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Abstract
The exact minimum width that allows for univer-
sal approximation of unbounded-depth networks
is known only for RELU and its variants. In this
work, we study the minimum width of networks
using general activation functions. Specifically,
we focus on squashable functions that can ap-
proximate the identity function and binary step
function by alternatively composing with affine
transformations. We show that for networks us-
ing a squashable activation function to univer-
sally approximate Lp functions from [0, 1]dx to
Rdy , the minimum width is max{dx, dy, 2} un-
less dx = dy = 1; the same bound holds for
dx = dy = 1 if the activation function is mono-
tone. We then provide sufficient conditions for
squashability and show that all non-affine analytic
functions and a class of piecewise functions are
squashable, i.e., our minimum width result holds
for those general classes of activation functions.

1. Introduction
Understanding what neural networks can or cannot do is
a fundamental problem in deep learning theory. The clas-
sical universal theorem states that two-layer networks can
approximate any continuous function if an activation func-
tion is non-polynomial (Cybenko, 1989; Hornik et al., 1989;
Leshno et al., 1993; Pinkus, 1999). Likewise, several studies
on memorization show that neural networks can fit arbitrary
finite training dataset (Baum, 1988; Huang and Babri, 1998).
These results guarantee the existence of networks that can
perform tasks in various practical applications such as com-
puter vision (He et al., 2016), natural language processing
(Vaswani, 2017; Brown et al., 2020), and science (Jumper
et al., 2021).
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The minimum size of networks that can universally approxi-
mate or memorize has also been studied. For example, clas-
sical results show that the minimum depth for both universal
approximation and memorization is exactly two (Pinkus,
1999; Baum, 1988). The minimum number of parameters
depends on the depth of networks. For universal approx-
imation using RELU networks, it is known that shallow
wide architectures require more parameters than deep nar-
row ones (Yarotsky, 2018), where similar results are also
known for memorization (Park et al., 2021a; Vardi et al.,
2022). While these results show the benefits of depth, they
also imply the existence of the minimum width enabling
universal approximation and memorization.

There have been extensive research efforts to characterize
such a minimum width. The minimum width for memoriza-
tion is constantly bounded (i.e., independent of the input
dimension) since any finite set of inputs can be mapped
to distinct scalar values by projecting them (Park et al.,
2021a). Intriguingly, the minimum width for universal ap-
proximation depends on the input dimension dx and the
output dimension dy. Several works have shown that the
minimum width lies between dx and dx + dy + α where
α ≥ 0 is some constant depending on the activation func-
tion and target functions space; however, the exact minimum
width is known only for approximating Lp functions when
the activation function is RELU or its variants (Park et al.,
2021b; Cai, 2023; Kim et al., 2024).

1.1. Related works

The minimum width for universal approximation has been
studied for two function spaces C(X ,Y) and Lp(X ,Y):
C(X ,Y) denotes the space of continuous functions from X
to Y endowed with the supremum norm supx∈X ∥f(x)∥∞
and Lp(X ,Y) denotes the space of Lp functions from X to
Y endowed with the Lp-norm ∥f∥Lp ≜

(∫
X ∥f∥ppdµdx

)1/p
for p ≥ 1. Recent studies on the minimum width (say
wmin) was initiated by Lu et al. (2017). They show that
dx + 1 ≤ wmin ≤ dx + 4 for universally approximat-
ing L1(Rdx ,R) using RELU networks. Hanin and Sellke
(2017) consider universally approximating C([0, 1]dx ,Rdy )
using RELU networks and prove dx+1 ≤ wmin ≤ dx+dy .
Johnson (2019) proves the lower bound wmin ≥ dx + 1 for
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Table 1: A summary of known bounds on the minimum width for universal approximation.

Reference Function class Activation σ Upper / lower bounds
Lu et al. (2017) L1(Rdx ,R) RELU dx + 1 ≤ wmin ≤ dx + 4

Hanin and Sellke (2017) C([0, 1]dx ,Rdy ) RELU dx + 1 ≤ wmin ≤ dx + dy
Johnson (2019) C([0, 1]dx ,Rdy ) uniformly conti.∥ dx + 1 ≤ wmin

Kidger and Lyons (2020) C([0, 1]dx ,Rdy ) conti. nonpoly.† wmin ≤ dx + dy + 1
C([0, 1]dx ,Rdy ) nonaffine poly. wmin ≤ dx + dy + 2

Park et al. (2021b) Lp(Rdx ,Rdy ) RELU wmin = max{dx + 1, dy}
Lp([0, 1]dx ,Rdy ) conti. nonpoly.† wmin ≤ max{dx + 2, dy + 1}

Cai (2023) Lp([0, 1]dx ,Rdy ) Leaky-RELU wmin = max{dx, dy, 2}
Kim et al. (2024) Lp([0, 1]dx ,Rdy ) RELU-LIKE‡∗ wmin = max{dx, dy, 2}

Ours (Theorem 2) Lp([0, 1]dx ,Rdy ) Squashable§∗ wmin = max{dx, dy, 2}
∥ requires that σ is uniformly approximated by a sequence of one-to-one functions.
† requires that σ is continuously differentiable at some point z, with σ′(z) ̸= 0.
‡ denotes RELU, leaky-RELU, ELU, SOFTPLUS, CELU, SELU, GELU, SILU, and MISH.
§ includes all analytic functions and a class of piecewise functions such as leaky-RELU (see Sections 3.1 and 3.3).
∗ dx + dy ≥ 3 is required for non-monotone activation functions.

activation functions that can be uniformly approximated by
a sequence of one-to-one functions, which has been later
extended to Lipschitz continuous and monotone functions
when dx ≥ dy (Rochau et al., 2024). Kidger and Lyons
(2020) show that for C([0, 1]dx ,Rdy ), wmin ≤ dx + dy + 1
if an activation function is continuous, non-polynomial, and
continuously differentiable at some point with non-zero
derivative. For non-affine polynomial activation functions,
they also show wmin ≤ dx + dy + 2. However, the upper
bounds in these results are at least dx+dy , which has a large
gap compared to the lower bound dx + 1. Such limitation
arises from their universal approximator constructions that
use dx neurons to preserve the dx-dimensional input and
dy + α neurons to compute the dy-dimensional output.

The exact minimum width was first characterized by Park
et al. (2021b). They show wmin = max{dx + 1, dy} for
RELU networks to universally approximate Lp(Rdx ,Rdy )
and for networks using both RELU and the binary step func-
tion STEP(x)1 to universally approximate C([0, 1]dx ,Rdy ).
For Lp([0, 1]dx ,Rdy ), they also show wmin ≤ max{dx +
2, dy + 1} for a class of continuous non-polynomial activa-
tion functions. Specifically, Park et al. (2021b) construct
two networks called the encoder and decoder to approxi-
mate a target function f∗ : Rdx → Rdy : the encoder maps
a dx-dimensional input vector x to some scalar value c con-
taining the information of x and the decoder maps c to a
neighborhood of the dy-dimensional target vector f∗(x).
Then, the concatenation of the encoder and decoder approx-
imates f∗ using an autoencoder structure with an internal
width one. Cai (2023) use a different approach to show
wmin = max{dx, dy, 2} for leaky-RELU networks to uni-

1STEP(x) = 1 if x ≥ 0 and STEP(x) = 0 otherwise.

versally approximate Lp([0, 1]dx ,Rdy ). Specifically, they
derive the bound using the two results: (1) neural ODE
can approximate any Lp functions (Li et al., 2022) and (2)
Leaky-RELU networks can approximate any neural ODEs
using width max{dx, dy, 2} (Duan et al., 2022).

The coding scheme proposed by Park et al. (2021b) has also
been used to characterize wmin for different problem setups.
For example, Cai (2023) show wmin = max{dx, dy, 2} for
networks using both RELU and FLOOR, Kim et al. (2024)
show wmin = max{dx, dy, 2} for variants of RELU (see
the footnote ‡ in Table 1), and Rochau et al. (2024) show
wmin = max{dx, dy, 2} for leaky-ReLU. Nevertheless, ex-
isting proof techniques for tight minimum width highly rely
on the property of RELU and/or its variants, and the mini-
mum width for general activation functions was unknown.

1.2. Summary of contributions

In this work, we study the minimum width enabling univer-
sal approximation of Lp([0, 1]dx ,Rdy ) using general activa-
tion functions. Specifically, we consider activation functions
σ such that an alternative composition of σ and affine trans-
formations can approximate the identity function and binary
step function; we call such functions squashable (see Defini-
tion 1). Using the squashability of an activation function σ,
we show that the minimum width of σ networks to univer-
sally approximate Lp([0, 1]dx ,Rdy ) is max{dx, dy} unless
dx = dy = 1 (Theorem 2). We also show wmin = 2 when
dx = dy = 1 if the squashable function σ is monotone.

Our result can be used to characterize the minimum width
for a general class of practical activation functions, by show-
ing their squashability. For example, we show that any
non-affine analytic function (e.g., non-affine polynomial,
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SIGMOID, tanh, sin, exp, etc.) is squashable (Lemma 4).
Furthermore, we also show that a wide class of piece-
wise continuously differentiable functions including leaky-
RELU and HARDSWISH are also squashable (Lemma 5).
Hence, our result significantly extends the prior exact mini-
mum width results for RELU and its variants.

Even if an activation is not analytic or piecewise continu-
ously differentiable, it can be squashable, i.e., our minimum
width result can be applicable. To check the squashability of
general functions, we also provide a sufficient condition for
the squashability: σ is squashable if and only if there exists
an alternative composition f of σ and affine transformations
such that f is strictly increasing and has a locally sigmoidal
shape on some proper interval (Lemma 3).

We use the coding scheme (Park et al., 2021b) to prove
our result. In particular, we construct our decoder fdec as a
curve that densely fills the codomain of a target function so
that supx∈f∗([0,1]dx ) infy∈fdec([0,1]) ∥x− y∥∞ is small. We
then construct our encoder to map each x ∈ [0, 1]dx to a
neighborhood of f−1

dec (z) for some z ≈ f∗(x). Although we
use the coding scheme, our constructions largely differ from
existing ones (Park et al., 2021b; Cai, 2023; Kim et al., 2024;
Rochau et al., 2024), which highly rely on properties (e.g.,
shape and discontinuity) of specific activation functions
(e.g., RELU, FLOOR, STEP, and their variants). Namely,
existing proofs do not easily extend to general activation
functions. See Section 4 for our detailed constructions.

1.3. Organization

We first introduce notations and the problem setup in Sec-
tion 2. We then formally define the squashability of ac-
tivation functions, describe our main result on minimum
width for universal approximation, and provide sufficient
conditions for the squashability in Section 3. We prove our
main result in Section 4 and conclude the paper in Section 5.
Proofs of technical lemmas are deferred to Appendix.

2. Problem setup and notations
In this section, we introduce notations and our problem
setup. For n ∈ N, we use [n] to denote {1, . . . , n}. For
S, T ⊂ Rd, we use diam(S) ≜ supx,y∈S ∥x − y∥∞ and
dist (S, T ) ≜ infx∈S,y∈T ∥x− y∥∞. If S is a singleton set,
(i.e., S = {s}), we use dist (s, T ) to denote dist ({s}, T ).
For y ∈ Rd and S ⊂ Rd, Br(y) ≜ {x ∈ Rd : dist (x, y) ≤
r} and Br(S) ≜ {x ∈ Rd : dist (x,S) ≤ r}. For a function
f : Rd → Rd′

, f(x)i denotes the i-th coordinate of f(x).
For n ∈ N, we use fn to denote the n times composition
of f . We use ι : R → R to denote the identity function
(ι(x) = x) and STEP to denote the binary step function
(STEP(x) = 0 if x < 0 and STEP(x) = 1 otherwise). We
note that all intervals in this paper are proper: they are

neither empty nor degenerate (e.g. [a, a] = {a}).

