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Abstract

Existing data assessment methods are mainly
for classification-based datasets and limited
for use in natural language generation (NLG)
datasets. In this work, we focus on parallel
NLG datasets and address this problem through
an information-theoretic approach, TD-CONE,
to assess data uncertainty using input-output
sequence mappings. Our experiments on text
style transfer datasets demonstrate that the pro-
posed simple method leads to better measure-
ment of data uncertainty compared to some
complicated alternatives and demonstrates a
high correlation with downstream model per-
formance. As an extension of TD-CONE, we
introduce TD-CONE g, to compute the rela-
tive uncertainty between two datasets. Our ex-
periments with paraphrase generation datasets
demonstrate that selecting data with lower TD-
CONERQgg; scores leads to better model perfor-
mance and decreased validation perplexity.

1 Introduction

Assessing and understanding data in natural lan-
guage processing (NLP) benefits research on learn-
ability (Swayamdipta et al., 2020), reproducability
(Beck et al., 2020), and generalizability (Bender
and Friedman, 2018). Although existing methods
show promising results from data assessment in
detecting annotation artifacts (Gururangan et al.,
2018; Poliak et al., 2018) and selecting training ex-
amples (Moore and Lewis, 2010; Ruder and Plank,
2017; Zhang and Plank, 2021), most are limited
to certain types of NLP tasks and cannot directly
apply to natural language generation.

There are three notable limitations of existing
methods when considering NLG: application con-
straints from output formats, high computational
cost (which covers model-dependent methods) and
no corpus-level evaluation (cannot handle the cases
with large-scale datasets). First, many existing
methods are constrained to tasks with output la-
bels, which enables computations from training dy-
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Figure 1: Procedure for computing TD-CONE. Given
a dataset, define an alignment function to obtain P(Y" |
X) over the source and target vocabularies for use with
computation of TD-CONE.

namics such as model confidence or variability of
predictions (Zhang and Plank, 2021; Swayamdipta
et al., 2020). This leaves few existing methods that
are applicable to sequential outputs as in text gener-
ation. Compounding on this limitation is the high
computational cost of strictly model-dependent
methods. At scale, NLG datasets can contain mil-
lions of training examples (e.g. 2.8 million can-
didate pairs in Twitter URL dataset (Lan et al.,
2017)) with increasingly large parameter counts
for state-of-the-art models (e.g. 1.5 billion param-
eters in GPT-2 (Radford et al., 2019)). Many pre-
vious methods that incorporate models, however,
make instance-level evaluations and require model
retraining, such as the Data Shapley (Ghorbani and
Zou, 2019) (time complexity O(2") for N data
points). Finally, methods that incorporate learned
parameters have a similar limitation due to mul-
tiple model initializations being computationally
prohibitive, yet random initializations may produce
undesirable variability in results.



To address these limitations, we propose a sim-
ple method to estimating the conditional probability
of outputs given inputs, and measure data uncer-
tainty using conditional entropy (Shannon, 1948),
shown in Figure 1. This approach is further ex-
tended to measure the uncertainty of one dataset
given another, using relative entropy (Kullback and
Leibler, 1951). Specifically, our contributions are:
1) taking an information-theoretic perspective to
measure data uncertainty in parallel NLG datasets
with an entropy-based metric TD-CONE and its
extended version TD-CONERg, ; 2) proposing sim-
ple yet effective word alignment methods without
any learned parameters for computing TD-CONE
and TD-CONERg; ; 3) with English text style trans-
fer and paraphrase generation datasets, demonstrat-
ing the utility of using the proposed data uncer-
tainty measures TD-CONE and TD-CONEgg, as
indicators of downstream model performance and
validation perplexity, and as aids for selecting data
or making comparisons between datasets.

2 TD-CoNE: Dataset-Level Uncertainty

Entropy in information theory offers a theoretical
basis for measuring the uncertainty of a random
variable (Shannon, 1948). In this work, we pro-
pose to use the definition of entropy for measuring
the uncertainty of a dataset. Assume we have the
conditional probability P(Y | X) estimated from
the dataset (the estimation is not trivial and will be
detailed in section 3), then the conditional entropy
H(Y | X) measures the uncertainty of Y given
X. Let X represent a word in the input vocabulary
V, and Y represent a word in the output vocabu-
lary V,, then this conditional entropy provides us
a starting point of defining our task-specific data
uncertainty.

Definition 1 (TD-CONE). The Task-Dataset
Conditional Entropy (TD-CONE) is defined as

H(Y | X)

TD-CONE(Y | X) = log|V,|
Y

(1
where H(Y | X) is the conditional entropy, and
|Vy| is the size of the output vocabulary.

The denominator |V,| normalizes the value of
H(Y | X) and guarantees TD-CONE(Y | X)
always bounded between 0 and 1. Specifically,
we have 0 < H(Y | X) < HY) < log|V,|
(Shannon, 1948). Additionally, we generally have
TD-CONE(Y | X) # TD-CONE(X | Y), be-
cause of P(Y | X) # P(X | Y). This is

consistent with the task setup in text generation,
since mapping from X to Y should be a differ-
ent task as mapping Y to X (e.g., in text style
transfer). Therefore, our definition in Equation 1 is
task-specific.

2.1 Challenges of Estimating H (Y | X)

H(Y | X) is dependent on the joint probability
P(X,Y), which can be further decomposed as
P(X)-P(Y | X). While P(X) is essentially
the unigram distribution estimated from the input
sentences, we need a method to estimate the con-
ditional probability P(Y | X) from the data. For
this, we can consider parallel NLG datasets analo-
gously to monolingual translation and can utilize
word alignments to identify mappings and estimate
P(Y | X) over a dataset (Wubben et al., 2010).

