
Shrinking the Generation-Verification Gap
with Weak Verifiers

Jon Saad-Falcon * 1 E. Kelly Buchanan * 1 Mayee F. Chen * 1 Tzu-Heng Huang 2 Brendan McLaughlin 1

Tanvir Bhathal 1 Shang Zhu 3 Ben Athiwaratkun 3 Frederic Sala 2 Scott Linderman 1 Azalia Mirhoseini 1

Christopher Ré 1

Abstract

Verifiers can improve language model (LM) ca-
pabilities by scoring and ranking responses from
a pool of generated candidates. Currently, high-
quality verifiers are either unscalable (e.g., hu-
mans) or limited in utility (e.g., tools like Lean
for formal proofs). While LM judges and reward
models have become broadly useful as general-
purpose verifiers, a significant performance gap
remains between them and oracle verifiers (i.e.
verifiers with perfect accuracy). To help close
this gap, we introduce WEAVER, a framework for
designing a strong verifier by combining multi-
ple weak, imperfect verifiers. First we find that
weighted ensembles of verifiers, which typically
require learning from labeled data, significantly
outperform unweighted combinations due to dif-
ferences in verifier accuracies. To reduce the de-
pendency on labeled data, WEAVER leverages
weak supervision to estimate each verifier’s accu-
racy and combines their outputs into a unified
score that better reflects true response quality.
However, directly applying weak supervision al-
gorithms poses several challenges, including in-
consistent verifier output formats and handling
low-quality verifiers. WEAVER addresses these
challenges by using dataset statistics to normalize
outputs and filter specific verifiers. We study the
effectiveness of WEAVER in test-time repeated
sampling settings, where a model generates mul-
tiple candidate responses and selects one from
among them. Our evaluations demonstrate that

*Equal contribution 1Stanford University, Stanford, CA,
USA 2University of Wisconsin-Madison, Madison, WI, USA
3Together AI, San Francisco, CA, USA. Correspondence
to: Jon Saad-Falcon <jonsaadfalcon@stanford.edu>, E. Kelly
Buchanan <kelly.buchanan@stanford.edu>, Mayee F. Chen
<mfchen@stanford.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

WEAVER significantly improves over Pass@1—
the performance when simply selecting the first
candidate response—across several reasoning and
math tasks, achieving o3-mini-level accuracy with
Llama 3.3 70B Instruct (a much cheaper non-
reasoning model) as the generator, and an ensem-
ble of 70B or smaller judge and reward models as
the verifiers (87.7% average). This gain mirrors
the jump achieved between GPT-4o and o3-mini
(69.0% vs. 86.7%), which required extensive fine-
tuning and post-training interventions. To reduce
the computational costs of running verifier en-
sembles for WEAVER, we train a compact 400M
cross-encoder using WEAVER’s combined out-
put scores. This distilled model retains 98.7% of
WEAVER’s full accuracy while reducing verifica-
tion compute by up to 99.97%.

1. Introduction
A core challenge in deploying language models (LMs) is ver-
ification: determining the quality or correctness of a model’s
response. This problem arises across various components
of the LM pipeline, including dataset curation, model align-
ment, and inference-time decision-making. Verification
relies on verifiers—functions that score responses. When
combined with repeated sampling—generating multiple can-
didate responses from a LM—a perfect verifier can be used
to select a correct candidate response, significantly enhanc-
ing model capability on tasks such as math, code, and reason-
ing (Snell et al., 2024; Brown et al., 2024; Puri et al., 2025).
For example, Llama 3.1 8B Instruct can match Llama 3.1
70B Instruct and even GPT-4o performances on MATH500
(Hendrycks et al., 2021) and MiniF2F (Zheng et al., 2022)
when paired with perfect verifiers for these mathematics
tasks. However, without a perfect verifier, a generation-
verification gap emerges (Song et al., 2025b): a LM can
generate a correct response, but we fail to identify it.

The generation-verification gap is prevalent across many
tasks across mathematics, coding, scientific reasoning,
instruction-following, and more. For some of these set-

1

Shrinking the Generation-Verification Gap with Weak Verifiers

Weaver Methodology

Instruction LM Generation

Accept or Reject

+

Weak
Supervision

Estimated
Optimal

Weighting
of Verifiers

Reward
Models

0.0
0.5

0.7
0.2
...

Weak
Supervision

LM
Judges

0.0
0.5

0.7
0.2
...

Verification Computer Budget (ExaFlops)

GPQA Diamond*

Se
le

ct
io

n
A

cc
ur

ac
y

(%
)

Su
cc

es
s

R
at

e
(%

)

GPQA Diamond

2 True

1 0.3

1 False

...

...

LM Generation Verdict

Number of Repeated Generations

First Sample

o3-mini

98.2% of

Accuracy Gains

Preserved

99.97%

Compute Saved

Figure 1: WEAVER Framework: We propose WEAVER, a framework combining multiple weak verifiers to effectively
scale repeated sampling without parameter finetuning on ground truth labels (left). WEAVER significantly outperforms
majority voting and shrinks a model’s generation-verification gap by 14.5%, on average, for GPQA Diamond and other
datasets (Table 2) (middle). By distilling WEAVER from an ensemble of 70B verifiers to a single 400M cross-encoder, we
can preserve 98.2% of the accuracy gains of WEAVER while reducing inference compute cost by 99.97% (right).

tings, we have access to oracle verifiers that can perfectly
identify correct responses. A prominent example is Lean, a
formal theorem prover that can be used for problems such
MiniF2F (Zheng et al., 2022). However, this is often a lim-
ited setup, as not all mathematical proofs can be processed
by Lean. Alternatively, humans could judge LM responses
but manual evaluation is often expensive, noisy, and difficult
to scale (Hosking et al., 2024; Clark et al., 2021; Karpinska
et al., 2021). In contrast, LMs prompted as judges (Chi-
ang et al., 2024) and reward models (Lambert et al., 2024;
Singhi et al., 2025a; Liu et al., 2025a) can be applied off-the-
shelf to tasks like mathematics, coding, scientific reasoning,
instruction-following (Hendrycks et al., 2021; Rein et al.,
2024; Jain et al., 2024; Li et al., 2023). However, these
weak verifiers produce noisy, inconsistent scores, often ex-
hibit poor calibration, and suffer from high false positive
rates (Stroebl et al., 2024). We ask: to what extent can we
leverage weak verifiers to improve accuracy in the repeated
sampling regime?

We explore scaling verification, specifically how to combine
multiple weak verifiers to improve response selection for
repeated sampling. As new pre-trained models become
available, the pool of weak verifiers continues to expand
and offer diverse, complementary sources of signal that
could improve response selection if they can be aggregated
effectively. Recent work has explored scaling verification
through techniques such as self-verification or averaging
LM judge scores (Lifshitz et al., 2025; Zhao et al., 2025;
Chen et al., 2025) although other work has found limitations
to scaling test-time compute when utilizing weak verifiers
for response selection (Stroebl et al., 2024). We observe
three key challenges towards ensembling weak verifiers:

1. Naively aggregating weak verifiers is insufficient for
reliable verification. Weak verifiers such as LM-based
judges or reward models produce noisy, biased, and
poorly calibrated scores, leading to inconsistent perfor-
mance. (Stroebl et al., 2024; Lambert et al., 2024; Chiang
et al., 2024). While using a naive unweighted average of
verifier scores is straightforward, it implicitly assumes
uniform verifier quality, causing low-quality verifiers to
dominate and degrade the overall accuracy (Verga et al.,
2024; Xu et al., 2024; Eisenstein et al., 2023b). More-
over, while previous work has hypothesized that more
sophisticated weighted ensembles should perform better,
this claim has not been studied (Lifshitz et al., 2025).

2. Effective ensembling with limited labeled data is chal-
lenging. More sophisticated ensembling techniques typi-
cally learn verifier weights from labeled data, but such
data is expensive and difficult to obtain. Weak Supervi-
sion (WS), a family of statistical techniques developed
for data labeling, offers a potential solution through al-
gorithms that aggregate multiple weak signals—such as
crowd-worker annotations and expert-defined heuristics—
while only requiring a small amount of labeled data (Rat-
ner et al., 2016; 2019; Fu et al., 2020). In traditional
WS, practitioners can design and shape each weak sig-
nal to ensure sufficient quality (i.e., iteratively tweaking
program-based heuristics), and guarantees of WS hinge
on a baseline level of quality. Our weak signals, however,
are fixed pre-trained language model verifiers, which
have wildly varying accuracy—especially when applied
to out-of-distribution tasks—and can emit incompatible
outputs (logits, binary scores, Likert scores) (Lambert
et al., 2024) that we cannot easily tweak. Due to these
conditions, WS algorithms may not perform well when

2

Shrinking the Generation-Verification Gap with Weak Verifiers

directly applied to verification.

3. Verification is expensive to deploy at inference. Verifi-
cation can dominate inference-time costs (Singhi et al.,
2025a; Liu et al., 2025a), since each verifier must process
both the problem and its candidate response(s) (Lightman
et al., 2023), often evaluating intermediate steps (Light-
man et al., 2023) and multiple solution paths (Snell et al.,
2024). In fact, achieving gains over unverified generation
(i.e. majority voting) can require 10× to 128× the infer-
ence compute per query (Singhi et al., 2025b; Lifshitz
et al., 2025; Zhao et al., 2025; Chen et al., 2025).

In this work, we introduce WEAVER, a framework for ag-
gregating weak verifiers without supervised finetuning on
ground truth labels (Figure 1). First, we demonstrate that
if we have access to a large corpus of labeled training data
(e.g., 50,000 query-response pairs), we can learn weighted
ensembles that can outperform naive averaging by up to
11.2% points. This is because weighted ensembles take
advantage of wide variability in verifier accuracy. How-
ever, in many real-world scenarios, we do not have access
to such quantities of labeled data. Second, to reduce the
dependency on labeled data, we adapt Weak Supervision
to the verification setting by addressing challenges around
inconsistent outputs and low-accuracy verifiers. WEAVER
filters out uninformative verifiers, normalizes verifier scores,
and builds a latent variable model over these scores and the
unknown true labels to estimate the verifier accuracies to be
used as weights for the ensemble (Ratner et al., 2016; Hall,
2003).

Empirically, given a repeated sampling budget and a set of
verifiers, WEAVER improves over repeated sampling with
unweighted averaging of verifier scores by 17.1% and with
majority voting by 13.5% (Table 2; Figure 3). Compared to
an LM’s Pass@1, WEAVER allows us to improve perfor-
mance by 17.9% for 8B models and 14.5% for 70B models
across reasoning and mathematics tasks (Tables 2 and 20).
This mirrors the performance jump from GPT-4o to o3-mini
(73.9% vs. 88.2%)—but only via increased sampling at test
time rather than parameter tuning or post-training proce-
dures. We also study how WEAVER scales along different
axes of test-time compute: generation, verifiers, model size,
and inference budget (Section 5.2). We find that even as
we increase the number of generations, many standard ver-
ification baselines (e.g. majority voting) quickly plateau
(Figure 3). Naive ensembling saturates more slowly, but its
gains are limited by sensitivity to the model choice and the
number of verifiers.

Finally, to mitigate the compute costs of calling multi-
ple weak verifiers for each response, we extend WEAVER
by training a 400M-parameter cross-encoder verifier using
WEAVER’s selected responses. We demonstrate that using a
distilled WEAVER cross-encoder as a verifier retains 98.7%

of the accuracy gains from the learned verifier ensemble
while reducing compute costs by three orders of magnitude
– saving 99.97% inference FLOPS while still capturing an
effective verification strategy (Section 6). Overall, our find-
ings highlight that more reliable, scalable verification is
possible even in the absence of ground-truth labels—paving
the way for improved data filtering, model alignment, and
inference-time decision-making.

2. Related Work
LM Judges and Reward Models: Both LM judges and
reward models are promising approaches for evaluating lan-
guage model outputs, but their high false positive rates limit
their reliability (Stroebl et al., 2024). LM judges can eval-
uate outputs without additional training (Liu et al., 2023;
Wang et al., 2023a; Fu et al., 2023), using approaches from
simple prompting to chain-of-thought reasoning (Liu et al.,
2023) to specialized fine-tuning (Saad-Falcon et al., 2023;
Tang et al., 2024) to multi-LM inference architectures (Saad-
Falcon et al., 2024a; Kalra & Tang, 2025). However, they
face poor generalization across contexts (Es et al., 2023;
Saad-Falcon et al., 2023; Ravi et al., 2024) and systematic
biases in position and self-preference (Chen et al., 2024a;
Pan et al., 2024; Zheng et al., 2023b; Koo et al., 2023).
Similarly, while reward models have become central to
model alignment (Bradley & Terry, 1952; Christiano et al.,
2017; Liu & Zeng, 2024), they struggle with noisy training
signals from low inter-annotator agreement (Askell et al.,
2021; Ouyang et al., 2022; Wang et al., 2024a; Dubois
et al., 2024b) and learned biases favoring attributes like re-
sponse length (Lambert & Calandra, 2023; Singhal et al.,
2023; Dubois et al., 2024a). Recent work has improved
individual verifier reliability through better data collection,
chain-of-thought reasoning, and natural language unit tests
(Wang et al., 2023b; Zhang et al., 2024; Saad-Falcon et al.,
2024b), yet fundamental challenges persist (Eisenstein et al.,
2023a; Chaudhari et al., 2024). WEAVER advances beyond
these approaches by combining multiple verification signals
with adaptive weighting, thus leveraging the complemen-
tary strengths of weak verifiers while suppressing noise and
reducing false positives.

Weak Supervision: WEAVER builds upon statistical tech-
niques from weak supervision, which emerged as a frame-
work for programmatically generating training labels by ag-
gregating multiple weak sources (Ratner et al., 2016; 2020).
While a majority of the work focuses on classification tasks
(Ratner et al., 2019; Fu et al., 2020; Chen et al., 2022), re-
cent advances have expanded to handle multi-task settings
(Shin et al., 2021) and structured prediction (Vishwakarma
& Sala, 2022). Weak Supervision has also been applied to
LM prompting (Arora et al., 2022) and routing (Guha et al.,
2024). WEAVER applies Weak Supervision to answer veri-

3

Shrinking the Generation-Verification Gap with Weak Verifiers

fication, treating binary imperfect verification signals (e.g.
reward models and LM judges) as weak supervision voters
that classify candidate solutions as correct or incorrect. This
novel application combines predictions by converting these
diverse signals into binary verdicts, enabling WEAVER to
learn better verification strategies from weak but comple-
mentary verifiers.

Verification as another compute axis and aggregation:
Recent work has explored verification as a new scaling axis
(Lifshitz et al., 2025; Liu et al., 2025b; Zhao et al., 2025;
Singhi et al., 2025b; Stroebl et al., 2024; Chen et al., 2025).
However this work limits their analysis to one verifier, and
instead scale how many times to verify (Zhao et al., 2025).
Approaches that do leverage multiple verifiers often rely
on substantial amounts of labeled data for aggregation or
creating specialized verifiers (Kirchner et al., 2024; Lifshitz
et al., 2025). With WEAVER, we show that it is possible to
combine verifiers without ground truth labels, even when
they are not specialized. Other work has focused on com-
bining multiple verifiers for post-training the base model
using RLHF (Wang et al., 2024d; Eisenstein et al., 2023b;
Wang et al., 2025).

3. Preliminaries
First, we define the problem of how to select among repeated
samples. We then define verifiers and key evaluation metrics,
including the generation-verification gap.

Problem Definition Let q ∈ Q be a input text query, and
let r ∈ R ∼ M(q) be a corresponding response sampled
from language model M with non-zero temperature. For a
given query-response pair (q, r), we define y : Q×R →
{0, 1} such that y(q, r) is the correctness label of r for q.

We are given an unlabeled test dataset = {(qi, ri)}ni=1,
where ri = {rij}Kj=1 consists of K repeatedly sampled
responses from M for each qi. We also assume access to
a small labeled development dataset ⊂, comprising 1% of
the test set (e.g. 5 to 10 query-answer pairs), which is used
to estimate global statistics such as the task difficulty prob-
ability, Pr(yij = 1). We do not have access to true labels
yij := y(qi, rij) for any i, j in \.

For each (qi, ri) ∈, our goal is to select a correct response
j⋆ ∈ [K] that satisfies yij⋆ = 1. We can broadly describe
this selection rule using a scoring function f : Q×R → R,
namely j⋆ := argmaxj f

⋆(qi, rij).

Using verifiers A verifier, either a reward model or an
LM prompted as a judge, can be expressed as a scoring
function on query-response pairs v : Q × R → R. For
reward models, the verifier score is continuous, while for
LM judges, the verifier score is typically discrete (for our
setup, we use [0, 1] and {0, 1}, respectively). We assume

that we have access to multiple verifiers = {v1, . . . , vm}.
We apply each of the m verifiers to each (qi, rij), for a total
of nmK scores on , with sijk := vk(qi, rij). We aim to use
V to construct a verification strategy f .

Evaluation metrics The Pass@1 metric is the probability
that an LM’s first response is correct. Pass@K general-
izes this metric and is defined as the probability that there
exists a correct response among K generated responses:
Pass@K = 1

n

∑n
i=1 1(∃j ∈ [K] : yij = 1). This met-

ric is independent of the verification strategy, and depends
on the choice of M, K, and the task dataset. The suc-
cess rate of a verification strategy f̂ is 1

n

∑n
i=1 yiĵ , where

ĵ = argmaxj∈[k] f̂(qi, rij). Success rate is dependent on
the verification strategy and bounded by Pass@K, and equal-
ity is obtained with oracle verification (i.e., f̂ = f⋆ can
always select a correct j as long as it exists).

We define the generation-verification gap as Pass@K - Suc-
cess Rate. A large positive gap indicates that although
correct answers are generated, the verification strategy fails
to select them consistently. We aim to close this gap and
will use it to evaluate verification strategies.

4. WEAVER: A Framework for Weak Verifier
Aggregation

In Section 4.1, we demonstrate that naively averaging mul-
tiple verifier scores to select responses significantly under-
performs weighted ensembles; however, common methods
for computing weights require labeled data (Schapire, 2013;
Ying et al., 2015). We introduce WEAVER (Section 4.2),
a method for weighted aggregation of verifier scores with
minimal data that draws inspiration from Weak Supervision.
Unlike prior work, WEAVER adapts weak supervision to ver-
ification by addressing challenges unique to verifier aggre-
gation, such as inconsistent score formats and the presence
of low-quality or adversarial verifiers. To our knowledge,
this is the first framework to successfully apply weak super-
vision to ensemble verifier scores for response selection.

4.1. How to aggregate multiple verifiers: weighted vs
unweighted ensembles

A straightforward approach for using multiple verifiers is
a naive ensemble—selecting the response with the highest
average verifier score: f(qi, rij) = 1

m

∑m
k=1 sijk. This

approach (Lifshitz et al., 2025) does not consider the relative
accuracy of verifiers. However, we observed that there
is significant variation in the success rates of individual
verifiers—spanning a range of up to 37.5%—suggesting
that naive ensembles could be suboptimal (Table 16).

An alternative is to use a weighted ensemble. One ap-
proach is to use a labeled dataset to identify and use the top-

4

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 2: Weighted Verifier Ensembles Outperform Naive Verifier Ensembles: By using oracle data to keep the best
verifiers (i.e. top-K verifier ensembles) or learn aggregation weights for verifiers (i.e. supervised weighted ensembles), we
can improve beyond naive combinations of the verifiers available by 3.6% and 7.8%, on average, respectively.

performing verifier, effectively assigning a weight of 0 to dis-
carded verifiers. Other strategies include using Logistic Re-
gression or a Naive Bayes classifier, where the scoring func-
tion f(qi, rij) is the probability Pr(yij = 1|sij1, . . . , sijm).
These classifiers are fit using labeled data and can be either
modeled as a logistic function or factorized using Bayes’
rule and independence assumptions, respectively.

In Figure 2, we compare a naive ensemble with weighted
ensembles for several tasks, using Llama 3.3 70B Instruct
to generate responses and using a collection of 33 7B-72B
reward models and LM judges as verifiers (Appendix C.1).
We see that using a weighted ensemble can achieve up to
11.2 points higher success rate than the naive ensemble.
However, all weighted ensembles shown are “oracle” meth-
ods: they are computed using yij for all i ∈ [n], j ∈ [K],
although in practice these labels are unknown for . In fact,
when we instead use 0.01n labeled samples, accuracy drops
by 20.1% on average (Table 17). This raises the question
of how to best construct weighted ensembles with limited
labeled data.

4.2. WEAVER: weighted ensembling of verifier scores
with minimal labeled data

We first describe the WS method we use in WEAVER to
construct a weighted ensemble over binary verifier scores.
Because verifiers often produce scores in inconsistent for-
mats and exhibit low accuracies—challenges not typically
encountered in traditional WS—we introduce a binarization
and verifier discarding strategy in Appendices B.2 and B.3
to discard low-quality verifiers and ensure that only suffi-
ciently reliable binary scores are used as input to the WS
method.

4.2.1. WEAK SUPERVISION ALGORITHM

In Weak Supervision, the input is an unlabeled dataset,
where each entry has multiple binary “votes” on the true
label. Applied to our setting, each entry is a query-response
pair, forming a dataset of size nK, and verifier scores sijk
are binarized into votes s̄ijk ∈ {0, 1} for all i, j, k. Our
goal is to predict the probability that a response is correct,
Pr(yij = 1|sij1, . . . , sijm) for all i, j.

WS model We can view all yij across query-response
pairs as samples of an unknown random variable Y and
each s̄ijk across i, j as samples of a random variable Sk.
WS then defines a latent variable graphical model over the
random binary vector {Y, S1, . . . , Sm}, where Y is latent
while S1, . . . Sm are observable. While existing WS meth-
ods assume various models, one common assumption is that
Si ⊥ Sj |Y for each Si, Sj . That is, Si and Sj are condi-
tionally independent given Y ; intuitively, each verifier is
assumed to capture independent aspects of the correctness
of the response (Figure 22 in Appendix C.4). Under this as-
sumption, we can write the posterior probability of a correct
generation as the following, for some given binary verifier
scores {s̄1, . . . , s̄m}:

Pr(Y = 1|S1 = s̄1, . . . , Sm = s̄m) =∏m
i=1 Pr(Si = s̄i|Y = 1)Pr(Y = 1)

Pr(S1 = s̄1, . . . , Sm = s̄m)
. (1)

The weighted ensemble score for each query-response pair
can thus be written in terms of: 1) Pr(S1 = s̄1, . . . , Sm =
s̄m), which can be computed from the data; 2) Pr(Y = 1),
which can be estimated from ; and 3) Pr(Si = s̄i|Y = 1),
or equivalently Pr(Si = 1|Y = 1), which is the verifier’s
“accuracy parameter”—this cannot be computed directly
since we do not have access to Y . Next, we discuss how
to estimate these accuracy parameters, Pr(Si = 1|Y = 1),
without labels.

WS parameter estimation We outline a parameter estima-
tion technique first introduced in (Ratner et al., 2020). Due

5

Shrinking the Generation-Verification Gap with Weak Verifiers

to the assumption that Si ⊥ Sj |Y , the following equation
holds:

Pr(Si, Sj) = Pr(Si, Sj |Y = 1)Pr(Y = 1)

+ Pr(Si, Sj |Y = 0)Pr(Y = 0)

= Pr(Si|Y = 1)Pr(Sj |Y = 1)Pr(Y = 1)

+ Pr(Si|Y = 0)Pr(Sj |Y = 0)Pr(Y = 0). (2)

Note that Pr(Si, Sj) can be computed from the known
verifier scores, and Pr(Y = 1) is estimated from . Then, (2)
is a quadratic equation over the accuracy parameters. We
can write this equation for every pair Si, Sj , and for every
pair of values {0, 1}2 they can take. Furthermore, we can
write another type of equation over the accuracy parameters:

Pr(Si = 1) = Pr(Si = 1|Y = 1)Pr(Y = 1) (3)
+Pr(Si = 1|Y = 0)Pr(Y = 0). (4)

This is a consistency property that holds regardless of the
conditional independence assumption, and we can write this
equation for each of the m Si’s. Because we know that the
accuracy parameters should follow equations 2 and 4, we
can construct an objective function that aims to minimize
the difference between the left and right hand sides of these
equations. We write this efficiently in matrix notation. Let
P ∈ R2×2 be a diagonal matrix with diagonal [Pr(Y =
0) Pr(Y = 1)]. Define µ ∈ Rm×2 to be the matrix of
accuracy parameters, and define O ∈ R2m×2m to be a
matrix over the joint probabilities of pairs of Si, Sj ; more
formally: Let pi,y = Pr(Si = 1|Y = y) and pi = Pr(Si = 1).

µ2i−1:2i,1:2 =

(
1 − pi,0 1 − pi,1

pi,0 pi,1

)
,

O2i−1:2i,2i−1:2i =

(
1 − pi 0

0 pi

)
∀i ∈ [m],

O2i−1:2i,2j−1:2j =

(
Pr(Si = 0, Sj = 0) Pr(Si = 0, Sj = 1)
Pr(Si = 1, Sj = 0) Pr(Si = 1, Sj = 1)

)
∀i ̸= j ∈ [m]. (5)

Let off-diag denote the elements of a matrix that lie outside
its 2× 2 block diagonal. Then, to estimate µ that satisfies
both equations 2 and 4, we have the following objective:

minimizeµ
∥∥Ooff-diag − (µP µ

T
)off-diag

∥∥2
+

∥∥ diag(O)−µP 1
T ∥∥2 (6)

We optimize 6 using gradient descent to estimate the ver-
ifier accuracy parameters. These estimates are then used
in Equation (1) to select the response with the highest es-
timated posterior. To further improve modeling of verifier
accuracies, we explore whether partitioning the query distri-
bution by empirical difficulty can yield better weak super-
vision estimates. As detailed in Appendix B.4, we cluster
queries based on the observed ratio of correct to incorrect
generations, and fit a separate WEAVER model within each
difficulty bucket. We provide more details in Appendix B.1.

5. Results
In section 5.1, we provide empirical results on WEAVER’s
performance compared to other approaches for selecting re-
sponses in repeated sampling. In section 5.2, we study how
WEAVER’s performance scales along several axes: the num-
ber of responses, model size, verifier counts, and inference
compute.

Datasets, Verifiers, and Baselines Our reward models
range in size from 8B to 72B, are all open-source, and are ob-
tained from RewardBench (Lambert et al., 2024), a popular
evaluation tool for reward models. We prompt open-source
language models from Chatbot Arena (Chiang et al., 2024)
to serve as judges. Unless specified, we use Llama 3.3 70B
Instruct to generate responses and use all 33 reward models
and judges. We evaluate on MATH500, GPQA Diamond,
MMLU College, and MMLU Pro. See Appendix C.1 for
more details.

We compare WEAVER against verifier-free baselines as well
as standard verification strategies. First Sample, also known
as Pass@1, only uses the first response and does not scale
test-time compute or verification. Majority Voting involves
repeated sampling but not verification, picking the most
common final answer from the responses (Brown et al.,
2024; Snell et al., 2024; Chen et al., 2024c). We compare
against the highest scoring reward model and a naive en-
semble of the top-10 reward models on RewardBench. We
also evaluate two recently proposed methods that scale veri-
fication but do not use different verifier models or weighted
ensembles: Self-Verification (Zhao et al., 2025) and Multi-
Agent Verification (Lifshitz et al., 2025). Lastly, we report
the oracle Pass@K rate, which establishes an upper bound
for the success rate of these verification strategies.

5.1. WEAVER Shrinks the Gap with Frontier LMs

In Table 2, we evaluate WEAVER along with baseline ver-
ification methods, the first sample performance of frontier
LMs, and the Pass@100 metric. We use LlaMA 3.3 70B
Instruct to generate K = 100 responses per query. We
find that WEAVER’s weighted ensembling of multiple ver-
ifiers allows us to outperform majority vote by 15.5% and
come within 4.2% of the Pass@100 oracle metric. Further-
more, WEAVER rivals the performance of frontier reasoning
models—coming within 0.5% of OpenAI’s o3-mini (Ope-
nAI, 2025)—even though we use a non-reasoning model for
generation.

5.2. WEAVER Improves Compute-Accuracy Trade-Off
for Scaling

By proposing to combine multiple weak verifiers instead
of one, we introduce yet another axis for test-time scaling.
In this section, we study how well scaling verification with

6

Shrinking the Generation-Verification Gap with Weak Verifiers

Table 1: Scaling Dimensions for Generation and Verification Models

Scaling Dimension Base Model Verifier Type Visuals

Sample Count: More Generations Temperature-based
sampling

Majority Vote, Weak Verifier, Top-K,
WEAVER

Figure 3

Model Size: Larger Models Llama 8B → 70B RM-8B → RM-70B Table 3
Verifier Count: More Models Llama 8B/70B RMs and LM Judges Figure 21
Inference Compute: More FLOPs for
Gen./Ver.

Temp-based sampling Weak Verifiers + WEAVER Figure 4

Table 2: WEAVER Outperforms Baseline Verification Methods and Shrinks Gap with Frontier LMs.

Methodology Generations (K)

Datasets

Average
MATH

500
GPQA

Diamond
MMLU
College

MMLU
Pro

B
as

el
in

es

First Sample 1 78.0% 42.9% 82.6% 69.9% 68.4%
Majority Voting 100 83.0% 47.4% 84.1% 74.4% 72.2%

Highest Scoring RM on RewardBench (Minghao Yang, 2024; Lambert et al., 2024) 100 78.2% 49.7% 86.0% 77.0% 72.7%
Naive Ensemble of Top-10 RMs on RewardBench (Lambert et al., 2024) 100 75.4% 41.3% 88.1% 71.4% 69.1%

Self-Verification (Zhao et al., 2025) 100 78.1% 43.1% 82.0% 69.5% 66.9%
Multi-Agent Verification (Lifshitz et al., 2025) 100 81.3% 47.8% 84.1% 72.6% 71.6%

WEAVER 100 93.4% 72.1% 94.9% 90.2% 87.7%

Fr
on

tie
r

A
pp

ro
ac

he
s

GPT-4o (OpenAI, 2023) 1 77.4% 35.9% 87.1% 75.4% 69.0%
Claude 3.7 Sonnet (Anthropic, 2025) 1 69.2% 48.0% 86.1% 78.1% 70.4%

Llama 4 Maverick (Meta, 2025) 1 87.6% 68.9% 91.1% 81.0% 82.2%
o3-mini (OpenAI, 2025) 1 94.4% 74.0% 92.2% 86.0% 86.7%

Oracle Verification (Pass@100) 100 98.6% 81.0% 96.0% 92.0% 91.9%

WEAVER interacts with common previously studied axes
for verification, summarized in Table 1.

(1) Scaling Candidate Generations: we study the perfor-
mance of verification methods as we increase the number of
repeated samples in Figure 3. Based on prior work (Bradley
& Terry, 1952; Chen et al., 2021), as the number of re-
sponses increases, we are more likely to see a correct re-
sponse (i.e. Pass@K increases), and hence more likely to
select a correct response given a good verification strategy.
However, differences in verification translate into different
scaling rates. We evaluate the performance of WEAVER
and baselines for K = 20 to 210, comparing to o3-mini and
Pass@K as well. Across all tasks, WEAVER yields the most
substantial gains when scaling the number of generations.
WEAVER consistently narrows the generation-verification
gap with the oracle upper bound (Pass@K) while alterna-
tive verification strategies plateau after a few generations.
The effect is particularly pronounced on difficult tasks like
GPQA. We detail the scaling trends observed in Figure 3 in
Appendix C.3.

(2) Scaling Model Sizes: In Table 3, we study how
WEAVER applied on smaller models (both verifiers and for
generating responses) can allow us to match the performance
of larger models, enabling weak-to-strong verification. We
consider an 8B setting—using LlaMA 3.1 8B to generate
responses along with 8B verifiers—and compare this to a

70B setting (LlaMA 3.3 70B Instruct, 8B-72B verifiers) as
well as o3-mini. We see that WEAVER applied at the 8B
scale comes within 1.6% of the majority vote baseline at the
70B scale, and WEAVER at 70B surpasses o3-mini by 1.0%,
demonstrating a weak-to-strong verification phenomenon.
Verifier calibration details are available in Appendix C.5.

(3) Scaling Verifier Count: Two axes for scaling verifica-
tion are (1) the number of verifiers used and (2) the number
of scores sampled from each verifier. Figure 21 shows how
performance changes as we ensemble 1 to 15 verifiers using
both naive averaging and WEAVER. Verifiers are greedily
added in order of individual accuracy, from highest to low-
est. Aggregating more verifiers improves performance by
up to 8.5% over the top-1 verifier. As shown in Figure 21,
WEAVER consistently outperforms naive ensemble averag-
ing across both Oracle Top-5 Verifiers and Total Verifiers
configurations for verifier ensembling, with improvements
ranging from +2.4% to +10.1% across all datasets. The
performance gains are particularly pronounced on GPQA
Diamond (+10.1%) and MMLU Pro (+5.1%), demonstrat-
ing WEAVER’s effectiveness in aggregating verifier signals
through learned weights rather than simple averaging. How-
ever, gains diminish as more models are added—reflecting
the classic ensemble bias-variance tradeoff: initial improve-
ments stem from variance reduction, while additional ver-
ifiers contribute redundant signal due to correlated biases
on hard examples (Abe et al., 2024). We compare alterna-
tive score calibration strategies beyond WEAVER’s binary

7

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 3: Scaling Generations Boosts Performance with WEAVER: The generation-verification gap shrinks when
increasing K and leveraging WEAVER, outperforming alternative verification methods by an average 18.3%.

Table 3: WEAVER Reduces Gap between Model Classes: 8B and 70B, 70B and Frontier LM

Generator
Model

Verifier
Model

Aggregation
Strategy

Datasets
Average

MATH GPQA
Diamond

MMLU
College

MMLU
Pro

Llama 3.1 8B Instruct N/A Majority Vote 69.0% 30.5% 72.7% 56.4% 57.2%
8B and below WEAVER 80.0% 47.1% 85.7% 67.2% 70.0%

∆ w. WEAVER +11.0% +16.6% +13.0% +10.2% +12.8%

Llama 3.3 70B Instruct N/A Majority Vote 83.0% 44.9% 84.1% 74.4% 71.6%
72B and below WEAVER 93.4% 72.2% 94.9% 90.2% 87.6%

∆ w. WEAVER +10.4% +27.3% +10.8% +15.8% +16.0%

o3-mini N/A First Sample 94.4% 74.0% 92.2% 86.0% 86.7%

transformation in Appendix C.7, and find that the default
binarization yields the strongest downstream selection per-
formance. We also explore scaling the number of scores per
verifier—via prompt tuning or temperature variation—in
Appendix C.5. While this yields modest improvements,
increasing verifier count remains the more effective strat-
egy. That said, both methods are complementary and can be
combined for further gains.

(4) Scaling Test-Time Compute: We study how perfor-
mance scales in the total compute used for both verification
and repeated generations. Figure 4 shows the relationship
between inference-time compute and success rate for differ-
ent generation-verification systems. For each method, we
scale the number of generations exponentially from 1 to 100
and plot the required inference compute for generation and
verification together versus the success rate. Note that Fig-
ure 4 differs from Figure 3, since Majority Voting requires
0 verification inference calls while WEAVER requires 30+

calls for the weak verifiers. We find that WEAVER achieves
the highest maximum success rate; notably, majority vot-
ing plateaus at around 22 to 23 ExaFLOPs per query while
WEAVER continues scaling until 512 ExaFLOPs. How-
ever, the additional compute required for WEAVER can be
prohibitive. We explore how to reduce this computational
burden while retaining WEAVER’s performance in the next
section.

6. WEAVER Distillation: Improving
Verification Efficiency at Inference

We explore distillation strategies for fine-tuning a smaller
LM as a task-specific verifier. In particular, we train cross-
encoders; the input is a concatenated query-response pair,
while the output is WEAVER’s pseudolabel generated from
Weak Supervision, namely Pr(yij = 1|sij1, . . . , sijm) (see
Section 4). For the model, we selected ModernBERT-Large
(396M) (Warner et al., 2024). For more details, please see
Appendix C.6.

8

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 4: WEAVER Improves the Accuracy-Compute Performance Trade-Offs. Success rate (%) as a function of total
inference compute per query (generation and verification compute, log scaled) for different verification strategies. Each
point represents a different number of candidate generations (from 20 to 27). WEAVER achieves the highest accuracy
while requiring more compute than Majority Voting but demonstrates continued scaling benefits, while WEAVER Distilled
maintains most of WEAVER’s performance gains with 97.3% compute savings and substantial accuracy improvements over
baseline methods.

Figure 5 shows the performance of WEAVER on the Llama-
70B generations against the cross-encoder on GPQA Dia-
mond. Across tasks, we find that the distilled cross-encoder
is able to capture 98.2% of the performance of WEAVER.
When running WEAVER with all the verifiers, it costs 35.35
exaFLOPs for each query’s set of 100 samples. Running
a 400M cross-encoder costs 1.01 exaFLOPs for evaluat-
ing 100 samples and reduces compute cost by more than
three orders of magnitude, saving 99.97% of the FLOPs
originally required for running the 70B verifiers. We also
outperform majority voting by 23.2% while only incurring
a 0.57% increased inference cost over only generating the
responses. We see similar results for additional datasets in
Figure 22 (Appendix C.6).

These results suggest that, through distillation, we can cap-
ture the combined strengths of the weak verifiers used for
WEAVER, and deploy generalizable and lightweight cross-
encoders that use only a fraction of the parameters used
for generation. This reduces our hardware constraints con-
siderably; rather than utilizing an 8-GPU node per 70B
verifier (i.e. Nvidia H200s with 80B memory), we only re-
quire a single A100 GPU with 32GB of memory for our
cross-encoder. Figure 5: Distilling WEAVER into a 400M Cross-Encoder

Almost Entirely Captures the Performance of WEAVER,
Yielding 99.97% Compute Savings. ∗We train/evaluate on
an 80:20 split.

9

Shrinking the Generation-Verification Gap with Weak Verifiers

References
Abe, T., Buchanan, E. K., Pleiss, G., and Cunningham,

J. P. Pathologies of predictive diversity in deep ensem-
bles. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.
net/forum?id=TQfQUksaC8. Featured Certifica-
tion.

Anthropic. Claude 3.7 sonnet and claude code, Febru-
ary 2025. URL https://www.anthropic.com/
news/claude-3-7-sonnet. Announcement blog
post, 5 min read.

Arora, S., Narayan, A., Chen, M. F., Orr, L., Guha, N., Bha-
tia, K., Chami, I., Sala, F., and Ré, C. Ask me anything:
A simple strategy for prompting language models, 2022.
URL https://arxiv.org/abs/2210.02441.

Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D.,
Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma,
N., et al. A General Language Assistant as a Laboratory
for Alignment. ArXiv Preprint arXiv:2112.00861, 2021.

Bradley, R. A. and Terry, M. E. Rank Analysis of Incomplete
Block Designs: I. The Method of Paired Comparisons.
Biometrika, 39(3/4):324–345, 1952.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V., Ré,
C., and Mirhoseini, A. Large language monkeys: Scaling
inference compute with repeated sampling, 2024. URL
https://arxiv.org/abs/2407.21787.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. Learning
to rank: from pairwise approach to listwise approach.
In Proceedings of the 24th international conference on
Machine learning, pp. 129–136, 2007.

Chaudhari, S., Aggarwal, P., Murahari, V., Rajpurohit, T.,
Kalyan, A., Narasimhan, K., Deshpande, A., and da Silva,
B. C. RLHF Deciphered: A Critical Analysis of Rein-
forcement Learning from Human Feedback for LLMs,
2024.

Chen, G. H., Chen, S., Liu, Z., Jiang, F., and Wang, B.
Humans or LLMs as the Judge? A Study on Judgement
Bias. ArXiv Preprint arXiv:2402.10669, 2024a.

Chen, J., Ren, J., Chen, X., Yang, C., Sun, R., and
Arık, S. Ö. Sets: Leveraging self-verification and self-
correction for improved test-time scaling. arXiv preprint
arXiv:2501.19306, 2025.

Chen, L., Davis, J. Q., Hanin, B., Bailis, P., Stoica, I.,
Zaharia, M., and Zou, J. Are more llm calls all you
need? towards scaling laws of compound inference
systems, 2024b. URL https://arxiv.org/abs/
2403.02419.

Chen, L., Davis, J. Q., Hanin, B., Bailis, P., Stoica, I., Za-
haria, M., and Zou, J. Are more llm calls all you need?
towards scaling laws of compound inference systems.
arXiv preprint arXiv:2403.02419, 2024c.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code,
2021.

Chen, M. F., Fu, D. Y., Adila, D., Zhang, M., Sala, F., Fa-
tahalian, K., and Ré, C. Shoring up the foundations:
fusing model embeddings and weak supervision. In
Cussens, J. and Zhang, K. (eds.), Proceedings of the
Thirty-Eighth Conference on Uncertainty in Artificial
Intelligence, volume 180 of Proceedings of Machine
Learning Research, pp. 357–367. PMLR, 01–05 Aug
2022. URL https://proceedings.mlr.press/
v180/chen22e.html.

Chiang, W.-L., Zheng, L., Sheng, Y., Angelopoulos, A. N.,
Li, T., Li, D., Zhang, H., Zhu, B., Jordan, M., Gonzalez,
J. E., and Stoica, I. Chatbot arena: An open platform for
evaluating llms by human preference, 2024.

Christiano, P. F., Leike, J., Brown, T., Martic,
M., Legg, S., and Amodei, D. Deep Rein-
forcement Learning from Human Preferences.
Advances in Neural Information Processing Systems,
30, 2017.

Clark, E., August, T., Serrano, S., Haduong, N., Gururangan,
S., and Smith, N. A. All that’s ’human’ is not gold:
Evaluating human evaluation of generated text, 2021.
URL https://arxiv.org/abs/2107.00061.

Cui, G., Yuan, L., Wang, Z., Wang, H., Li, W., He, B.,
Fan, Y., Yu, T., Xu, Q., Chen, W., et al. Process re-
inforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

Dorka, N. Quantile regression for distributional reward
models in rlhf. arXiv preprint arXiv:2409.10164, 2024.

Dubois, Y., Galambosi, B., Liang, P., and Hashimoto, T. B.
Length-Controlled AlpacaEval: A Simple Way to Debias

10

https://openreview.net/forum?id=TQfQUksaC8
https://openreview.net/forum?id=TQfQUksaC8
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2210.02441
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2403.02419
https://arxiv.org/abs/2403.02419
https://proceedings.mlr.press/v180/chen22e.html
https://proceedings.mlr.press/v180/chen22e.html
https://arxiv.org/abs/2107.00061

Shrinking the Generation-Verification Gap with Weak Verifiers

Automatic Evaluators. ArXiv Preprint arXiv:2404.04475,
2024a.

Dubois, Y., Li, C. X., Taori, R., Zhang, T., Gulrajani, I., Ba,
J., Guestrin, C., Liang, P. S., and Hashimoto, T. B. Alpaca-
Farm: A Simulation Framework for Methods that Learn
from Human Feedback. Advances in Neural Information
Processing Systems, 36, 2024b.

Eisenstein, J., Berant, J., Nagpal, C., Agarwal, A., Beirami,
A., D’Amour, A. N., Dvijotham, K. D., Heller, K. A.,
Pfohl, S. R., and Ramachandran, D. Reward Model
Underspecification in Language Model Alignment. In
NeurIPS 2023 Workshop on Distribution Shifts: New
Frontiers with Foundation Models, 2023a.

Eisenstein, J., Nagpal, C., Agarwal, A., Beirami, A.,
D’Amour, A., Dvijotham, D., Fisch, A., Heller, K., Pfohl,
S., Ramachandran, D., et al. Helping or herding? reward
model ensembles mitigate but do not eliminate reward
hacking. arXiv preprint arXiv:2312.09244, 2023b.

Es, S., James, J., Espinosa-Anke, L., and Schockaert, S.
RAGAs: Automated Evaluation of Retrieval Augmented
Generation. ArXiv Preprint arXiv:2309.15217, 2023.

Fu, D., Chen, M., Sala, F., Hooper, S., Fatahalian, K., and
Ré, C. Fast and three-rious: Speeding up weak supervi-
sion with triplet methods. In International conference on
machine learning, pp. 3280–3291. PMLR, 2020.

Fu, J., Ng, S.-K., Jiang, Z., and Liu, P. GPTScore:
Evaluate as You Desire. Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), 2023.

Guha, N., Chen, M. F., Chow, T., Khare, I. S., and Re, C.
Smoothie: Label free language model routing. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Hall, A. R. Generalized method of moments. A companion
to theoretical econometrics, pp. 230–255, 2003.

HazyResearch. metal. https://https://github.
com/HazyResearch/metal, 2018.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022a.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W.,
Vinyals, O., and Sifre, L. Training compute-optimal
large language models, 2022b. URL https://arxiv.
org/abs/2203.15556.

Hosking, T., Blunsom, P., and Bartolo, M. Human feedback
is not gold standard, 2024. URL https://arxiv.
org/abs/2309.16349.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code, 2024. URL
https://arxiv.org/abs/2403.07974.

Kalra, N. and Tang, L. Verdict: A library for scaling judge-
time compute, 2025. URL https://arxiv.org/
abs/2502.18018.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J.,
and Amodei, D. Scaling laws for neural language mod-
els, 2020. URL https://arxiv.org/abs/2001.
08361.

Karpinska, M., Akoury, N., and Iyyer, M. The perils of
using mechanical turk to evaluate open-ended text genera-
tion, 2021. URL https://arxiv.org/abs/2109.
06835.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., San-
thanam, K., Vardhamanan, S., Haq, S., Sharma, A.,
Joshi, T. T., Moazam, H., Miller, H., Zaharia, M.,
and Potts, C. Dspy: Compiling declarative language
model calls into self-improving pipelines. arXiv preprint
arXiv:2310.03714, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization, 2017. URL https://arxiv.org/abs/
1412.6980.

Kirchner, J. H., Chen, Y., Edwards, H., Leike, J., McAleese,
N., and Burda, Y. Prover-verifier games improve legibility
of llm outputs. arXiv preprint arXiv:2407.13692, 2024.

Koo, D., Choi, Y., and Choi, E. Cognitive Biases in
Large Language Models as Evaluators. ArXiv Preprint
arXiv:2312.05441, 2023.

Lambert, N. and Calandra, R. The alignment ceiling: Ob-
jective mismatch in reinforcement learning from human
feedback. ArXiv Preprint arXiv:2311.00168, 2023.

11

https://https://github.com/HazyResearch/metal
https://https://github.com/HazyResearch/metal
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2309.16349
https://arxiv.org/abs/2309.16349
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2502.18018
https://arxiv.org/abs/2502.18018
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2109.06835
https://arxiv.org/abs/2109.06835
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Shrinking the Generation-Verification Gap with Weak Verifiers

Lambert, N., Pyatkin, V., Morrison, J., Miranda, L., Lin,
B. Y., Chandu, K., Dziri, N., Kumar, S., Zick, T., Choi,
Y., Smith, N. A., and Hajishirzi, H. RewardBench: Eval-
uating Reward Models for Language Modeling, 2024.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpacae-
val: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/
alpaca_eval, 2023.

Lifshitz, S., McIlraith, S. A., and Du, Y. Multi-agent
verification: Scaling test-time compute with multiple
verifiers, 2025. URL https://arxiv.org/abs/
2502.20379.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step, 2023. URL https:
//arxiv.org/abs/2305.20050.

Liu, C. Y. and Zeng, L. Skywork Reward Model
Series. https://huggingface.co/Skywork,
September 2024.

Liu, C. Y., Zeng, L., Liu, J., Yan, R., He, J., Wang, C.,
Yan, S., Liu, Y., and Zhou, Y. Skywork-reward: Bag
of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024.

Liu, R., Gao, J., Zhao, J., Zhang, K., Li, X., Qi, B., Ouyang,
W., and Zhou, B. Can 1b llm surpass 405b llm? rethinking
compute-optimal test-time scaling, 2025a. URL https:
//arxiv.org/abs/2502.06703.

Liu, R., Gao, J., Zhao, J., Zhang, K., Li, X., Qi, B., Ouyang,
W., and Zhou, B. Can 1b llm surpass 405b llm? rethink-
ing compute-optimal test-time scaling. arXiv preprint
arXiv:2502.06703, 2025b.

Liu, Y., Iter, D., Xu, Y., Wang, S., Xu, R., and Zhu, C.
G-eval: Nlg evaluation using gpt-4 with better human
alignment. ArXiv Preprint arXiv:2303.16634, 2023.

Meta. The Llama 4 herd: The beginning of a new era
of natively multimodal AI innovation, 4 2025. URL
https://ai.meta.com/blog/llama-4/. Ac-
cessed: 2025-05-12.

Minghao Yang, Chao Qu, X. T. Inf-orm-llama3.1-
70b, 2024. URL [https://huggingface.co/
infly/INF-ORM-Llama3.1-70B](https:
//huggingface.co/infly/INF-ORM-Llama3.
1-70B).

OpenAI. GPT-4 Technical Report. ArXiv Preprint
arXiv:2303.08774, 2023.

OpenAI. Openai o3-mini system card. Technical report,
OpenAI, January 2025. URL https://cdn.openai.
com/o3-mini-system-card-feb10.pdf. Pub-
lication.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wain-
wright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A., et al. Training language mod-
els to follow instructions with human feedback.
Advances in Neural Information Processing Systems,
35:27730–27744, 2022.

Pan, Q., Ashktorab, Z., Desmond, M., Cooper, M. S., John-
son, J., Nair, R., Daly, E., and Geyer, W. Human-Centered
Design Recommendations for LLM-as-a-judge. In
Proceedings of the 1st Human-Centered Large Language
Modeling Workshop, pp. 16–29, 2024.

Puri, I., Sudalairaj, S., Xu, G., Xu, K., and Srivastava, A. A
probabilistic inference approach to inference-time scaling
of llms using particle-based monte carlo methods, 2025.
URL https://arxiv.org/abs/2502.01618.

Ratner, A., Hancock, B., Dunnmon, J., Sala, F., Pandey,
S., and Ré, C. Training complex models with multi-
task weak supervision. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp.
4763–4771, 2019.

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., and
Ré, C. Snorkel: rapid training data creation with weak
supervision. The VLDB Journal, 29(2):709–730, 2020.

Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., and Ré, C.
Data programming: Creating large training sets, quickly.
Advances in neural information processing systems, 29,
2016.

Ravi, S. S., Mielczarek, B., Kannappan, A., Kiela, D., and
Qian, R. Lynx: An Open Source Hallucination Evaluation
Model, 2024.

Reimers, N. and Gurevych, I. Making monolingual sen-
tence embeddings multilingual using knowledge dis-
tillation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing. As-
sociation for Computational Linguistics, 11 2020. URL
https://arxiv.org/abs/2004.09813.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. GPQA: A
graduate-level google-proof q&a benchmark. In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=Ti67584b98.

Rosset, S., Zhu, J., and Hastie, T. Margin maximizing loss
functions. Advances in neural information processing
systems, 16, 2003.

12

https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2502.20379
https://arxiv.org/abs/2502.20379
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2305.20050
https://huggingface.co/Skywork
https://arxiv.org/abs/2502.06703
https://arxiv.org/abs/2502.06703
https://ai.meta.com/blog/llama-4/
https://huggingface.co/infly/INF-ORM-Llama3.1-70B
https://huggingface.co/infly/INF-ORM-Llama3.1-70B
https://huggingface.co/infly/INF-ORM-Llama3.1-70B
https://huggingface.co/infly/INF-ORM-Llama3.1-70B
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://arxiv.org/abs/2502.01618
https://arxiv.org/abs/2004.09813
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98

Shrinking the Generation-Verification Gap with Weak Verifiers

Saad-Falcon, J., Khattab, O., Potts, C., and Zaharia,
M. ARES: An Automated Evaluation Framework
for Retrieval-Augmented Generation Systems. ArXiv
Preprint arXiv:2311.09476, 2023.

Saad-Falcon, J., Lafuente, A. G., Natarajan, S., Maru, N.,
Todorov, H., Guha, E., Buchanan, E. K., Chen, M., Guha,
N., Ré, C., and Mirhoseini, A. Archon: An architecture
search framework for inference-time techniques. arXiv
preprint arXiv:2409.15254, 2024a.

Saad-Falcon, J., Vivek, R., Berrios, W., Naik, N. S.,
Franklin, M., Vidgen, B., Singh, A., Kiela, D., and Mehri,
S. Lmunit: Fine-grained evaluation with natural language
unit tests, 2024b. URL https://arxiv.org/abs/
2412.13091.

Schapire, R. E. Explaining adaboost. In Empirical inference:
festschrift in honor of vladimir N. Vapnik, pp. 37–52.
Springer, 2013.

Shin, C., Li, W., Vishwakarma, H., Roberts, N., and Sala,
F. Universalizing weak supervision. arXiv preprint
arXiv:2112.03865, 2021.

Singhal, P., Goyal, T., Xu, J., and Durrett, G. A long way
to go: Investigating length correlations in rlhf. ArXiv
Preprint arXiv:2310.03716, 2023.

Singhi, N., Bansal, H., Hosseini, A., Grover, A., Chang,
K.-W., Rohrbach, M., and Rohrbach, A. When to solve,
when to verify: Compute-optimal problem solving and
generative verification for llm reasoning, 2025a. URL
https://arxiv.org/abs/2504.01005.

Singhi, N., Bansal, H., Hosseini, A., Grover, A., Chang,
K.-W., Rohrbach, M., and Rohrbach, A. When to solve,
when to verify: Compute-optimal problem solving and
generative verification for llm reasoning, 2025b. URL
https://arxiv.org/abs/2504.01005.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters, 2024. URL https://arxiv.
org/abs/2408.03314.

Song, M., Su, Z., Qu, X., Zhou, J., and Cheng, Y. Prmbench:
A fine-grained and challenging benchmark for process-
level reward models, 2025a. URL https://arxiv.
org/abs/2501.03124.

Song, Y., Zhang, H., Eisenach, C., Kakade, S., Fos-
ter, D., and Ghai, U. Mind the gap: Examining the
self-improvement capabilities of large language mod-
els, 2025b. URL https://arxiv.org/abs/2412.
02674.

Stroebl, B., Kapoor, S., and Narayanan, A. Inference scal-
ing flaws: The limits of llm resampling with imperfect
verifiers, 2024. URL https://arxiv.org/abs/
2411.17501.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H.,
Zhou, D., and Wei, J. Challenging big-bench tasks and
whether chain-of-thought can solve them, 2022. URL
https://arxiv.org/abs/2210.09261.

Tang, L., Laban, P., and Durrett, G. MiniCheck: Efficient
Fact-Checking of LLMs on Grounding Documents, 2024.

Verga, P., Hofstatter, S., Althammer, S., Su, Y., Piktus, A.,
Arkhangorodsky, A., Xu, M., White, N., and Lewis, P.
Replacing judges with juries: Evaluating llm generations
with a panel of diverse models, 2024. URL https:
//arxiv.org/abs/2404.18796.

Vishwakarma, H. and Sala, F. Lifting weak supervision to
structured prediction. Advances in Neural Information
Processing Systems, 35:37563–37574, 2022.

Wang, B., Zheng, R., Chen, L., Liu, Y., Dou, S., Huang, C.,
Shen, W., Jin, S., Zhou, E., Shi, C., Gao, S., Xu, N., Zhou,
Y., Fan, X., Xi, Z., Zhao, J., Wang, X., Ji, T., Yan, H.,
Shen, L., Chen, Z., Gui, T., Zhang, Q., Qiu, X., Huang,
X., Wu, Z., and Jiang, Y.-G. Secrets of RLHF in Large
Language Models Part II: Reward Modeling, 2024a.

Wang, H., Xiong, W., Xie, T., Zhao, H., and Zhang,
T. Interpretable preferences via multi-objective re-
ward modeling and mixture-of-experts. ArXiv Preprint
arXiv:2406.12845, 2024b.

Wang, J., Liang, Y., Meng, F., Sun, Z., Shi, H., Li, Z., Xu, J.,
Qu, J., and Zhou, J. Is ChatGPT a good NLG Evaluator?
A Preliminary Study. ArXiv Preprint arXiv:2303.04048,
2023a.

Wang, J., Xie, R., Zhu, S., Wang, J., Athiwaratkun, B.,
Dhingra, B., Song, S. L., Zhang, C., and Zou, J. Improv-
ing model alignment through collective intelligence of
open-source llms, 2025. URL https://arxiv.org/
abs/2505.03059.

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo, S.,
Ren, W., Arulraj, A., He, X., Jiang, Z., et al. Mmlu-pro:
A more robust and challenging multi-task language under-
standing benchmark. arXiv preprint arXiv:2406.01574,
2024c.

Wang, Z., Dong, Y., Zeng, J., Adams, V., Sreedhar, M. N.,
Egert, D., Delalleau, O., Scowcroft, J. P., Kant, N.,
Swope, A., and Kuchaiev, O. HelpSteer: Multi-Attribute
Helpfulness Dataset for SteerLM, 2023b.

13

https://arxiv.org/abs/2412.13091
https://arxiv.org/abs/2412.13091
https://arxiv.org/abs/2504.01005
https://arxiv.org/abs/2504.01005
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2412.02674
https://arxiv.org/abs/2412.02674
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2505.03059
https://arxiv.org/abs/2505.03059

Shrinking the Generation-Verification Gap with Weak Verifiers

Wang, Z., Nagpal, C., Berant, J., Eisenstein, J., D’Amour,
A., Koyejo, S., and Veitch, V. Transforming and combin-
ing rewards for aligning large language models. arXiv
preprint arXiv:2402.00742, 2024d.

Warner, B., Chaffin, A., Clavié, B., Weller, O., Hallström,
O., Taghadouini, S., Gallagher, A., Biswas, R., Ladhak,
F., Aarsen, T., Cooper, N., Adams, G., Howard, J., and
Poli, I. Smarter, better, faster, longer: A modern bidi-
rectional encoder for fast, memory efficient, and long
context finetuning and inference, 2024. URL https:
//arxiv.org/abs/2412.13663.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter,
B., Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models, 2023. URL https://arxiv.org/abs/
2201.11903.

Xu, T., Helenowski, E., Sankararaman, K. A., Jin, D.,
Peng, K., Han, E., Nie, S., Zhu, C., Zhang, H., Zhou,
W., Zeng, Z., He, Y., Mandyam, K., Talabzadeh, A.,
Khabsa, M., Cohen, G., Tian, Y., Ma, H., Wang, S., and
Fang, H. The perfect blend: Redefining rlhf with mixture
of judges, 2024. URL https://arxiv.org/abs/
2409.20370.

Ying, L. et al. Decision tree methods: applications for classi-
fication and prediction. Shanghai archives of psychiatry,
27(2):130, 2015.

Yuan, L., Li, W., Chen, H., Cui, G., Ding, N., Zhang, K.,
Zhou, B., Liu, Z., and Peng, H. Free process rewards
without process labels. arXiv preprint arXiv:2412.01981,
2024.

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Kumar, A.,
and Agarwal, R. Generative Verifiers: Reward Modeling
as Next-Token Prediction, 2024.

Zhao, E., Awasthi, P., and Gollapudi, S. Sample, scrutinize
and scale: Effective inference-time search by scaling
verification. arXiv preprint arXiv:2502.01839, 2025.

Zheng, K., Han, J. M., and Polu, S. Minif2f: a cross-system
benchmark for formal olympiad-level mathematics, 2022.
URL https://arxiv.org/abs/2109.00110.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang,
H., Gonzalez, J. E., and Stoica, I. Judging llm-as-a-judge
with mt-bench and chatbot arena, 2023a.

Zheng, L., Xu, D., Dong, J., Zeng, A., Xie, S., Xing, E. P.,
and Liang, P. Evaluation Biases for Large Language
Models. ArXiv Preprint arXiv:2305.17926, 2023b.

14

https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2409.20370
https://arxiv.org/abs/2409.20370
https://arxiv.org/abs/2109.00110

Shrinking the Generation-Verification Gap with Weak Verifiers

A. Table of Contents
1. WEAVER Methodology (Appendix B)

(a) Discrete Weak Supervision Model with Known Difficulty (Appendix B.1)
(b) Adapting Weak Supervision to the Verification Setting (Appendix B.2)
(c) Filtering Out Low-Quality Verifiers (Appendix B.2.3)
(d) Adaptation Method (Appendix B.3)
(e) Clustering by Difficulty to Improve WEAVER (Appendix B.4)

2. Experiments: (Appendix C)

(a) Models and Datasets (Appendix C.1)
(b) Verification Baselines (Appendix C.2)
(c) Scaling Trends of WEAVER (Appendix C.3)
(d) Scaling Candidate Generations (Appendix C.4)
(e) Scaling Verifier Count (Appendix C.5)
(f) Weaver Distillation (Appendix C.6)
(g) Individual Verifier Optimization (Appendix C.7)

3. Miscellaneous (Appendix D)

(a) Compute Requirements (Appendix D.1)

15

Shrinking the Generation-Verification Gap with Weak Verifiers

B. WEAVER Methodology
B.1. Weak Supervision Model

We can construct a data generating model over response correctness y and the binary verifier outputs s̄. The model is defined
as:

Response Correctness: yij ∼ Bernoulli(π) ∀i ∈ [n], j ∈ [K],

Verifier Score: s̄ijk | yij ∼

{
Bernoulli(wk,1), if yij = 1,

Bernoulli(1− wk,0), if yij = 0,
∀i ∈ [n], j ∈ [K], k ∈ [m]

where:

• π is the probability that a response is correct.

• wk,1 is the true positive rate (TPR) of verifier k, and wk,0 is the true negative rate (TNR), which we refer to as the
verifier’s accuracy parameters.

Here, each verifier k emits a binary score s̄ijk ∈ {0, 1}, which is assumed to be a noisy indicator of whether response yij is
correct. The likelihood of the verifier’s binary output Xijk ∈ {0, 1} is:

Pr(Sk = s̄ijk | Y = yij) =

wk,1, if yij = 1 and s̄ijk = 1,

1− wk,1, if yij = 1 and s̄ijk = 0,

wk,0, if yij = 0 and s̄ijk = 0,

1− wk,0, if yij = 0 and s̄ijk = 1.

We are interested in estimating the correctness of a response yij ∈ {0, 1} based on assessments from multiple verifiers
s̄ij = {s̄ij1, s̄ij2, . . . , s̄ijm}. Applying Bayes’ Rule, we get:

Pr(yij = 1 | S = s̄ij) =
Pr(S = s̄ij | yij = 1)Pr(yij = 1)

Pr(s̄ij)
(7)

where Pr(s̄ij) =
∑

y′∈{0,1} Pr(s̄ij | yij = y′) Pr(yij = y′).

Equation (7) requires evaluating the full conditional likelihood:

Pr(S = s̄ij | yij) = Pr(S1 = s̄ij1, S2 = s̄ij2, . . . , Sm = s̄ijm | yij),

which is a joint distribution over m binary random variables. Since each verifier Sk ∈ {0, 1} is binary, then there are 2m

possible verifier output configurations for S ∈ {0, 1}m. This results in 2m − 1 free parameters per class label to construct
the distribution Pr(S = s̄ij | yij).

Conditional Independence Assumption To avoid this exponential blowup, we can assume that the verifiers provide
conditionally independent outputs:

P (S | y) =
m∏

k=1

P (Sk | y),

which reduces the number of parameters from O(2m) to O(m) and enables efficient inference, under the assumption that
each verifier provides unique information about the correctness of a response.

Then, Equation (7) simplifies to a Naive Bayes-style estimator:

Pr
(
yij = 1 | S = s̄ij

)
=

Pr(S1 = s̄ij1, . . . , Sm = s̄ijm|yij = 1)Pr(yij = 1)

Pr(S = s̄ij)

=
Pr(yij = 1)

∏m
k=1 Pr

(
Sk = s̄ijk | yij = 1

)∑
y′∈{0,1} Pr(yij = y′)

∏m
k=1 Pr

(
Sk = s̄ijk | yij = y′

) (8)

The parameters in Equation (8) include:

16

Shrinking the Generation-Verification Gap with Weak Verifiers

• The prior probability of correctness π = Pr(yij = 1).

• The verifier-specific conditional likelihoods P (Sk | yij).

B.1.1. PARAMETER ESTIMATION

Supervised Setting When ground-truth labels yij are available, parameter estimation reduces to computing empirical
frequencies. We can estimate the prior as:

π̂ =
1

N

∑
i,j

1{yij = 1}

For each verifier k, we could estimate:

ŵk,1 =

∑
i,j 1{yij = 1} · 1{Sk = 1}∑

i,j 1{yij = 1}
,

ŵk,0 =

∑
i,j 1{yij = 0} · 1{Sk = 0}∑

i,j 1{yij = 0}
.

Weak Supervised Setting When a few labeled yij are available, we can use it to estimate π, but we still need to estimate the
verifier accuracy parameters wk,1, wk,0 to compute

∏m
k=1 Pr(Sk = s̄ijk|yij = 1). Instead of using labeled data, we estimate

accuracy parameters using moment matching. In particular, we match observable second moments of verifier outputs to the
model-implied moments under conditional independence assumptions, based on an approach from (HazyResearch, 2018).

Pairwise Statistics. For each pair of verifiers k1, k2 and binary outputs a, b ∈ {0, 1}, we can express the joint probability
of their outputs using the marginalization rule and the conditional independence assumption:

Pr(Sk1
= a, Sk2

= b) (9)
= Pr(Sk1

= a|Y = 1)Pr(Sk2
= a|Y = 1)Pr(Y = 1) + Pr(Sk1

= b|Y = 0)Pr(Sk2
= b|Y = 0)Pr(Y = 0)

where the conditional distributions for verifier k are:

Pr(Sk = a | y = 1) =

{
wk,1, a = 1,

1− wk,1, a = 0,
Pr(Sk = a | y = 0) =

{
1− wk,0, a = 1,

wk,0, a = 0.

Marginal Statistics. Similarly, each verifier’s marginal distribution can be written as:

Pr(Sk = 1) = Pr(Sk = 1|Y = 1)Pr(Y = 1) + Pr(Sk = 1|Y = 0)Pr(Y = 0) (10)

Note that this equation holds true regardless of the conditional independence assumption.

Estimation method

• Construct the second order moment matrix O ∈ R(2m)×(2m), where:

O2i−1:2i,2i−1:2i = Pr(Si = 0) 0 (11)
0Pr(Si = 1) ∀i ∈ [m]

O2i−1:2i,2j−1:2j = Pr(Si = 0, Sj = 0) Pr(Si = 0, Sj = 1) (12)
Pr(Si = 1, Sj = 0)Pr(Si = 1, Sj = 1) ∀i ̸= j ∈ [m] (13)

• Construct the conditional probability matrix µ ∈ R(2V)×2, where each row encodes:

µ2k+a, b = Pr
(
Sk = a | y = b

)
17

Shrinking the Generation-Verification Gap with Weak Verifiers

µ =

wk1,0 1− wk1,1

1− wk1,0 wk1,1

.
wkm,0 1− wkm,1

1− wkm,0 wkm,1

• Label prior matrix P ∈ R2×2 is a diagonal matrix:

P =

[
Pr(yij = 0) 0

0 Pr(yij = 1)

]
.

Then, equation 9 is equivalent to O = µPµ⊤ on the entries off of the 2× 2 block diagonal, and equation 10 is equivalent to
diag(0) = µP⊮⊤. Therefore, we optimize the following loss to compute µ.

minimizeµ
∥∥Ooff-diag − (µP µT)off-diag

∥∥2 + ∥∥diag(O)− µP 1T
∥∥2,

By solving via gradient-descent, we obtain estimates of the verifier accuracy parameters {wk,1, wk,0}.

B.1.2. INFERENCE: COMPUTING RESPONSE CORRECTNESS PROBABILITIES

Once the accuracy parameters {wk,1, wk,0} are estimated and P (yij = 1) is computed from a small labeled development
dataset, we can compute posterior correctness probabilities for each response:

Pr(yij = 1|S = s̄ij) ∝ Pr(yij = 1)

m∏
k=1

Pr(Sk = s̄ijk|yij = 1)

Pr(yij = 0|S = s̄ij) ∝ Pr(yij = 0)

m∏
k=1

Pr(Sk = s̄ijk|yij = 0)

Normalizing these, we have a full posterior P (yij = 1|S = s̄ij), which provides a score with which we can select a response
for each query.

B.2. Adapting Weak Supervision to the Verification Setting

Given a set of verifiers, we elaborate on the design choices behind the weak supervision model described in Section 4. In
particular, we describe challenges around normalization, binarization and filtering out low-quality verifiers. In Section B.3,
we describe WEAVER’s approach to normalizing, binarizing, and filtering verifiers.

B.2.1. NORMALIZATION

Verifier outputs often differ substantially in scale, range, and distribution. For instance, some verifiers output unbounded
real-valued scores (e.g., log-likelihoods), while others output normalized probabilities or learned regression values. Some
standard losses under this framework include ranking losses, binary classification losses and regression losses. Some
examples include:

Ranking losses

• Pairwise logistic loss: L(s1, s0) = log(1 + exp(−(s1 − s0)))

• Bradley–Terry loss: L(s1, s0) = log(1 + exp(s0 − s1))

• Triplet margin loss: L(s1, s0) = max(0, 1− (s1 − s0))

Binary classification losses

• Logistic loss: L(s, y) = log(1 + exp(−y′s)), y′ = 2y − 1

• Hinge loss: L(s, y) = max(0, 1− y′s)

18

Shrinking the Generation-Verification Gap with Weak Verifiers

Regression losses

• Squared loss: L(s, y) = (s− y)2

• Huber loss: Lδ(s, y) =

{
1
2 (s− y)2 if |s− y| ≤ δ

δ(|s− y| − 1
2δ) otherwise

For regression losses, it is essential that the model output s lies in the same range as the label y ∈ [0, 1].

To combine out of the box verifiers, which may be trained under different constraints, verifier scores must be comparable.
We note that standard losses imposes different but related invariance assumptions:

• Ranking and binary classification losses are invariant to positive affine transformations of the form s 7→ αs + β,
where α > 0. This means that the relative ordering or decision boundary between scores is preserved even if scores
differ in scale or offset.

• Regression losses, in contrast, directly penalize deviations between scores and targets, so the absolute scale of scores
matters. Because many verifier outputs are meant to approximate probabilities or correctness labels y ∈ [0, 1], it is
essential to constrain scores to the same interval.

B.2.2. BINARIZATION

The weak supervision algorithm described in the prior section requires binary verifier outputs. This is naturally suited for
judge-style verifiers—such as language models prompted to answer yes/no questions—which output discrete 0, 1 labels.
However, many verifiers, especially reward models, emit continuous scores and often vary in scale and calibration. This
raises a key design question: should we input these scores to the weak supervision model as-is, or should we binarize them?

Using continuous scores retains fine-grained information about the confidence of each verifier. This can improve ranking-
based performance metrics such as AUC and may allow the weak supervision model to better resolve disagreements among
verifiers. However, it introduces challenges when combining signals across verifiers with inconsistent calibration or scale:
a score of 0.8 may have different meanings for different verifiers. As seen in Figure Figure 6 different verifiers exhibit
different score distributions even when evaluating the same set of responses. Some verifiers are sharply bimodal, others
skew heavily toward low or high scores, and some produce nearly flat or noisy distributions.

To address this, we evaluate several binarization strategies that convert continuous verifier scores into discrete labels. Figure 7
compares the AUC performance of a logistic regression model trained on verifier outputs across four binarization methods:
no binarization (continuous scores), a fixed threshold at 0.5, class balance-based thresholds, and quantile binarization. We
observe that while continuous scores can achieve strong AUC when sufficient training data is available, simple binarization
strategies—especially those that account for score distribution skew—perform comparably and are more robust under
limited supervision.

Figure 8 shows only modest differences across binarization strategies for selection accuracy. We note in highly imbalanced
datasets, as in the case GPQA, simple quantile-based binarization performs particularly well, likely because it adjusts for the
skewed distribution of scores, i.e. it discards ambiguous mid-range scores and retains only the most confident signals.

19

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 6: Accuracy of verifiers on the GPQA dataset. For each verifier, we compute the fraction of problems for which the
top-ranked response (according to its score) is correct. While some verifiers consistently select high-quality answers, others
perform near chance or worse, motivating the need to filter out low-quality verifiers before applying weak supervision.

20

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 7: Same conventions as Figure 8 where the performance reported is the area under the curve of the ROC.

21

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 8: Performance for logistic regression models trained on the verifier outputs under different binarization strategies:
(1) None: uses raw continuous scores without binarization, (2) Fixed Threshold: applies a uniform threshold across all data,
(3) Class Balance: chooses a threshold per verifier so that the proportion of positive labels matches the true class distribution
(4) Quantile: assigns positive labels to only the top 15% of scores, focusing on high-confidence predictions. Results
are shown across four datasets (GPQA-Diamond, MATH-500, MMLU-College, MMLU-Pro) and four training fractions
(1%, 5%, 10%, 20%). For each seed, we use a random subset of problems as the training set and report the performance
on the remaining problems. Curves report mean and standard deviation over multiple seeds. Performance is shown as a
function of the number of generations per problem (x-axis, log scale).

.

B.2.3. FILTERING OUT LOW-QUALITY VERIFIERS

Verifiers with low accuracy or extreme marginals (e.g., near-constant outputs) not only degrade ensemble performance but
also undermine the stability and identifiability of Weak Supervision algorithms, worsening the estimation error. How do we
discard verifiers that have low signal?

• Skewed marginals: Consider a dataset where Pr(y = 1) ≈ 0.5 and we have a verifier with Pr(Sk = 1) ≈ 0.99. A skewed
verifier with an extreme marginal (e.g., from naive thresholding for binarization) and near-constant outputs adds little
information to the ensemble. It primarily increases noise in the objective in Eq. 6 and should thus be discarded. Yet,
not at all verifiers that have extreme marginals add little signal; for instance, if instead Pr(y = 1) ≈ 0.99, a skewed

22

Shrinking the Generation-Verification Gap with Weak Verifiers

verifier could be highly accurate. Therefore, the definition of a low-quality verifier depends on the distribution of correct
responses.

• Breaking symmetry in the WS objective: a common assumption of Weak Supervision is that a majority of the verifiers
have better-than-random accuracy (Fu et al., 2020). Otherwise, there is a possibility that the WS algorithm can yield
non-unique solutions; the terms in Eq. 6 are the joint probabilities over pairs of verifiers as well as their marginals, which
do not uniquely determine if a verifier satisfies wk,1, wk,0 > 0.5 or not. Therefore, it is critical to remove as many
low-accuracy verifiers as possible to ensure that the estimation procedure converges to a unique solution.

B.3. Adaptation Method

Figure 9: Selection accuracy for each verifier across problems and datasets.

23

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 10: Average accuracy for each verifier across problems and datasets given Llama-70B responses scores.

24

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 11: Inverse covariance matrix for each verifier across datasets given Llama-70B responses scores.

25

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 12: Inverse covariance matrix for each verifier across datasets given Llama-70B responses scores, after binarization

26

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 13: Inverse covariance matrix for each verifier across datasets given Llama-70B responses scores, after binarization
and dropping.

We now describe our proposed method for normalization, binarization and filtering of verifiers, after which the Weak
Supervision algorithm described in Appendix B.1.

1. Normalization: To make verifier outputs comparable, we apply min-max normalization to each verifier:

s′ =
s−min(s)

max(s)−min(s)
∈ [0, 1].

This ensures that all scores lie within the same numerical range and preserves relative orderings. For regression-style
verifiers, normalization aligns their outputs with the scale of the labels and avoids numerical instability due to unbounded
score ranges. Without normalization, aggregation methods may become biased or ill-conditioned due to disproportionate
score magnitudes.

27

Shrinking the Generation-Verification Gap with Weak Verifiers

Table 4: Ablation of Development Set used for WEAVER Class Balance Estimation: As our reward model threshold, we
set it to the default of the 0.5.

Approach Model
Size

Dev Set
Size

Benchmarks

MATH500 GPQA Diamond MMLU MMLU Pro Average

WEAVER 70B Naive Threshold
(0.5 Threshold) 88.1% 52.0% 92.4% 83.5% 79.0%

WEAVER 70B 1% 90.4% 67.1% 91.1% 87.0% 84.5%
WEAVER 70B 5% 92.4% 72.7% 93.5% 90.4% 87.5%
WEAVER 70B 20% 92.4% 72.7% 93.5% 90.4% 87.5%
WEAVER 70B 100% 92.4% 72.7% 93.5% 90.4% 87.5%

Table 5: Ablation of Verifier Selection Strategies for WEAVER: Comparison of different strategies for dropping faulty
verifiers by dataset using each verifier’s marginal probability.

Approach Model
Size Verifier Selection Benchmarks

MATH500 GPQA Diamond MMLU MMLU Pro Average

WEAVER 70B No Dropped Verifiers 90.4% 52.0% 91.1% 84.2% 79.4%

WEAVER 70B Low Marginals Dropped
(Mostly Negative Verifiers) 93.4% 60.6% 91.7% 91.0% 84.2%

WEAVER 70B High Marginals Dropped
(Mostly Positive Verifiers) 83.4% 69.7% 87.9% 78.4% 79.9%

WEAVER 70B Extreme Marginals Dropped
(Mostly Positive or Negative) 90.8% 72.7% 92.4% 85.0% 85.2%

2. Binarization: We use a small amount of labeled samples (which we already are using to compute Pr(y = 1)) to
determine a threshold for converting continuous verifier outputs to binary outputs. Figure 12 illustrates the precision
matrix of the verifier scores after binarization. It shows a damping of large off-diagonal dependencies and improved
condition numbers. Table 4 shows that with only 5 to 10 labeled queries from benchmark development sets (which ≤ 1%
of the evaluation set), we can estimate binarization thresholds that bolster performance by averages of 8.4% for the 70B
models when compared to binary splitting along the median score of the dataset.

3. Filtering out low-quality verifiers: To mitigate the impact of low-quality verifiers, we prune verifiers with extreme
marginal behavior, depending on the class balance. For datasets with estimated class balance between 20% and 80%, we
filter out verifiers with positive rates outside this range. If a dataset has fewer than 20% positive samples overall, we
remove verifiers that predict positives more than 80% of the time. Conversely, for datasets with more than 80% positives,
we drop verifiers that predict positives less than 20% of the time.

Figure 13 illustrates the precision matrix of the verifier scores after both binarization and dropping low-signal or redundant
verifiers. Compared to Figure 12, it shows further attenuation of off-diagonal structure. Illustrating that dropping
contributes substantially to decorrelating the verifier set, which can improve identifiability and numerical stability for
downstream weak supervision. As shown in Table 5, verifier pruning leads to 12.5% performance improvement for the
70B model setting.

28

Shrinking the Generation-Verification Gap with Weak Verifiers

Table 6: Ablation of Adaptive Threshold Dev Set Size for WEAVER.

Approach Model
Size

Adaptive Threshold
Dev Set Size

Benchmarks

MATH500 GPQA Diamond MMLU MMLU Pro Average

WEAVER 70B 0.01 92.4% 72.7% 93.5% 90.4% 87.5%
WEAVER 70B 0.05 92.4% 72.7% 93.5% 90.4% 87.5%
WEAVER 70B 0.2 92.4% 72.7% 93.5% 90.4% 87.5%
WEAVER 70B 1.0 92.4% 72.7% 93.5% 90.4% 87.5%

Table 7: Performance Comparison Between Continuous and Discrete Logistic Regression: For supervised fine-tuning
on the verifier scores, the continuous model consistently outperforms the discrete variant across all datasets by avoiding the
lossy conversion of floats to binary votes required for the discrete variant.

Continuous vs. Discrete Logistic Regression Performance (%)

Method Dataset

MATH 500 GPQA MMLU College MMLU Pro BBH

Discrete LR 93.1 74.3 87.5 87.1 90.1
Continuous LR 97.2 78.1 90.4 92.0 96.5

Improvement +4.1 +3.8 +2.9 +4.9 +6.4

Table 8: Number of Unique Extracted Answers vs. Positive: Negative Sample Ratio per Query - Correlations for Llama
3.1 Instruct Models

Llama 3.1 8B Instruct
Correlation Metrics

Dataset Metric Type

Pearson Spearman Kendall’s Tau

MATH 500 -0.676 -0.745 -0.565
GPQA -0.312 -0.117 -0.096
MMLU College -0.595 -0.700 -0.591
MMLU Pro -0.590 -0.555 -0.425
BBH -0.365 -0.386 -0.300

Llama 3.1 70B Instruct
Correlation Metrics

Dataset Metric Type

Pearson Spearman Kendall’s Tau

MATH 500 -0.631 -0.842 -0.709
GPQA -0.148 -0.093 -0.089
MMLU College -0.551 -0.862 -0.769
MMLU Pro -0.446 -0.693 -0.585
BBH -0.268 -0.594 -0.474

B.4. Exploration: Clustering by Difficulty to Improve WEAVER

Weak verifiers often behave inconsistently across the difficulty spectrum of input queries. For instance, most verifiers may
have very high accuracy on easy queries and low accuracy on more difficult queries. Figure 10 and Figure 9 illustrate the
average and selection accuracy of each verifier across multiple problems and datasets. This confirms that there is significant
variation in verifier performance at the per-query level. To capture this heterogeneity, we explore clustering queries by
difficulty and fitting one WEAVER’s weak supervision model per cluster, independently.

We define query difficulty as the empirical ratio of correct to incorrect generations for each query. Using this as a proxy for
problem hardness, we partition each dataset into evenly sized clusters along the difficulty distribution and learn separate
weak supervision models for each cluster. This is done in an oracle setting, where difficulty is computed using ground-truth
correctness, but no label information is used when training the cluster-specific verifier models.

This approach is adaptive in two senses: (1) we adapt the weak supervision model to the difficulty class of the query, and
(2) we adapt the threshold of each reward model independently per cluster to better reflect local verifier behavior. For
each cluster, we perform a grid search over reward model thresholds ranging from 0.05 to 0.95 in increments of 0.05 (19
values total), selecting the threshold that maximizes accuracy on a held-out development set. We experiment with clustering
the queries into between 1 and 5 difficulty levels per dataset, using the oracle difficulty distribution to divide the queries
into equally sized bins. While the clustering in our study uses oracle difficulty, future work could explore unsupervised

29

Shrinking the Generation-Verification Gap with Weak Verifiers

approximations or semi-supervised approaches using a small labeled subset (e.g., 10%) to estimate difficulty distributions.

In Tables 9 and 10,l, we analyze how difficulty-aware clustering and threshold adaptation affect WEAVER’s performance at
different model scales.

• 70B model: At this scale, we find that optimizing a single reward model threshold captures most of the verification
signal, with clustering yielding only marginal gains (∼1%). This suggests that verifier behavior is relatively stable
across query difficulties at higher model capacities.

• 8B model: In contrast, the 8B setting exhibits a larger gain (4.8%) from clustering and adaptive thresholding. We
attribute this to three key factors:

1. Higher verifier variance: As shown in Table 16, verifier quality fluctuates more across queries in the 8B setting,
making cluster-specific models more beneficial.

2. Fewer positive generations: Table 13 shows that the 8B generator produces fewer correct answers overall,
increasing difficulty heterogeneity.

3. Larger generation-verification gap: The Pass@1-to-Pass@K gap is more pronounced for 8B (e.g., 49.8% to
99.2% on MATH500), indicating greater room for selection-based improvements.

Table 9 confirms that increasing cluster count improves accuracy for the 8B model but often degrades it for the 70B model.
These results suggest that difficulty-aware modeling is especially useful when verifier behavior is unstable and when the
generation model produces sparse correct candidates.

Further gains from per-model thresholding. Finally, in Table 11, we introduce a finer-grained tuning strategy where each
reward model receives its own threshold, rather than using a single global threshold per cluster. This approach provides
modest but consistent improvements for the 70B model (e.g., +0.5% on GPQA Diamond, +0.8% on MMLU Pro), and more
substantial boosts for the 8B model across all datasets (+1.6% to +2.8%). These gains highlight the value of adapting verifier
aggregation strategies not just by query difficulty but also by verifier-specific behavior, especially at smaller model scales
where noise is more pronounced.

Table 9: Performance of WEAVER with Different Clusters Counts: Utilizes Llama 3.1 70B Instruct Generations with
the verifier threshold optimized prior to clustering. We create the clusters based on query difficulty: the ratio of correct to
incorrect generations for each queries. We create cluster in evenly sized chunks from the distribution of each task.

Clusters for WEAVER Dataset

Dataset Cluster Count

1 2 3 4 5

MATH 500 93.4 87.6 83.8 82.8 81.2
GPQA 66.4 66.4 66.4 66.4 66.4
MMLU College 94.9 91.7 90.1 89.6 89.8
MMLU Pro 88.4 90.2 87.1 84.6 79.8

Average 85.8 84.0 81.9 80.9 79.3

30

Shrinking the Generation-Verification Gap with Weak Verifiers

Table 10: Optimizing Clusters and Adaptive Thresholds for WEAVER. We report selection performance across different
evaluation strategies using weak supervision, with and without difficulty-based clustering and threshold tuning. Clustering
is based on oracle query difficulty. Thresholds are selected via grid search from 0.05 to 0.95 in increments of 0.05.

Performance Across Different Evaluation Methods
with Llama 3.1 70B Instruct

Dataset Clustering / Adaptive Threshold

No Clusters /
0.5 Threshold

Best Found
by Search Pass@K

MATH 500 93.4% 95.2% 98.6%
GPQA Diamond 72.4% 74.1% 81.0%
MMLU College 94.9% 95.1% 96.0%
MMLU Pro 90.2% 90.2% 92.0%

Average 87.7% 88.7% 91.9%

Performance Across Different Evaluation Methods
with Llama 3.1 8B Instruct

Dataset Clustering / Adaptive Threshold

No Clusters /
0.5 Threshold

Best Found
by Search Pass@K

MATH 500 80.0% 84.3% 99.2%
GPQA Diamond 47.1% 52.7% 95.2%
MMLU College 85.7% 89.9% 98.5%
MMLU Pro 67.2% 72.3% 96.8%

Average 70.0% 74.8% 97.4%

Table 11: Optimizing Clusters and Per-Model Adaptive Thresholds for WEAVER. In this setting, each reward model
receives its own optimized threshold (rather than a global threshold per cluster). Thresholds are selected via grid search
from 0.05 to 0.95 in steps of 0.05. Clustering is still based on oracle query difficulty. This finer-grained tuning yields
small improvements for 70B models and more substantial gains for 8B models, especially where verifier accuracy is highly
variable.

Performance Across Evaluation Methods
with Llama 3.1 70B Instruct (Per-Model Thresholds)

Dataset Clustering / Adaptive Threshold

No Clusters /
0.5 Threshold

Best Found
by Search Pass@K

MATH 500 93.4% 95.2% 98.6%
GPQA Diamond 72.4% 74.6% 81.0%
MMLU College 94.9% 95.1% 96.0%
MMLU Pro 90.2% 91.0% 92.0%

Average 87.7% 89.0% 91.9%

Performance Across Evaluation Methods
with Llama 3.1 8B Instruct (Per-Model Thresholds)

Dataset Clustering / Adaptive Threshold

No Clusters /
0.5 Threshold

Best Found
by Search Pass@K

MATH 500 80.0% 86.5% 99.2%
GPQA Diamond 47.1% 55.5% 95.2%
MMLU College 85.7% 91.5% 98.5%
MMLU Pro 67.2% 74.5% 96.8%

Average 70.0% 77.0% 97.4%

C. Experiments
C.1. Models and Datasets

Benchmarks: We evaluate our models with several benchmarks for instruction-following, reasoning, mathematics, and
coding: MATH500 (Hendrycks et al., 2021), GPQA (Rein et al., 2024), MMLU (Hendrycks et al., 2021), MMLU Pro
(Wang et al., 2024c), and BBH (Suzgun et al., 2022). We provide an overview of each dataset in Table 12. For MMLU,
we selected the college-level questions for evaluation: biology, chemistry, physics, mathematics, computer science, and
medicine. For MMLU Pro, we take a random sample of 500 queries out of the 12K queries available. For BBH, we take four
tasks from the dataset of 6K queries available: Penguins in a Table, Causal Judgement, Logical Deduction (Five Objects),
and Tracking Shuffled Objects (Five Objects).

Models: We evaluate candidate generations using a range of weak verifiers—models with imperfect but better-than-random
accuracy. Our verification system V includes two primary classes of weak verifiers: Reward Models and LM Judges.

• Reward Models: A reward model (RM) is a trained language model that assigns a scalar score to candidate responses
based on how well they align with human preferences (Lambert et al., 2024; Song et al., 2025a). Given a query and a
candidate response, the RM outputs a value Vij ∈ [0, 1] representing the estimated quality of candidate j according to
criteria such as correctness, helpfulness, and safety.

– Examples of reward models include those from the RewardBench leaderboard (Lambert et al., 2024), such as
INF-ORM (Minghao Yang, 2024), QRM Gemma (Dorka, 2024), and Skywork Reward (Liu et al., 2024). We also
include process reward models (PRMs), which score the reasoning process itself—emphasizing step-by-step logic
and coherence—rather than just the final answer (Cui et al., 2025; Yuan et al., 2024).

31

Shrinking the Generation-Verification Gap with Weak Verifiers

– For our study, we selected the top-20 reward models from RewardBench and the top-20 process reward models
from Process Reward Bench (Song et al., 2025a) at both 8B and 70B parameter scales. We exclude any RM or
PRM that fails to provide a positive learning signal—i.e., those whose rankings perform no better than random
selection on benchmark train sets (Appendix C.1). The diverse training objectives and datasets used for these
reward models introduce systematic biases that affect their verification capabilities (Lambert et al., 2024; Song
et al., 2025a), with different loss functions—including Bradley-Terry loss for pairwise preferences (Bradley &
Terry, 1952), margin loss for fixed score differences (Rosset et al., 2003), and pairwise ranking loss for relative
ordering (Cao et al., 2007).

– Previous work has noted that it is nontrivial to combine the outputs of reward models and judges as they provide
logits and binary decision rules (Verga et al., 2024; Xu et al., 2024). Instead, we find that we can normalize all
RM scores to the range [0, 1] using robust percentiles: the bottom 5th percentile is mapped to 0 and the top 95th
percentile to 1. For models that provide multiple scoring dimensions (e.g., ArmoRM (Wang et al., 2024b)), we
use only their primary output.

• LM Judges: An LM judge is a language model used to assess the correctness of a candidate response by generating
a binary verdict: Vij ∈ {0, 1}, where 1 indicates that the response is judged correct. These models typically apply
chain-of-thought (CoT) reasoning to arrive at their decisions (Wei et al., 2023). Each LM judge takes a query and a
response as input and outputs a single binary verdict.

– We use well-known chat models from ChatBotArena (Chiang et al., 2024) as LM judges, which are known for
their general-purpose reasoning capabilities. To ensure consistency and determinism, we use greedy decoding
(temperature T = 0) when generating judgments.

Table 12: Benchmark Overview: Evaluation configurations for AlpacaEval 2.0, Arena-Hard-Auto, AIMO, MATH500,
GPQA, MMLU, MMLU Pro, and Big-Bench Hard (BBH).

Benchmark Dataset Size Scoring Type Metric License

MATH500 500 Ground Truth Pass@1 Apache 2.0

GPQA 646 Ground Truth Pass@1 CC BY 4.0

MMLU College 719 Ground Truth Pass@1 MIT

MMLU Pro 500 Ground Truth Pass@1 MIT

Figure 14: Growth of Open-Source RMs and LMs: As more and more RMs and LM judges become available, the need
for better selection and utilization strategies for these models at test-time continues to grow.

32

Shrinking the Generation-Verification Gap with Weak Verifiers

Table 13: Distribution of Generation Accuracy for Llama 3.1 8B Instruct. Each row shows the fraction of queries falling
into deciles of correctness—i.e., the proportion of correct generations out of 100 samples per query. The final column
reports the overall correct-to-incorrect (C/I) ratio for each dataset. These distributions highlight variation in query difficulty
and motivate our clustering-by-difficulty approach in Appendix B.4.

Llama 3.1 8B Instruct
Distribution of Correct/Incorrect Generations

Dataset Percentage of Total Dataset C/I
Ratio0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

AIMO 72.2% 7.8% 3.3% 7.8% 2.2% 3.3% 2.2% 0.0% 1.1% 0.0% 10.3%
MATH 500 12.2% 11.4% 11.6% 8.2% 6.4% 8.0% 8.4% 6.60% 11.2% 15.0% 49.9%
GPQA 28.5% 21.2% 16.1% 7.4% 7.3% 5.3% 3.7% 3.3% 2.9% 2.6% 28.3%
MMLU College 7.8% 7.6% 7.1% 6.5% 6.7% 5.3% 7.2% 6.3% 8.6% 22.9% 64.1%
MMLU Pro 22.4% 9.8% 10.6% 5.4% 6.4% 7.2% 4.0% 7.6% 7.6% 15.2% 46.6%
BBH 3.2% 6.7% 10.3% 8.3% 10.3% 14.8% 11.6% 10.7% 10.4% 12.1% 56.9%

Table 14: Distribution of Generation Accuracy for Llama 3.1 70B Instruct. Each row shows the fraction of queries
falling into deciles of correctness—i.e., the proportion of correct generations out of 100 samples per query. The final column
reports the overall correct-to-incorrect (C/I) ratio for each dataset. These distributions highlight variation in query difficulty
and motivate our clustering-by-difficulty approach in Appendix B.4.

Llama 3.1 70B Instruct
Distribution of Correct/Incorrect Generations

Dataset Percentage of Total Dataset C/I
Ratio0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

MATH 500 7.0% 4.2% 3.8% 2.0% 2.2% 3.8% 4.2% 4.0% 7.8% 61.0% 78.0%
GPQA 36.8% 5.6% 5.1% 3.7% 6.2% 4.3% 4.5% 4.8% 8.0% 20.9% 42.9%
MMLU College 8.1% 3.2% 1.8% 2.2% 1.5% 1.7% 1.8% 3.2% 2.4% 74.1% 82.6%
MMLU Pro 16.4% 4.2% 1.8% 3.4% 3.0% 3.0% 3.2% 4.8% 6.0% 54.2% 69.9%

33

Shrinking the Generation-Verification Gap with Weak Verifiers

Table 16: WEAVER Verifier Accuracies and Score Correlations. We report the range of individual verifier accuracies
and the average pairwise Pearson correlation between verifier scores. Each verifier’s outputs are flattened across all
query–candidate pairs, and correlations are computed across all

(
m
2

)
verifier pairs. Lower correlation indicates greater

diversity in how verifiers score responses, which supports the effectiveness of ensembling under WEAVER.

Metric Model
Size

Benchmarks

MATH500 GPQA MMLU Pro Average

Verifier Accuracy Range 8B 34.2% 40.7% 36.4% 37.1%
Avg. Score Correlation 8B 0.0253 0.0349 0.0312 0.0305

Verifier Accuracy Range 70B 27.4% 29.0% 31.6% 29.3%
Avg. Score Correlation 70B 0.0211 0.0372 0.0240 0.0274

Table 15: Models Tested for WEAVER.

Model Source Code Parameter
Count License Loss Function

L
M

Ju
dg

es

Llama-3.1-70B-Instruct Open-Source 70B Llama 3.1 Community Cross-Entropy Loss
Llama-3.1-405B-Instruct Open-Source 405B Llama 3.1 Community Cross-Entropy Loss
Llama-3.3-70B-Instruct Open-Source 70B Llama 3.1 Community Cross-Entropy Loss

Meta-Llama-3.1-405B-Instruct-quantized.w8a16 Open-Source 405B Llama 3.1 Community Cross-Entropy Loss
DeepSeek LLM 67B Chat Open-Source 67B DeepSeek License Cross-Entropy Loss

DeepSeekLlama70B Open-Source 70B DeepSeek License Cross-Entropy Loss
DeepSeekQwen32B Open-Source 32B DeepSeek License Cross-Entropy Loss
DeepSeekLlama8B Open-Source 8B DeepSeek License Cross-Entropy Loss
DeepSeekQwen7B Open-Source 7B DeepSeek License Cross-Entropy Loss

Qwen2 72B Instruct Open-Source 72B Tongyi Qianwen Cross-Entropy Loss
Qwen2.5-72B-Instruct Open-Source 72B Tongyi Qianwen Cross-Entropy Loss

Qwen/Qwen2.5-72B-Instruct Open-Source 72B Tongyi Qianwen Cross-Entropy Loss
QwQ-32B Open-Source 32B Apache 2.0 Cross-Entropy Loss

Qwen1.5 110B Chat Open-Source 110B Tongyi Qianwen Cross-Entropy Loss
Qwen1.5 72B Chat Open-Source 72B Tongyi Qianwen Cross-Entropy Loss

Qwen-2.5-7B-Instruct Open-Source 7B Tongyi Qianwen Cross-Entropy Loss
Qwen-2.5-Math-7B-Instruct Open-Source 7B Tongyi Qianwen Cross-Entropy Loss

Mixtral 8x22B v0.1 Open-Source 176B Apache 2.0 Cross-Entropy Loss
Mixtral-8x22B-Instruct-v0.1 Open-Source 176B Apache 2.0 Cross-Entropy Loss

WizardLM 8x22B Open-Source 176B Apache 2.0 Cross-Entropy Loss
WizardLM-2-8x22B Open-Source 176B Apache 2.0 Cross-Entropy Loss

dbrx-instruct Open-Source 132B Databricks Open Model Cross-Entropy Loss
SkyT1 Open-Source 32B Apache 2.0 Cross-Entropy Loss

R
M

s(
8B

an
d

be
lo

w
)

GRM-Llama3-8B-rewardmodel-ft Open-Source 8B MIT Pairwise Ranking Loss
GRM-Llama3.2-3B-rewardmodel-ft Open-Source 3B Apache 2.0 Pairwise Ranking Loss
GRM-Gemma2-2B-rewardmodel-ft Open-Source 2B Apache 2.0 Pairwise Ranking Loss

Skywork-Reward-Llama-3.1-8B-v0.2 Open-Source 8B Skywork License Pairwise Ranking Loss
QRM-Llama3.1-8B-v2 Open-Source 8B MIT Quantile Regression Loss
URM-LLaMa-3.1-8B Open-Source 8B Skywork License Uncertainty-Aware Loss
GPM-Llama-3.1-8B Open-Source 8B MIT Pairwise Ranking Loss

Llama-3-OffsetBias-RM-8B Open-Source 8B Llama 3.1 Community Pairwise Ranking Loss
ArmoRM-Llama3-8B-v0.1 Open-Source 8B Llama 3.1 Community Pairwise Ranking Loss
Qwen2.5-Math-PRM-7B Open-Source 7B Tongyi Qianwen Cross-Entropy Loss

EurusPRM-Stage1 Open-Source 7B Apache 2.0 Cross-Entropy Loss
EurusPRM-Stage2 Open-Source 7B Apache 2.0 Cross-Entropy Loss

internlm2-7b-reward Open-Source 7B Apache 2.0 Pairwise Ranking Loss
Decision-Tree-Reward-Llama-3.1-8B Open-Source 8B Skywork License Decision Tree Loss

R
M

s(
27

B
–7

2B
) Skywork-Reward-Gemma-2-27B-v0.2 Open-Source 27B Skywork License Pairwise Ranking Loss

QRM-Gemma-2-27B Open-Source 27B MIT Quantile Regression Loss
INF-ORM-Llama3.1-70B Open-Source 70B Custom License Binary Cross-Entropy Loss
Qwen2.5-Math-RM-72B Open-Source 72B Tongyi Qianwen Cross-Entropy Loss

Qwen2.5-Math-PRM-72B Open-Source 72B Tongyi Qianwen Cross-Entropy Loss
internlm2-20b-reward Open-Source 20B Apache 2.0 Pairwise Ranking Loss

Decision-Tree-Reward-Gemma-2-27B Open-Source 27B Skywork License Pairwise Ranking Loss

34

Shrinking the Generation-Verification Gap with Weak Verifiers

C.2. Verification Baselines

C.2.1. VERIFIER-FREE APPROACHES

First Sample (Pass@1): This baseline uses only the first generated response without any verification or selection mechanism.
It represents the standard approach where models generate a single response and provides a lower bound for performance
comparison. This method does not scale test-time compute or employ verification.

Majority Voting: A verifier-free approach that generates multiple candidate responses and selects the most frequent final
answer across all responses (Brown et al., 2024; Chen et al., 2024b; Snell et al., 2024). This method leverages repeated
sampling but does not use verification models to assess response quality. Instead, it relies on the assumption that correct
answers will appear more frequently than incorrect ones across multiple generations.

C.2.2. ALTERNATIVE VERIFICATION STRATEGIES

Naive Unweighted Aggregation: We consider three oracle configurations using the top-1, top-5, and top-10 verifiers (ranked
by their agreement with ground-truth labels). Across all datasets, these oracle ensembles substantially outperform baselines.
On average, the best-performing unweighted ensembles exceed first-sample performance by 20.3% and outperform majority
voting by 15.0% (see Figure 2). For more difficult benchmarks such as GPQA and MMLU Pro, the top-5 and top-10
ensembles consistently outperform top-1, suggesting that verifier diversity is especially beneficial on challenging examples.
However, these oracle ensembles rely on access to ground truth to rank verifiers, limiting their use in practice and motivating
the need for learned, unsupervised weighting.

Naive Bayes: We implement a Naive Bayes classifier that models the probability of response correctness given verifier
scores: P (yij = 1|sij1, ..., sijm) =

P (sij1,...,sijm|yij=1)P (yij=1)
P (sij1,...,sijm) . Under the conditional independence assumption, this

factorizes as P (sij1, ..., sijm|yij = 1) =
∏m

k=1 P (sijk|yij = 1). We estimate the parameters using labeled data from the
development set. This approach provides a probabilistic framework for aggregating verifier outputs but requires labeled data
for parameter estimation.

Logistic Regression: We train a logistic regression classifier where the input features are the verifier scores [sij1, ..., sijm]
and the output is the correctness of each response: P (yij = 1|sij) = σ(wT sij + b), where σ is the sigmoid function.
The weights w and bias b are learned using labeled training data. This supervised approach can capture more complex
relationships between verifier outputs than naive averaging but requires substantial labeled data for effective training.

Multi-Agent Verification (MAV) (Lifshitz et al., 2025): This approach combines multiple "Aspect Verifiers" (AVs) -
off-the-shelf LLMs prompted to verify specific aspects of candidate outputs through binary True/False approvals. Unlike
reward models, AVs require no additional training and can be easily combined through voting mechanisms. The MAV
framework uses BoN-MAV (Best-of-N with Multi-Agent Verification), which: (1) samples n candidate outputs from a
generator LLM, (2) collects binary approvals from multiple aspect verifiers that vary across three dimensions (base LLM,
aspect to verify, and verification strategy), and (3) selects the output with the most approvals. In our implementation, we use
Llama 3.3 70B Instruct as the judge model rather than Gemini 1.5 Flash/Pro as used in the original paper.

Self-Verification (Zhao et al., 2025): This method implements a sophisticated sampling-based search approach where
models verify their own responses through detailed natural language analysis. The approach goes beyond simple self-critique
by using structured verification prompts that: (1) rewrite candidate responses in rigorous mathematical theorem-lemma-proof
format, (2) systematically scan for errors through step-by-step analysis, and (3) compare responses to localize potential
mistakes. The method leverages two key principles: comparing across responses provides signals about error locations (since
models struggle with error recall but can identify errors when given their locations), and different output styles are optimal
for different tasks (chain-of-thought for generation, rigorous mathematical format for verification). This approach differs
from naive self-verification by using structured, multi-step verification protocols rather than simple correctness judgments.

35

Shrinking the Generation-Verification Gap with Weak Verifiers

Table 17: Logistic Regression and Naive Bayes Performances across Datasets and Dev Set Sizes

Dataset Approach Model
Size

Dev Set Size

0.01 0.05 0.2 0.5 1.0

MATH-500 Logistic Regression 70B 70.5% 74.7% 81.4% 93.1% 97.2%
Naive Bayes 70B 67.4% 78.1% 85.0% 89.2% 92.2%

GPQA Diamond Logistic Regression 70B 55.9% 59.4% 69.8% 71.4% 72.9%
Naive Bayes 70B 47.2% 49.2% 57.6% 62.1% 64.3%

MMLU Pro Logistic Regression 70B 72.1% 81.0% 84.6% 86.0% 92.0%
Naive Bayes 70B 60.2% 73.1% 73.1% 78.6% 78.6%

C.3. Scaling Trends of WEAVER

Scaling laws describe how performance metrics such as accuracy, sample efficiency or compute cost change as we scale
controllable resources, i.e. the number of trials K, model capacity. (Kaplan et al., 2020) showed that, for fixed-parameter
Transformer language models, the cross-entropy loss decreases as a power-law in both model size and data. This framework
has since been extended to explore optimal tradeoffs between model and data scaling (Hoffmann et al., 2022b), as well as
inference-time scaling with multiple samples (Chen et al., 2021; Brown et al., 2024).

First, we establish the power law scaling of the Pass@K rate. Assume the i-th problem has an unknown “difficulty”
pi ∈ [0, 1], the probability that one response is correct. With K independent samples, the chance we get at least one correct
response is

qi(pi,K) = 1− (1− pi)
K ≈ 1− exp(−pi ·K) for small pi

Define the indicator variable:

Xi =

{
1, if the i-th query is solved at least once (with probability qi),
0, otherwise,

and let the total number of solved problems be Y =
∑N

i=1 Xi.

The expected coverage (Pass@K) is the expected fraction of problems solved after trying K times per problem:

Pass@K := E[Y]/N =
1

N

N∑
i=1

(1− (1− pi)
K)

To model population-level variation in problem difficulty, we assume each problem’s correctness probability pi is drawn
from a Beta distribution: pi ∼ Beta(α, β). This captures the idea that some problems are easier (high pi) while others are
harder (low pi), with the overall distribution controlled by the shape parameters α, β. Then, the fraction of problem that can
be solved in K attempts follows,

Pass@K = Ep∼Beta(α, β)[1− (1− p)K]

= 1− Ep∼Beta(α, β)[(1− p)K] = 1− B(α, β +K)

B(α, β)
(14)

by the definition of the Beta function B(·, ·). Taking logarithm:

log Pass@K = log

(
1− B(α, β +K)

B(α, β)

)
≈ −B(α, β +K)

B(α, β)

by log(1− x) ≈ −x when x is small, which holds for large K. Then, expressing the Beta function in terms of the Gamma
function leads to:

log Pass@K ≈ −Γ(β +K)Γ(α+ β)

Γ(β)Γ(α+ β +K)

36

Shrinking the Generation-Verification Gap with Weak Verifiers

For large K, we can apply Stirling’s approximation of the Gamma function log Γ(x) ≈ x log x− x+ 1
2 log(2π) +

1
2 log x:

log[− log Pass@K] = log Γ(β +K) + log Γ(α+ β)− log Γ(β)− log Γ(α+ β +K)

≈ (β +K) log(β +K)− (α+ β +K) log(α+ β +K) +
1

2
log

(
β +K

α+ β +K

)
≈ (β +K) logK − (α+ β +K) logK + const
= −α logK + log ζ

when we retain the leading term. In turn, the log of the expected coverage follows a power law in K, scaling as:

log Pass@K = − exp (−α logK + log ζ) = −ζK−α (15)

Verifier Success Modeling Now suppose we pass the K candidates through a scoring model ("verifier”) which selects the
top-scoring answer. The verification process succeeds if (i) at least one correct answer was generated and (ii) the verifier
ranks a correct answer highest.

Selection@1(K) := P[top-scoring response is correct] (16)

Assume the verifier assigns scores such that correct responses are drawn from a score distribution f1, and the incorrect
responses from a distribution f0. Let s(1) = {sj : yj = 1} and s(0) = {sj : yj = 0} denote the scores of correct and
incorrect responses, respectively. Then a query is successfully verified if:

Selection@1 = P
[
max s(1) > max s(0)

]
Our goal is to compute the probability that the maximum of c i.i.d draws from f1 exceeds the maximum of K − c draws
from f0.

To model the correctness of responses, we assume each query i has a latent correctness probability pi ∼ Beta(α, β),
reflecting query-specific difficulty. Given pi, each of the K responses is sampled independently as:

yij ∼ Bernoulli(pi), j = 1, . . . ,K

This implies the number of correct responses follows a Binomial distribution:

Ci =

K∑
j=1

yij ∼ Binomial(K, pi)

assuming (1) conditional independence of responses given pi, (2) identical correctness probabilities within a query, and (3) a
fixed number of responses K.

Because the correctness probability p varies across queries, the dataset-level Selection@1 curve requires marginalizing over
p:

Selection@1(K) = Ep∼Beta(α,β) [Selection@1(K | p)]
Combined with the need to model max comparisons over verifier scores, it renders the exact calculation of Selection@1
analytically intractable.

To enable tractable, smooth modeling of Selection@1, we introduce the following parametric form:

Selection@1(K) ≈ exp(−ζK−α) ·
(
1− (1− π)K

γ
)

(17)

• The coverage term exp(−ζK−α) approximates the probability that at least one correct response is generated.

• The verification term 1 − (1 − π)K
γ

approximates the chance that the top-scoring response is correct, given that
at least one correct response exists. The parameter γ controls whether verifier performance improves sublinearly or
superlinearly with K. The parameter π represents the effective per-response probability that a correct response is
successfully selected by the verifier, conditioned on the response being correct and included in the candidate set.

37

Shrinking the Generation-Verification Gap with Weak Verifiers

To obtain practical scaling trends, we fit parametric models in Equation (17) to the empirical averages computed from 5
independent runs for each value of K, across each dataset and verification strategy. Specifically, we use the L-BFGS-B
algorithm to optimize a smooth approximation following (Hoffmann et al., 2022a). To ensure numerical stability and
robustness to outliers or heavy-tailed noise in the observed selection accuracies, we minimize the Huber loss between the
predicted values and the empirical means. The Huber loss behaves quadratically for small residuals and linearly for large
ones, making it less sensitive to outliers than mean squared error (MSE) while maintaining smooth differentiability for
gradient-based optimization. It is defined as,

Lδ(r) =

{
1
2r

2 if |r| ≤ δ

δ
(
|r| − 1

2δ
)

otherwise

where δ > 0 is a tunable threshold that controls the transition between the two regimes. We search over δ ∈
{0.01, 0.05, 0.1, 0.25, 0.5} to select the value that yields the best fit.

Additionally, we introduce floor and ceiling parameters to bound the predicted values and model saturation behavior. The
floor accounts for the irreducible failure rate even at high K, while the ceiling models the upper bound on achievable
performance (e.g., due to imperfect verifiers or ambiguous problems). The final fitted form is:

Selection@1(K) ≈ floor + (ceil − floor) · exp(−ζK−α) ·
(
1− (1− π)K

γ
)

(18)

We can use an unbiased estimator to evaluate best-of-k selection accuracy when a fixed verifier is used to rank responses, as
described in (Singhi et al., 2025b). However, in the case of WEAVER, the development set constitutes 1% of the data and is
itself selected based on the value of K. In turn, the ranking of responses is no longer independent of K, introducing bias
into the best-of-k estimate.As a result, we instead rely on Monte Carlo estimates to approximate best-of-k performance,
sampling k responses multiple times and computing the average accuracy of the top-ranked output under the K-dependent
verifier. We use an unbiased estimator for coverage, as described in (Chen et al., 2021).

Figure 15 and Figure 16 along with Table 18 illustrate how the different verification strategies scale with the number of
generations and the fit to the parametric form in Equation (17). Each method exhibits characteristic scaling behavior that
aligns with Equation (17). WEAVER demonstrates improved performance over naive ensembles and majority voting. The
fitted parameters in Table 18 quantitatively capture these trends across datasets, providing evidence that the parametric from
in Equation (18) closely model empirical outcomes. Figure 17 and Figure 18 along with Table 19 illustrate the predictive
performance of the parametric form in Equation (18), showing that models fit on subsets of K can extrapolate to unseen
values of K.

38

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 15: WEAVER Scaling trend fit for 70B models

Figure 17: WEAVER Scaling trend predicted for 70B models

39

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 16: WEAVER Scaling trend fit for 8B models.

Figure 18: WEAVER Scaling trend predicted for 8B models

40

Shrinking the Generation-Verification Gap with Weak Verifiers

Table 18: Fitted parameters for Scaling Trends in Figure 15 and Figure 16.

Dataset Approach Equation floor ceil ζ α π γ R2 fit MSE fit δ

GPQA-v2-Diamond (70B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.0000 0.9429 0.7603 0.3475 X X 0.9999 0.0000 0.5000
GPQA-v2-Diamond (70B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.3958 0.6728 0.7320 1.5865 0.3250 0.5053 0.9994 0.0000 0.1000
GPQA-v2-Diamond (70B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.4283 0.4710 0.0499 1.0000 0.1217 1.0091 0.8634 0.0000 0.0100
GPQA-v2-Diamond (70B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.3921 0.6071 0.6553 1.9147 0.4224 0.5000 0.9975 0.0000 0.2500
MATH-500-v2 (70B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.6262 1.0000 0.8394 0.6427 X X 0.9994 0.0000 0.2500
MATH-500-v2 (70B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.7870 0.9371 3.3908 3.0000 0.2869 0.5000 0.9958 0.0000 0.1000
MATH-500-v2 (70B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.7747 0.8238 10.0000 2.1433 0.0885 2.4951 0.8655 0.0001 0.1000
MATH-500-v2 (70B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.7883 0.9282 4.0033 3.0000 0.2573 0.5000 0.9961 0.0000 0.0100
MMLU-Pro-v2 (70B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.0000 0.9828 0.3303 0.3465 X X 0.9967 0.0000 0.2500
MMLU-Pro-v2 (70B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6912 0.9148 1.5284 3.0000 0.2764 0.5000 0.9987 0.0000 0.1000
MMLU-Pro-v2 (70B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6933 0.7399 0.0498 1.0001 0.1531 1.0123 0.9451 0.0000 0.0100
MMLU-Pro-v2 (70B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6969 0.8874 1.7834 3.0000 0.2403 0.5000 0.9944 0.0000 0.2500
MMLU-College-v2 (70B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.5924 0.9744 0.5071 0.5682 X X 0.9982 0.0000 0.0100
MMLU-College-v2 (70B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.8234 0.9477 4.4129 3.0000 0.3622 0.5000 0.9987 0.0000 0.0100
MMLU-College-v2 (70B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.8197 0.8412 0.0498 1.0001 0.2057 1.0173 0.8912 0.0000 0.0100
MMLU-College-v2 (70B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.8235 0.9266 3.8766 3.0000 0.3012 0.5000 0.9925 0.0000 0.0500
GPQA-v2-Diamond (8B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.2262 0.9926 2.5454 0.8474 X X 0.9996 0.0000 0.1000
GPQA-v2-Diamond (8B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.2463 0.4549 0.0534 1.0020 0.1953 0.7089 0.9948 0.0000 0.0500
GPQA-v2-Diamond (8B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.2783 0.3029 1.2431 0.6756 0.0630 2.5000 0.5929 0.0000 0.0500
GPQA-v2-Diamond (8B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.2359 0.3727 0.0701 1.0016 0.3871 0.5000 0.9408 0.0001 0.0100
MATH-500-v2 (8B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.4099 1.0000 1.7182 0.8949 X X 0.9976 0.0001 0.0100
MATH-500-v2 (8B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.4110 0.7440 0.0785 1.0033 0.3333 0.5036 0.9984 0.0000 0.0100
MATH-500-v2 (8B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.5058 0.7038 5.1187 1.0175 0.0666 2.5000 0.9964 0.0000 0.0500
MATH-500-v2 (8B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.5071 0.7508 1.8068 3.0000 0.2890 0.5000 0.9796 0.0001 0.0100
MMLU-Pro-v2 (8B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.3906 1.0000 1.9045 0.7590 X X 0.9991 0.0000 0.0100
MMLU-Pro-v2 (8B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.4764 0.6846 2.7876 3.0000 0.2136 0.6141 0.9985 0.0000 0.2500
MMLU-Pro-v2 (8B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.4439 0.5662 0.1136 0.9916 0.2787 0.6659 0.9084 0.0001 0.0100
MMLU-Pro-v2 (8B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.4771 0.7025 2.8863 3.0000 0.1728 0.5181 0.9986 0.0000 0.1000
MMLU-College-v2 (8B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.4316 0.9924 0.9887 0.9123 X X 0.9994 0.0000 0.5000
MMLU-College-v2 (8B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6226 0.8494 1.2646 3.0000 0.3346 0.5000 0.9958 0.0000 0.2500
MMLU-College-v2 (8B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6359 0.7368 1.0929 0.5130 0.0576 2.5000 0.9949 0.0000 0.0500
MMLU-College-v2 (8B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6283 0.8085 1.4279 3.0000 0.3914 0.5000 0.9845 0.0000 0.0100

C.4. Scaling Candidate Generations

Figure 19: False Positive Rates across Verification Systems

41

Shrinking the Generation-Verification Gap with Weak Verifiers

Table 19: Fitted parameters for Scaling Trends with 90% of data in Figure 17 and Figure 18.

Dataset Approach Equation floor ceil ζ α π γ R2 fit MSE fit MSE pred δ

GPQA-v2-Diamond (70B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.0000 0.9357 0.7534 0.3537 X X 0.9999 0.0000 0.0000 0.1000
GPQA-v2-Diamond (70B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.4050 0.6756 0.9195 1.6227 0.3163 0.5000 0.9993 0.0000 0.0000 0.0500
GPQA-v2-Diamond (70B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.4320 0.4678 0.0707 0.9864 0.0414 1.6541 0.8601 0.0000 0.0001 0.0100
GPQA-v2-Diamond (70B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.3809 0.6061 0.5211 1.9075 0.4360 0.5000 0.9972 0.0000 0.0000 0.0500
MATH-500-v2 (70B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.6639 0.9952 0.9836 0.6936 X X 0.9995 0.0000 0.0000 0.0100
MATH-500-v2 (70B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.7869 0.9339 3.5000 3.0000 0.2985 0.5000 0.9954 0.0000 0.0000 0.0500
MATH-500-v2 (70B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.7747 0.8241 10.0000 2.1272 0.0888 2.4999 0.8560 0.0001 0.0000 0.0500
MATH-500-v2 (70B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.7879 0.9221 4.2081 3.0000 0.2789 0.5000 0.9966 0.0000 0.0000 0.1000
MMLU-Pro-v2 (70B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.0000 0.9785 0.3263 0.3543 X X 0.9959 0.0000 0.0000 0.1000
MMLU-Pro-v2 (70B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6912 0.9148 1.5277 3.0000 0.2765 0.5000 0.9984 0.0000 0.0000 0.2500
MMLU-Pro-v2 (70B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6923 0.7379 0.0495 1.0001 0.1711 1.0148 0.9481 0.0000 0.0000 0.0500
MMLU-Pro-v2 (70B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6979 0.8907 1.8452 3.0000 0.2327 0.5000 0.9931 0.0000 0.0000 0.1000
MMLU-College-v2 (70B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.7723 0.9655 1.3237 0.7746 X X 0.9987 0.0000 0.0000 0.1000
MMLU-College-v2 (70B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.8184 0.9436 2.2897 2.0761 0.4148 0.5000 0.9979 0.0000 0.0000 0.2500
MMLU-College-v2 (70B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.8196 0.8413 0.0498 1.0001 0.2051 1.0153 0.8814 0.0000 0.0000 0.0100
MMLU-College-v2 (70B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.8234 0.9262 3.9001 3.0000 0.3036 0.5000 0.9909 0.0000 0.0000 0.1000
GPQA-v2-Diamond (8B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.2223 0.9976 2.4975 0.8328 X X 0.9996 0.0000 0.0000 0.2500
GPQA-v2-Diamond (8B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.2316 0.4678 0.0559 1.0027 0.2347 0.5940 0.9965 0.0000 0.0002 0.0100
GPQA-v2-Diamond (8B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.2773 0.2979 0.1335 0.9633 0.0479 2.5000 0.5476 0.0000 0.0001 0.0500
GPQA-v2-Diamond (8B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.2871 0.3845 8.5633 3.0000 0.2431 0.5000 0.9643 0.0000 0.0001 0.0100
MATH-500-v2 (8B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.3986 1.0000 1.6393 0.8786 X X 0.9976 0.0001 0.0001 0.0100
MATH-500-v2 (8B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.4149 0.7417 0.0750 1.0042 0.3261 0.5179 0.9981 0.0000 0.0000 0.0100
MATH-500-v2 (8B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.5061 0.6976 5.9901 1.1205 0.0782 2.5000 0.9960 0.0000 0.0000 0.0500
MATH-500-v2 (8B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.5009 0.7342 1.6358 3.0000 0.3321 0.5000 0.9803 0.0001 0.0005 0.0100
MMLU-Pro-v2 (8B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.3877 1.0000 1.8798 0.7549 X X 0.9990 0.0000 0.0000 0.1000
MMLU-Pro-v2 (8B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.4770 0.6937 3.1648 3.0000 0.2172 0.5705 0.9986 0.0000 0.0001 0.0500
MMLU-Pro-v2 (8B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.4663 1.0000 2.4923 0.1016 0.0362 2.5000 0.9600 0.0001 0.0002 0.0500
MMLU-Pro-v2 (8B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.4777 0.7207 3.0170 3.0000 0.1613 0.5000 0.9987 0.0000 0.0000 0.0100
MMLU-College-v2 (8B) Pass@K y = floor + (ceil− floor) · exp(−ζ ·K−α) 0.4442 0.9912 1.0258 0.9265 X X 0.9993 0.0000 0.0000 0.5000
MMLU-College-v2 (8B) Weaver y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6178 0.8447 1.1473 3.0000 0.3523 0.5000 0.9957 0.0000 0.0001 0.2500
MMLU-College-v2 (8B) Majority1@K y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6254 0.7186 0.5765 0.9281 0.2058 1.2287 0.9736 0.0000 0.0001 0.0100
MMLU-College-v2 (8B) Naive Ensemble y = floor + (ceil− floor) · exp(−ζ ·K−α)(1− (1− π)K

γ

) 0.6074 0.9813 1.2560 0.1636 0.3060 2.4651 0.9988 0.0000 0.0000 0.0100

Figure 20: WEAVER Scaling - 8B Generations and Models

Table 20: WEAVER with 8B Models Exceeds Majority Voting and Naive Ensemble across All Datasets: Candidate are
generated with Llama 3.1 8B Instruct while the weak verifiers are 8B parameters or smaller in size.

Methodology Generations (K)

Datasets

Average
MATH

500 GPQA
MMLU
College

MMLU
Pro

B
as

el
in

es

First Sample 1 49.8% 28.3% 64.1% 46.6% 47.2%
Majority Voting 100 69.0% 30.5% 72.7% 56.4% 57.2%

Top-Ranked RM from RewardBench (Lambert et al., 2024) 100 73.8% 25.4% 70.1% 53.4% 55.7%
Top-10 RM Ensemble from RewardBench (Lambert et al., 2024) 100 70.2% 22.1% 73.9% 49.4% 53.9%

Multi-Agent Verification (Lifshitz et al., 2025) 100 65.4% 31.4% 70.5% 55.2% 55.6%
Self-Verification (Zhao et al., 2025) 100 71.4% 32.2% 70.4% 53.0% 56.8%

WEAVER 100 80.0% 47.1% 85.7% 67.2% 70.0%

GPT-4o-mini 1 76.8% 38.4% 82.2% 61.8% 64.8%
Claude 3.5 Haiku 1 70.0% 36.4% 75.9% 65.2% 61.9%

Oracle Verifier (Pass@100) 100 99.2% 95.2% 98.5% 96.8% 97.4%
42

Shrinking the Generation-Verification Gap with Weak Verifiers

Table 21: Ensembling with Multiple Verifiers Outperforms Increased Sampling with Single Verifier: Candidate
responses are generated with Llama 3.3 70B Instruct while the weak verifiers range in size from 8B to 72B parameters. For
details on prompting, please see Appendix C.7.

Methodology Benchmarks

MATH500 GPQA MMLU Pro

First Sample 78.0% 42.9% 69.9%

Majority Voting 83.0% 47.4% 74.4%

Best Reward Model
(1 Score) 94.4% 58.4% 81.8%

Best Reward Model
(5 Scores, 5 Prompts) 93.2% 55.3% 82.5%

Top-5 Most Accurate
Reward Models 95.4% 64.1% 87.3%

Best LM Judge
(1 Score) 90.2% 61.1% 79.5%

Best LM Judge
(5 Scores, 5 Prompts) 88.1% 57.2% 80.8%

Top-5 Most Accurate
LM Judges 93.4% 65.2% 85.4%

C.5. Scaling Verifier Count

Figure 21: WEAVER Outperforms Naive Ensemble across Oracle Top-5 Verifiers and Total Verifiers Configurations:
Results are shown for WEAVER ensembles and naive ensembles of the Oracle Top-5 Verifiers (highest-performing verifiers
on dataset selected using ground truth) and Total Verifiers (all available verifiers). WEAVER consistently outperforms naive
ensemble averaging, with improvements ranging from +2.4% to +10.1%.

In Table 21, we include results of scaling verifier scores. We note that for reward models (RMs), which are typically
deterministic (Lambert et al., 2024; Song et al., 2025a), multiple scores must be obtained by varying the prompt; for
LM Judges, we can vary either the prompt or the sampling temperature to generate diverse outputs from the same model
(Table 21). We find that for both types of weak verifiers, RMs and LM judges, scaling the number of models yields better
performance than sampling multiple evaluations from the same model via prompt tuning or temperature variation. However,
we note that these approaches are complementary.

When breaking down weak verifiers into RMs or LM Judges, individually, we find that additional LMs leads average gains
of 5.4% and 6.1%, respectively (Table 21). In contrast, sampling additional scores from a single RM or LM judge yields only
0.8% and 1.1% gains on average. These results suggest that leveraging the complementary strengths of multiple verifiers
can be more effective than eliciting multiple judgments from a single verifier. Appendix C.7 provides additional details on
the verifier prompting. Finally, Figure 22 illustrates the tradeoff of scaling the number of verifiers versus increasing the
number of scores from a single verifier, showing that scaling verifiers is helpful when the coverage increases as we increase
sample count.

In Figure 22 illustrates how the number of verifiers and repeated generations interact to influence success rate. We observe

43

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 22: WEAVER Performance Improvements from Scaling Generations and Verifiers: Increased candidate
generations and weak verifiers available generally improves performance.

that increasing the number of generations tends to be more effective than increasing the number of verifiers alone—but only
when paired with the right verification strategy. For example, naive ensembling of verifiers plateaus in performance even
as more generations are added, whereas WEAVER continues to improve with both axes. This highlights that generation
diversity is a stronger driver of performance than verifier count alone, and that weak supervision methods like WEAVER are
essential to fully leverage this diversity. We illustrate the verification generation tradeoff for additional datasets in Appendix
C.3.

C.6. WEAVER Distillation

Weaver

Distilled

LM

Weaver

Distilled

LMLM Generation

+
Instruction

Instruction Generation1

Generation2

Generationn

Generation1

Generation2

Generationn

...

...

RM n

RM 1

LM Judge1

LM Judgen

W
eaver

Predictions

Frozen LM

Training Inference

... ...

+
x

Figure 23: Overview of WEAVER Distillation (Section 6)

For the loss function in WEAVER distillation, we utilized cross-entropy loss with Adam (Kingma & Ba, 2017). