@Meta, 2024), Qwen2.5 (3B, 441

7B, 72B)(Yang et al., 2024b,a), and InternLM2.5, 442

which excels in math reasoning (Cai et al., 2024). 443

We also include LongWriter, a fine-tuned GLM 444

model for long-form writing (Bai et al., 2024), and 445

GPT-4o, a proprietary model with balanced perfor- 446

mance across tasks. 447

5.2 Overall Analysis 448

Table 3 shows the experimental results of vari- 449

ous models across the arXiv, Blog, and Wikipedia 450

tasks. The Qwen2.5 series models exhibit superior 451

long-text generation capability, with Qwen2.5-72B- 452

Instruct achieving the highest overall score of 82 in 453

the arXiv domain and 83 in Blog domain. It is fol- 454

lowed by GPT-4o and LongWriter-8B. A consistent 455

trend is observed where larger models within the 456

same series outperform smaller ones, highlighting 457

the benefits of scale in long-text generation. 458

Among the evaluation metrics, Cont-fol (In- 459

struction Following) and Red (Redundancy) show 460

the most significant performance differences. For 461

instance, Qwen2.5-72B-Instruct scores 88 on 462

Content-fol in the arXiv domain, while smaller 463

models like InternLM2.5-7B-Chat achieve only 68. 464

Similarly, in the Wikipedia domain, LongWriter- 465

8B reaches 85, whereas InternLM2.5-7B-Chat lags 466

at 69. These results suggest that instruction follow- 467

ing and minimizing redundancy remain major chal- 468

lenges for long-text generation. In contrast, RW, 469
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Domain Model Overall Intro RW EA ME Cont-fol Len Red Con

GPT4o 81 80 79 74 79 87 93 66 84
Qwen2.5-3B-Instruct 79 80 78 75 78 84 94 67 81
Qwen2.5-7B-Instruct 80 80 79 75 78 85 93 67 83
Qwen2.5-72B-Instruct 82 80 78 79 79 88 94 70 84
Internlm2.5-7B-Chat 71 78 78 61 65 81 75 60 75
Internlm2.5-20B-Chat 73 78 78 60 57 81 75 62 76
Llama3.2-1B 71 78 74 60 57 71 75 72 78
Llama3.2-3B 76 80 78 66 79 73 75 72 80
Llama3.3-70B 79 80 80 73 86 86 97 60 82

arXiv

LongWriter-8B 80 80 79 77 77 86 94 68 81

GPT4o 81 78 – – 81 83 97 68 81
Qwen2.5-3B-Instruct 80 74 – – 77 82 74 70 77
Qwen2.5-7B-Instruct 81 76 – – 82 84 76 68 80
Qwen2.5-72B-Instruct 83 75 – – 83 84 79 71 84
Internlm2.5-7B-Chat 71 76 – – 52 68 76 66 76
Internlm2.5-20B-Chat 73 77 – – 71 62 76 67 76
Llama3.2-1B 70 74 – – 55 67 75 68 74
Llama3.2-3B 79 76 – – 79 75 78 76 80
Llama3.3-70B 82 78 – – 79 86 78 66 81

Blog

LongWriter-8B 83 78 – – 82 85 79 67 84

GPT4o 81 74 80 – 85 70 95 – 82
Qwen2.5-3B-Instruct 82 75 80 – 82 71 94 – 80
Qwen2.5-7B-Instruct 80 75 80 – 83 67 94 – 80
Qwen2.5-72B-Instruct 81 74 80 – 84 70 94 – 82
Internlm2.5-7B-Chat 71 78 77 – 69 56 90 – 77
Internlm2.5-20B-Chat 73 78 77 – 71 65 90 – 76
Llama3.2-1B 71 72 71 – 68 76 67 – 72
Llama3.2-3B 79 80 79 – 79 76 75 – 80
Llama3.3-70B 82 78 80 – 84 66 99 – 81

Wikipedia

LongWriter-8B 82 76 81 – 85 68 98 – 82

Table 3: The plan-based results on our LongEval benchmark. We conduct experiments to evaluate current LLMs on
three domains (i.e., arXiv papers, blogs, and Wikipedia articles). The ‘–’ presents that the metric does not exist in
this domain. The Overall is the average score of all indicators. For easier comparison, we retained only the integer
part of all model scores.