The estimation of P(Y | X) with alignments
poses several challenges: 1) word alignments that
require identifying which word (or words) in & map
to a given word in y are not directly observable in
the data; 2) to accurately apply word alignments to
estimate P(Y | X) for measuring data uncertainty,
we need to minimize uncertainty arising from the
alignment method itself.

Many existing word alignment methods treat
alignment as a latent factor to be learned by a model
(Brown et al., 1993), which could introduce a sec-
ondary source of uncertainty. Specifically, predic-
tion uncertainty P(Y | X) usually contains two
sources of uncertainty: data uncertainty and model
uncertainty. Model uncertainty is dependent on
learnable parameters and reducible with additional
data or a more sophisticated modeling approach,
whereas data uncertainty is inherent data noise that
cannot be reduced through a better model (Gal,
2016). We need to reduce the model uncertainty as
much as we can, so the estimated uncertainty will
be primarily data uncertainty. For this, we propose
a simple word alignment method that uses static
embeddings and no learnable parameters, described
in the next section.

3 Static Word Alignments

Let x = {x1,...,2,,} represent one input sen-
tence with m words and y = {y1,...,yn} rep-
resent the corresponding output sentence with n
words. To minimize model uncertainty through
minimal learnable parameters, we assume that all
{z;}7, in the same sentence are independent from
each other. The same assumption also applies to



the words in the output sentence {y;}7_;. Al-
though this ignores the linguistic dependency in
texts, it simplifies the probabilistic modeling and
minimizes the uncertainty of learned dependencies,
offering a good trade-off between model complex-
ity and the empirical performance of TD-CONE.
We demonstrate this advantage empirically in com-
parisons with existing statistical and transformer-
based alignment methods in section 4.2. With this
assumption, the only dependency we consider in
the rest of this section is the dependency between
input words {z;}j; and output words {y;}7_;.

Consider a set of sentence pairs for text genera-
tionas D = {(x®), y(*)} X where K is the to-
tal number of examples. With the dataset D, we can
define V,, as the input vocabulary constructed from
{x®)} and V), as the output vocabulary constructed
from {y(*)}. Our problem setup is therefore to es-
timate the conditional probability P(Y | X) given
the dataset D, where X € V, andY € V.

For a given dataset, the challenge of estimating

P(Y | X) for a specific output word yj(»k)
identify which word (or words) in z(¥) “generate
(i.e. are aligned with) y](-k). Essentially, the esti-
mation relies on the alignment between input and
output words, where an alignment between two
words indicates a conditional dependency.

The proposed Algorithm 1 employs an align-
ment matrix M € RIVxIXIV¥| to record the align-
ment counts based on D. The algorithm essentially
makes one-to-one mappings where possible, dis-
tributes probabilities over potential alignments if
one-to-one mappings cannot be made (either uni-
form or using cosine similarities with static embed-
dings), and utilizes alignments to a special NULL
token when either the input is a subset of the output
or vice versa. Once M has been estimated over
the entire dataset D, P(Y'|X = w) is obtained by
normalizing the corresponding row in M.!

We describe a deterministic version of the align-
ment algorithm using uniform probability align-
ments in Appendix C, which also had good pre-
liminary results. 2 In our primary experiments,
we opted to use static GloVe word-embeddings
(Pennington et al., 2014) to compute the alignment
probability distributions. Although this introduces
learned embeddings, as the embeddings are neither
context-dependent nor trained on each individual
dataset, we maintain limited learned parameters

is to

2

'A detailed description can be found in Appendix D
2Code for uniform and static alignments will be released.

Algorithm 1 Calculating the alignment matrix with
one pair of sentences

1: Input: a sentence pair = and y, alignment
matrix M

2: Qutput: the updated alignment matrix M

3: for word w € x do

4: if w € Ny then M(w,w) <+
M(w,w) + 1

5: if w ¢ y\x then

: if |y\x| = 0 then

7: M (w,NULL) < M (w,NULL) +

1
else
: for v’ € (y\z) do
10: SCORE = (w,w’ € EMBEDS) ?
ww .1

wll -l [y\e|

11 M(w,w') + M(w,w") +

SCORE
N= W'
}:,:OW\Z' SCORE® *

7

12: if x C y then
13: for word v’ € y\x do M (NULL,w') «+
M (NULL,w') + gy

and ensure consistent results across datasets.

4 TD-CoNE Experiments

As uncertainty corresponds with available informa-
tion, we expect that too much or too little uncer-
tainty is not ideal for representing task information:
if data uncertainty is too low a dataset may have a
restricted or limited representation of the underly-
ing task, and if data uncertainty is too high a dataset
may contain a level of noise that is not conducive
to learning task-relevant information. To evaluate
TD-CoNE and test this hypothesis, we compute
TD-CoONE across datasets representing the same
general task and evaluate correlations and observed
patterns with downstream model performance.
Our task selection criteria included included
tasks with: 1) parallel datasets available with one-
to-one input-output sentence pairs, and 2) bench-
marked datasets with standard data splits. Text
style transfer fit this criteria and enabled us to test
TD-CONE across a diverse set of datasets in terms
of sub-tasks (style), sizes, and creation methods.
We baseline our method’s efficacy for data uncer-
tainty measurement by evaluating correlation with
model performance against TD-CONE computed
with existing word alignment methods. Notably,
there are several distinctions between the intended



use of TD-CONE vs. existing methods that evalu-
ate text using concepts related to uncertainty, such
as diversity, that negate direct comparison: 1) as-
sessing datasets prior to training vs. active learning
or evaluating generated text, 2) level of measure-
ment (corpus-level vs. instance-level), and 3) use
on input-output pairs vs. reference-generation pairs
(Alihosseini et al., 2019; Zhang et al., 2018).

4.1 Experiment setup

Datasets. We select 6 English datasets representing
8 unique attribute-based text style transfer tasks:
Fluency (disfluent to fluent) (Wang et al., 2020),
GYAFC-EM and GYAFC-FR (informal to formal)
(Rao and Tetreault, 2018), Biased-word (subjec-
tive to neutral) (Pryzant et al., 2020), Captions
(Flickr) (humorous to romantic, romatic to humor-
ous) (Gan et al., 2017), and Shakespeare (Shake-
spearean to modern English, modern English to
Shakespearean) (Xu et al., 2012). For text style
datasets in which stylistic transfer has been previ-
ously benchmarked in both directions, we report
results for both directions of transfer. Detailed se-
lection criteria, descriptions, and statistics can be
found in Appendix A.

Generation models. We use five models with dif-
ferent neural architectures of varying complexity:
SimpleCopy (directly copy input as output; base-
line scores for no learned stylistic information),
Neural MT (NMT) (Bahdanau et al., 2014), Copy-
NMT (See et al., 2017), BART (Lewis et al., 2020),
and GPT-2 (Radford et al., 2019; Wang et al., 2019).
Details can be found in Appendix E.

Evaluation metrics. To report model perfor-
mance, we report BLEU (Papineni et al., 2002) us-
ing the implementation from Koehn et al. (2007) as
an measure of content preservation and prediction
accuracy on the stylistic attribute as an indicator of
transfer intensity. We report BLEU as all datasets
in use have been benchmarked with BLEU, en-
abling us to ensure our model performance aligns
with the existing literature and thus ensuring in-
ternal validity for reporting correlations. Predic-
tion accuracy is computed using fastText classifiers
(Joulin et al., 2017) in line with recent style trans-
fer research (Dai et al., 2019; Subramanian et al.,
2018; Sudhakar et al., 2019).

Competitive alignment methods. As described
in section 3, in addition to the proposed alignment
method for estimating P(Y | X), there are other

options available from statistical machine transla-
tion. To demonstrate the competitiveness of the
proposed method, we compare against IBM Mod-
els 1, 2, and 3 using the GIZA++ implementations
(Och and Ney, 2003) and the recently proposed
BERT-based SimAlign (Jalili Sabet et al., 2020).
For SimAlign, we instantiate the model using Hug-
gingface’s implementation of BERT-base-uncased
(Devlin et al., 2018) with argmax matching.

4.2 Results

TD-CONE accurately measures data uncer-
tainty. TD-CONE scores across dataset splits are
reported in Figure 2 (and shown numerically in Ta-
ble 6 found in Appendix A) and model performance
is reported in Table 1 and Table 2. TD-CONE and
BLEU scores for all model architectures have a
negative correlation, indicating higher data uncer-
tainty (more uncertain sequence mappings) results
in lower content preservation.> Further, TD-CONE
accurately captures data uncertainty in terms of
input-output mappings across all datasets rather
than simply being a reflection of the target class
entropy. The largest difference in target class nor-
malized entropy (reported in Table 7 in Appendix
B) across datasets is 0.0693, whereas the largest
difference in TD-CONE across datasets is 0.3928.
We attribute this to the normalization in TD-CONE.
This aligns with the expectation that target classes
all represented in the same language should have
similar normalized entropies (Shannon, 1948), and
supports the finding that the wide range of TD-
CONE scores indicates that TD-CONE accurately
measures the data uncertainty as a reflection of
cross-class mapping complexity.

Further, the style transfer accuracies reported
in Table 2 suggest that there is likely an optimal
uncertainty range in terms of task representation
(TD-CoONE between 0.22 and 0.28 in our exper-
iments, but this may be task-dependent). When
TD-CoNE scores are above this range (Captions
datasets), the noise level in the dataset precludes
the ability of the model to learn accurate, grammat-
ical mappings as evidenced by low BLEU scores.
Instead, via qualitative analysis of the outputs we
found that the models revert to generating repetitive
yet salient style words, evidenced by the high style
transfer accuracies. However, when TD-CONE
scores are below the ideal range (Bias and Fluency

3Correlations are reported alongside other alignment meth-
ods in section 4.2.



Captions Shakespeare GYAFC-FR GYAFC-EM Biased Fluency
Methods Rom—Fun Fun—Rom Mod—Shake Shake—Mod Inf—Form Inf—Form Subj—Neut Disf—FIt
SimpleCopy 8.03 8.07 21.66 21.58 53.75 52.69 90.27 90.53
NeuralMT 2.85 2.99 13.12 12.55 58.89 47.80 74.64 92.28
CopyNMT 2.75 3.06 15.88 14.32 62.72 55.33 91.41 95.27
BART 3.63 4.46 21.01 21.58 66.73 65.42 90.86 91.33
GPT-2 8.14 8.30 23.26 25.34 71.44 67.32 93.73 96.59
Table 1: Test set BLEU scores for generation models.
Captions Shakespeare GYAFC-FR GYAFC-EM Biased Fluency
Methods Rom—Fun Fun—Rom Mod—Shake Shake—Mod Inf—Form Inf—Form Subj—Neut Disf—FIt
SimpleCopy 29.20 28.40 20.04 14.77 18.02 17.16 33.50 27.42
NeuralMT 86.80 84.40 78.92 80.78 82.06 84.25 72.30 35.72
CopyNMT 86.00 72.40 71.34 70.93 79.58 74.86 70.10 35.63
BART 90.00 94.80 63.34 75.44 80.78 80.15 56.90 53.84
GPT-2 86.00 64.00 57.87 77.15 81.23 83.90 65.40 36.28
Table 2: Test set accuracy scores for generation models.
ﬁ
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Figure 2: TD-CONE scores for each text style transfer
task. Scores are also shown in Table 6 in Appendix B.

datasets), the models learn to copy content informa-
tion between classes, yet we see decreases in style
transfer accuracy. We attribute this to a constrained
representation of the task in the data.

Static word alignments outperform learned
word alignments when estimating data uncer-
tainty. We report TD-CONE computed with our
proposed word alignment method, statistical IBM
Models 1-3 using GIZA++ (Och and Ney, 2003),
and BERT-based SimAlign (Jalili Sabet et al., 2020)
in Figure 3. Our alignment method has an aver-
age correlation of —0.94 with BLEU scores across
models, compared to —0.87, —0.86, —0.89, —0.85
for IBM 1 - 3 and SimAlign, respectively. We
attribute this to our method better capturing data
uncertainty by minimizing uncertainty attributable
to the alignment model. In fact, correlation was

Figure 3: Comparison of TD-CONE using our align-
ment method and baseline methods. Datasets are sorted
by ascending BLEU scores (ideal scores would be mono-
tonically decreasing): our method outperforms existing
methods (correlations reported in subsection 4.2).

lowest with SimAlign which used BERT contextual
embeddings.

We also note several advantages of our algo-
rithm due to its design for a monolingual setting:
1) our method leverages the ability to accurately
assign one-to-one mappings for identical word
pairs, which is ideal for measuring uncertainty;
2) our method utilizes distributed probabilities over
y\z for each w when the symmetric difference
xAy # (). With static monolingual embeddings,
we can utilize cosine similarities for this procedure,
yet we have similarly good performance with the
uniform distribution as presented in the Appendix;
3) while the typical usage of the NULL token in
bilingual translation settings captures important
structural dependencies across different languages,



our usage is strictly designed to accurately estimate
P(X) and ensure dependency between input and
output. Specifically, we use the NULL token in two
scenarios: y C x and ¢ C y. If y C x we in-
crement the target NULL by 1 to ensure accurate
estimation of P(X), and if ¢ C y we increment
the source NULL uniformly over y\ to ensure the
dependency between input and output. In aggre-
gate, these features tailor our method specifically
for the task of estimating data uncertainty, as re-
flected in the experimental results.

5 TD-CONEgg.: Relative Uncertainty

While TD-CONE accurately measures the data un-
certainty of a single dataset, with the estimation
of (P(Y | X) enabled using Algorithm 1, we can
extend our methods to estimate the relative uncer-
tainty of one dataset given another dataset. In a
standard NLG setup, high validation set accuracy
after training is desirable as it indicates generaliza-
tion power to unseen data. However, there is the
open question of how to select the optimal train-
ing set for a given validation set. Further, as it
is standard practice to select the model with the
highest validation perplexity, we hypothesize there
is a relationship between relative data uncertainty
of a validation set and downstream model valida-
tion perplexity (i.e. exponentiation of the entropy).
Motivated by these questions, we can utilize Algo-
rithm 1 to compute the conditional relative entropy
(i.e Kullback-Leibler divergence) between two dis-
tributions, formally defined as follows:

Definition 2 (TD-CONERg, ). Consider P(Y | X)
and Q(Y | X) to be two probability distributions
on the same sample space (X,Y) € V, x V.
The TD-CONERg, or “Task-Dataset Conditional
Entropy: Relative Entropy” can be defined as the
normalized conditional relative entropy between P

and Q)

TD-CONERgLaTivE =

KL(P(Y | X)[|Q(Y | X))
Uy | X))

KL(P(Y [ X)|[U( 2
where KL(P(Y | X)IQ(Y | X)) -
Sxy P(X,Y)log 543} and U(Y | X) =

is the uniform distribution defined on the output
vocabulary V.

Due to the non-negative property of relative en-
tropy, we have TD-CONERg, > 0. In addition,
since U(Y | X) is a uniform distribution and there-
fore KL(P||Q) < KL(P||U) always holds, we

have 0 < TD-CoONEgg. < 1. Given two datasets
Dy and Dy, P(Y | X) and Q(Y | X) can be
estimated using the same algorithm proposed in
section 3, enabling computation of TD-CONERgg,
prior to any model training.

6 TD-CONEgg, Experiments

We expect that lower TD-CONERg, of a validation
set given a training set (less uncertain validation set
relative to a training set) will lead to better model
performance in terms of model perplexity and auto-
matic metrics on generated outputs. Our selection
criteria for NLG tasks to evaluate TD-CONERg,,
included tasks which had: 1) parallel datasets avail-
able with one-to-one input-output sentence pairs,
and 2) benchmarked datasets that lack standard
data splits. Paraphrase generation fits these criteria
and is advantageous to test the efficacy of TD-
CONEgg, for data split selection and comparison
as: 1) existing literature has created purposefully
difficult splits based on classification confidence
thresholds (Li et al., 2018b) and 2) there are a wide
range of reported metrics, limiting direct compar-
isons across studies (Du and Ji, 2019).

