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Abstract

Existing data assessment methods are mainly001
for classification-based datasets and limited002
for use in natural language generation (NLG)003
datasets. In this work, we focus on parallel004
NLG datasets and address this problem through005
an information-theoretic approach, TD-CONE,006
to assess data uncertainty using input-output007
sequence mappings. Our experiments on text008
style transfer datasets demonstrate that the pro-009
posed simple method leads to better measure-010
ment of data uncertainty compared to some011
complicated alternatives and demonstrates a012
high correlation with downstream model per-013
formance. As an extension of TD-CONE, we014
introduce TD-CONE REL to compute the rela-015
tive uncertainty between two datasets. Our ex-016
periments with paraphrase generation datasets017
demonstrate that selecting data with lower TD-018
CONEREL scores leads to better model perfor-019
mance and decreased validation perplexity.020

1 Introduction021

Assessing and understanding data in natural lan-022

guage processing (NLP) benefits research on learn-023

ability (Swayamdipta et al., 2020), reproducability024

(Beck et al., 2020), and generalizability (Bender025

and Friedman, 2018). Although existing methods026

show promising results from data assessment in027

detecting annotation artifacts (Gururangan et al.,028

2018; Poliak et al., 2018) and selecting training ex-029

amples (Moore and Lewis, 2010; Ruder and Plank,030

2017; Zhang and Plank, 2021), most are limited031

to certain types of NLP tasks and cannot directly032

apply to natural language generation.033

There are three notable limitations of existing034

methods when considering NLG: application con-035

straints from output formats, high computational036

cost (which covers model-dependent methods) and037

no corpus-level evaluation (cannot handle the cases038

with large-scale datasets). First, many existing039

methods are constrained to tasks with output la-040

bels, which enables computations from training dy-041

Figure 1: Procedure for computing TD-CONE. Given
a dataset, define an alignment function to obtain P (Y |
X) over the source and target vocabularies for use with
computation of TD-CONE.

namics such as model confidence or variability of 042

predictions (Zhang and Plank, 2021; Swayamdipta 043

et al., 2020). This leaves few existing methods that 044

are applicable to sequential outputs as in text gener- 045

ation. Compounding on this limitation is the high 046

computational cost of strictly model-dependent 047

methods. At scale, NLG datasets can contain mil- 048

lions of training examples (e.g. 2.8 million can- 049

didate pairs in Twitter URL dataset (Lan et al., 050

2017)) with increasingly large parameter counts 051

for state-of-the-art models (e.g. 1.5 billion param- 052

eters in GPT-2 (Radford et al., 2019)). Many pre- 053

vious methods that incorporate models, however, 054

make instance-level evaluations and require model 055

retraining, such as the Data Shapley (Ghorbani and 056

Zou, 2019) (time complexity O(2N ) for N data 057

points). Finally, methods that incorporate learned 058

parameters have a similar limitation due to mul- 059

tiple model initializations being computationally 060

prohibitive, yet random initializations may produce 061

undesirable variability in results. 062
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To address these limitations, we propose a sim-063

ple method to estimating the conditional probability064

of outputs given inputs, and measure data uncer-065

tainty using conditional entropy (Shannon, 1948),066

shown in Figure 1. This approach is further ex-067

tended to measure the uncertainty of one dataset068

given another, using relative entropy (Kullback and069

Leibler, 1951). Specifically, our contributions are:070

1) taking an information-theoretic perspective to071

measure data uncertainty in parallel NLG datasets072

with an entropy-based metric TD-CONE and its073

extended version TD-CONEREL; 2) proposing sim-074

ple yet effective word alignment methods without075

any learned parameters for computing TD-CONE076

and TD-CONEREL; 3) with English text style trans-077

fer and paraphrase generation datasets, demonstrat-078

ing the utility of using the proposed data uncer-079

tainty measures TD-CONE and TD-CONEREL as080

indicators of downstream model performance and081

validation perplexity, and as aids for selecting data082

or making comparisons between datasets.083

2 TD-CONE: Dataset-Level Uncertainty084

Entropy in information theory offers a theoretical085

basis for measuring the uncertainty of a random086

variable (Shannon, 1948). In this work, we pro-087

pose to use the definition of entropy for measuring088

the uncertainty of a dataset. Assume we have the089

conditional probability P (Y | X) estimated from090

the dataset (the estimation is not trivial and will be091

detailed in section 3), then the conditional entropy092

H(Y | X) measures the uncertainty of Y given093

X . Let X represent a word in the input vocabulary094

Vx and Y represent a word in the output vocabu-095

lary Vy, then this conditional entropy provides us096

a starting point of defining our task-specific data097

uncertainty.098

Definition 1 (TD-CONE). The Task-Dataset099

Conditional Entropy (TD-CONE) is defined as100

TD-CONE(Y | X) =
H(Y | X)