Intro, and Len have relatively smaller performance470

gaps. For example, across models in the arXiv471

domain, RW scores mostly cluster around 75-80,472

while, for most models, Len remains within 92-98.473

However, ME and EA exhibit greater variation. No-474

tably, in the arXiv domain, Qwen2.5-72B-Instruct475

scores 79 in ME, whereas InternLM2-5.7B-Chat476

only achieves 65. This suggests that while general477

writing ability remains relatively stable across mod-478

els, tasks involving data analysis and experimental479

methodology pose greater challenges. When given480

structured writing guidance (e.g., content plans),481

models still struggle with high-level reasoning, re-482

quiring more advanced analytical capabilities to483

perform well.484

5.3 Long Text Generation Under Different485

Paradigm486

As shown in Table 5, we compare the results of487

LLMs’ long text generation ability under direct488

and plan-based settings. Notably, the overall score 489

of the text generated by the plan-based method is 490

much higher than that of Direct generation. Addi- 491

tionally, we found that the text generated by the 492

direct generation method is not only relatively short 493

but also has a high level of redundancy. This fur- 494

ther proves the effectiveness of the plan-based gen- 495

eration method we designed and the plan-based 496

method is more suitable for long text generation 497

5.4 Effectiveness of LLM-As-A-Judge 498

To validate the capability of LLM-as-a-judge of 499

the LLMs on our metrics, we designed a random 500

replacement test on the arXiv task where we ran- 501

domly replace p% sections in the model-generated 502

content with sections sampled from other model- 503

generated text and check whether our model can 504

identify the quality degradation and reflect it on the 505

actual score. The test uses Qwen-2.5-72B’s result 506

with the p from 0.1 to 0.9. As shown in Table 4, 507
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Random_P Overall Con RW Intro Len EA ME Cont-fol Red

0.0 82 84 78 80 98 77 79 88 72
0.1 79 82 75 75 97 73 77 85 74
0.2 77 78 71 73 95 72 74 80 73
0.3 74 65 58 70 95 70 71 75 71
0.5 72 57 64 63 94 66 68 69 79
0.7 69 54 63 56 95 64 64 62 75
0.9 61 50 41 51 93 56 56 52 70

Table 4: The results of random replacement.

Setting Model Overall Cont-fol Red Len

GPT4o 61 82 82 21
Qwen-3B 59 82 81 13
Qwe-7B 60 81 85 15
Qwen-72B 60 84 40 58
Llama-1B 52 71 67 17
Llama-3B 58 78 69 28
Llama-70B 63 86 50 55
IntLM2.5-7B 55 75 73 17
IntLM2.5-20B 56 75 75 18

Direct

LongWriter-8B 56 80 46 44

GPT4o 82 87 66 93
Qwen-3B 81 84 67 94
Qwen-7B 82 85 67 93
Qwen-72B 86 88 72 98
Llama-1B 73 71 72 75
Llama-3B 79 79 70 89
Llama-70B 81 86 60 97
IntLM2.5-7B 71 78 60 75
IntLM2.5-20B 72 81 62 75

Plan

LongWriter-8B 79 81 63 94

Table 5: A comparison of direct and plan-based methods
on domain-agnostic criteria. We use the arXiv domain
subset only, owing to computational constraints.