6.1 Experiment setup

Datasets. We use the Quora Question Pairs * and
Twitter URL datasets (Lan et al., 2017) for para-
phrase generation as 1) both are frequently used
to evaluate paraphrase generation models, and 2)
both have wide ranges of reported baseline model
performance across studies (Li et al., 2018b; Du
and Ji, 2019). Twitter URL contains both human
(51k) and classifier (2.8 million) labeled sentence
pairs. Quora Question Pairs contains 404k question
pairs with binary labels indicating whether a pair
are paraphrases. Detailed descriptions and usage
can be found in Appendix A.

Models and metrics. Using the same implemen-
tations as subsection 4.1, we train GPT-2, NMT,
and CopyNMT for paraphrase generation. In addi-
tion to TD-CONERg,, report TD-CONE on each
training set and validation perplexity and BLEU
for model performance.

6.2 Methods

On Twitter URL. We manipulate selection thresh-
olds (not frequently reported in existing work) and

*https://www.kaggle.com/c/quora-question-pairs



construct six training sets sampled from the auto-
matically labeled candidate pairs meeting the re-
spective probability thresholds: 0.4, 0.5, 0.6, 0.7,
0.75, 0.8. We follow the setup of Li et al. (2018b)
and use 110k/1k/5k train/validation/test splits with
validation and test examples sampled from the man-
ually labeled examples. Validation and test sets are
held constant across training thresholds. In line
with standard practice, best models are selected as
indicated by validation perplexity. By performing
these manipulations, we aim to identify the impact
and limitations of classifier scores for optimal train-
ing set selection. Additionally, as most datasets do
not have classifier confidence scores readily avail-
able, we aim to identify whether TD-CONERg.
displays a relationship with selection threshold or
model performance.

On Quora Question Pairs. We use the combina-
tion of TD-CONE and TD-CONEgg, to test train-
ing set selection efficacy using a 35k/1k/5k data
split the Quora Question Pairs dataset. We exper-
iment with five different selection methods: [1]
randomly sampled from all potential paraphrases,
[2] lowest randomly sampled TD-CONEgRg, scor-
ing subset, for which we perform random sampling
five times and keep the subset with the lowest TD-
CONERg;, score, [3] lowest TD-CONE 35k sen-
tences, [4] for slight noise reduction via elimina-
tion of duplicates, lowest TD-CONE scoring 35k
sentences with minimum TD-CONE = 0.1, and
[5] highest TD-CONE scoring 35k sentences.> For
each of the resulting five training sets, we compute
TD-CoONERg, against the validation set and the
training set TD-CONE score. We aim to identify if
TD-CoONERg, can be used to select training data
for a given validation set, whether there is a rela-
tionship between TD-CONE and TD-CONERgg,,
and whether results across different data setups
(Twitter, Quora) are consistent.

6.3 Results

TD-CoONERg., TD-CONE, validation perplexity,
and BLEU are reported in Table 3 for Twitter and
Table 4 for Quora.

Lower TD-CONE =% lower TD-CONERgg,.
There is no distinguishable relationship strictly be-
tween TD-CONE and TD-CONERgg.,. On Twitter
higher selection thresholds indicated higher TD-
CONEgg, and lower TD-CONE, yet we attribute

In [3, 4, 5] we treat each sentence pair as an individual
corpus.

this to selection via classifier confidence thresholds
as the relationship does not hold with various selec-
tion methods on Quora. As an implication of this,
the metrics reflect different but complementary in-
formation and are not merely interchangeable.

TD-CONEgy,, relates to validation perplexity
& TD-CONE relates to BLEU. On both the
Twitter and Quora datasets, TD-CONERg;, scores
generally align with downstream model validation
perplexity, indicating a relationship between rel-
ative uncertainty of a validation set and the vali-
dation perplexity. Exemplifying this, the highest
classifier confidence threshold on Twitter (0.80)
had the largest between threshold increase in TD-
CONEgg, from 0.75 and a significant increase in
validation perplexities across models. Interestingly,
the inverse is also true with BLEU scores and
TD-CoNE: lower TD-CONE scores generally in-
dicated higher BLEU scores. On Quora training
set [3], in which no lower bound of TD-CONE
score was imposed and therefore the set could con-
tain identical sentence pairs, this effect was highly
pronounced. When duplicate sentences were elim-
inated ([3] vs. [4]), we see a significant increase
in uncertainty as measured by TD-CONE, which
aligns with our definition of data uncertainty re-
flecting mapping complexities.

Divergences of lower TD-CONE & higher TD-
CONERg,: learning undesirable patterns. On
Twitter, the thresholds exhibiting the highest TD-
CONEgg,, scores (0.75, 0.80) exhibit the greatest
divergence in TD-CONE and TD-CONERg, scores
and are also those in which the TD-CONE score is
lower than the TD-CONEgg;. score. This is observ-
able on Quora as well with selection [3] (lowest
TD-CoNE sentences, no lower bound). Notably,
these three columns are the only ones in which
this pattern occurs, and have the highest valida-
tion perplexities while maintaining high BLEU
scores. This suggests that divergence between TD-
CoONE and TD-CONERg;, where TD-CONE < TD-
CONERg. can indicate the model will bias towards
undesirable patterns in the training data (i.e. simply
copying input over to output), which limits the over-
all task information that is learned and increases
the “surprise” the model experiences with unseen
data.