2.1. Fully-connected networks

Throughout this paper, we consider fully-connected neural
networks. Formally, given a set of activation functions Σ,
we define an L-layer neural network f with input dimension
d0 = dx, output dimension dL = dy, and hidden layer
dimensions d1, · · · , dL−1 as

f ≜ tL ◦ σ̃L−1 ◦ tL−1 ◦ · · · ◦ σ̃1 ◦ t1
where tℓ : Rdℓ−1 → Rdℓ is an affine transformation and
σ̃ℓ(x1, . . . , xdℓ

) = (σℓ,1(x1), · · · , σℓ,dℓ
(xdℓ

)) for some
σℓ,1, . . . , σℓ,dℓ

∈ Σ for all ℓ ∈ [L]. We denote a neural
network using a single activation function σ (i.e., Σ = {σ})
by a “σ network” and a neural network using a two acti-
vation functions σ1, σ2 (i.e., Σ = {σ1, σ2}) by a “(σ1, σ2)
network”. Here, the widthw of f is defined as the maximum
over the hidden dimensions d1, · · · , dL−1.

We say “σ networks of width w are dense in Lp(X ,Y)” if
for any f∗ ∈ Lp(X ,Y) and ε > 0, there exists a σ network
of width w such that ∥f∗ − f∥Lp ≤ ε. Given an activation
function σ and dx, dy ∈ N, we use wσ,dx,dy

to denote the
minimum w ∈ N satisfying the following: σ networks of
width w are dense in Lp([0, 1]dx ,Rdy ) but σ networks of
width w − 1 are not dense. We often drop dx, dy and use
wσ if dx, dy are clear from the context.

3. Main results
3.1. Squashable activation functions

To formally state our main result, we first introduce a class
of activation functions σ that we mainly focus on.
Condition 1. There exists z ∈ R such that σ is continuously
differentiable at z and σ′(z) ̸= 0.
Condition 2. σ is continuous and for any compact set K ⊂
R and for any ε, ζ > 0, there exists a σ-network ρε,ζ : R →
R of width 1 such that

• maxx∈K\(−ζ,ζ) |ρε,ζ(x)− STEP(x)| ≤ ε,
• ρε,ζ is strictly increasing on K, and
• ρε,ζ(K) ⊂ [0, 1].

Condition 1 is that an activation function σ is has a contin-
uously differentiable point with a nonzero derivative. This
property enables us to approximate the identity function on
a compact domain by composing σ with affine transforma-
tions as stated in the following lemma.
Lemma 1 (Lemma 4.1 in (Kidger and Lyons, 2020)). For
any ε > 0, σ : R → R satisfying Condition 1, and compact
set K ⊂ R, there exist affine transformations h1, h2 : K →
R such that

sup
x∈K

∥h2 ◦ σ ◦ h1(x)− x∥ ≤ ε.
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(a) (b) (c)

Figure 1: Illustration of construction of squashable function using a σ network ρ of width 1 that has a sigmoidal shape when
ϕ(x) = x. The intersections of ρ(x) and ϕ(x) serve as fixed points. Thus, σ can achieve the squashability by iteratively
composing ρ: ρn(x) → a for x ∈ (a, c) and ρn(x) → b for x ∈ (c, b) as n→ ∞ while ρn is strictly monotone.

Condition 2 assumes the continuity of σ and the existence
of a σ network of width 1 (i.e., an alternative composition
of affine transformations and σ) that can approximate the
binary threshold function (i.e., STEP) on any compact set,
except for a small neighborhood of zero (i.e., (−ζ, ζ)). One
important property in Condition 2 is that ρε,ζ should be
strictly increasing on K. This allows ρε,ζ to preserve the
information of inputs in K since it is bijective on K.

Using these conditions, we now define the squashability of
an activation function.

Definition 1. A function σ : R → R is “squashable” if σ
satisfies Conditions 1 and 2.

One can observe that width-1 networks using a squashable
activation function can approximate the identity function on
any compact domain and the STEP function on any compact
domain except for a small open neighborhood.

A class of squashable activation functions covers a wide
range of practical functions. Condition 1 can be easily sat-
isfied: e.g., any piecewise differentiable function with a
non-constant piece satisfies Condition 1. Furthermore, we
prove that any analytic activation function (e.g., SIGMOID,
exp, sin.) and a class of piecewise continuously differen-
tiable functions (e.g., leaky-RELU and HARDSWISH) sat-
isfy Condition 2. We formally state these results and easily
verifiable conditions for Condition 2 in Section 3.3.

3.2. Minimum width with squashable functions

We are now ready to introduce our main theorem on the
minimum width for universal approximation.

Theorem 2. Let σ be a squashable function. Then, wσ =
max{dx, dy} if dx ≥ 2 or dy ≥ 2 and wσ ∈ {1, 2} if
dx = dy = 1. Furthermore, if σ is monotone, then wσ = 2
if dx = dy = 1.

Theorem 2 characterizes the exact minimum width enabling
universal approximation for squashable activation functions:

wσ,dx,dy
= max{dx, dy} unless the input/output dimen-

sions are both one. Furthermore, it fully characterizes
wσ,dx,dy for all dx, dy if an activation function is squashable
and monotone. The proof of Theorem 2 is in Section 4.

To the best of our knowledge, the exact minimum width
enabling universal approximation has been discovered
only for a few RELU-LIKE activation functions such
as RELU, leaky-RELU, SOFTPLUS,GELU (Park et al.,
2021b; Cai, 2023; Kim et al., 2024). Furthermore, the best
known upper bound for a general class of activation func-
tions was wσ ≤ max{dx+2, dy+1} when σ is continuous
non-polynomial and continuously differentiable at some
point with non-zero derivative (Park et al., 2021b). Our re-
sult extends prior exact minimum width results to a general
class of activation functions (i.e., squashable) including all
analytic functions (e.g., SIGMOID, tanh, sin, exp, polyno-
mial) and a class of piecewise continuously differentiable
functions (e.g., HARDSWISH). See Lemmas 4 and 5 in
Section 3.3 for more details on squashable functions.

3.3. Easily verifiable conditions for Condition 2

In Theorem 2, we have observed that wσ,dx,dy
can be char-

acterized if σ is squashable. However, checking whether a
given activation function is squashable, especially whether it
satisfies Condition 2, can be non-trivial. In this section, we
provide easily verifiable conditions for Condition 2 based
on the following lemma.
Lemma 3. A continuous function σ : R → R satisfies
Condition 2 if there exist a σ network ρ of width 1 and
a, b ∈ R with a < b satisfying the following:

• ρ is strictly increasing on [a, b] and
• there exists c ∈ (a, b) such that

ρ(x) < ϕ(x) ∀x ∈ (a, c), ρ(x) > ϕ(x) ∀x ∈ (c, b)

where ϕ(x) is a line passing (a, ρ(a)) and (b, ρ(b)).

Lemma 3 provides a sufficient condition for Condition 2: if
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we can make a σ network of width 1 that has a “sigmoidal
shape” on some compact domain (e.g., see Figure 1a), then
σ satisfies Condition 2. We can easily approximate the
STEP function using a function with the sigmoidal shape
by composing the function and some affine transformations
(see Figures 1b and 1c). For a more formal argument, see
the proof of Lemma 3 in Appendix A.2.1.

Such a sigmoidal shape (or its symmetric variants) ex-
ists in various smooth activation functions such as GELU,
SIGMOID, tanh, and sin. In addition, for any non-affine
analytic function σ, we can always make a σ network of
width 1 that has the sigmoidal shape. Since all non-constant
analytic functions are continuously differentiable and have
a non-zero derivative at some point, all non-affine analytic
functions satisfy Conditions 1 and 2, i.e., they are squash-
able. The proof of Lemma 4 is presented in Appendix A.2.2.

Lemma 4. All non-affine analytic functions from R to R
satisfy Condition 2.

In addition, a class of piecewise functions also satisfies the
condition in Lemma 3. We defer the proof of Lemma 5 to
Appendix A.2.3.

Lemma 5. A continuous function σ : R → R satisfies
Condition 2 if there exist c ∈ R and δ > 0 such that

• σ is continuously differentiable on (c− δ, c+ δ) \ {c},
• v+ = limx→c− σ

′(x) and v− = limx→c+ σ
′(x) exist,

v+ ̸= v−, and v+v− > 0.

Lemma 5 states that if an activation function σ contains
a point such that the left limit of the derivative and the
right limit of derivative at that point are different but have
the same sign, then σ satisfies Condition 2. We note that
piecewise functions such as leaky-RELU and HARDSWISH
satisfy the condition in Lemma 5; for those functions, one
can choose the point c in Lemma 5 as some break point
between consecutive pieces.

While we provide easily verifiable sufficient conditions
(Lemmas 4 and 5) for Condition 2, we note that Theorem 2
covers any activation function satisfying Conditions 1 and 2,
even if that activation function does not satisfy conditions
in Lemmas 4 and 5. We also present additional sufficient
conditions for Condition 2 in Appendix A.3.

4. Proof of Theorem 2
We now present the proof of Theorem 2. Theorem 2 is a
direct corollary of the following lemmas.

Lemma 6. Let σ be a squashable function, ε > 0, f∗ ∈
C([0, 1]dx , [0, 1]dy ), and p ≥ 1. Then, there exists a σ
network f : [0, 1]dx → Rdy of width max{dx, dy, 2} such
that

∥f − f∗∥Lp ≤ ε.

Lemma 7 (Lemmas 21 and 22 in (Kim et al., 2024)). For
any σ : R → R and dx, dy ∈ N, wσ ≥ max{dx, dy}.
Furthermore, if σ is monotone, then wσ ≥ 2.

Lemma 6 implies that for any squashable activation func-
tion σ, wσ ≤ max{dx, dy, 2}. This is because (1) con-
tinuous functions on [0, 1]dx are dense in Lp([0, 1]dx ,Rdy )
(Rudin, 1987) and (2) g([0, 1]dx) is compact for all g ∈
C([0, 1]dx ,Rdy ), i.e., we can scale the range of g to be in
[0, 1]dy . Lemma 7 provides the lower bound of the mini-
mum width. Here, the lower boundwmin ≥ max{dx, dy, 2}
naturally follows since the first/last operations in networks
are affine transformations. Hence, combining Lemmas 6
and 7 results in Theorem 2. In the rest of this section, we
prove Lemma 6.

4.1. Proof of Lemma 6

To illustrate our main idea for proving Lemma 6, we first
define a δ-filling curve.
Definition 2. Let d ∈ N and δ > 0. We say a continuous
function f : R → Rd is a “δ-filling curve” of D ⊂ Rd if

sup
y∈D

dist (y, f([0, 1])) ≤ δ.

A δ-filling curve of D ⊂ Rd can be considered as a weaker
version of a space-filling curve of D (Sagan, 2012). While
the range of the space-filling curve contains D but the δ-
filling curve covers D within δ distance.

Suppose that we can implement a δ-filling curve h of [0, 1]dy

using a σ network for some small δ > 0, i.e., for each
y ∈ [0, 1]dy , there is z ∈ [0, 1] such that h(z) ≈ y. Hence,
if we can design a σ network g that maps each x ∈ [0, 1]dx

to some zx such that h(zx) ≈ f∗(x), then the σ network
h ◦ g approximates f∗. Here, g and h can be considered
as an encoder and decoder: g encodes a dx-dimensional
vector x to a scalar value zx that contains the information of
f∗(x) and h decodes zx to a dy-dimensional vector h(zx)
that approximates f∗(x).

We explicitly construct networks that approximate the en-
coder and decoder. To this end, we introduce the following
lemma where the proof is deferred to Appendix C.
Lemma 8. Let σ be a squashable function, d,w ∈ N, and
K ⊂ Rd be a compact set. Then, for any ε > 0 and (σ, ι)
network f of width w, there exists a σ network g of width w
such that

sup
x∈K

∥f(x)− g(x)∥∞ < ε.

Here, ι : R → R denotes the identity function (see Sec-
tion 2). Lemma 8 implies that constructing a (σ, ι) network
of width max{dx, dy, 2} that approximates f∗ is sufficient
to prove Lemma 6. Hence, we focus on approximating the
encoder and decoder using (σ, ι) networks.
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Figure 2: Illustration of fdec ◦ fenc when dx = 2, dy = 2, and N = 2. fenc first encodes each Tν to a bounded interval
fenc(Tν). Then, fdec implements δ-filling curve of [0, 1]2, represented by the black curve, to decode each fenc(Tν) (colored)
that approximates f∗(Tν) (represented by the light gray area).

We first show that the decoder can be implemented using
a (σ, ι) network of width dy. The proof of Lemma 9 is in
Section 4.2.
Lemma 9. Let σ be a squashable function and δ > 0. Then,
there exists a (σ, ι) network fdec : [0, 1] → [0, 1]dy of width
dy that is a δ-filling curve of [0, 1]dy .