for Instruction-following (Cont-fol), as the propor-508

tion of random replacements increases, the model’s509

score drops sharply (from 88% to 52%). For other510

metrics evaluating the quality of a specific section511

(RW, Intro, EA, ME), their scores also decrease512

overall as the proportion of random replacements513

increases. This demonstrates that the scoring model514

can effectively identify changes in the content and515

quality, as well as reflect the content plan. As for516

the Length (Len) and Redundancy (Red) scores,517

they do not evaluate the content relevance between518

the generated text and the instruction but instead519

assess the quality of certain writing features within520

the text itself. As p increases, Len and Red do not521

change significantly, indicating the robustness of522

this metric.523

In addition, we also use GPT-4o as a judge model524

within our framework, as shown in Table 6. Al-525

though there are some differences in scores given526

by GPT-4o and Qwen2.5-72B on certain metrics,527

the distribution of scores between different models528

remains consistent. It demonstrates that Qwen2.5- 529

72B also can effectively assess the long-text gener- 530

ation capabilities of LLMs under our framework. 531

5.5 The Length Following Ability of LLMs 532

To assess the ability of LLMs to generate texts of 533

specified lengths, we directly instruct the models to 534

produce texts of a specific length and compare the 535

difference between the target length and the actual 536

length (i.e., the Len metric). As shown in Figure 2, 537

our make LLMs generate text with various length 538

requirements ranging from 100 to 32,000 words. 539

Most models achieve a Len Score of 1 when the 540

required length (len_req) is below 400. However, 541

as len_req increases, the Len Scores of all mod- 542

els decline sharply. When len_req exceeds 4,000, 543

most models score below 0.4, indicating that cur- 544

rent LLMs struggle to generate long texts with pre- 545

cise length control. Notably, Qwen2.5 and Llama3 546

outperform other models, and larger models demon- 547

strate stronger length-following capability. 548

6 Conclusion 549

The current long-text evaluation method overlooks 550

long-text generation paradigms and lacks high- 551

quality samples (e.g., the human-written text for the 552

long-text generation task, such as paper writing). 553

In this work, we design a LongEval benchmark, 554

collecting 156 long-text samples covering three do- 555

mains that require the LLMs’ long-text writing abil- 556

ity. We conduct experiments on mainstream LLMs 557

and prove that the plan-based long-text generation 558

method is more excellent than the direct generation 559

method. Besides, although LLMs have a relatively 560

better content-following ability, they still struggle 561

with high-level reasoning writing (e.g., writing ex- 562

periments analysis and designing method). 563
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Limitations564

Although the experiment result is significant, we565

only tested these models’ performance in the arXiv566

domain under the direct setting to compare with the567

plan-based paradigm due to resource and time con-568

straints. In the future study, the benchmark should569

be considered to extend with the same data curation570

pipeline to achive a more robust evaluation.571

Ethics Statement572

The dataset used in our research is constructed us-573

ing publicly available data sources, ensuring that574

there are no privacy concerns or violations. We do575

not collect any personally identifiable information,576

and all data used in our research is obtained follow-577

ing legal and ethical standards. In the stage of data578

annotation, we employed three graduate students579

experienced in the Natural Language Processing580

field. We paid the graduate students approximately581

$13 per hour, well above the local average wage,582

and engaged in constructive discussions if they had583

concerns about the process.584

References585

Yelaman Abdullin, Diego Molla-Aliod, Bahadorreza586
Ofoghi, John Yearwood, and Qingyang Li. 2024.587
Synthetic dialogue dataset generation using llm588
agents. arXiv preprint arXiv:2401.17461.589

AI@Meta. 2024. Llama 3 model card.590

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,591
and Jian-Guang Lou. 2024. Make your llm fully592
utilize the context. arXiv preprint arXiv:2404.16811.593

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi594
Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi595
Li. 2024. Longwriter: Unleashing 10,000+ word596
generation from long context llms. arXiv preprint597
arXiv:2408.07055.598

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,599
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,600
Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan,601
Qi Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya602
Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo,603
Conghui He, Yingfan Hu, Ting Huang, Tao Jiang,604
Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li,605
Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yin-606
ing Li, Hongwei Liu, Jiangning Liu, Jiawei Hong,607
Kaiwen Liu, Kuikun Liu, Xiaoran Liu, Chengqi Lv,608
Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma,609
Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan610
Qu, Fukai Shang, Yunfan Shao, Demin Song, Zi-611
fan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze612
Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Ji-613
ayu Wang, Rui Wang, Yudong Wang, Ziyi Wang,614

Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong 615
Xiong, Chao Xu, Ruiliang Xu, Hang Yan, Yirong 616
Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia 617
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, 618
Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo Zhang, 619
Songyang Zhang, Wenjian Zhang, Wenwei Zhang, 620
Xingcheng Zhang, Xinyue Zhang, Hui Zhao, Qian 621
Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, 622
Jingming Zhuo, Yicheng Zou, Xipeng Qiu, Yu Qiao, 623
and Dahua Lin. 2024. Internlm2 technical report. 624
Preprint, arXiv:2403.17297. 625

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, 626
Zhijian Liu, Song Han, and Jiaya Jia. 2023. Longlora: 627
Efficient fine-tuning of long-context large language 628
models. arXiv preprint arXiv:2309.12307. 629

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, 630
Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang, 631
and Mao Yang. 2024. Longrope: Extending llm con- 632
text window beyond 2 million tokens. arXiv preprint 633
arXiv:2402.13753. 634