Effective data selection for a given validation set.
On Quora, we were able to utilize TD-CONERgg, to
inform the random sampling process with respect



Threshold
Metric 040 050 0.60 070 0.75 0.80

TD-CONERg. 0240 0.242 0.244 0.244 0.251 0272
TD-CoNE 0.267 0.263 0259 0.252 0.197  0.139

Model

NMT PPLX 7346 7380 73.99 7520 88.14 144.06
BLEU 20.01  20.6 19.69 19.27 20.55 21.98

ConyNMT PPLX 5797 63.65 5851 65.68 80.60 134.86
24 BLEU 20.71 20.75 21.12 2092 2232 23.32
GPT2 PPLX 1426 1406 1419 1432 1501 17.84
BLEU 24.83 2490 2499 25.13 2477 2494

Table 3: Model performance on the Twitter validation
set at different probability selection thresholds. We de-
note the highest BLEU scores (best performance metric)
and highest validation perplexity (most uncertain model)
in bold.

Sampling Method
Random Ordered
Model  Metric [ 21 B3] 4 5]
TD-CONEge. 0.152 0.150 0.229 0.169 0. 178
TD-CONE 0246 0246 0.141 0243 0365
MT PPLX 946  9.09 1186 1003 1097
BLEU 1926 1934 2017 1725 1178
PPLX 944 909 1196 1003 11.00
CopyNMT ) kU 1974 2035 1981 1667 1220

Table 4: Model performance with different data selec-
tion methods on the Quora dataset. Random (sampling)
is performed using TD-CONERg, and Ordered (sam-
pling) is performed using TD-CONE.

to the validation set as seen in training set [2]. No-
tably, when using TD-CONERg; as a data selection
method, we achieved highest performance on both
NMT and CopyNMT: lowest TD-CONEgg, , low-
est perplexity, highest BLEU (other than the 0.0
dataset) with NMT, and lowest TD-CONEgRg; , low-
est perplexity, highest BLEU with CopyNMT. As
an ethical consideration, while validation sets are
generally smaller with better documentation than
large training sets, this could inadvertently propa-
gate biases existing in a validation set by selecting
a training set with similar biases.

7 Related work

Data quality evaluation. Data quality has received
increased recent attention within both the natural
language processing (NLP) and machine learning
(ML) communities. Conceptually, quality is an ab-
stract umbrella term that can encompass numerous
dataset dimensions or characteristics. As a result,
it has been operationally proxied through assess-
ment of the value (Ghorbani and Zou, 2019), im-
portance or influence (Jia et al., 2019; Pruthi et al.,
2020), and learnability (Swayamdipta et al., 2020)

of individual training instances, the presence and
impact of dataset annotation artifacts or linguistic
properties on task representativeness (Gururangan
et al., 2018; Poliak et al., 2018), and the presence
and impact of underlying dataset social (Rudinger
et al., 2017) and gender (Lu et al., 2020) biases.
Practically, the understanding of various quality
dimensions informs dataset creators (Geva et al.,
2019), enables bias mitigation strategies (Dixon
et al., 2018), and contributes to development of
data selection strategies (Moore and Lewis, 2010;
Ruder and Plank, 2017). Our method contributes to
the existing literature through proposing a method
assess data for NLG tasks.

Alignment methods. There are a number of ap-
proaches to word alignment in bilingual settings,
where a source language is mapped to a target lan-
guage. These include statistical approaches such
as the IBM Models (Brown et al., 1993) that uti-
lize latent alignment variables, with implementa-
tions including GIZA++ (Och and Ney, 2003) and
FastAlign (Dyer et al., 2013) which reparameter-
izes IBM Model 2, as well as statistical approaches
using first order Hidden Markov Models (HMMs)
(Vogel et al., 1996) and Markov Chain Monte Carlo
inference (Ostling et al., 2016). In addition to
statistical approaches, recent approaches utilizing
Transformers (Zenkel et al., 2020; Alkhouli et al.,
2018) and pre-trained language models (Jalili Sabet
et al., 2020) have shown success in neural machine
translation. Additional approaches exist for align-
ment applications in monolingual settings, such as
phrasal alignment (Yao et al., 2013), word sense
alignment (Ahmadi and McCrae, 2021), text simpli-
fication (Albertsson et al., 2016), and disagreement
detection (Gokcen and de Marneffe, 2015). Our
method contributes to the literature by demonstrat-
ing how alignment can be utilized within a data
assessment setting.

8 Conclusion

In this paper, we propose the method TD-CONE
and its extension TD-CONEgyg; to assess text gen-
eration data. We design a simple alignment proce-
dure for computing TD-CONE and TD-CONERg, ,
and validate the metrics empirically using En-
glish text style transfer and paraphrase generation
datasets. While currently limited to parallel data
with one-to-one sentence pairs, future work can
look at non-parallel data and multiple outputs.
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A Dataset Details

Dataset Tasks Train  Dev Test
Captions Ronmnnc—+Hunuwogs 6k 500 500
Humorous—Romantic
Modern— Shakespeare
Shakespeare Shakespeare—Modern 18.4k 1.2k 1.5k
GYAFC-FR  Informal—Formal 52k 2.8k 1.3k
GYAFC-EM  Informal—Formal 52.6k 2.9k 1.4k
Biased-word ~ Subjective—Neutral 53.8k 700 1k
Fluency Disfluent—Fluent 173.7k  10.1k 7.9k

Table 5: Dataset statistics.