Lemma 9 states that for any δ > 0, we can always imple-
ment a δ-filling curve of [0, 1]dy using a (σ, ι) network fdec
of width dy. Further, the implemented network satisfies
fdec([0, 1]) ⊂ [0, 1]dy regardless of δ.

We also show that the encoder can be approximated by
a (σ, ι) network of width max{dx, 2}. The proof of
Lemma 10 is in Section 4.3.
Lemma 10. Let σ be a squashable function, N ∈ N
and γ ∈ (0, 0.5). For each ν ∈ [N ]dx , let Tν =∏dx

i=1[
νi−1+γ

N , νi−γ
N ] and cν ∈ [0, 1]. Then, there exists a

(σ, ι) network fenc : [0, 1]dx → [0, 1] of width max{dx, 2}
such that for each ν ∈ [N ]dx ,

fenc(Tν) ⊂ Bγ(cν).

Here, Bγ(cν) denotes the ℓ∞-ball of radius γ centered at
cν (see Section 2). The collection of Tν in Lemma 10
can be regarded as an approximate partition of [0, 1]dx : its
elements are disjoint and it covers almost all parts of the
domain with a small enough γ > 0. By choosing a large
enough N , the diameter of f∗(Tν) can be arbitrarily small,
i.e., f∗(x) ≈ f∗(x′) for all x, x′ ∈ Tν . Under this setup,
choose cν for each ν so that fdec(cν) ≈ f∗(Tν). Then, fenc
in Lemma 10 maps each element Tν in the approximate
partition to some small ball centered at cν , with diameter γ.
Since fdec is continuous, this implies that for each x ∈ Tν ,
fdec ◦ fenc(x) ≈ f∗(x) with small enough δ for fdec and
small enough γ, large enough N for fenc. See Figure 2
for the illustration. Here, we note that fdec ◦ fenc is a (σ, ι)
network of width max{dx, dy, 2}.

For x /∈
⋃

ν Tν , we have fdec ◦ fenc(x) ∈ [0, 1]dy (i.e.,
bounded) by Lemmas 9 and 10. Since µdx([0, 1]

dx \

(
⋃

ν Tν)) → 0 as γ → 0, one can observe that for any
ε > 0, there exist small enough γ, δ and large enough N
such that ∥fdec◦fenc−f∗∥Lp ≤ ε. Namely, a (σ, ι) network
f = fdec ◦fenc has width max{dx, dy, 2} and completes the
proof. Given ε > 0, our explicit choices of δ, γ,N and the
detailed derivation of ∥fdec ◦fenc −f∗∥Lp ≤ ε can be found
in Appendix B.

4.2. Proof of Lemma 9

In this section, we prove Lemma 9 by showing the following:
for each N, d ∈ N, there exists a (σ, ι) network of width
dy that is a (1/N)-filling curve of [0, 1]d. In particular, we
inductively construct a (1/N)-filling curve of [0, 1]d from
d = 1. Here, the base case d = 1 is trivial: a (σ, ι) network
f(x) = ι(x) is a (1/N)-filling curve of [0, 1] for all N ∈ N.

We prove the general case (d ≥ 2) using the inductive
step described in the following lemma, whose formal proof
is in Appendix D. Here, for N, d ∈ N, we use CN,d,ν ≜∏d

i=1[
νi−1
N , νi

N ] and ν = (ν1, . . . , νd) ∈ [N ]d.

Lemma 11. Let N, d ∈ N and σ be a squashable function.
Suppose that there exist disjoint open intervals Iν ⊂ [0, 1]
for all ν ∈ [N ]d and a (σ, ι) network f : [0, 1] → [0, 1]d of
width d such that for each x ∈ [0, 1] and ν ∈ [N ]d,

f(x)1 = x and f(Iν) ⊂ CN,d,ν .

Then, there exist disjoint open intervals Jν̃ ⊂ [0, 1] for all
ν̃ ∈ [N ]d+1 and a (σ, ι) network f̃ : [0, 1] → [0, 1]d+1 of
width d+ 1 such that for each x ∈ [0, 1] and ν̃ ∈ [N ]d+1,

f̃(x)1 = x and f̃(Jν̃) ⊂ CN,d+1,ν̃ .

One can observe that (σ, ι) networks f and f̃ in Lemma 11
are (1/N)-filling curves of [0, 1]d and [0, 1]d+1, respec-
tively. Furthermore, our filling curve construction f(x) =
ι(x) for the base case satisfies the assumption in Lemma 11
with Iν = (ν−1

N , ν
N ) for all N ∈ N and ν ∈ [N ]. Hence,

by Lemma 11, we can conclude that for each N, d ∈ N,

6



Minimum Width for Universal Approximation using Squashable Activation Functions

(a)

(b)

(c)

Figure 3: (a) Illustration of a (1/N)-filling curve f̃ of [0, 1]3. f̃ maps each open interval Iν , represented by the colored
brackets (left), to be intersected with the corresponding cube of the same color (right). (b) and (c) illustrates our network ρ
satisfying the properties of ϕ when N = 1 and N = 3, respectively.

there exists a (σ, ι) network that is a (1/N)-filling curve of
[0, 1]d; this proves Lemma 9.

We now briefly illustrate our main idea for constructing f̃
in Lemma 11 given f . Suppose that disjoint open intervals
Iν for all ν ∈ [N ]d and corresponding (σ, ι) network f of
width d in Lemma 11 are given. Then, to prove Lemma 11,
it suffices to construct a (σ, ι) network f̃ of width d+1 such
that for each i ∈ [d] and ν ∈ [N ]d,

f̃(x)i = f(x)i and [ 1
2N , 1−

1
2N ] ⊂ f̃(Iν)d+1.

This implies that if we can construct a (σ, ι) network ϕ :
[0, 1] → R2 of width 2 such that for each ν ∈ [N ]d,

ϕ(x)1 = x and [ 1
2N , 1−

1
2N ] ⊂ ϕ(Iν)2, (1)

then we can construct f̃ in Lemma 11 by choosing

f̃(x)1 = ϕ(f(x)1)1, f̃(x)d+1 = ϕ(f(x)1)2, and

f̃(x)i = ι ◦ · · · ◦ ι(f(x)i) for all i ∈ {2, . . . , d}.

See Figure 3a for the illustration. We can construct such ϕ
using the squashability of σ. For example, suppose thatN =
1 and d = 1 (i.e., there is exactly one Iν). By Definition 1,
for any ε, ζ > 0 and compact K ⊂ R with [−ζ, ζ] ⊂ K,
there is a width-1 σ network ρ such that

max
x∈K\(−ζ,ζ)

|ρ(x)− STEP(x)| ≤ ε.

Then, by the intermediate value theorem, we have

[ε, 1− ε] ⊂ ρ([−ζ, ζ]).

This implies that by choosing ρ̃(x) = ρ(x− zν) for some
zν ∈ Iν and K containing Iν with small enough ε, ζ > 0,
it holds that [ 1

2N , 1−
1

2N ] ⊂ ρ̃(Iν) (see Figure 3b). In this
case, we can choose a width-2 (σ, ι) network ϕ satisfying
Eq. (1) as ϕ(x)1 = x and ϕ(x)2 = ρ̃(x).

Such a construction also extends to an arbitrary number of
Iν by composing ρ (i.e., an approximation of STEP). For
example, let I1, I2, I3 ⊂ [0, 1] be disjoint open intervals
and let zi ∈ Ii. Then, we have

ψ(x) = STEP(x− z1 + (z1 − z3)× STEP(x− z2))

=

{
0 if x ≤ z1 or z2 ≤ x < z3

1 otherwise
.

Namely, by replacing STEP by ρ in ψ with small enough
ε, ζ > 0 (and denoting that function by ψ̃), we have
[ 1
2N , 1 −

1
2N ] ⊂ ψ̃(Ii) by the intermediate value theorem

(see Figure 3c). We present a more detailed argument for
general N, d in the proof of Lemma 18 in Appendix D.1.

4.3. Proof of Lemma 10

We now prove Lemma 10. Our construction of fenc consists
of two (σ, ι) networks: f1 : [0, 1]dx → R of width dx
and f2 : R → R of width 2. Here, f1 maps each Tν to a
disjoint compact interval f1(Tν) and f2 is designed to satisfy
f2(f1(Tν)) ⊂ Bγ(cν) for each ν. Namely, fenc = f2 ◦ f1
satisfies f(Tν) ⊂ Bγ(cν).

Construction of f2. The following lemma shows the ex-
istence of f2 such that f2(f1(Tν)) ⊂ Bγ(cν) for each
ν ∈ [N ]dx .
Lemma 12. Let K ⊂ R be a compact interval and
I1, . . . , IN ⊂ K be disjoint closed subintervals. Then, for
any ε > 0, squashable σ, and c1, . . . , cN ∈ R, there exists
a (σ, ι) network f : K → [0, 1] of width 2 such that for each
k ∈ [N ],

sup
x∈Ik

|f(x)− ck| ≤ ε.

We prove Lemma 12 by explicitly constructing a (σ, ι) net-
work that approximates a piecewise constant function which
maps each interval Ik to ck. The formal proof of Lemma 12
is in Appendix E.
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(a) (b)

(c)

Figure 4: (a) Illustration of a function g : R3 → R2 that maps sets in a 3-grid G3 of size (2, 2, 2) to distinct sets in 2-grid G2

of size (2, 4). (b) Illustration of ψc : R2 → R2. Here, the first coordinate of ϕc(x) is approximately 1 or 0 depending on
whether x1 exceeds c or not while the second coordinate is x2. (c) Illustration of our construction of f when G is a 2-grid of
size (3, 2) and e2, e3 > 0 are chosen so that all sets in G are disjoint in the second coordinate.

Construction of f1. In the remainder of this section, we
construct a (σ, ι) network f1 of width dx that maps each
Tν to a disjoint compact interval f1(Tν). Here, we assume
dx ≥ 2; if dx = 1, we choose f1(x) = ι(x). To describe
our construction we define a d-grid.

Definition 3. A collection of sets G ⊂ 2R
d

is a “d-grid”
of size (n1, . . . , nd) ∈ Nd if there exist disjoint compact
intervals Ii,1, . . . , Ii,ni

⊂ R for each i ∈ [d] such that

G = {Ii,j1 × · · · × Ii,jd : ji ∈ [ni], ∀i ∈ [d]}.

One can observe that any finite set of disjoint intervals is
a 1-grid and Tν is a dx-grid. We construct f1 using the
following lemma. The proof of Lemma 13 is in Appendix F.
Lemma 13. Let σ be a squashable function and G be a
2-grid of size (n1, n2). Then, there exist a (σ, ι) network
f : K → R of width 2 such that {f(S) : S ∈ G} is an
1-grid of size n1n2.

Lemma 13 implies that there exists a (σ, ι) network f of
width 2 that maps sets in a 2-grid to sets in an 1-grid. This
implies that for any distinct sets S,S ′ in the 2-grid, f(S) ∩
f(S ′) = ∅. We now construct f1 by using (σ, ι) networks
that reduce dimensions one by one while preserving the
disjointness of each Tν .

We first show that for any d ≥ 2 and d-grid G of size
(n1, . . . , nd), we can construct a (σ, ι) network g of width
d that maps sets in the grid to a (d − 1)-grid of size
(n1, . . . , nd−2, nd−1nd). Specifically, such gd can be con-
structed by using Lemma 13. Let G′ be a 2-grid defined by
considering the last two coordinates of sets in G, i.e.,

G′ =
{
{(xd−1, xd) : (x1, . . . , xd) ∈ S} : S ∈ G

}
.

Then, g can be constructed as

g(x)i =


xi if i ≤ d− 2

ϕ(xd−1, xd)1 if i = d− 1

ϕ(xd−1, xd)2 if i = d

where ϕ is a (σ, ι) network of width 2 in Lemma 13 that
maps the 2-grid G′ of size (nd−1, nd) to some 1-grid of size
nd−1nd; see Figure 5a for the illustration of g when d = 3.