log |Vy|
(1)101

where H(Y | X) is the conditional entropy, and102

|Vy| is the size of the output vocabulary.103

The denominator |Vy| normalizes the value of104

H(Y | X) and guarantees TD-CONE(Y | X)105

always bounded between 0 and 1. Specifically,106

we have 0 ≤ H(Y | X) ≤ H(Y ) ≤ log |Vy|107

(Shannon, 1948). Additionally, we generally have108

TD-CONE(Y | X) ̸= TD-CONE(X | Y ), be-109

cause of P (Y | X) ̸= P (X | Y ). This is110

consistent with the task setup in text generation, 111

since mapping from X to Y should be a differ- 112

ent task as mapping Y to X (e.g., in text style 113

transfer).Therefore, our definition in Equation 1 is 114

task-specific. 115

2.1 Challenges of Estimating H(Y | X) 116

H(Y | X) is dependent on the joint probability 117

P (X,Y ), which can be further decomposed as 118

P (X) · P (Y | X). While P (X) is essentially 119

the unigram distribution estimated from the input 120

sentences, we need a method to estimate the con- 121

ditional probability P (Y | X) from the data. For 122

this, we can consider parallel NLG datasets analo- 123

gously to monolingual translation and can utilize 124

word alignments to identify mappings and estimate 125

P (Y | X) over a dataset (Wubben et al., 2010). 126

The estimation of P (Y | X) with alignments 127

poses several challenges: 1) word alignments that 128

require identifying which word (or words) in x map 129

to a given word in y are not directly observable in 130

the data; 2) to accurately apply word alignments to 131

estimate P (Y | X) for measuring data uncertainty, 132

we need to minimize uncertainty arising from the 133

alignment method itself. 134

Many existing word alignment methods treat 135

alignment as a latent factor to be learned by a model 136

(Brown et al., 1993), which could introduce a sec- 137

ondary source of uncertainty. Specifically, predic- 138

tion uncertainty P (Y | X) usually contains two 139

sources of uncertainty: data uncertainty and model 140

uncertainty. Model uncertainty is dependent on 141

learnable parameters and reducible with additional 142

data or a more sophisticated modeling approach, 143

whereas data uncertainty is inherent data noise that 144

cannot be reduced through a better model (Gal, 145

2016). We need to reduce the model uncertainty as 146

much as we can, so the estimated uncertainty will 147

be primarily data uncertainty. For this, we propose 148

a simple word alignment method that uses static 149

embeddings and no learnable parameters, described 150

in the next section. 151

3 Static Word Alignments 152

Let x = {x1, . . . , xm} represent one input sen- 153

tence with m words and y = {y1, . . . , yn} rep- 154

resent the corresponding output sentence with n 155

words. To minimize model uncertainty through 156

minimal learnable parameters, we assume that all 157

{xi}mi=1 in the same sentence are independent from 158

each other. The same assumption also applies to 159
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the words in the output sentence {yj}nj=1. Al-160

though this ignores the linguistic dependency in161

texts, it simplifies the probabilistic modeling and162

minimizes the uncertainty of learned dependencies,163

offering a good trade-off between model complex-164

ity and the empirical performance of TD-CONE.165

We demonstrate this advantage empirically in com-166

parisons with existing statistical and transformer-167

based alignment methods in section 4.2. With this168

assumption, the only dependency we consider in169

the rest of this section is the dependency between170

input words {xi}mi=1 and output words {yj}nj=1.171

Consider a set of sentence pairs for text genera-172

tion as D = {(x(k),y(k))}Kk=1, where K is the to-173

tal number of examples. With the datasetD, we can174

define Vx as the input vocabulary constructed from175

{x(k)} and Vy as the output vocabulary constructed176

from {y(k)}. Our problem setup is therefore to es-177

timate the conditional probability P (Y | X) given178

the dataset D, where X ∈ Vx and Y ∈ Vy.179

For a given dataset, the challenge of estimating180

P (Y | X) for a specific output word y
(k)
j is to181

identify which word (or words) in x(k) “generate”182

(i.e. are aligned with) y(k)j . Essentially, the esti-183

mation relies on the alignment between input and184

output words, where an alignment between two185

words indicates a conditional dependency.186

The proposed Algorithm 1 employs an align-187

ment matrix M ∈ R|VX |×|VY | to record the align-188

ment counts based on D. The algorithm essentially189

makes one-to-one mappings where possible, dis-190

tributes probabilities over potential alignments if191

one-to-one mappings cannot be made (either uni-192

form or using cosine similarities with static embed-193

dings), and utilizes alignments to a special NULL194

token when either the input is a subset of the output195

or vice versa. Once M has been estimated over196

the entire dataset D, P (Y |X = w) is obtained by197

normalizing the corresponding row in M .1198

We describe a deterministic version of the align-199

ment algorithm using uniform probability align-200

ments in Appendix C, which also had good pre-201

liminary results. 2 In our primary experiments,202

we opted to use static GloVe word-embeddings203

(Pennington et al., 2014) to compute the alignment204

probability distributions. Although this introduces205

learned embeddings, as the embeddings are neither206

context-dependent nor trained on each individual207

dataset, we maintain limited learned parameters208

1A detailed description can be found in Appendix D
2Code for uniform and static alignments will be released.

Algorithm 1 Calculating the alignment matrix with
one pair of sentences

1: Input: a sentence pair x and y, alignment
matrix M

2: Output: the updated alignment matrix M
3: for word w ∈ x do
4: if w ∈ x ∩ y then M(w,w) ←

M(w,w) + 1

5: if w ̸∈ y\x then
6: if |y\x| = 0 then
7: M(w, NULL) ← M(w, NULL) +

1
8: else
9: for w′ ∈ (y\x) do

10: SCORE = (w,w′ ∈ EMBEDS) ?
wTw′

∥w∥·∥w′∥ : 1
|y\x|

11: M(w,w′) ← M(w,w′) +
SCORE∑N=|y\x|

i=0 SCOREw
′i

12: if x ⊂ y then
13: for word w′ ∈ y\x do M(NULL, w′) ←

M(NULL, w′) + 1
|y\x|

and ensure consistent results across datasets. 209

4 TD-CONE Experiments 210

As uncertainty corresponds with available informa- 211

tion, we expect that too much or too little uncer- 212

tainty is not ideal for representing task information: 213

if data uncertainty is too low a dataset may have a 214

restricted or limited representation of the underly- 215

ing task, and if data uncertainty is too high a dataset 216

may contain a level of noise that is not conducive 217

to learning task-relevant information. To evaluate 218

TD-CONE and test this hypothesis, we compute 219

TD-CONE across datasets representing the same 220

general task and evaluate correlations and observed 221

patterns with downstream model performance. 222

Our task selection criteria included included 223

tasks with: 1) parallel datasets available with one- 224

to-one input-output sentence pairs, and 2) bench- 225

marked datasets with standard data splits. Text 226

style transfer fit this criteria and enabled us to test 227

TD-CONE across a diverse set of datasets in terms 228

of sub-tasks (style), sizes, and creation methods. 229

We baseline our method’s efficacy for data uncer- 230

tainty measurement by evaluating correlation with 231

model performance against TD-CONE computed 232

with existing word alignment methods. Notably, 233

there are several distinctions between the intended 234
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use of TD-CONE vs. existing methods that evalu-235