Dataset selection For text style transfer datasets,
selection criteria included: parallel datasets with
two classes pertaining to the presence or lack of a
single stylistic attribute that had been previously
benchmarked with BLEU and accuracy. Datasets
can be obtained or requested through links found
in the respective cited source papers.

Fluency Contains aligned sentence pairs from
the English Switchboard (SWBD) Corpus (Godfrey
et al., 1992). Each sentence is labeled as either
fluent or disfluent (Wang et al., 2020).

GYAFC GYAFC-EM contains aligned sentence
pairs from the Entertainment & Music domain of
Yahoo Answers, a question answering forum (Rao
and Tetreault, 2018). GYAFC-FR contains aligned
sentence pairs from the Family & Relationships do-
main of Yahoo Answers (Rao and Tetreault, 2018).
Since both datasets are sourced online from Ya-
hoo Answers, there is some potential for offensive
language. ©

Biased-Word Contains aligned sentence pairs
pre- and post- neutralization, crawled from 423,823
Wikipedia editor revisions between 2004 and 2019
(Pryzant et al., 2020).

Captions Contains sentences that describe an im-
age, labeled romantic or humorous. A distribution

SGYAFC-EM & GYAFC-FR datasets can be re-
quested at https://github.com/raosudha89/
GYAFC-corpus

12

of this dataset from (Li et al., 2018a) includes fac-
tual descriptions for 300 images and has been used
for style transfer in an unaligned manner. How-
ever, in our context, we use the original Flickr
dataset with a 6000/500/500 train-dev-test split in
an aligned manner as in the original paper (Gan
etal., 2017).

Shakespeare Contains aligned original and mod-
ern sentence pairs from 17 of Shakespeare’s 36
plays, crawled from Sparknotes 7 (Xu et al., 2012).
Following Jhamtani et al. (2017), we use 15 plays
for training, leaving Twelfth Night for validation,
and Romeo and Juliet for testing.

Paraphrase generation: Twitter URL & Quora:
Twitter URL contains 51k human annotated sen-
tence pairs labeled with the number of human an-
notators (out of six) that labeled a pair of sentences
as paraphrases, and 2.87 million candidate pairs au-
tomatically labeled with predicted probability from
a classifier trained on the manually annotated sen-
tence pairs. In prior work (Li et al., 2018b; Du and
Ji, 2019), a probability threshold is often picked to
select a subset of the automatically annotated pairs
as a training set, while the validation and test set
are sampled from the manually annotated pairs: our
experiments follow this procedure. Quora Ques-
tion Pairs contains 404k question pairs with binary
labels indicating whether the pair are paraphases,
from which prior studies (Li et al., 2018b; Du and
Ji, 2019) sample train/validation/test data splits.
Quora license information (License Other) can
be found referenced at https://www.kaggle.
com/quora/question-pairs—-dataset/
metadata. Twitter URL is released for
non-commercial use under the CC BY-NC-
SA 3.0 license, and can be requested at
https://languagenet.github.io/.

Additional details about data usage: Where
available, we used original or existing train-
validation-test dataset splits, including the train-
validation-test split for Shakespeare as in Jham-
tani et al. (2017). For Captions (Flickr), as only
the original 7k training instances are available, we
create a 6000-500-500 dataset split, and for the
GYAFC datasets, for the tuning and test sets we
used the informal text and all 4 available human
formal rewrites. Regarding consent, for datasets
using online data sources, such as GYAFC (Yahoo)
and Twitter, users consent to the website’s terms

"https://www.sparknotes.com/
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and conditions. Datasets utilizing annotators are
also assumed to have annotator consent.

B Additional Tables

Tables for TD-CONE scores and target sentence
entropies for text style transfer datasets.

TD-CONE

Dataset Task train dev test
Captions Rom—Fun 0.3980 0.3821 0.3636
Fun—Rom 0.3839 0.3491 0.3413

Shakespeare gfflodHShake 0.2826 0.2976  0.2653
ake—Mod 0.2787 0.2866 0.2578

GYAFC-FR  Inf—Form 0.2433 0.2176  0.1954
GYAFC-EM  Inf—Form 0.2205 0.1980 0.1864
Biased Subj—Neut 0.0078  0.0038  0.0042
Fluency Disf—Flt 0.0052 0.0061 0.0063

Table 6: TD-CONE scores on text style transfer
datasets.

Dataset Target H(Target)
Captions Funny 0.6743
Captions Romantic  0.6726
Shakespeare  Shake. 0.6505
Shakespeare = Modern 0.6436
GYAFC-FR  Formal 0.6086
GYAFC-EM Formal 0.6172
Biased Neutral 0.6445
Fluency Fluent 0.6050

Table 7: Entropies of target vocabulary distributions on
style transfer datasets.

C Uniform Alignments

While the alignment method used for TD-CONE
and TD-CONEgg, utilizes the cosine similarities
to map words across class boundaries in a sentence
pair, we can also utilize a uniform alignment over
the number of target words that cannot be aligned
with 1-to-1 mappings, shown in Algorithm 2.