Let Gdx
= {Tν : ν ∈ [N ]dx} be a dx-grid of size

(N, . . . , N). As in the construction of g, we recursively
construct gi for i = dx, dx − 1, . . . , 2 as a (σ, ι) network of
width i that maps an i-grid Gi of size (N, . . . , N,Ndx−i+1)
to some (i − 1)-grid Gi−1 of size (N, . . . , N,Ndx−i+2).
We then construct f1 as f1 = g2 ◦ g3 ◦ · · · ◦ gdx

. One can
observe that f1 has width dx and maps sets in Gdx

to distinct
sets in some 1-grid.

Intuition behind Lemma 13. We now briefly describe our
main proof idea for Lemma 13 where the formal proof is
deferred to Appendix F. Our construction of f is based on
the squashability of σ. Observe that by the definition of the
squashability (Definition 1), for any compact set K ⊂ R,
there exists a width-1 network ρ that is strictly increasing
and approximates STEP on K (see Condition 2).

Consider a width-2 network ψc : R2 → R2 defined as
ψc(x) = (ρ(x1−c), x2) for some c ∈ R. Then, by choosing
a proper c and K, ψ splits sets in G into two parts depending
on whether their first coordinate exceeds c or not. Here,
ψc(S)1 will be close to one if the first coordinate of S
exceeds c and ψc(S)1 will be close to zero otherwise. We
note that by the strict monotonicity of ρ, the order of the
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(a) (b)

(c)

Figure 5: (a) Illustration of a function g : R3 → R2 that maps sets in a 3-grid G3 of size (2, 2, 2) to distinct sets in 2-grid G2

of size (2, 4). (b) Illustration of ψc : R2 → R2. Here, the first coordinate of ϕc(x) is approximately 1 or 0 depending on
whether x1 exceeds c or not while the second coordinate is x2. (c) Illustration of our construction of f when G is a 2-grid of
size (3, 2) and e2, e3 > 0 are chosen so that all sets in G are disjoint in the second coordinate.

first coordinate of the sets does not change. See Figure 5b
for the illustration.

Furthermore, we can also change the second coordinate
while splitting the first coordinate. For any e > 0, by
composing ψc with some invertible affine transformation
κe : R2 → R2, we can construct a width-2 network ϕc,e =
κ−1
e ◦ ψc ◦ κe so that

ϕc,e(x) ≈


x if x1 ≈ 1

x if x1 ≈ 0 and x1 < c

(1, x2 + e) if x1 ≈ 0 and x1 > c.

Using such ψc and ϕc,e, we construct f by sequentially
separating sets in G based on their first coordinate. First,
we apply some invertible affine transformation so that the
first coordinate of all sets in G is close to zero (as in the
left of Figure 5c). We then split the sets of the largest first
coordinate using ψc with some proper choice of c. After
that, we sequentially split sets as in Figure 5c. Lastly, we
apply a projection onto the second coordinate. For a more
formal argument, see Appendix F.

5. Conclusion
In this work, we characterize the minimum width enabling
universal approximation of Lp([0, 1]dx ,Rdy ). In particular,
we consider a general class of activation functions, called
squashable, whose alternative composition with affine trans-
formations can approximate both the identity function and
STEP on compact domains. We show that for networks us-
ing a squashable activation function, the minimum width is
max{dx, dy, 2} unless dx = dy = 1; the same minimum

width holds for dx = dy = 1 if the squashable activation
function is monotone. Since all non-affine analytic functions
and a class of piecewise functions are squashable, our result
covers almost all practical activation functions. We believe
that our approach would contribute to a better understanding
of the expressive power of deep and narrow networks.

Acknowledgements
This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government MSIT (RS-2019-
II190079, Artificial Intelligence Graduate School Program,
Korea University), the IITP-ITRC (Information Technology
Research Center) grant funded by MSIT (IITP-2025-RS-
2024-00436857), and the Culture, Sports, and Tourism R&D
Program through the Korea Creative Content Agency grant
funded by the Ministry of Culture, Sports and Tourism in
2024 (RS-2024-00345025 and 25% by RS-2024-00348469),
the KIAS Individual Grant by the Center for AI and Natural
Sciences at Korea Institute for Advanced Study (AP092801),
and National Research Foundation of Korea grant funded
by the MSIT (RS-2025-00515264 and RS-2024-00406127),
and Global University Project grant funded by GIST in
2025.

Impact Statement
This paper investigates the theoretical properties of neu-
ral networks on the minimum width enabling universal ap-
proximation. We could not find notable potential societal
consequences of our work.

9



Minimum Width for Universal Approximation using Squashable Activation Functions

References
Eric B Baum. On the capabilities of multilayer perceptrons.

Journal of complexity, 4(3):193–215, 1988.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. In Annual
Conference on Neural Information Processing Systems
(NeurIPS), 2020.

Yongqiang Cai. Achieve the minimum width of neural
networks for universal approximation. In International
Conference on Learning Representations (ICLR), 2023.

George Cybenko. Approximation by superpositions of a
sigmoidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

Yifei Duan, Li’ang Li, Guanghua Ji, and Yongqiang Cai.
Vanilla feedforward neural networks as a discretization
of dynamic systems. arXiv preprint arXiv:2209.10909,
2022.

Boris Hanin and Mark Sellke. Approximating continuous
functions by ReLU nets of minimal width. arXiv preprint
arXiv:1710.11278, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
Multilayer feedforward networks are universal approxi-
mators. Neural Networks, 2(5):359–366, 1989.

Guang-Bin Huang and Haroon A Babri. Upper bounds on
the number of hidden neurons in feedforward networks
with arbitrary bounded nonlinear activation functions.
IEEE transactions on neural networks, 9(1):224–229,
1998.

Jesse Johnson. Deep, skinny neural networks are not uni-
versal approximators. In International Conference on
Learning Representations (ICLR), 2019.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green,
Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasu-
vunakool, Russ Bates, Augustin Žídek, Anna Potapenko,
et al. Highly accurate protein structure prediction with
alphafold. Nature, 596(7873):583–589, 2021.

Patrick Kidger and Terry Lyons. Universal approximation
with deep narrow networks. In Conference on Learning
Theory (COLT), 2020.

Namjun Kim, Chanho Min, and Sejun Park. Minimum
width for universal approximation using ReLU networks
on compact domain. In International Conference on
Learning Representations (ICLR), 2024.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shi-
mon Schocken. Multilayer feedforward networks with a
nonpolynomial activation function can approximate any
function. Neural networks, 6(6):861–867, 1993.

Qianxiao Li, Ting Lin, and Zuowei Shen. Deep learning
via dynamical systems: An approximation perspective.
Journal of the European Mathematical Society, 25(5):
1671–1709, 2022.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and
Liwei Wang. The expressive power of neural networks:
A view from the width. In Annual Conference on Neural
Information Processing Systems (NeurIPS), 2017.

Sejun Park, Jaeho Lee, Chulhee Yun, and Jinwoo Shin.
Provable memorization via deep neural networks using
sub-linear parameters. In Conference on Learning Theory
(COLT), 2021a.

Sejun Park, Chulhee Yun, Jaeho Lee, and Jinwoo Shin. Min-
imum width for universal approximation. In International
Conference on Learning Representations (ICLR), 2021b.

Allan Pinkus. Approximation theory of the mlp model in
neural networks. Acta numerica, 8:143–195, 1999.

Dennis Rochau, Robin Chan, and Hanno Gottschalk.
New advances in universal approximation with neu-
ral networks of minimal width. arXiv preprint
arXiv:2411.08735, 2024.

Walter Rudin. Real and Complex Analysis. McGraw-Hill,
Inc., 1987.

Hans Sagan. Space-filling curves. Springer Science &
Business Media, 2012.

Gal Vardi, Gilad Yehudai, and Ohad Shamir. On the optimal
memorization power of relu neural networks. In Interna-
tional Conference on Learning Representations (ICLR),
2022.

A Vaswani. Attention is all you need. In Annual Conference
on Neural Information Processing Systems (NeurIPS),
2017.

Dmitry Yarotsky. Optimal approximation of continuous
functions by very deep ReLU networks. In Conference
on Learning Theory (COLT), 2018.

10



Minimum Width for Universal Approximation using Squashable Activation Functions

A. On activation functions
A.1. Definition of activation functions

• exp:

exp(x) = ex.

• SIGMOID:

SIGMOID(x) =
1

1 + exp(−x)
.

• tanh:

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

.

• Leaky-RELU: for α ∈ (0, 1)

Leaky-RELU(x;α) =

{
x if x > 0

αx if x ≤ 0.

• ELU: for α > 0

ELU(x;α) =

{
x if x > 0

α(exp(x)− 1) if x ≤ 0.

• SELU: for λ > 1 and α > 0,

SELU(x;λ, α) = λ×

{
x if x > 0

α(exp(x)− 1) if x ≤ 0.

• GELU:

GELU(x) = x× Φ(x)

where Φ is the cumulative distribution function for the standard normal distribution.
• CELU: for α > 0

CELU(x;α) =

{
x if x > 0

α(exp(x/α)− 1) if x ≤ 0.

• SOFTPLUS: for α > 0,

SOFTPLUS(x;α) =
1

α
log(1 + exp(αx)).

• SWISH:

SWISH(x) = x× SIGMOID(x).

• MISH:

MISH(x) = x× tanh(SOFTPLUS(x; 1)).

• HARDSWISH:

HARDSWISH(x) =


0 if x ≤ −3

x if x ≥ 3

x(x+ 3)/6 otherwise.
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A.2. Proofs related to squashable activation functions

In this section, we prove Lemmas 3–5 by constructing σ network of width 1 satisfying the conditions listed in Condition 2
where σ has the property in each lemma.

A.2.1. PROOF OF LEMMA 3

In this section, we prove Lemma 3. We first prove that if σ satisfies the conditions listed in Lemma 3, then σ is squashable
by explicitly constructing a network of width 1 satisfying the Condition 2 using the activation σ that satisfies the conditions
listed in Lemma 3. Namely, we now show that for any ε, ζ > 0 and compact set K, there exists a σ network f : R → R of
width 1 such that |f(x)− STEP(x)| < ε for all x ∈ K \ (−ζ, ζ). To this end, without loss of generality, we assume that
c = 0, ϕ(x) = x and K = [−M,M ] for some M > 0 and [−M,M ] ⊂ [a, b].

Then, we have ρ([a, b]) ⊂ [a, b]. For any n ∈ N, define ψn : R → R by

ψn(x) = ρn(x).

Then, ψn([a, b]) ⊂ [a, b] and ψn is strictly increasing on [a, b]. Furthermore, for any n ∈ N, ψn(x) < ψn+1(x) for
x ∈ (0, b) and ψn(x) > ψn+1(x) for x ∈ (a, 0). We now show that there exists N ∈ N such that if n ≥ N ,

a < ψn(−ζ) < a+ (b− a)ε, b− (b− a)ε < ψn(ζ) < b. (2)

Then, since ψn is strictly increasing, ψ(x) ∈ (a, a + (b − a)ε) for any [−M,−ζ] and ψ(x) ∈ (b − (b − a)ε, b) for any
x ∈ [ζ,M ]. Then, define a σ network f : R → R of width 1 by

f(x) =
1

b− a
(ψN (x)− a).

Then, f([−M,M ]) ⊂ f([a, b]) ⊂ [0, 1] and f is strictly increasing, and 0 < f(x) ≤ f(−ζ) < ε for x ∈ [−M,−ζ] and
1− ε < f(ζ) ≤ f(x) < 1 for x ∈ [ζ,M ]. It implies that f is squashable and this completes the proof.

We now show the existence of N ∈ N such that ψn satisfies Eq. (2) if n ≥ N . Let an = ψn(ζ). Then, an < an+1 < b for
all n ∈ N. Then, by the monotone convergence theorem, there exists L ∈ R such that a < L ≤ b and limn→∞ an = L.
Here, if L < b, then

lim
n→∞

an+1 = lim
n→∞

ρ(an) = ρ(L) > L

which is a contradiction. Hence, L = b and this guarantees the existence of N1 ∈ N such that if n ≥ N1, then
b− (b− a)ε < ψn(ζ) < b. Likewise, there exists N2 ∈ N such that if n ≥ N2, then a < ψn(−ζ) < a+ (b− a)ε. If we
choose N > max{N1, N2}, then our σ network f of width 1 satisfies Condition 2.

A.2.2. PROOF OF LEMMA 4

In this section, we prove Lemma 4. To this end, it suffices to show the existence of the σ network ρ : R → R of width 1
such that

• ρ is strictly increasing on [0, 1],
• ρ(0) = 0 and ρ(1) = 1, and
• ρ′(0) < 1 and ρ′(1) < 1.