ate text using concepts related to uncertainty, such236

as diversity, that negate direct comparison: 1) as-237

sessing datasets prior to training vs. active learning238

or evaluating generated text, 2) level of measure-239

ment (corpus-level vs. instance-level), and 3) use240

on input-output pairs vs. reference-generation pairs241

(Alihosseini et al., 2019; Zhang et al., 2018).242

4.1 Experiment setup243

Datasets. We select 6 English datasets representing244

8 unique attribute-based text style transfer tasks:245

Fluency (disfluent to fluent) (Wang et al., 2020),246

GYAFC-EM and GYAFC-FR (informal to formal)247

(Rao and Tetreault, 2018), Biased-word (subjec-248

tive to neutral) (Pryzant et al., 2020), Captions249

(Flickr) (humorous to romantic, romatic to humor-250

ous) (Gan et al., 2017), and Shakespeare (Shake-251

spearean to modern English, modern English to252

Shakespearean) (Xu et al., 2012). For text style253

datasets in which stylistic transfer has been previ-254

ously benchmarked in both directions, we report255

results for both directions of transfer. Detailed se-256

lection criteria, descriptions, and statistics can be257

found in Appendix A.258

Generation models. We use five models with dif-259

ferent neural architectures of varying complexity:260

SimpleCopy (directly copy input as output; base-261

line scores for no learned stylistic information),262

Neural MT (NMT) (Bahdanau et al., 2014), Copy-263

NMT (See et al., 2017), BART (Lewis et al., 2020),264

and GPT-2 (Radford et al., 2019; Wang et al., 2019).265

Details can be found in Appendix E.266

Evaluation metrics. To report model perfor-267

mance, we report BLEU (Papineni et al., 2002) us-268

ing the implementation from Koehn et al. (2007) as269

an measure of content preservation and prediction270

accuracy on the stylistic attribute as an indicator of271

transfer intensity. We report BLEU as all datasets272

in use have been benchmarked with BLEU, en-273

abling us to ensure our model performance aligns274

with the existing literature and thus ensuring in-275

ternal validity for reporting correlations. Predic-276

tion accuracy is computed using fastText classifiers277

(Joulin et al., 2017) in line with recent style trans-278

fer research (Dai et al., 2019; Subramanian et al.,279

2018; Sudhakar et al., 2019).280

Competitive alignment methods. As described281

in section 3, in addition to the proposed alignment282

method for estimating P (Y | X), there are other283

options available from statistical machine transla- 284

tion. To demonstrate the competitiveness of the 285

proposed method, we compare against IBM Mod- 286

els 1, 2, and 3 using the GIZA++ implementations 287

(Och and Ney, 2003) and the recently proposed 288

BERT-based SimAlign (Jalili Sabet et al., 2020). 289

For SimAlign, we instantiate the model using Hug- 290

gingface’s implementation of BERT-base-uncased 291

(Devlin et al., 2018) with argmax matching. 292

4.2 Results 293

TD-CONE accurately measures data uncer- 294

tainty. TD-CONE scores across dataset splits are 295

reported in Figure 2 (and shown numerically in Ta- 296

ble 6 found in Appendix A) and model performance 297

is reported in Table 1 and Table 2. TD-CONE and 298

BLEU scores for all model architectures have a 299

negative correlation, indicating higher data uncer- 300

tainty (more uncertain sequence mappings) results 301

in lower content preservation.3 Further, TD-CONE 302

accurately captures data uncertainty in terms of 303

input-output mappings across all datasets rather 304

than simply being a reflection of the target class 305

entropy. The largest difference in target class nor- 306

malized entropy (reported in Table 7 in Appendix 307

B) across datasets is 0.0693, whereas the largest 308

difference in TD-CONE across datasets is 0.3928. 309

We attribute this to the normalization in TD-CONE. 310

This aligns with the expectation that target classes 311

all represented in the same language should have 312

similar normalized entropies (Shannon, 1948), and 313

supports the finding that the wide range of TD- 314

CONE scores indicates that TD-CONE accurately 315

measures the data uncertainty as a reflection of 316

cross-class mapping complexity. 317

Further, the style transfer accuracies reported 318

in Table 2 suggest that there is likely an optimal 319

uncertainty range in terms of task representation 320

(TD-CONE between 0.22 and 0.28 in our exper- 321

iments, but this may be task-dependent). When 322

TD-CONE scores are above this range (Captions 323

datasets), the noise level in the dataset precludes 324

the ability of the model to learn accurate, grammat- 325

ical mappings as evidenced by low BLEU scores. 326

Instead, via qualitative analysis of the outputs we 327

found that the models revert to generating repetitive 328

yet salient style words, evidenced by the high style 329

transfer accuracies. However, when TD-CONE 330

scores are below the ideal range (Bias and Fluency 331

3Correlations are reported alongside other alignment meth-
ods in section 4.2.
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Captions Shakespeare GYAFC-FR GYAFC-EM Biased Fluency

Methods Rom→Fun Fun→Rom Mod→Shake Shake→Mod Inf→Form Inf→Form Subj→Neut Disf→Flt

SimpleCopy 8.03 8.07 21.66 21.58 53.75 52.69 90.27 90.53
NeuralMT 2.85 2.99 13.12 12.55 58.89 47.80 74.64 92.28
CopyNMT 2.75 3.06 15.88 14.32 62.72 55.33 91.41 95.27
BART 3.63 4.46 21.01 21.58 66.73 65.42 90.86 91.33
GPT-2 8.14 8.30 23.26 25.34 71.44 67.32 93.73 96.59

Table 1: Test set BLEU scores for generation models.