Linda Flower and John R. Hayes. 1981. A cognitive 635
process theory of writing. College Composition and 636
Communication, 32(4):365–387. 637

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng 638
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023. 639
Longllmlingua: Accelerating and enhancing llms 640
in long context scenarios via prompt compression. 641
arXiv preprint arXiv:2310.06839. 642

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng 643
Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan Chen, 644
and Xia Hu. 2024. Llm maybe longlm: Self-extend 645
llm context window without tuning. arXiv preprint 646
arXiv:2401.01325. 647

Abdullatif Köksal, Timo Schick, Anna Korhonen, and 648
Hinrich Schütze. 2024. Longform: Effective in- 649
struction tuning with reverse instructions. Preprint, 650
arXiv:2304.08460. 651

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan 652
Zhang. 2023a. Loogle: Can long-context language 653
models understand long contexts? arXiv preprint 654
arXiv:2311.04939. 655

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and 656
Wenhu Chen. 2024a. Long-context llms strug- 657
gle with long in-context learning. arXiv preprint 658
arXiv:2404.02060. 659

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer 660
Levy, Luke Zettlemoyer, Jason Weston, and Mike 661
Lewis. 2024b. Self-alignment with instruction back- 662
translation. Preprint, arXiv:2308.06259. 663

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin. 664
2023b. Compressing context to enhance inference 665
efficiency of large language models. In Proceed- 666
ings of the 2023 Conference on Empirical Methods 667
in Natural Language Processing, pages 6342–6353, 668
Singapore. Association for Computational Linguis- 669
tics. 670

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2403.17297
http://www.jstor.org/stable/356600
http://www.jstor.org/stable/356600
http://www.jstor.org/stable/356600
https://arxiv.org/abs/2304.08460
https://arxiv.org/abs/2304.08460
https://arxiv.org/abs/2304.08460
https://arxiv.org/abs/2308.06259
https://arxiv.org/abs/2308.06259
https://arxiv.org/abs/2308.06259
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.391


Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foer-671
ster, Jeff Clune, and David Ha. 2024. The ai scientist:672
Towards fully automated open-ended scientific dis-673
covery. arXiv preprint arXiv:2408.06292.674

Chau Minh Pham, Simeng Sun, and Mohit Iyyer.675
2024a. Suri: Multi-constraint instruction follow-676
ing for long-form text generation. arXiv preprint677
arXiv:2406.19371.678

Chau Minh Pham, Simeng Sun, and Mohit Iyyer. 2024b.679
Suri: Multi-constraint instruction following for long-680
form text generation. Preprint, arXiv:2406.19371.681

Shanghaoran Quan. 2024. Automatically generating nu-682
merous context-driven sft data for llms across diverse683
granularity. arXiv preprint arXiv:2405.16579.684

Shanghaoran Quan, Tianyi Tang, Bowen Yu, An Yang,685
Dayiheng Liu, Bofei Gao, Jianhong Tu, Yichang686
Zhang, Jingren Zhou, and Junyang Lin. 2024. Lan-687
guage models can self-lengthen to generate long texts.688
arXiv preprint arXiv:2410.23933.689

Haoran Que, Feiyu Duan, Liqun He, Yutao Mou,690
Wangchunshu Zhou, Jiaheng Liu, Wenge Rong,691
Zekun Moore Wang, Jian Yang, Ge Zhang, et al.692
2024. Hellobench: Evaluating long text generation693
capabilities of large language models. arXiv preprint694
arXiv:2409.16191.695

Marlene Scardamalia and Carl Bereiter. 1987. Knowl-696
edge telling and knowledge transforming in written697
composition. Advances in applied psycholinguistics,698
2:142–175.699

Jing Tang, Quanlu Jia, Yuqiang Xie, Zeyu Gong,700
Xiang Wen, Jiayi Zhang, Yalong Guo, Guibin701
Chen, and Jiangping Yang. 2024. Skyscript-100m:702
1,000,000,000 pairs of scripts and shooting scripts703
for short drama. arXiv preprint arXiv:2408.09333.704

Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang,705
Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu Dai,706
Min Zhang, Qingsong Wen, et al. 2024. Autosur-707
vey: Large language models can automatically write708
surveys. arXiv preprint arXiv:2406.10252.709