Then, from the second and third line in the above conditions, one can observe that ρ(x) < x if x ∈ (0, δ) and ρ(x) > x if
x ∈ (1− δ, 1) for some δ > 0. Then, by the intermediate value theorem, the equation ρ(x) = x has at least one solution in
(0,1). Here, since ρ is analytic, there are finitely many solutions c1, · · · , ck ∈ (0, 1) such that c1 < · · · < ck and ρ(ci) = ci
for i ∈ [k]. If k = 1, then ρ satisfies the conditions of Lemma 3 with [0, 1] and ϕ(x) = x. Otherwise, ρ satisfies the
conditions of Lemma 3 with [0, c2] and ϕ(x) = x. It completes the proof.

We now construct such a σ network ρ by considering the following cases: (1) there exists a ∈ R such that σ′(a) = 0 and (2)
σ′(x) ̸= 0 for all x ∈ R.
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We considered the case (1) in Lemma 15 in Appendix A.3. We now consider the case (2): σ′(x) ̸= 0 for all x ∈ R. Without
loss of generality, σ′(x) > 0 for all x ∈ R. To this end, we consider the following cases again: (2-1) there exists c ∈ R such
that σ′′(x) > 0 in (c− δ, c) and σ′′(x) < 0 in (c, c+ δ) for some δ > 0 and (2-2) otherwise.

We considered the case (2-1) in Lemma 14 in Appendix A.3. We now consider the case (2-2). Specifically, it suffices to
consider the case that there exists a ∈ R such that σ′′(a) > 0 and σ′′(x) ≥ 0 for x > a. Otherwise, suppose that σ′′(x) ≤ 0
for all x ∈ R. Then, we can makes σ to convex function by taking an affine transformation: σ0(x) = −σ(−x).

Without loss of generality, assume that a = 0 and σ(0) = 0. Then, we define a σ network ψ : R → R such that

ψ(x) =
1

σ(b)
σ(bx)

for b > 0. We will assign an explicit value of b later. Then, we have ψ(0) = 0, ψ(1) = 1, and ψ is strictly increasing on
[0, 1]. Then, we construct a σ network ρ : R → R of width 1 by

ρ(x) = 1− ψ(1− ψ(x)).

Then, ρ(0) = 0, ρ(1) = 1, and ρ is strictly increasing on [0, 1]. Furthermore, one can observe that

ρ′(0) = ρ′(1) = ψ′(0)ψ′(1) =
b2σ′(b)σ′(0)

σ(b)2
.

We now show the existence of b ∈ R such that

b2σ′(b)σ′(0)

σ(b)2
< 1.

To this end, consider a function g : (0,∞) → R defined by

g(x) =
1

x
− σ′(0)

σ(x)
.

Then, one can observe that

g′(x) =
1

x2

(
x2σ′(x)σ′(0)

σ(x)2
− 1

)
.

Since x > 0, it suffices to show the existence of b > 0 such that g′(b) < 0. Since σ′′(0) > 0 and σ(x) > 0 for all x > 0, it
can be easily shown that σ(x) > σ′(0)x for all x > 0. It implies that g(x) > 0 for x > 0. Furthermore, since σ(x) → ∞ as
x→ ∞, it holds that g(x) → 0 as x→ ∞. Then, there exists M > 1 such that g(1) > g(M) since g(x) → 0 as x→ ∞
and g(1) > 0. Then, by the mean value theorem, there exists b ∈ (1,M) such that

g(M)− g(1)

M − 1
= g′(b) < 0.

It completes the proof.

A.2.3. PROOF OF LEMMA 5

In this section, we prove Lemma 5. To this end, we first consider the case that the given activation is a piecewise linear
function. Without loss of generality, we assume that

σ1(x) =

{
ax x ∈ [−1, 0)

x x ∈ [0, 2]
(3)

where 0 < a < 1. We now construct a σ network ρ of width 1 as

ρ(x) = 1− σ1(1− σ1(x)) =


ax x ∈ [−1, 0)

x x ∈ [0, 1)

ax+ 1− a x ∈ [1, 2].

13
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Since 0 < a < 1, it is easy to observe that σ1 satisfies Condition 2 by Lemma 3.

We now consider the general case. Suppose that σ : R → R satisfies the conditions listed in Lemma 5. We show this by
constructing a σ network ψ of width 1 that approximates σ1(x) in Eq. (3) with a = σ′(c−)/σ

′(c+) within an arbitrary error
for any x ∈ [−1, 2]. Then, we can easily verify that Lemma 3 can be applied to the same construction of σ network of width
1 as above, 1− ψ(1− ψ(x)), and this completes the proof.

We now show the existence of such ψ. To this end, without loss of generality, we assume that c = 0, σ(0) = 0,
0 < σ′(c−) < σ′(c+), and σ is strictly increasing on (c− δ, c+ δ). For r > 0, construct a σ network ψ of width 1 as

ψr(x) =
σ(rx)

r
.

By the mean value theorem, for −1 ≤ x < 0, there exists dr ∈ (rx, 0) such that ψr(x) = xσ′(dr) and for 0 < x ≤ 2, there
exists er ∈ (0, rx) such that ψr(x) = xσ′(er). Since σ′(x) is continuous on (c− δ, c+ δ), it holds that σ′(dr) → σ′(c−)
and σ′(er) → σ′(c+) as r → 0, respectively. It implies that

lim
r→0

ψr(x) =

{
σ′(c−)x x ∈ [−1, 0)

σ′(c+)x x ∈ [0, 2].

Thus, choosing ψ(x) = ψr(x)/σ
′(c+) with sufficiently small r > 0 completes the proof.

A.3. Additional properties for functions to satisfy Condition 2

In this section, we suggest the additional properties for activation functions to satisfy Condition 2. Lemma 14 implies that
an activation σ satisfies Condition 2 if there exists a point where the sign of σ′′ converts from positive to negative.

Lemma 14. Let c ∈ R and δ > 0. Suppose that a function σ : R → R such that σ is twice differentiable in (c− δ, c+ δ),
σ′′(x) > 0 in (c− δ, c) and σ′′(x) < 0 in (c, c+ δ). Then, σ satisfies Condition 2.

Proof. To prove Lemma 14, we now choose appropriate a, b ∈ R and ϕ : R → R and apply Lemma 3 with our a, b, c and ϕ.
We consider a line passing (c, σ(c)) as ϕ. Since ρ′′(x) > 0 if x < c and ρ′′(x) < 0 if x > c, we can choose a slope of ϕ
so that ϕ and ρ meet once in (c− δ, c) and (c, c+ δ), respectively. Let α = max{σ(c)− σ(c− δ/2), σ(c+ δ/2)− σ(c)}
and ϕ(x) = α

δ/2 (x − c) + σ(c). Here, one can easily observe that α
δ/2 < σ′(c). Without loss of generality, suppose that

α = σ(c)− σ(c− δ/2). Then, it holds that

ϕ(c+ δ/2) = σ(c)− σ(c− δ/2) + σ(c) ≥ σ(c+ δ/2)− σ(c) = σ(c+ δ/2).

Then, by the intermediate value theorem, there exists b ∈ (c, c + δ/2] such that ϕ(b) = σ(b). Furthermore, since
ϕ(c− δ/2) = σ(c− δ/2), choosing a = c− δ/2 and applying Lemma 3 with our a, b, c and ϕ completes the proof.

Lemmas 15 and 16 imply that if σ satisfies a condition stronger than the analytic condition in a compact interval, then σ
satisfies Condition 2.

Lemma 15. Consider a1, a2 ∈ R such that σ(x) is nonaffine analytic on x ∈ [a1, a2]. Suppose that there exists c ∈ [a1, a2]
such that σ′(c) = 0. Then, σ satisfies Condition 2.

Proof. It suffices to show the existence of the σ network ρ : R → R of width 1 such that ρ is strictly increasing on [0, 1],
ρ(0) = 0, ρ(1) = 1, ρ′(0) < 1 and ρ′(1) < 1 (see Appendix A.2.2). Since σ is a nonaffine analytic function that has a zero
derivative at some point, b ∈ (c, a2] such that σ is strictly monotone on [c, b] with nonlinearity. Without loss of generality,
assume that c = 0, σ(0) = 0 and σ(x) is strictly increasing on [0, b]. Then, we define a σ network ψ : R → R such that

ψ(x) =
1

σ(b)
σ(bx).

Then, ψ(0) = 0, ψ(1) = 1, and ψ is strictly increasing on [0, 1]. We now construct a σ network ρ by

ρ(x) = 1− ψ(1− ψ(x)).

14
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Then, ρ(0) = 0, ρ(1) = 1, and ρ is strictly increasing on [0, 1]. Furthermore, one can observe that

ρ′(x) = ψ′(1− ψ(x))ψ′(x).

Then, we have ρ′(0) = ρ′(1) = 0 since ψ′(0) = 0. It completes the proof.

Lemma 16. Consider a1, a2 ∈ R such that σ(x) is analytic on x ∈ [a1, a2]. Assume that there exists x ∈ [a1, a2] such that

a2 ≥ 2σ′(x)

σ′′(x)
+ x.

Then, σ satisfies Condition 2.

Proof. In this proof, σ(n)(x) is defined as n-times derivative: σ(n)(x) = dnσ(x)
dxn . We only need to consider the case

σ′(x) > 0 and σ(2)(x) > 0; see the case (1) and (2-1) in Appendix A.2.2.

Consider an arbitrary x0 ∈ (a1, a2). For b ∈ (a1 − x0, a2 − x0), define ψ : (0− ϵ, 1 + ϵ) → R as

ψ(x) :=
1

σ(b+ x0)− σ(x0)
(σ(bx+ x0)− σ(x0)).

Then, ψ(0) = ψ(1) = 1. Define ρ as

ρ(x) := 1− ψ(1− ψ(x)).

Then,

ρ′(0) = ρ′(1) = ψ′(0)ψ′(1) =
b2σ′(b+ x0)σ

′(x0)

(σ(b+ x0)− σ(x0))2
.

It is sufficient to find a value b such that ρ′(0) = ρ′(1) < 1. Define g as

g(x) :=
1

x
− σ′(x0)

σ(x+ x0)− σ(x0)
.

Then, as

g′(x) = − 1

x2
+

(
σ′(x0)σ

′(x+ x0)

(σ(x+ x0)− σ(x0))2

)
=

1

x2

(
x2σ′(x+ x0)σ

′(x0)

(σ(x+ x0)− σ(x0))2
− 1

)
,

it is sufficient to find a number x such that g′(x) < 0. Then, there exist smooth functions h, h1, h2 such that

g(x) =
1

x
− σ′(x0)

σ(x+ x0)− σ(x0)
=

1

x
− σ′(x0)

σ′(x0)x+ σ(2)(x0)
x2

2 + σ(3)(x0)
x3

6 + x4h(x)

=
1

x
− 1

x+ σ(2)(x0)
σ′(x0)

x2

2 + σ(3)(x0)
σ′(x0)

x3

6 + h(x)
σ′(x0)

x4

=

σ(2)(x0)
2σ′(x0)

(
1 + σ(3)(x0)

σ(2)(x0)
x
3 + h(x)

σ(2)(x0)
x2

)
1 + σ(2)(x0)

σ′(x0)
x
2 + σ(3)(x0)

σ′(x0)
x2

6 + h(x)
σ′(x0)

x3
=
σ(2)(x0)

2σ′(x0)

1 + σ(3)(x0)
σ(2)(x0)

x
3 + h2(x)x

2

1 + σ(2)(x0)
σ′(x0)

x
2 + h1(x)x2

.

Then, g′(x) < 0 if
σ(2)(x0)

2σ′(x0)
>

σ(3)(x0)

2σ(2)(x0)
. (4)

Assume that the above inequality is not satisfied for any x0 ∈ (a1, a2); that is, for any x ∈ (a1, a2)

σ(2)(x)

2σ′(x)
≤ σ(3)(x)

3σ(2)(x)
.