Captions Shakespeare GYAFC-FR GYAFC-EM Biased Fluency

Methods Rom→Fun Fun→Rom Mod→Shake Shake→Mod Inf→Form Inf→Form Subj→Neut Disf→Flt

SimpleCopy 29.20 28.40 20.04 14.77 18.02 17.16 33.50 27.42
NeuralMT 86.80 84.40 78.92 80.78 82.06 84.25 72.30 35.72
CopyNMT 86.00 72.40 71.34 70.93 79.58 74.86 70.10 35.63
BART 90.00 94.80 63.34 75.44 80.78 80.15 56.90 53.84
GPT-2 86.00 64.00 57.87 77.15 81.23 83.90 65.40 36.28

Table 2: Test set accuracy scores for generation models.
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0

0.1

0.2

0.3

0.4

0.5

Dataset split

T
D

-C
O

N
E

Rom2Fun Fun2Rom Mod2Shake Shake2Mod
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Figure 2: TD-CONE scores for each text style transfer
task. Scores are also shown in Table 6 in Appendix B.

datasets), the models learn to copy content informa-332

tion between classes, yet we see decreases in style333

transfer accuracy. We attribute this to a constrained334

representation of the task in the data.335

Static word alignments outperform learned336

word alignments when estimating data uncer-337

tainty. We report TD-CONE computed with our338

proposed word alignment method, statistical IBM339

Models 1-3 using GIZA++ (Och and Ney, 2003),340

and BERT-based SimAlign (Jalili Sabet et al., 2020)341

in Figure 3. Our alignment method has an aver-342

age correlation of −0.94 with BLEU scores across343

models, compared to −0.87,−0.86,−0.89,−0.85344

for IBM 1 - 3 and SimAlign, respectively. We345

attribute this to our method better capturing data346

uncertainty by minimizing uncertainty attributable347

to the alignment model. In fact, correlation was348
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Figure 3: Comparison of TD-CONE using our align-
ment method and baseline methods. Datasets are sorted
by ascending BLEU scores (ideal scores would be mono-
tonically decreasing): our method outperforms existing
methods (correlations reported in subsection 4.2).

lowest with SimAlign which used BERT contextual 349

embeddings. 350

We also note several advantages of our algo- 351

rithm due to its design for a monolingual setting: 352

1) our method leverages the ability to accurately 353

assign one-to-one mappings for identical word 354

pairs, which is ideal for measuring uncertainty; 355

2) our method utilizes distributed probabilities over 356

y\x for each w when the symmetric difference 357

x∆y ̸= ∅. With static monolingual embeddings, 358

we can utilize cosine similarities for this procedure, 359

yet we have similarly good performance with the 360

uniform distribution as presented in the Appendix; 361

3) while the typical usage of the NULL token in 362

bilingual translation settings captures important 363

structural dependencies across different languages, 364
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our usage is strictly designed to accurately estimate365

P (X) and ensure dependency between input and366

output. Specifically, we use the NULL token in two367

scenarios: y ⊂ x and x ⊂ y. If y ⊂ x we in-368

crement the target NULL by 1 to ensure accurate369

estimation of P (X), and if x ⊂ y we increment370

the source NULL uniformly over y\x to ensure the371

dependency between input and output. In aggre-372

gate, these features tailor our method specifically373

for the task of estimating data uncertainty, as re-374

flected in the experimental results.375

5 TD-CONEREL: Relative Uncertainty376

While TD-CONE accurately measures the data un-377

certainty of a single dataset, with the estimation378

of (P (Y | X) enabled using Algorithm 1, we can379

extend our methods to estimate the relative uncer-380

tainty of one dataset given another dataset. In a381

standard NLG setup, high validation set accuracy382

after training is desirable as it indicates generaliza-383

tion power to unseen data. However, there is the384

open question of how to select the optimal train-385

ing set for a given validation set. Further, as it386

is standard practice to select the model with the387

highest validation perplexity, we hypothesize there388

is a relationship between relative data uncertainty389

of a validation set and downstream model valida-390

tion perplexity (i.e. exponentiation of the entropy).391

Motivated by these questions, we can utilize Algo-392

rithm 1 to compute the conditional relative entropy393

(i.e Kullback–Leibler divergence) between two dis-394

tributions, formally defined as follows:395

Definition 2 (TD-CONEREL). Consider P (Y | X)396

and Q(Y | X) to be two probability distributions397

on the same sample space (X,Y ) ∈ Vx × Vy.398

The TD-CONEREL or “Task-Dataset Conditional399

Entropy: Relative Entropy” can be defined as the400

normalized conditional relative entropy between P401

and Q402

TD-CONERELATIVE =
KL(P (Y | X)∥Q(Y | X))

KL(P (Y | X)∥U(Y | X))
(2)403

where KL(P (Y | X)∥Q(Y | X)) =404 ∑
X,Y P (X,Y ) log P (Y |X)