Siwei Wu, Zhongyuan Peng, Xinrun Du, Tuney Zheng,710
Minghao Liu, Jialong Wu, Jiachen Ma, Yizhi Li, Jian711
Yang, Wangchunshu Zhou, et al. 2024. A compara-712
tive study on reasoning patterns of openai’s o1 model.713
arXiv preprint arXiv:2410.13639.714

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee,715
Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina716
Bakhturina, Mohammad Shoeybi, and Bryan Catan-717
zaro. 2023. Retrieval meets long context large lan-718
guage models. arXiv preprint arXiv:2310.03025.719

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,720
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan721
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-722
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian723
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin724
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang725

Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, 726
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng 727
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, 728
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, 729
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, 730
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin 731
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang 732
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu 733
Cui, Zhenru Zhang, and Zhihao Fan. 2024a. Qwen2 734
technical report. arXiv preprint arXiv:2407.10671. 735

An Yang, Baosong Yang, Beichen Zhang, Binyuan 736
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi- 737
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian 738
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 739
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 740
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei 741
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, 742
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, 743
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, 744
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and 745
Zihan Qiu. 2024b. Qwen2.5 technical report. arXiv 746
preprint arXiv:2412.15115. 747

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, 748
Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin 749
Cui. 2024a. Pqcache: Product quantization-based kv- 750
cache for long context llm inference. arXiv preprint 751
arXiv:2407.12820. 752

Jiajie Zhang, Yushi Bai, Xin Lv, Wanjun Gu, Danqing 753
Liu, Minhao Zou, Shulin Cao, Lei Hou, Yuxiao Dong, 754
Ling Feng, et al. 2024b. Longcite: Enabling llms 755
to generate fine-grained citations in long-context qa. 756
arXiv preprint arXiv:2409.02897. 757

Jiajie Zhang, Zhongni Hou, Xin Lv, Shulin Cao, Zhenyu 758
Hou, Yilin Niu, Lei Hou, Yuxiao Dong, Ling Feng, 759
and Juanzi Li. 2024c. Longreward: Improving long- 760
context large language models with ai feedback. 761
arXiv preprint arXiv:2410.21252. 762

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang 763
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai, 764
Shuo Wang, Zhiyuan Liu, et al. 2024d. Bench: Ex- 765
tending long context evaluation beyond 100k tokens. 766
In Proceedings of the 62nd Annual Meeting of the 767
Association for Computational Linguistics (Volume 768
1: Long Papers), pages 15262–15277. 769

Zoie Zhao, Sophie Song, Bridget Duah, Jamie Mac- 770
beth, Scott Carter, Monica P Van, Nayeli Suseth 771
Bravo, Matthew Klenk, Kate Sick, and Alexandre LS 772
Filipowicz. 2023. More human than human: Llm- 773
generated narratives outperform human-llm inter- 774
leaved narratives. In Proceedings of the 15th Confer- 775
ence on Creativity and Cognition, pages 368–370. 776

Yuxuan Zhou, Margret Keuper, and Mario Fritz. 2024. 777
Balancing diversity and risk in llm sampling: How 778
to select your method and parameter for open-ended 779
text generation. arXiv preprint arXiv:2408.13586. 780

10

https://arxiv.org/abs/2406.19371
https://arxiv.org/abs/2406.19371
https://arxiv.org/abs/2406.19371


A Evaluation Prompts781

We present the prompts that we designed for differ-782

ent long text generation dimensions in Tab 4.783

B Agent-based Generation Method784

First section. We directly use the content plan785

h and length l to let the LLMs to generate the786

introduction of the article:787

s = LLM(p, l, prompt),

where the s is generated section. Then we regard788

the s as the context c.789

Rest section. In the process of writing an article,790

it is often necessary to adjust the subsequent con-791

tent based on the previous content. Therefore, apart792

from the content plan p and length requirement l,793

we also need to generate subsequent sections based794

on the previously generated context c to ensure795

semantic consistency throughout the entire paper:796

s = LLM(p, l, c, prompt),

then we concatenate s and c together as the context797

for generating subsequent sections.798

Related work. As for the related work section
of a paper, the LLM needs to use the references
to write the background and development of the
research direction. Besides, wikepedia docment
also has to use numerous references to support the
facility of the article. Therefore, we input the extra
reference ref to generate the section:

s = LLM(h, l, c, ref, prompt)

Experiment analysis. As for the paper, there are799

many experiment analyses in different sections and800

there are no have obvious features in the subtitle801

of each section. According to human writing be-802

haviors, we input the content plan p of the section803

and all the experiment results exp of a paper into804

an LLM and let it judge whether they need to use805

the experiment results to write the content of the806

section:807

judge = LLM(p, exp, prompt)

If the judge is true, we will input the experiment808

results res to have LLMs generate the current sec-809

tion, conversely, our generation strategy remains810

unchanged:811

s =

{
LLM(p, l, c, exp, prompt), if judge==T,
LLM(p, l, c, prompt), else .