15
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Then, for any a1 < x1 < y < a2,∫ y

x1

σ(2)(x)

2σ′(x)
dx ≤

∫ y

x1

σ(3)(x)

3σ(2)(x)
dx ⇐⇒ 3

2
log

(
σ′(y)

σ′(x1)

)
≤ log

(
σ(2)(y)

σ(2)(x1)

)
⇐⇒ σ(2)(x1)

σ′(x1)
3
2

≤
(
σ(2)(y)

σ′(y)
3
2

)
,

which leads to

σ(2)(x1)

σ′(x1)
3
2

(z − x1) ≤ 2

(
1

σ′(x1)
1
2

− 1

σ′(z)
1
2

)
,

for any a1 < x1 < z < a2. Thus,

1(
1

σ′(x1)
1
2
− σ(2)(x1)

2σ′(x1)
3
2
(z − x1)

)2 ≤ σ′(z).

We lastly present Lemma 17 which implies that if strictly monotone σ has a limit, then σ satisfies Condition 2.

Lemma 17. A continuous function σ : R → R satisfies Condition 2 if σ has strictly monotonicity and there exists
limx→∞ σ(x) or limx→−∞ σ(x).

Proof. Without loss of generality, we assume that σ(x) is strictly increasing and limx→−∞ σ(x) = 0. We consider the two
cases: (1) limx→∞ σ(x) = α <∞, and (2) limx→∞ σ(x) = ∞.

For the first case, we can easily verify that σ satisfies Condition 2 by composing affine functions before and after σ:

ρ(x) =
1

α
σ(Mx)

where M > 0 is sufficiently large.

We now consider the second case. Suppose that limx→∞ σ(x) = ∞. We construct a σ network ψ of width 1 such that

ψ(x) =
1

σ(1)
× (σ(1)− σ(1− σ(x))) .

Then, it is easy to observe that ψ is strictly increasing, limx→∞ ψ(x) = 1 and limx→−∞ ψ(x) = 0. Then, we can consider
ϕ as in the first case. Hence, σ is squashable and this completes the proof.
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B. Our choice of δ, γ,N

We first choose a sufficiently small δ > 0 so that δ ≤ ε/(d
1/p
y × 31+1/p). And then, choose a small enough γ > 0 so

that γ ≤ εp/(3dxdy) and ωfdec
(γ) ≤ ε/31+1/p. Lastly, we choose large enough N ∈ N satisfying diam(f∗(Tν)) =

ωf∗((1− 2γ)/N) ≤ ε/(d
1/p
y × 31+1/p) for each ν ∈ [N ]dx . Here, ωfdec and ωf∗ denote the modulus of continuity of given

function f in the p-norm: ∥f(x)− f(x′)∥p ≤ ωf (∥x− x′∥p) for all x, x′ ∈ [0, 1]dx . Then,

∥fdec ◦ fenc − f∗∥pLp =

∫
[0,1]dx

∥fdec ◦ fenc(x)− f∗(x)∥ppdµdx

≤
∫
[0,1]dx\

⋃
ν∈[N]dx

Tν

∥fdec ◦ fenc(x)− f∗(x)∥ppdµdx +

∫
⋃

ν∈[N]dx
Tν

∥fdec ◦ fenc(x)− f∗(x)∥ppdµdx

≤ dy × µdx

[0, 1]dx \
⋃

ν∈[N ]dx

Tν

+
∑

ν∈[N ]dx

∫
Tν

∥fdec ◦ fenc(x)− f∗(x)∥ppdµdx

≤ dy × (1− (1− 2γ)dx) +
∑

ν∈[N ]dx

∫
Tν

(∥fdec ◦ fenc(x)− fdec(cν)∥p + ∥fdec(cν)− f∗(x)∥p)pdµdx

≤ 2dxdyγ +
∑

ν∈[N ]dx

∫
Tν

(ωfdec(γ) + d1/py × (diam(f∗(Tν)) + δ))pdµdx

≤ 2dxdyγ + (ωfdec
(γ) + d1/py × (diam(f∗(Tν)) + δ))p ≤ εp

where cν is chosen so that dist (fdec(cν), f∗(Tν)) ≤ δ for each ν ∈ [N ]dx . This leads us to the statement of Lemma 6.
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C. Proof of Lemma 8
In this section, we prove Lemma 8. Since f : K → Rdy is a (σ, ι) network of width w, we can express f : K → Rd as
follows:

f = tL ◦ ϕL−1 ◦ tL−1 ◦ · · · ◦ ϕ1 ◦ t1

where tℓ : Rdℓ−1 → Rdℓ is an affine transformation, and ϕℓ(x) = (ρℓ,1(x), · · · , ρℓ,dℓ
(x)) for ρℓ,1, · · · , ρℓ,dℓ

∈ {σ, ι} for
all ℓ ∈ [L]. Since σ satisfies Condition 1, by Lemma 1, for arbitrary compact set C and for any δ > 0, there exist affine
transformations h1 : R → R and h2 : R → R such that

|h1 ◦ σ ◦ h2(x)− ι(x)| < δ

for all x ∈ C; we will assign explicit value to δ later. We denote h1 ◦ σ ◦ h2 as σ̃. We note that this lemma can be applied for
any given compact set. Since we are considering a compact domain and a continuous activation function, the error arising
from replacing ι with σ̃ can be reduced.

To this end, we choose a σ network g by applying same affine transformation t1, · · · , tL and σ̃:

g = tL ◦ ψL−1 ◦ tL−1 ◦ · · · ◦ ψ1 ◦ t1

where ψ(x) = (ρ̃ℓ,1(x), · · · , ρ̃ℓ,dℓ
(x)) with ρ̃ℓ,i = σ if ρℓ,i = σ and ρ̃ℓ,i = σ̃ if ρℓ,i = ι for ℓ ∈ [L] and i ∈ [dℓ].

We denote fℓ and gℓ by the first ℓ layers of f and g with the subsequent affine transformation tℓ, respectively. i.e.,

fℓ = tℓ ◦ ϕℓ−1 ◦ tℓ−1 ◦ · · · ◦ ϕ1 ◦ t1 and gℓ = tℓ ◦ ψℓ−1 ◦ tℓ−1 ◦ · · · ◦ ψ1 ◦ t1.

Then, for each ℓ ∈ [L] \ {1} and for any x ∈ K, it holds that

∥fℓ(x)− gℓ(x)∥∞ = ∥tℓ ◦ ϕℓ−1 ◦ fℓ−1(x)− tℓ ◦ ψℓ−1 ◦ gℓ−1(x)∥∞
≤ ωtℓ(∥ϕℓ−1 ◦ fℓ−1(x)− ψℓ−1 ◦ gℓ−1(x)∥∞)

≤ ωtℓ(∥ϕℓ−1 ◦ fℓ−1(x)− ϕℓ−1 ◦ gℓ−1(x)∥∞ + ∥ϕℓ−1 ◦ gℓ−1(x)− ψℓ−1 ◦ gℓ−1(x)∥∞).

Here, we note that for any ℓ ∈ [L], ωtℓ is well-defined since tℓ is uniformly continuous on Rdℓ−1 . Then, by the definition of
ψℓ−1 and σ̃, it holds that

∥ϕℓ−1 ◦ gℓ−1(x)− ψℓ−1 ◦ gℓ−1(x)∥∞ ≤ max
i∈[dℓ−1]

|σ̃(gℓ−1(x)i)− ι(gℓ−1(x)i)| < δ.

Furthermore, since we are considering the compact domain and ϕℓ−1 is continuous, ωϕℓ−1
is well-defined and

∥ϕℓ−1 ◦ fℓ−1(x)− ϕℓ−1 ◦ gℓ−1(x)∥∞ ≤ ωϕℓ−1
(∥fℓ−1(x)− gℓ−1(x)∥∞)

Hence, we have

∥fℓ(x)− gℓ(x)∥∞ = ωtℓ(∥ϕℓ−1 ◦ fℓ−1(x)− ϕℓ−1 ◦ gℓ−1(x)∥∞ + ∥ϕℓ−1 ◦ gℓ−1(x)− ψℓ−1 ◦ gℓ−1(x)∥∞)

≤ ωtℓ(ωϕℓ−1
(∥fℓ−1(x)− gℓ−1(x)∥∞) + δ) (5)

for all ℓ ∈ [L] \ {1}. By iteratively applying Eq. (5), we have

∥f(x)− g(x)∥∞ ≤ ωtL(ωϕL−1
(∥fL−1(x)− gL−1(x)∥∞) + δ)

...
≤ ωtL(ωϕL−1

(· · · (ωt3(ωϕ2(ωt2(δ) + δ) + δ) + δ) · · · ) + δ).

Consequently, by choosing sufficiently small δ > 0, we can reduce this within arbitrary error ε > 0 and this completes the
proof.
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D. Proof of Lemma 11
In this section, we prove Lemma 11. To show Lemma 11, we construct (σ, ι) network f̃ of width d+ 1 as follows: for each
i ∈ [d] and ν ∈ [N ]d,

f̃(x)i = f(x)i and
[

1

2N
, 1− 1

2N

]
⊂ f̃(Iν)d+1. (6)

Then, since f̃ is continuous, for each ν ∈ [N ]d and j ∈ [N ], there exists J(ν,j) ⊂ Iν such that

f̃(J(ν,j))d+1 ⊂
[
j − 1

N
,
j

N

]
.

Furthermore, since J(ν,j) ⊂ Iν for each ν = (ν1, · · · , νd) ∈ [N ]d and j ∈ [N ], it can be easily observed that

f̃(J(ν,j))i ⊂
[
νi − 1

N
,
νi
N

]
for all i ∈ [d]. It implies that f̃(Jν′) ⊂ CN,d+1,ν′ and this completes the proof.

We now construct a (σ, ι) network of width d+ 1 satisfying Eq. (6). To this end, we first present the following lemma.

Lemma 18. Let σ ∈ S and z1, z2, · · · , zk ∈ [0, 1] such that zi ̸= zj for all i ̸= j. Let γ > 0 such that γ <
mini̸=j |zi − zj |/2. Then, there exists a (σ, ι) network f : [0, 1] → R2 of width 2 satisfying the following:

• f(x)1 = x on [0, 1],
•
[

1
2N , 1−

1
2N

]
⊂ f(Bγ(zi))2 for all i ∈ [k],

• f([0, 1]) ⊂ [0, 1]2.

One can observe that Lemma 18 allows us to prove Lemma 11 directly. We choose γ > 0 and zν ∈ Iν for each ν such that
Bγ(zν) ⊂ Iν . Applying Lemma 18 with our choices of zν’s and γ, we construct a (σ, ι) network ϕ : [0, 1] → R2 of width 2

satisfying the conditions listed in Lemma 18. Then, we complete the proof by constructing f̃ in Eq. (6) as follows:

f̃(x)1 = ϕ(f(x)1)1, f̃(x)d+1 = ϕ(f(x)1)2, and

f̃(x)i = ι ◦ · · · ◦ ι(f(x)i) for all i ∈ {2, · · · , d}.

D.1. Proof of Lemma 18

Without loss of generality, we assume k = 2m for some m ∈ N and 0 = z0 < z1 < z2 < · · · < z2m < z2m+1 = 1;
otherwise, we can add an auxiliary zk+1 ∈ R such that zk < zk+1 < 1. Let X = {z1, z2, · · · , z2m}, DX ,γ = [0, 1] \⋃2m

i=1(zi − γ, zi + γ), and AX =
⋃m

i=1(z2i−1, z2i].

To construct f in Lemma 18 using (σ, ι) network, we use the Condition 2 that for any compact set C, σ can approximate
STEP except for the neighborhood of a breakpoint. We first construct (STEP, ι) network h : [0, 1] → {0, 1} of width 2 such
that

h(x) =

{
1 if x ∈ AX

0 otherwise
, (7)

and then we construct a (σ, ι) network f : [0, 1] → R2 of width 2 such that f(x)1 = x and |f(x)2 − h(x)| < 1/2N except
for the neighborhood of each zi ∈ X . Since f is a continuous function, one can observe that such f satisfies the conditions
listed in Lemma 18.

We first construct h in Eq. (7) as follows: h = hm+1 where hm+1(x) is recursively defined as

h1(x) = STEP(x− zm+1) hℓ(x) = STEP(x− zm−ℓ+2 + (zm−ℓ+2 − zm+ℓ)hℓ−1(x)). (8)
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From Eq. (8),

hℓ(x) =

{
STEP(x− zm−ℓ+2) hℓ−1(x) = 0

STEP(x− zm+ℓ) hℓ−1(x) = 1

for any ℓ ∈ {2, · · · ,m + 1}. One can observe that hℓ forms additional breakpoints zm−ℓ+2 and zm+ℓ, and for any
x ∈ [zi, zi+1) where i ∈ {m− ℓ+ 2, · · · ,m+ ℓ}, the values of hℓ(x) alternates with 0 and 1 as ℓ increases. Hence, hℓ(x)
in Eq. (8) can be rewritten by

hℓ(x) =

{
1 x ∈ [zm−ℓ+2k, zm−ℓ+2k+1), ∀k ∈ [ℓ− 1] or x ≥ zm+ℓ

0 otherwise

for any ℓ ∈ {2, · · · ,m+ 1}, which implies that hm+1 is equal to h in Eq. (7).

We now construct a (σ, ι) network f of width 2 based on h. It suffices to show that for any ε > 0 and ℓ ∈ [m+ 1] there
exists a (σ, ι) network fℓ : [0, 1] → R2 of width 2 such that

C1. fℓ(x)1 = x on [0, 1],
C2. |fℓ(x)2 − hℓ(x)| < ε for x ∈ DX ,γ ,
C3. fℓ([0, 1]) ⊂ [0, 1]2.

Then, choosing f = fm+1 with ε < 1/(2N) completes the proof: C1 and C3 directly imply the first and third conditions
of Lemma 18, respectively, and C2 guarantees that fm+1 satisfies the second condition of Lemma 18 from the definition
of DX ,γ and h. We prove this via mathematical induction on ℓ. We first consider the base case, ℓ = 1. Since σ satisfies
Condition 2, there exists a σ network ρ of width 1 such that

|ρ(x)− STEP(x)| < ε

for all x ∈ [0, 1] \ (−γ, γ) and ρ([0, 1]) ⊂ [0, 1]. Then, we construct a (σ, ι) network f (1) : [0, 1] → R2 of width 2 as

f1(x)1 = x, f1(x)2 = ρ(x− zm+1).

Then, one can easily observe that f (1) satisfies C1–3. We now consider the general case, ℓ ≥ 2. From the induction
hypothesis, for any δ > 0, there exists a (σ, ι) network fℓ−1 : [0, 1] → R2 of width 2 such that fℓ−1(x)1 = x, |fℓ−1(x)2 −
hℓ−1(x))| < δ and fℓ−1([0, 1]) ⊂ [0, 1]2. Since σ satisfies Condition 2, for any compact set C, there exists a σ network ρ of
width 1 such that

|ρ(x)− STEP(x)| < ε/2

for all C \ (−γ, γ). We now construct fℓ : [0, 1] → R2 as

fℓ(x)1 = fℓ−1(x)1, fℓ(x)2 = ρ(fℓ−1(x)1 − zm−ℓ+2 + (zm−ℓ+2 − zm+ℓ)fℓ−1(x)2)

Here, by the induction hypothesis, fℓ−1(x)1 = x. Thus, we can simplify this to

fℓ(x)1 = x, fℓ(x)2 = ρ(x− zm−ℓ+2 + (zm−ℓ+2 − zm+ℓ)fℓ−1(x)2)

which is just the substitution of STEP in Eq. (8) by ρ. Here, one can observe that fℓ satisfies C1. Then, for any x ∈ DX ,γ

|fℓ(x)2 − hℓ(x)|
≤|ρ(x− zm−ℓ+2 + (zm−ℓ+2 − zm+ℓ)fℓ−1(x))− STEP(x− zm−ℓ+2 + (zm−ℓ+2 − zm+ℓ)hℓ−1(x))|
≤|ρ(x− zm−ℓ+2 + (zm−ℓ+2 − zm+ℓ)fℓ−1(x))− ρ(x− zm−ℓ+2 + (zm−ℓ+2 − zm+ℓ)hℓ−1(x))|

+ |ρ(x− zm−ℓ+2 + (zm−ℓ+2 − zm+ℓ)hℓ−1(x))− STEP(x− zm−ℓ+2 + (zm−ℓ+2 − zm+ℓ)hℓ−1(x))|. (9)

Here, we note that the second term of Eq. (9) is bounded by ε/2 since

x− zm−ℓ+2 + (zm−ℓ+2 − zm+ℓ)hℓ−1(x) /∈ (−γ, γ)
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for all x ∈ DX ,γ ; since hℓ−1(x) = 0 or 1, then x − zm−ℓ+2 + (zm−ℓ+2 − zm+ℓ)hℓ−1(x) = x − zm−ℓ+2 or x − zm−ℓ.
Hence, we have

|fℓ(x)2 − hℓ(x)| ≤ ωρ(|(zm−ℓ+2 − zm−ℓ)(fℓ−1(x)2 − hℓ−1(x))|) + ε/2 < ωρ(|(zm−ℓ+2 − zm−ℓ)δ|) + ε/2 < ε

by choosing sufficiently small δ > 0. It implies that fℓ follows C2. Lastly, we can easily observe that fℓ(x)1 = x ∈ [0, 1]
and fℓ(x)2 ∈ [0, 1] since ρ(x) ∈ [0, 1] for all x ∈ C. It implies that fℓ satisfies C3 and this completes the proof.

E. Proof of Lemma 12
In this section, we prove Lemma 12. To this end, without loss of generality, assume that K ⊂ [0,∞) and c1, · · · , cN ∈ (0, 1);
if there exists ci such that ci = 0 or ci = 1, then we can substitute c∗i = ε/2 or 1− ε/2 respectively and approximate them
within error ε/2. Let ξ = dist ({c1, · · · , ck}, {0, 1}). Then, one can observe that ξ > 0. In addition, we assume that for any
i ∈ [N − 1], x < y for all x ∈ Ii and y ∈ Ii+1. Since Ii’s are disjoint, for any i ∈ [N − 1], there exists x(i) ∈ R such that
sup Ii < x(i) < inf Ii+1. Let x(0) = minK, x(N) = maxK and

γ = min
i∈[N−1]

{
dist

(
x(i), Ii

)
, dist

(
x(i), Ii+1

)}
. (10)

In this proof, we construct a (σ, ι) network f : K → [0, 1] of width 2 such that for any k ∈ [N ],

sup
x∈Ik

|f(x)− ck| ≤ η

where η := min{ξ, ε}.

To this end, we construct two (σ, ι) networks h1 : K → R and h2 : R → R of width 2 such that

C1. for each k ∈ [N ], supx∈Ik
|h1(x)− ck| ≤ η/2,

C2. for any x ∈
⋃N

k=1 Ik, |h2 ◦ h1(x)− h1(x)| ≤ η/2 and h2 ◦ h1(K) ⊂ [0, 1].

Then, one can observe that h1 maps input x to near the corresponding ck if x ∈ Ik, and h2 bounds the codomain of h1
while the approximation for piecewise constant is preserved. If we choose f = h2 ◦ h1, then such f satisfies the desired
conditions.

We first construct h1 satisfying C1 using the property of σ that can approximate STEP. To this end, we consider a (STEP, ι)
network g : K → R of width 2 approximating the given piecewise constant function, and then we construct a (σ, ι) network
h1 of width 2 approximating g in

⋃N
k=1 Ik.

We now construct a (STEP, ι) network g approximating piecewise constant function. To construct such g, we compose
(STEP, ι) networks g1, · · · , gN : R → R of width 2 such that each gi shifts x by a sufficiently large length Li > 0 if x ∈
[x(i−1), x(i)). Here, for each i ∈ [N ], Li is defined as a×(ci+b) where a > max{1, 4x(N)/η} and b = x(N)−mini∈[N ] ci
which implies that each gi(x) = x+ Li > x(N) for x ∈ [x(i−1), x(i)). i.e., we construct each gi such that

gi ◦ · · · ◦ g1(x) =



x+ a× (c1 + b) x ∈ [x(0), x(1))

x+ a× (c2 + b) x ∈ [x(1), x(2))
...
x+ a× (ci + b) x ∈ [x(i−1), x(i))

x otherwise

(11)

for all i ∈ [N ]. Then, we define g as follows: g = gcut ◦ gN ◦ gN−1 ◦ · · · ◦ g1 where gcut : R → R is defined as

gcut(x) =
1

a
x− b.
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Then, one can easily observe that

g(x) =


c1 +

x
a x ∈ [x(0), x(1))

c2 +
x
a x ∈ [x(1), x(2))

...
cN + x

a x ∈ [x(N−1), x(N)].

Since a > 4x(N)/η, it holds that |x/a| < η/4 for all x ∈ K. Thus, g approximates the piecewise constant function within
an error η/4.

We now construct (STEP, ι) networks g1, · · · , gN satisfying Eq. (11). For each i ∈ [N ], we define gi : R → R as

gi(x) = x+ a× (ci + b)STEP(−(x− x(i))).

One can observe that gi shifts x by a× (ci + b) if x < x(i). Here, we note that since a× (ci + b) > x(N), the values shifted
by gi for some i ∈ [N ] are not shifted again, resulting that gi shifts only x ∈ [x(i−1), x(i)). Thus, our g can approximate a
given piecewise function within an error η/2.

We now construct a (σ, ι) network h1 of width 2 approximating g on
⋃

i∈[N ] Ii. Since σ is squashable, then for any compact
set C and α > 0, there exists a σ network ρ : R → R such that ρ is increasing on C, ρ(C) ⊂ [0, 1], and

|ρ(x)− STEP(x)| < α

for all x ∈ C \ (−β, β) where 0 < β < min{γ, ξ} (Eq. (10)). We will give an explicit value to α later. We now construct a
(σ, ι) network h1 of width 2 as follows:

h1 = gcut ◦ fN ◦ · · · ◦ f1 where

fi(x) = x+ a× (ci + b)ρ(−(x− x(i))) ∀i ∈ [N ].

Then, one can observe that |fi(x)−gi(x)| = |ci+b||ρ(−(x−x(i)))−STEP(−(x−x(i)))| < |ci+b|α for all x ∈ C\Bβ(x
(i))

and i ∈ [N ]. For the notational simplicity, we denote δi = |ci + b|α. We note that for any i, j ∈ [N ] and x ∈ Ii,

gj ◦ · · · ◦ g1(x) /∈ Bβ(x
(i)). (12)

Eq. (12) holds since gj ◦ · · · ◦ g1 maps x to x ∈ Ii, or a value out of K (x+ a× (ci + b) > x+ x(N) from the definition of
a and b) and β < γ. Then, for any i ∈ [N ] and x ∈ Ii, it holds that

|h1(x)− g(x)| = |gcut ◦ fN ◦ · · · ◦ f1(x)− gcut ◦ gN ◦ · · · ◦ g1(x)|
≤ ωgcut

(|fN ◦ · · · ◦ f1(x)− gN ◦ · · · ◦ g1(x)|)
≤ ωgcut

(|fN ◦ · · · ◦ f1(x)− fN ◦ gN−1 ◦ · · · ◦ g1(x) + fN ◦ gN−1 ◦ · · · ◦ g1(x)− gN ◦ · · · ◦ g1(x)|)
≤ ωgcut

(ωfN (|fN−1 ◦ · · · ◦ f1(x)− gN−1 ◦ · · · ◦ g1(x)|) + |fN ◦ gN−1 ◦ · · · ◦ g1(x)− gN ◦ · · · ◦ g1(x)|)

Here, |fN ◦ gN−1 ◦ · · · ◦ g1(x)− gN ◦ · · · ◦ g1(x)| < δN from Eq. (12). Thus, by conducting this procedure iteratively, we
have

|h1(x)− g(x)| ≤ |ωgcut
(ωfN (fN−1 ◦ · · · ◦ f1(x)− gN−1 ◦ · · · ◦ g1(x)) + δN )|

≤ |ωgcut
(ωfN (ωfN−1

(fN−2 ◦ · · · ◦ f1(x)− gN−2 ◦ · · · ◦ g1(x)) + δN−1) + δN )|
...
≤ |ωgcut

(ωfN (· · · (ωf2(δ1) + δ2) · · · ) + δN )| < η/4

by choosing sufficiently small α > 0, which leads us to have sufficiently small δi for all i ∈ [N ]. Consequently, for any
i ∈ [N ] and x ∈ Ii, we have

|h1(x)− ci| ≤ |h1(x)− g(x)|+ |g(x)− ci| < η/4 + η/4 = η/2. (13)
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Hence, our h1 satisfies C1.