Q(Y |X) and U(Y | X) = 1
|Vy |405

is the uniform distribution defined on the output406

vocabulary Vy.407

Due to the non-negative property of relative en-408

tropy, we have TD-CONEREL ≥ 0. In addition,409

since U(Y | X) is a uniform distribution and there-410

fore KL(P∥Q) ≤ KL(P∥U) always holds, we411

have 0 ≤ TD-CONEREL ≤ 1. Given two datasets 412

Dp and Dq, P (Y | X) and Q(Y | X) can be 413

estimated using the same algorithm proposed in 414

section 3, enabling computation of TD-CONEREL 415

prior to any model training. 416

6 TD-CONEREL Experiments 417

We expect that lower TD-CONEREL of a validation 418

set given a training set (less uncertain validation set 419

relative to a training set) will lead to better model 420

performance in terms of model perplexity and auto- 421

matic metrics on generated outputs. Our selection 422

criteria for NLG tasks to evaluate TD-CONEREL 423

included tasks which had: 1) parallel datasets avail- 424

able with one-to-one input-output sentence pairs, 425

and 2) benchmarked datasets that lack standard 426

data splits. Paraphrase generation fits these criteria 427

and is advantageous to test the efficacy of TD- 428

CONEREL for data split selection and comparison 429

as: 1) existing literature has created purposefully 430

difficult splits based on classification confidence 431

thresholds (Li et al., 2018b) and 2) there are a wide 432

range of reported metrics, limiting direct compar- 433

isons across studies (Du and Ji, 2019). 434

6.1 Experiment setup 435

Datasets. We use the Quora Question Pairs 4 and 436

Twitter URL datasets (Lan et al., 2017) for para- 437

phrase generation as 1) both are frequently used 438

to evaluate paraphrase generation models, and 2) 439

both have wide ranges of reported baseline model 440

performance across studies (Li et al., 2018b; Du 441

and Ji, 2019). Twitter URL contains both human 442

(51k) and classifier (2.8 million) labeled sentence 443

pairs. Quora Question Pairs contains 404k question 444

pairs with binary labels indicating whether a pair 445

are paraphrases. Detailed descriptions and usage 446

can be found in Appendix A. 447

Models and metrics. Using the same implemen- 448

tations as subsection 4.1, we train GPT-2, NMT, 449

and CopyNMT for paraphrase generation. In addi- 450

tion to TD-CONEREL, report TD-CONE on each 451

training set and validation perplexity and BLEU 452

for model performance. 453

6.2 Methods 454

On Twitter URL. We manipulate selection thresh- 455

olds (not frequently reported in existing work) and 456

4https://www.kaggle.com/c/quora-question-pairs
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construct six training sets sampled from the auto-457

matically labeled candidate pairs meeting the re-458

spective probability thresholds: 0.4, 0.5, 0.6, 0.7,459

0.75, 0.8. We follow the setup of Li et al. (2018b)460

and use 110k/1k/5k train/validation/test splits with461

validation and test examples sampled from the man-462

ually labeled examples. Validation and test sets are463

held constant across training thresholds. In line464

with standard practice, best models are selected as465

indicated by validation perplexity. By performing466

these manipulations, we aim to identify the impact467

and limitations of classifier scores for optimal train-468

ing set selection. Additionally, as most datasets do469

not have classifier confidence scores readily avail-470

able, we aim to identify whether TD-CONEREL471

displays a relationship with selection threshold or472

model performance.473

On Quora Question Pairs. We use the combina-474

tion of TD-CONE and TD-CONEREL to test train-475

ing set selection efficacy using a 35k/1k/5k data476

split the Quora Question Pairs dataset. We exper-477

iment with five different selection methods: [1]478

randomly sampled from all potential paraphrases,479

[2] lowest randomly sampled TD-CONEREL scor-480

ing subset, for which we perform random sampling481

five times and keep the subset with the lowest TD-482

CONEREL score, [3] lowest TD-CONE 35k sen-483

tences, [4] for slight noise reduction via elimina-484

tion of duplicates, lowest TD-CONE scoring 35k485

sentences with minimum TD-CONE = 0.1, and486

[5] highest TD-CONE scoring 35k sentences.5 For487

each of the resulting five training sets, we compute488

TD-CONEREL against the validation set and the489

training set TD-CONE score. We aim to identify if490

TD-CONEREL can be used to select training data491

for a given validation set, whether there is a rela-492

tionship between TD-CONE and TD-CONEREL,493

and whether results across different data setups494

(Twitter, Quora) are consistent.495

6.3 Results496

TD-CONEREL, TD-CONE, validation perplexity,497

and BLEU are reported in Table 3 for Twitter and498

Table 4 for Quora.499

Lower TD-CONE ⇏ lower TD-CONEREL.500

There is no distinguishable relationship strictly be-501

tween TD-CONE and TD-CONEREL. On Twitter502

higher selection thresholds indicated higher TD-503

CONEREL and lower TD-CONE, yet we attribute504

5In [3, 4, 5] we treat each sentence pair as an individual
corpus.

this to selection via classifier confidence thresholds 505

as the relationship does not hold with various selec- 506

tion methods on Quora. As an implication of this, 507

the metrics reflect different but complementary in- 508

formation and are not merely interchangeable. 509

TD-CONEREL relates to validation perplexity 510

& TD-CONE relates to BLEU. On both the 511

Twitter and Quora datasets, TD-CONEREL scores 512

generally align with downstream model validation 513

perplexity, indicating a relationship between rel- 514

ative uncertainty of a validation set and the vali- 515

dation perplexity. Exemplifying this, the highest 516

classifier confidence threshold on Twitter (0.80) 517

had the largest between threshold increase in TD- 518

CONEREL from 0.75 and a significant increase in 519

validation perplexities across models. Interestingly, 520

the inverse is also true with BLEU scores and 521

TD-CONE: lower TD-CONE scores generally in- 522

dicated higher BLEU scores. On Quora training 523

set [3], in which no lower bound of TD-CONE 524

score was imposed and therefore the set could con- 525

tain identical sentence pairs, this effect was highly 526

pronounced. When duplicate sentences were elim- 527

inated ([3] vs. [4]), we see a significant increase 528

in uncertainty as measured by TD-CONE, which 529

aligns with our definition of data uncertainty re- 530

flecting mapping complexities. 531

Divergences of lower TD-CONE & higher TD- 532

CONEREL: learning undesirable patterns. On 533

Twitter, the thresholds exhibiting the highest TD- 534

CONEREL scores (0.75, 0.80) exhibit the greatest 535

divergence in TD-CONE and TD-CONEREL scores 536

and are also those in which the TD-CONE score is 537

lower than the TD-CONEREL score. This is observ- 538

able on Quora as well with selection [3] (lowest 539

TD-CONE sentences, no lower bound). Notably, 540

these three columns are the only ones in which 541

this pattern occurs, and have the highest valida- 542

tion perplexities while maintaining high BLEU 543

scores. This suggests that divergence between TD- 544

CONE and TD-CONEREL where TD-CONE < TD- 545

CONEREL can indicate the model will bias towards 546

undesirable patterns in the training data (i.e. simply 547

copying input over to output), which limits the over- 548

all task information that is learned and increases 549

the “surprise” the model experiences with unseen 550

data. 551

Effective data selection for a given validation set. 552

On Quora, we were able to utilize TD-CONEREL to 553

inform the random sampling process with respect 554
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Threshold