812

Final Result. We contcat all the s generated by 813

our plan-absed method as the final generated articl 814

S. 815

C The Evaluation Result by Using GPT4o 816

In order to demonstrate the reasonability of re- 817

sults evaluated by using Qwen2.5-72B, as shown in 818

Tab 6, we also use the GPT4o as the judge model 819

to score the result of different LLMs. 820

C.1 Case Study 821

In order to better demonstrate the differences in 822

long-text generation among different models under 823

our designed PLAD-based framework, we com- 824

pare the results generated by InternLM2.5-20B and 825

Qwen2.5-72B, which perform the best and worst, 826

respectively, in the arXiv domain. 827

As shown in Fig 5 and Fig 6, for the content 828

plan we summarized, the abstract generated by 829

Qwen2.5 concisely includes all key information 830

and smoothly integrates all content, demonstrating 831

stronger content-following ability. In contrast, the 832

content generated by InternLM2.5-20B is relatively 833

scattered and even includes some unnecessary con- 834

clusions at the end, which does not conform to 835

writing conventions for a highly summary-oriented 836

abstract. 837
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Domain Model Overall Con RW Intro Len EA ME Cont-fol Red

Qwen-3B-Instruct 75 89 82 63 58 93 93 51 85
Qwen-7B-Instruct 77 88 81 73 64 98 95 40 85
Qwen-72B-Instruct 77 87 78 73 68 97 98 37 88
Internlm2.5-7B-Chat 63 86 81 43 46 76 81 27 76
Internlm2.5-20B-Chat 68 86 81 53 52 85 81 40 79
LLaMa3.3-70B 70 90 85 60 61 95 62 39 85

arXiv

LongWriter-8B 79 80 69 77 77 86 94 68 80

Qwen-3B-Instruct 75 84 – 63 90 45 – 95 80
Qwen-7B-Instruct 77 88 – 62 96 44 – 98 80
Qwen-72B-Instruct 80 84 – 73 97 47 – 99 82
Internlm2.5-7B-Chat 63 87 – 42 70 31 – 84 74
Internlm2.5-20B-Chat 69 89 – 58 82 32 – 84 80
LLaMa3.3-70B 72 87 – 60 87 26 – 100 84

Blog

LongWriter-8B 77 87 – 69 96 37 – 99 84

Qwen3B-Instruct 79 84 74 – – 94 95 49 84
Qwen7B-Instruct 80 85 85 – – 96 95 42 83
Qwen72B-Instruct 85 87 83 – – 96 97 65 83
Internlm2.5-7B-Chat 60 74 57 – – 63 83 27 69
Internlm2.5-20B-Chat 70 81 73 – – 74 83 39 73
LLaMa3.3-70B 68 81 54 – – 85 97 22 82

Wikipedia

LongWriter-8B 73 84 58 – – 97 98 32 85

Table 6: The results that GPT4o evaluates on our LongEval benchmark.
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Redundant

Instruction-Following

Experiment Analysis

Method Analysis

Introduction

Related Work

f"""Given the model-generated text: {Context_str} \n\n. Evaluate whether the model-generated text has 
repetitive content. The more repetitive the content, the lower the score. Grade the paper (1-10 points).            
If the paper contains many repetitive sections, it would score 2 points.            if the paper contains a small 
amount of repetitive sections, it would score 5 points.            if the paper does not contain repetitive 
sections, but some content is semantically redundant, and the writing does not effectively express the 
author's points, it would be score 7 points.            If the content of the paper is concise, with efficient and 
precise language, and no informational redundancy, it would score 10 points.           """