D Detailed Word Alignment Algorithm
Description

We categorize potential alignments between the
input and output words from a sentence pair
(x®), y*¥)) into three cases: (1) if a word is shared
between x and y, then we consider it to have
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Algorithm 2 Calculating the alignment matrix with
one pair of sentences

1: Input: a sentence pair s and ¢, alignment ma-
trix M

2: Qutput: the updated alignment matrix M

3: for word w € s do

4: if w € sNtthen

5: M (w,w) + M(w,w) +1

6: if w ¢ t\s then

7: for w' € (t\s) U{NULL} do

8: M(w,w') <+ Mww) +
(GO o

9: if s C t then

10: for word w’ € t\s do

11: M(NULL,w') + M(NULL,w') +

1
[t\s]

a deterministic alignment from source to target
(line 4 in algorithm 1); (2) if an input word w is
not in the output sentence y and no other align-
ments can be made, w is aligned with NULL (where
ly\x| = 0). If |[y\x| > 0, a probability distribu-
tion is computed over the cosine similarities be-
tween the GloVe word embeddings (Pennington
et al., 2014) of w and each v’ in y\z. If a w
or w' is out-of-vocabulary, we utilize a uniform
probability over the size of y\x (lines 5 — 11 in
algorithm 1);® (3) all the unique words w’ in y\x
where £ C y have an alignment from the NULL
token on the input side utilizing a uniform distribu-
tion over |y\«| (lines 12 — 13 in algorithm 1). Two
special scenarios remain: y C  and x C y. To
accurately estimate P(X), if y C o we must incre-
ment the target NULL by 1, and if  C y we must
increment the source NULL uniformly over y\x to
ensure the dependency between input and output.
Once we have M estimated over the entire dataset
D, P(Y|X = w) is obtained by normalizing the
corresponding row in M.

E Training Details

Model Implementations For NMT and Copy-
NMT, we use implementations provided by Open-
NMT (Klein et al., 2017). For GPT-2 we use the im-
plementation code provided by (Wang et al., 2019).

Paraphrase Generation Experiments NMT,
CopyNMT and GPT-2 models were run on a sin-

8We describe a simplified version of the alignment algo-
rithm using uniform probability alignments in Appendix C



gle NVIDIA GTX 1080 Ti GPU. For CopyNMT
and NMT, we utilized 2-layer LSTMs for the en-
coder and decoder with attention (Bahdanau et al.,
2014) and 500 hidden states. Adam optimization
(Kingma and Ba, 2014) was used for both mod-
els with learning rate 0.001. While most model
parameters were simply set to the default Open-
NMT parameter settings, we chose our optimiza-
tion method and learning rate after noting issues
with convergence when using stochastic gradient
descent. We utilized a random seed for consistency.
For decoding, we utilized argmax decoding after
finding performance degradation with beam search
with beam sizes 2 and 3. All models were selected
based on highest validation performance.

The GPT-2 model was run on a single NVIDIA
GTX 1080 Ti GPU. We use the implemen-
tation code provided by (Wang et al., 2019),
which can be found at https://github.com/
Jjimth001/formality_emnlpl9. For train-
ing, we chose the Adam optimizer (Kingma and
Ba, 2014) with learning rate 0.00001, set batch
size to 16, and set total training steps to 50000,
which are the default settings in the original imple-
mentation. During training, we found the training
loss decreased rapidly. In order to save the opti-
mal model checkpoint and avoid overfitting, we
performed auto validation on the development set
every 10 steps, and applied early stopping when
the validation loss did not drop after 100 steps. For
generation, we applied beam search with beam size
4. We set the maximum generation length to 100,
since the majority of sentences had a length of less
than 100 tokens.

Style Transfer Experiments The GPT-2 model
was run on a single NVIDIA GTX 1080 Ti GPU.
We use the implementation code provided from
(Wang et al., 2019). For experiments across all 6
datasets, we chose the Adam optimizer (Kingma
and Ba, 2014) with learning rate 0.00001, set batch
size to 16, and set total training steps to 50000,
which are the default settings in the original imple-
mentation. As the training loss decreased rapidly,
in order to save the optimal model checkpoint and
avoid overfitting, we performed auto validation on
the development set every 10 steps, and applied
early stopping when the validation loss did not de-
crease after 100 steps. For generation, we apply
beam search with beam size 4. We set the maxi-
mum generation length to 200, since the majority
of sentences was less than 200 tokens in length.
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NeuraIMT (NMT) models were run on a sin-
gle NVIDIA GeForce RTX 2080 GPU. Default
OpenNMT hyper-parameters were used, includ-
ing stochastic gradient descent (SGD) optimization
with a learning rate of 1.0. CopyNMT models were
also run on a single NVIDIA GeForce RTX 2080
GPU. We set word vector size to 300 and used an
SGD optimizer with a learning rate of 1.0. We used
an MLP attention mechanism and reused attention
scores for copying scores.

For BART models, we used Adam optimization
with warmup and polynomial decaying. The max-
imum learning rate was set to le-5, and warmup
steps were set to 500. Batch size was 8192 tokens.
We also used dropout and attention dropout with a
0.1 dropout rate. Label smoothing was used with
a 0.1 label smoothing rate. We used 0.01 as the
weight for weight decay. Other hyper-parameters
were set to default Fairseq hyper-parameters. We
followed the default hyper-parameters used for text
summarization and adjusted the max learning rate
from 3e-5 to le-5 for better convergence.

License Information License details for Open-
NMT (NMT and CopyNMT models) can be
found at https://github.com/OpenNMT/
OpenNMT-py/blob/master/LICENSE.md.
Assets from Huggingface (GPT-2 and BERT-base-
uncased) are Licensed under the Apache License,
Version 2.0 (Copyright 2020, The Hugging Face
Team).
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