Model Metric 0.40 0.50 0.60 0.70 0.75 0.80

——-
TD-CONEREL 0.240 0.242 0.244 0.244 0.251 0.272
TD-CONE 0.267 0.263 0.259 0.252 0.197 0.139

NMT
PPLX 73.46 73.80 73.99 75.20 88.14 144.06
BLEU 20.01 20.6 19.69 19.27 20.55 21.98

CopyNMT
PPLX 57.97 63.65 58.51 65.68 80.60 134.86
BLEU 20.71 20.75 21.12 20.92 22.32 23.32

GPT-2
PPLX 14.26 14.06 14.19 14.32 15.01 17.84
BLEU 24.83 24.90 24.99 25.13 24.77 24.94

Table 3: Model performance on the Twitter validation
set at different probability selection thresholds. We de-
note the highest BLEU scores (best performance metric)
and highest validation perplexity (most uncertain model)
in bold.

Sampling Method

Random Ordered
Model Metric [1] [2] [3] [4] [5]

———–
TD-CONEREL 0.152 0.150 0.229 0.169 0. 178
TD-CONE 0.246 0.246 0.141 0.243 0.365

NMT
PPLX 9.46 9.09 11.86 10.03 10.97
BLEU 19.26 19.34 20.17 17.25 11.78

CopyNMT
PPLX 9.44 9.09 11.96 10.03 11.00
BLEU 19.74 20.35 19.81 16.67 12.20

Table 4: Model performance with different data selec-
tion methods on the Quora dataset. Random (sampling)
is performed using TD-CONEREL and Ordered (sam-
pling) is performed using TD-CONE.

to the validation set as seen in training set [2]. No-555

tably, when using TD-CONEREL as a data selection556

method, we achieved highest performance on both557

NMT and CopyNMT: lowest TD-CONEREL, low-558

est perplexity, highest BLEU (other than the 0.0559

dataset) with NMT, and lowest TD-CONEREL, low-560

est perplexity, highest BLEU with CopyNMT. As561

an ethical consideration, while validation sets are562

generally smaller with better documentation than563

large training sets, this could inadvertently propa-564

gate biases existing in a validation set by selecting565

a training set with similar biases.566

7 Related work567

Data quality evaluation. Data quality has received568

increased recent attention within both the natural569

language processing (NLP) and machine learning570

(ML) communities. Conceptually, quality is an ab-571

stract umbrella term that can encompass numerous572

dataset dimensions or characteristics. As a result,573

it has been operationally proxied through assess-574

ment of the value (Ghorbani and Zou, 2019), im-575

portance or influence (Jia et al., 2019; Pruthi et al.,576

2020), and learnability (Swayamdipta et al., 2020)577

of individual training instances, the presence and 578

impact of dataset annotation artifacts or linguistic 579

properties on task representativeness (Gururangan 580

et al., 2018; Poliak et al., 2018), and the presence 581

and impact of underlying dataset social (Rudinger 582

et al., 2017) and gender (Lu et al., 2020) biases. 583

Practically, the understanding of various quality 584

dimensions informs dataset creators (Geva et al., 585

2019), enables bias mitigation strategies (Dixon 586

et al., 2018), and contributes to development of 587

data selection strategies (Moore and Lewis, 2010; 588

Ruder and Plank, 2017). Our method contributes to 589

the existing literature through proposing a method 590

assess data for NLG tasks. 591

Alignment methods. There are a number of ap- 592

proaches to word alignment in bilingual settings, 593

where a source language is mapped to a target lan- 594

guage. These include statistical approaches such 595

as the IBM Models (Brown et al., 1993) that uti- 596

lize latent alignment variables, with implementa- 597

tions including GIZA++ (Och and Ney, 2003) and 598

FastAlign (Dyer et al., 2013) which reparameter- 599

izes IBM Model 2, as well as statistical approaches 600

using first order Hidden Markov Models (HMMs) 601

(Vogel et al., 1996) and Markov Chain Monte Carlo 602

inference (Östling et al., 2016). In addition to 603

statistical approaches, recent approaches utilizing 604

Transformers (Zenkel et al., 2020; Alkhouli et al., 605

2018) and pre-trained language models (Jalili Sabet 606

et al., 2020) have shown success in neural machine 607

translation. Additional approaches exist for align- 608

ment applications in monolingual settings, such as 609

phrasal alignment (Yao et al., 2013), word sense 610

alignment (Ahmadi and McCrae, 2021), text simpli- 611

fication (Albertsson et al., 2016), and disagreement 612

detection (Gokcen and de Marneffe, 2015). Our 613

method contributes to the literature by demonstrat- 614

ing how alignment can be utilized within a data 615

assessment setting. 616

8 Conclusion 617

In this paper, we propose the method TD-CONE 618

and its extension TD-CONEREL to assess text gen- 619

eration data. We design a simple alignment proce- 620

dure for computing TD-CONE and TD-CONEREL, 621

and validate the metrics empirically using En- 622

glish text style transfer and paraphrase generation 623

datasets. While currently limited to parallel data 624

with one-to-one sentence pairs, future work can 625

look at non-parallel data and multiple outputs. 626
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A Dataset Details968

Dataset Tasks Train Dev Test

Captions Romantic→Humorous 6k 500 500Humorous→Romantic

Shakespeare Modern→Shakespeare 18.4k 1.2k 1.5kShakespeare→Modern

GYAFC-FR Informal→Formal 52k 2.8k 1.3k

GYAFC-EM Informal→Formal 52.6k 2.9k 1.4k

Biased-word Subjective→Neutral 53.8k 700 1k

Fluency Disfluent→Fluent 173.7k 10.1k 7.9k

Table 5: Dataset statistics.