evaluate_prompt = f"""Given a section of the headlines: {h} \n\n Given the model-generate section: 
{c} \n\n. Evaluate whether the content of this model-generated section meets the key points 
required in the headline. Grade it based on the following criteria (0-10 points).                If the degree 
of relevance between the model-generated text and the headline is low, it would score 2 points.                
If the model-generated text includes all the points from the headline, but the content is somewhat 
redundant and does not effectively address each issue raised in the headline,  it would score 5 points.                
If the model-generated text covers all the points in the headline, and it can, to some extent, address 
or clearly express the content of the headline at an academic level, it would score 7 points.                If 
the model-generated text covers all the points in the headline, perfectly addressing and clearly 
expressing the content of the headline at an academic level, and also demonstrates a deep academic 
exploration with rigorous logic,  it would score 10 points.                """

f“”“Given a section of the raw paper: {s} \n\n Given the model-generated section: {c} \n\n And the 
headlines that we used to generate: {h} \n\n                 Compared with the section of raw paper, please 
help evaluate whether the experimental analysis for the model-generated content is sufficient based 
on the following criteria (1-10 points):                1-2 points: The experimental analysis section generated 
by the model merely reiterates the content of the headline in a simple manner.                2-4 points: 
The experimental analysis section generated by the model not only includes the content of the 
headline but also provides a simple analysis of data variations, supporting the analysis with relevant 
content.                4-6 points: The experimental analysis section generated by the model not only 
includes data analysis and the content of the headline but also further explores the possible reasons 
behind various experimental phenomena.                6-8 points: The experimental analysis section 
generated by the model not only includes data analysis, the content of the headline, and an 
exploration of the possible causes for the experimental results, but also additionally analyzes the 
relationships between various experimental results, providing stronger experimental evidence to 
demonstrate the effectiveness of the methods proposed in the paper.                9-10 points: The 
experimental analysis section generated by the model not only includes data analysis, the content of 
the headline, and an exploration of the possible causes for the experimental results, but also provides 
additional analysis of the relationships between various experimental results. It demonstrates strong 
coherence, effectively integrating all experimental analyses under a unified theme.""" 

f"""Given a section of the raw paper: {s} \n\n Given the model-generated section: {c} \n\n And the 
headlines that we used to generate: {h} \n\n                 Compared with the section of raw paper, evaluate 
whether the model-generated section describing the method is detailed and specific (1-10 points):                
1-2 points: The description of the method simply repeats the content of the headline.                3-4 points: 
The description of the method provides a brief introduction to each concept corresponding to the points 
in the headline but lacks detailed analysis or explanation of the specific content of each model. 
Alternatively, it may be missing specific formulas for the methods.                5-6 points: The description of 
the method uses some basic formulas to introduce the specific approach or provides a brief explanation 
of how certain method modules operate.                7-8 points: The description of the methodology section 
provides a good introduction to the details of the algorithm or experiment, with necessary explanations 
using formulas. However, the writing lacks coherence between sentences.                9-10 points: The 
description of the methodology section provides a thorough introduction to the details of the algorithm 
or experiment, with formulas used appropriately. The writing style is rigorous, and the context flows 
smoothly, enabling readers to clearly understand the purpose of each module and its specific details. """

f"Give you Generated text: {Introduction}, Raw Text: {Introduction_ref} \n\n {Evaluate 
whether the content in the Introduction corresponds to the rest content in the paper. Grade 
the paper (1-10 points).}"

f"Give you Generated text: {c}, Raw Text: {s} \n\n Evaluate whether the original paper and 
the paper written based on the model are similar. Grade the paper (1-10 points)."

Consistency

f'''Give you a doc:{context_str}\n\n Evaluate the overall coherence of the given text on a scale 
of 0 to 10. Consider whether ideas flow logically, transitions are smooth, and the argument 
remains consistent. Use the following scale as a guideline: 0-2: Very Poor Coherence – lacks 
structure, no logical connections. 3-4: Poor Coherence – weak transitions, some logical gaps. 5-
6: Moderate Coherence – generally logical but with occasional inconsistencies. 7-8: Good 
Coherence – clear structure, smooth transitions, minor flaws. 9-10: Excellent Coherence –
seamless flow, strong transitions, no disruptions.Provide a score and a brief justification.'''

Figure 4: The table presents the prompts for the metrics that use LLMs to evaluate long text under different
dimensions.
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Content Plan:
- iConFormer is a novel parameter-efficient fine-tuning (PEFT) approach that uses a dynamic adapter conditioned on input 
instances.
- This method introduces an Input-Conditioned Network (iCoN) to enable instance-level feature transformation and capture 
task-specific details.
- Experiments show iConFormer performs comparably to full fine-tuning (FFT) in monocular depth estimation and semantic 
segmentation but outperforms FFT in image classification and instance segmentation.
- The proposed method consistently outperforms other recent PEFT methods across all tasks tested.

Generated Text:
**Abstract**

In the realm of deep learning, fine-tuning large pre-trained models for specific tasks is a common practice, but it often 
requires substantial computational resources and can lead to overfitting on smaller datasets. To address these challenges, we
introduce iConFormer, a novel parameter-efficient fine-tuning (PEFT) approach that leverages dynamic adapters conditioned 
on input instances. Unlike traditional static adapters, iConFormer employs an Input-Conditioned Network (iCoN) to perform 
instance-level feature transformations, thereby capturing task-specific details more effectively. This dynamic conditioning 
allows the model to adapt its parameters in real-time based on the input, leading to more flexible and context-aware 
representations.

We evaluate iConFormer across a range of computer vision tasks, including monocular depth estimation, semantic 
segmentation, image classification, and instance segmentation. Our experiments demonstrate that iConFormer not only 
performs comparably to full fine-tuning (FFT) in monocular depth estimation and semantic segmentation but also 
outperforms FFT in image classification and instance segmentation. Moreover, iConFormer consistently surpasses other recent 
PEFT methods across all tasks tested, highlighting its robustness and versatility. By reducing the number of trainable 
parameters while maintaining or improving performance, iConFormer offers a compelling solution for efficient and effective 
fine-tuning of large models, making it a valuable tool for both resource-constrained environments and high-performance 
applications.

Figure 5: A section generated by Qwen2.5-72B.
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Content Plan:
- iConFormer is a novel parameter-efficient fine-tuning (PEFT) approach that uses a dynamic adapter conditioned on input 
instances.
- This method introduces an Input-Conditioned Network (iCoN) to enable instance-level feature transformation and capture 
task-specific details.
- Experiments show iConFormer performs comparably to full fine-tuning (FFT) in monocular depth estimation and semantic 
segmentation but outperforms FFT in image classification and instance segmentation.
- The proposed method consistently outperforms other recent PEFT methods across all tasks tested.

Generated Text:
In the realm of deep learning, the fine-tuning (FT) of pre-trained models has emerged as a powerful technique for adapting 
models to specific tasks. However, traditional FT methods often require substantial computational resources and can lead to 
overfitting, particularly when dealing with limited data. To address these challenges, parameter-efficient fine-tuning (PEFT) 
approaches have been developed, which aim to minimize the number of parameters that need to be updated during the 
adaptation process. One such innovative PEFT method is iConFormer, a novel approach that introduces a dynamic adapter 
conditioned on input instances, thereby enabling instance-level feature transformation and capturing task-specific details.

The core idea behind iConFormer is the introduction of an Input-Conditioned Network (iCoN), which acts as a bridge between 
the pre-trained model and the task-specific data. This network is designed to adaptively modify the features extracted by the 
pre-trained model based on the characteristics of the input instances. By doing so, iConFormer ensures that the model can 
effectively capture the nuances of the task at hand, even when the amount of task-specific data is limited.

The effectiveness of iConFormer has been demonstrated through a series of experiments across various computer vision tasks, 
including monocular depth estimation, semantic segmentation, image classification, and instance segmentation. The results 
show that iConFormer performs comparably to full fine-tuning (FFT) in tasks such as monocular depth estimation and 
semantic segmentation, where the model needs to understand complex spatial relationships and semantic information. 
However, iConFormer outperforms FFT in tasks like image classification and instance segmentation, where the model's ability 
to recognize and localize objects is crucial.

Moreover, the proposed method consistently outperforms other recent PEFT methods across all tasks tested, showcasing its 
superiority in terms of both accuracy and efficiency. This is particularly noteworthy given the growing demand for efficient 
and effective model adaptation techniques, especially in resource-constrained environments.

In summary, iConFormer represents a significant advancement in the field of parameter-efficient fine-tuning, offering a 
dynamic and input-conditioned approach that can effectively adapt pre-trained models to a wide range of computer vision 
tasks. Its ability to perform comparably to full fine-tuning while requiring fewer parameters makes it a promising tool for 
researchers and practitioners alike, particularly in scenarios where computational resources are limited or where the need for 
rapid model adaptation is critical.

Figure 6: A section generated by InternLM2.5-20B.
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