We now construct h2 satisfying C2. We suppose that there exists u ∈ K such that h1(u) < 0; we will discuss the case that
there exists v ∈ K such that h1(v) > 1 later. To this end, we consider a (σ, ι) network of width 2 that iteratively adds some
constant to the region such that h1(x) < 0. Namely, it suffices to show that for any ε′ > 0, there exists a (σ, ι) network
ψ : R → R of width 2 such that

• if x ≥ η/4, then |ψ(x)− x| ≤ ε′

• if x ∈ (0, η/4), then ψ(x) ∈ [0, 1], and
• if x ≤ 0, then ψ(x)− x ≥ 1/2.

Then, let h2 = ψN1 for some N1 ∈ N such that N1/2 > |minx∈K h1(x)|, then we obtain

h2 ◦ h1(x) = ψN1 ◦ h1(x) ∈ [0, 1]

for all x ∈ K such that h1(x) < 0.

Furthermore, since η ≤ ξ and h1 satisfies C1, h1(x) ≥ η/2 for any x ∈
⋃N

i=1 Ii. Thus, if we choose sufficiently small
ε′ > 0 such that ε′ < η/(4N1), then

|h2 ◦ h1(x)− h1(x)| = |ψN1 ◦ h1(x)− h1(x)|
≤ |ψN1 ◦ h1(x)− ψN1−1 ◦ h1(x)|+ · · ·+ |ψ ◦ h1(x)− h1(x)|
≤ N1ε

′ ≤ η/4 ≤ η/2.

Here, for each i ∈ [N1 − 1], ψi ◦ h1(x) ≥ η/4 since ψi ◦ h1(x) ⊂ Biε′(h1(x)) and h1(x) ≥ η/2. It guarantees that
|ψi ◦ h1(x)− ψi−1 ◦ h1(x)| ≤ ε′ for each i ∈ [N1]. Hence, h2 satisfies C2. If there exists v ∈ K such that h1(v) > 1, then
the same argument can be applied with the choice of ψ1(x) = 1− ψ(1− x).

We now construct such ψ using the property that σ network can approximate STEP. Since σ is squashable, for any δ′ > 0
and a compact set D, there exists a σ network ρ∗ : D → R such that

|ρ∗(x)− STEP(x)| < δ′

for all x ∈ D \ (−η/8, η/8). We choose δ′ > 0 such that δ′ ≤ min{3ε′/2, 1/4}. Consider a (σ, ι) network ψ of width 2
defined as

ψ(x) = x+
2

3
ρ∗(−(x− η/8)).

Then, one can easily observe that |ψ(x)− x| < 2δ′/3 ≤ ε′ if x ≥ η/4, ψ(x) ∈ (0, η/4+ 2/3) ⊂ [0, 1] if x ∈ (0, η/4), and
|ψ(x)− (x+ 2/3)| < 2δ′/3 ≤ 1/6 if x ≤ 0 which implies ψ(x)− x ≥ 1/2. It completes the proof.
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F. Proof of Lemma 13
In this section, we prove Lemma 13. To this end, we construct a (σ, ι) network f of width 2 that maps for each S ∈ G to a
disjoint interval. Then, since f is continuous, {f(S) : S ∈ G} is a 1-grid of size n1n2 and this completes the proof. Before
we illustrate our proof, we define the additional notation used in this proof. Since G is a 2-grid of size (n1, n2), there exist
compact intervals [a1, b1], · · · , [an1

, bn1
], [a′1, b

′
1], · · · , [a′n2

, b′n2
] satisfying the following:

• bi < ai+1 and b′j < a′j+1 for each i ∈ [n1 − 1] and j ∈ [n2 − 1], respectively,
• for any S ∈ G, there uniquely exist i ∈ [n1] and j ∈ [n2] such that S = [ai, bi]× [a′j , b

′
j ].

For each i ∈ [n1] and j ∈ [n2], let Uij = [ai, bi]× [a′j , b
′
j ], Vi =

⋃
j Uij ,

η = min
j∈[m−1]

{
a′j+1 − b′j

}
and L = b′m − a′1. We write e1 = (1, 0) and e2 = (0, 1) ∈ R2. For i ∈ {1, 2} and b ∈ R, we use H(ei, b) ≜ {x ∈
R2|xi + b = 0}. We first consider a (σ, ι) network h1 : K → R2 of width 2 defined as

h1(x)1 = ρ(x1 − c1), h1(x)2 = ι(x2)

where c1 ∈ (bn−1, an) and ρ is a σ network of width 1 such that |ρ(x) − STEP(x)| < ζ on [a1, bn]. We will assign an
explicit value to ζ. Then, one can observe that

h1(Vn) ⊂ Bζ(H(e1,−1)), h1(Vi) ⊂ Bζ(H(e1, 0)) for all i ∈ [n− 1]. (14)

Furthermore, since h1(x)1 is strictly increasing on K, the ordering of Vi’s with respect to the first coordinate is preserved: if
i < j, then x1 < y1 for all x ∈ Vi, y ∈ Vj . We then iteratively apply some (σ, ι) networks h2, · · · , hn1

so that for each
i ∈ [n1], hi maps Vn1−i+1 to Bζ(H(e1,−1)) and shifts Vn1−i+1 by sufficiently large length such that the images of Vi are
disjoint for the second coordinate.

We now formally construct such (σ, ι) networks h2, · · · , hn1
. See the following lemma where the proof is deferred to

Appendix F.1.

Lemma 19. Let ξ > 0 and r > 0. Let X0 ⊂ Bξ(H(e1, 0)), X1 ⊂ Bξ(H(e1,−1)), and Y ⊂ Bξ(H(e1, 0)) be compact sets
in R2 such that y1 > x1 for all x ∈ X0 and y ∈ Y . Then, there exists a (σ, ι) network f : R2 → R2 of width 2 satisfying
the following properties:

• for any x ∈ X0 ∪ X1, |f(x)2 − x2| < 2rξ,
• for any y ∈ Y , |f(y)2 − (y2 + r)| < 2rξ,
• f(X0) ⊂ Bξ(H(e1, 0)) and f(Y), f(X1) ⊂ Bξ(H(e1,−1)),
• there exists strictly increasing ϕ : R → R such that f(x)1 = ϕ(x1) for all x ∈ X0.

Lemma 19 implies that there exists a (σ, ι) network of width 2 that maps Y to in H(e1,−1) with approximately shift for the
second coordinate by r. From Eq. (14), we can apply Lemma 19 with

X0 =
⋃

i∈[n1−2]

h1(Vi), X1 = h1(Vn1
), Y = h1(Vn1−1),

r = L+ 1 and ξ = ζ. Then, there exists a (σ, ι) network h2 of width 2 that maps the points of X0 and X1 approximately
identically while shifting the second coordinate of Y by L+ 1. Here, one can observe that if we choose a sufficiently small
ζ > 0, then h2(h1(Vn1

)) and h2(h1(Vn1−1)) are disjoint for the second coordinate by our choice of r. Furthermore, from
the third and fourth lines of the properties listed in Lemma 19, Lemma 19 can be applied iteratively with the recursive choice
of X0,X1,Y, r and ξ in Lemma 19. In particular, by the fourth line of the properties from Lemma 19, the ordering of Vi’s
with respect to the first coordinate is preserved while Lemma 19 is applied. Thus, among the sets contained in X0, we can
choose Y as the set that is the highest with respect to the first coordinate.

We now construct such (σ, ι) networks h2, · · · , hn1 : R2 → R2 as follows: for each k ∈ [n1] \ {1}, hk is from Lemma 19
with the choices of
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• X0 =
⋃

i∈[n1−k] hk−1 ◦ · · · ◦ h1(Vi),
• X1 =

⋃
i∈[k−1] hk−1 ◦ · · · ◦ h1(Vn1−i+1),

• Y = hk−1 ◦ · · · ◦ h1(Vn1−k+1),
• r = rk where rk = (k − 1)(L+ 1) and ξ = ζ.

Then, we construct a (σ, ι) network f : K → R of width 2 as

f(x) = p ◦ hn1
◦ · · · ◦ h1(x) (15)

where p : R2 → R is a projection onto the second coordinate: p(x, y) = y. We now prove that if we choose sufficiently
small ζ > 0 such that

n1∑
k=2

2rkζ < min

{
η

2
,
1

2

}
,

then for each i ∈ [n1] and j ∈ [n2], f(Uij) is disjoint.

We first show that if i, j ∈ [n1] such that i < j, then f(x) > f(y) for all x ∈ Vi and y ∈ Vj , and then we prove that for
each i ∈ [n1], if j, j′ ∈ [n2] such that j < j′, then f(x) < f(y) for all x ∈ Uij and y ∈ Uij′ .

We first consider x ∈ Vi and y ∈ Vj . From our definition of f (Eq. (15)) and Lemma 19, one can observe that

|f(x)− (x2 + rn1−i+1)| <
n1∑
k=2

2rkζ ≤ 1

2
, |f(y)− (y2 + rn1−j+1)| <

n1∑
k=2

2rkζ ≤ 1

2
.

Since rn1−i+1 − rn1−j+1 ≥ L+ 1, the above equation implies that

f(x)− f(y) > rn1−i+1 − rn1−j+1 − (y2 − x2)− 1 ≥ L+ 1− L− 1 = 0

We now consider x ∈ Uij and y ∈ Uij′ . As in above, we have

|f(x)− (x2 + rn1−i+1)| <
n1∑
k=2

2rkζ ≤ η

2
, |f(y)− (y2 + rn1−i+1)| <

n1∑
k=2

2rkζ ≤ η

2
.

Since y2 − x2 > η by the definition of η, we have

f(y)− f(x) > y2 − x2 − η > 0

and this completes the proof.

F.1. Proof of Lemma 19

In this section, we prove Lemma 19. Let b ∈ R such that x1 < b < y1 for all x = (x1, x2) ∈ X0 and y = (y1, y2) ∈ Y and

η = min{y1 − b, b− x1|y ∈ Y, x ∈ X0}.

We note that such b is well-defined and η > 0 because x1 < y1 for all x ∈ X0, y ∈ Y and X0,Y are compact. Since σ is
squashable, for any compact set K, there exists a σ network ρ : R → R of width 1 such that

|ρ(x)− STEP(x)| < ξ

for all x ∈ K \ (−η, η). Let A =

[
1 0
−r 1

]
. Then, one can easily observe that A−1 =

[
1 0
r 1

]
.

We now define functions f1, f2, f3 : R2 → R2 as

f1(x) = Ax, f2(x) = (ρ(x1 − b), ι(x2)), f3(x) = A−1x
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for all x = (x1, · · · , xn) ∈ Rn, respectively. We now define a function f : Rn → Rn as

f(x) = (f3 ◦ f2 ◦ f1)(x)

for all x ∈ Rn. Then, f is a (σ, ι) network of width 2 and

f(x)1 = ρ(x1 − b), f(x)2 = x2 + r(ρ(x1 − b)− x1). (16)

We now show that our f satisfies the properties listed in Lemma 19. One can easily observe that f satisfies the fourth
property of Lemma 19. Thus, we consider the first–third properties. From Eq. (16), we can classify the image regions
corresponding to each input region.

We first consider x ∈ X0. Since X0 ⊂ Bξ(H(e1, 0)) and x1 < b− η, we have x1 ∈ (−ξ, ξ) and ρ(x1 − b) ∈ (0, ξ). Thus,
it holds that f(x)1 ∈ Bξ(H(e1,−1)) and |f(x)2 − x2| < 2rξ. We now consider x ∈ X1. Since X1 ⊂ Bξ(H(e1,−1)) and
x1 > b+ η, we have x1 ∈ (1− ξ, 1+ ξ) and ρ(x1 − b) ∈ (1− ξ, 1). Thus, f(x)1 ∈ Bξ(H(e1, 0)) and |f(x)2 − x2| < 2rξ.
Lastly, let y ∈ Y . Since Y1 ⊂ Bξ(H(e1, 0)) and y1 > b + η, we have y1 ⊂ (−ξ, ξ) and ρ(y1 − b) ∈ (1 − ξ, 1). Thus,
f(y)1 ⊂ Bξ(H(e1,−1)) and |f(y)2 − (y2 + r)| < 2rξ. Conclusively, f satisfies all properties listed in Lemma 19 and this
completes the proof.
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