Dataset selection For text style transfer datasets,969

selection criteria included: parallel datasets with970

two classes pertaining to the presence or lack of a971

single stylistic attribute that had been previously972

benchmarked with BLEU and accuracy. Datasets973

can be obtained or requested through links found974

in the respective cited source papers.975

Fluency Contains aligned sentence pairs from976

the English Switchboard (SWBD) Corpus (Godfrey977

et al., 1992). Each sentence is labeled as either978

fluent or disfluent (Wang et al., 2020).979

GYAFC GYAFC-EM contains aligned sentence980

pairs from the Entertainment & Music domain of981

Yahoo Answers, a question answering forum (Rao982

and Tetreault, 2018). GYAFC-FR contains aligned983

sentence pairs from the Family & Relationships do-984

main of Yahoo Answers (Rao and Tetreault, 2018).985

Since both datasets are sourced online from Ya-986

hoo Answers, there is some potential for offensive987

language. 6988

Biased-Word Contains aligned sentence pairs989

pre- and post- neutralization, crawled from 423,823990

Wikipedia editor revisions between 2004 and 2019991

(Pryzant et al., 2020).992

Captions Contains sentences that describe an im-993

age, labeled romantic or humorous. A distribution994

6GYAFC-EM & GYAFC-FR datasets can be re-
quested at https://github.com/raosudha89/
GYAFC-corpus

of this dataset from (Li et al., 2018a) includes fac- 995

tual descriptions for 300 images and has been used 996

for style transfer in an unaligned manner. How- 997

ever, in our context, we use the original Flickr 998

dataset with a 6000/500/500 train-dev-test split in 999

an aligned manner as in the original paper (Gan 1000

et al., 2017). 1001

Shakespeare Contains aligned original and mod- 1002

ern sentence pairs from 17 of Shakespeare’s 36 1003

plays, crawled from Sparknotes 7 (Xu et al., 2012). 1004

Following Jhamtani et al. (2017), we use 15 plays 1005

for training, leaving Twelfth Night for validation, 1006

and Romeo and Juliet for testing. 1007

Paraphrase generation: Twitter URL & Quora: 1008

Twitter URL contains 51k human annotated sen- 1009

tence pairs labeled with the number of human an- 1010

notators (out of six) that labeled a pair of sentences 1011

as paraphrases, and 2.87 million candidate pairs au- 1012

tomatically labeled with predicted probability from 1013

a classifier trained on the manually annotated sen- 1014

tence pairs. In prior work (Li et al., 2018b; Du and 1015

Ji, 2019), a probability threshold is often picked to 1016

select a subset of the automatically annotated pairs 1017

as a training set, while the validation and test set 1018

are sampled from the manually annotated pairs: our 1019

experiments follow this procedure. Quora Ques- 1020

tion Pairs contains 404k question pairs with binary 1021

labels indicating whether the pair are paraphases, 1022

from which prior studies (Li et al., 2018b; Du and 1023

Ji, 2019) sample train/validation/test data splits. 1024

Quora license information (License Other) can 1025

be found referenced at https://www.kaggle. 1026

com/quora/question-pairs-dataset/ 1027

metadata. Twitter URL is released for 1028

non-commercial use under the CC BY-NC- 1029

SA 3.0 license, and can be requested at 1030

https://languagenet.github.io/. 1031

Additional details about data usage: Where 1032

available, we used original or existing train- 1033

validation-test dataset splits, including the train- 1034

validation-test split for Shakespeare as in Jham- 1035

tani et al. (2017). For Captions (Flickr), as only 1036

the original 7k training instances are available, we 1037

create a 6000-500-500 dataset split, and for the 1038

GYAFC datasets, for the tuning and test sets we 1039

used the informal text and all 4 available human 1040

formal rewrites. Regarding consent, for datasets 1041

using online data sources, such as GYAFC (Yahoo) 1042

and Twitter, users consent to the website’s terms 1043

7https://www.sparknotes.com/
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and conditions. Datasets utilizing annotators are1044

also assumed to have annotator consent.1045

B Additional Tables1046

Tables for TD-CONE scores and target sentence1047

entropies for text style transfer datasets.

TD-CONE

Dataset Task train dev test

Captions Rom→Fun 0.3980 0.3821 0.3636
Fun→Rom 0.3839 0.3491 0.3413

Shakespeare Mod→Shake 0.2826 0.2976 0.2653
Shake→Mod 0.2787 0.2866 0.2578

GYAFC-FR Inf→Form 0.2433 0.2176 0.1954

GYAFC-EM Inf→Form 0.2205 0.1980 0.1864

Biased Subj→Neut 0.0078 0.0038 0.0042

Fluency Disf→Flt 0.0052 0.0061 0.0063

Table 6: TD-CONE scores on text style transfer
datasets.

Dataset Target H(Target)
Captions Funny 0.6743
Captions Romantic 0.6726
Shakespeare Shake. 0.6505
Shakespeare Modern 0.6436
GYAFC-FR Formal 0.6086
GYAFC-EM Formal 0.6172
Biased Neutral 0.6445
Fluency Fluent 0.6050

Table 7: Entropies of target vocabulary distributions on
style transfer datasets.

1048

C Uniform Alignments1049

While the alignment method used for TD-CONE1050

and TD-CONEREL utilizes the cosine similarities1051

to map words across class boundaries in a sentence1052

pair, we can also utilize a uniform alignment over1053

the number of target words that cannot be aligned1054

with 1-to-1 mappings, shown in Algorithm 2.1055

D Detailed Word Alignment Algorithm1056

Description1057

We categorize potential alignments between the1058

input and output words from a sentence pair1059

(x(k),y(k)) into three cases: (1) if a word is shared1060

between x and y, then we consider it to have1061

Algorithm 2 Calculating the alignment matrix with
one pair of sentences

1: Input: a sentence pair s and t, alignment ma-
trix M

2: Output: the updated alignment matrix M
3: for word w ∈ s do
4: if w ∈ s ∩ t then
5: M(w,w)←M(w,w) + 1

6: if w ̸∈ t\s then
7: for w′ ∈ (t\s) ∪ {NULL} do
8: M(w,w′) ← M(w,w′) +

1
|(t\s)∪{NULL}|

9: if s ⊂ t then
10: for word w′ ∈ t\s do
11: M(NULL, w′) ← M(NULL, w′) +

1
|t\s|

a deterministic alignment from source to target 1062

(line 4 in algorithm 1); (2) if an input word w is 1063

not in the output sentence y and no other align- 1064

ments can be made, w is aligned with NULL (where 1065

|y\x| = 0). If |y\x| > 0, a probability distribu- 1066

tion is computed over the cosine similarities be- 1067

tween the GloVe word embeddings (Pennington 1068

et al., 2014) of w and each w′ in y\x. If a w 1069

or w′ is out-of-vocabulary, we utilize a uniform 1070

probability over the size of y\x (lines 5 – 11 in 1071

algorithm 1);8 (3) all the unique words w′ in y\x 1072

where x ⊂ y have an alignment from the NULL 1073

token on the input side utilizing a uniform distribu- 1074

tion over |y\x| (lines 12 – 13 in algorithm 1). Two 1075

special scenarios remain: y ⊂ x and x ⊂ y. To 1076

accurately estimate P (X), if y ⊂ x we must incre- 1077

ment the target NULL by 1, and if x ⊂ y we must 1078

increment the source NULL uniformly over y\x to 1079

ensure the dependency between input and output. 1080

Once we have M estimated over the entire dataset 1081

D, P (Y |X = w) is obtained by normalizing the 1082

corresponding row in M . 1083

E Training Details 1084

Model Implementations For NMT and Copy- 1085

NMT, we use implementations provided by Open- 1086

NMT (Klein et al., 2017). For GPT-2 we use the im- 1087

plementation code provided by (Wang et al., 2019). 1088

Paraphrase Generation Experiments NMT, 1089

CopyNMT and GPT-2 models were run on a sin- 1090

8We describe a simplified version of the alignment algo-
rithm using uniform probability alignments in Appendix C
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gle NVIDIA GTX 1080 Ti GPU. For CopyNMT1091

and NMT, we utilized 2-layer LSTMs for the en-1092

coder and decoder with attention (Bahdanau et al.,1093

2014) and 500 hidden states. Adam optimization1094

(Kingma and Ba, 2014) was used for both mod-1095

els with learning rate 0.001. While most model1096

parameters were simply set to the default Open-1097

NMT parameter settings, we chose our optimiza-1098

tion method and learning rate after noting issues1099

with convergence when using stochastic gradient1100

descent. We utilized a random seed for consistency.1101

For decoding, we utilized argmax decoding after1102

finding performance degradation with beam search1103

with beam sizes 2 and 3. All models were selected1104

based on highest validation performance.1105

The GPT-2 model was run on a single NVIDIA1106

GTX 1080 Ti GPU. We use the implemen-1107

tation code provided by (Wang et al., 2019),1108

which can be found at https://github.com/1109

jimth001/formality_emnlp19. For train-1110

ing, we chose the Adam optimizer (Kingma and1111

Ba, 2014) with learning rate 0.00001, set batch1112

size to 16, and set total training steps to 50000,1113

which are the default settings in the original imple-1114

mentation. During training, we found the training1115

loss decreased rapidly. In order to save the opti-1116

mal model checkpoint and avoid overfitting, we1117

performed auto validation on the development set1118

every 10 steps, and applied early stopping when1119

the validation loss did not drop after 100 steps. For1120

generation, we applied beam search with beam size1121

4. We set the maximum generation length to 100,1122

since the majority of sentences had a length of less1123

than 100 tokens.1124

Style Transfer Experiments The GPT-2 model1125

was run on a single NVIDIA GTX 1080 Ti GPU.1126

We use the implementation code provided from1127

(Wang et al., 2019). For experiments across all 61128

datasets, we chose the Adam optimizer (Kingma1129

and Ba, 2014) with learning rate 0.00001, set batch1130

size to 16, and set total training steps to 50000,1131

which are the default settings in the original imple-1132

mentation. As the training loss decreased rapidly,1133

in order to save the optimal model checkpoint and1134

avoid overfitting, we performed auto validation on1135

the development set every 10 steps, and applied1136

early stopping when the validation loss did not de-1137

crease after 100 steps. For generation, we apply1138

beam search with beam size 4. We set the maxi-1139

mum generation length to 200, since the majority1140

of sentences was less than 200 tokens in length.1141

NeuralMT (NMT) models were run on a sin- 1142

gle NVIDIA GeForce RTX 2080 GPU. Default 1143

OpenNMT hyper-parameters were used, includ- 1144

ing stochastic gradient descent (SGD) optimization 1145

with a learning rate of 1.0. CopyNMT models were 1146

also run on a single NVIDIA GeForce RTX 2080 1147

GPU. We set word vector size to 300 and used an 1148

SGD optimizer with a learning rate of 1.0. We used 1149

an MLP attention mechanism and reused attention 1150

scores for copying scores. 1151

For BART models, we used Adam optimization 1152

with warmup and polynomial decaying. The max- 1153

imum learning rate was set to 1e-5, and warmup 1154

steps were set to 500. Batch size was 8192 tokens. 1155

We also used dropout and attention dropout with a 1156

0.1 dropout rate. Label smoothing was used with 1157

a 0.1 label smoothing rate. We used 0.01 as the 1158

weight for weight decay. Other hyper-parameters 1159

were set to default Fairseq hyper-parameters. We 1160

followed the default hyper-parameters used for text 1161

summarization and adjusted the max learning rate 1162

from 3e-5 to 1e-5 for better convergence. 1163

License Information License details for Open- 1164

NMT (NMT and CopyNMT models) can be 1165

found at https://github.com/OpenNMT/ 1166

OpenNMT-py/blob/master/LICENSE.md. 1167

Assets from Huggingface (GPT-2 and BERT-base- 1168

uncased) are Licensed under the Apache License, 1169

Version 2.0 (Copyright 2020, The Hugging Face 1170

Team). 1171
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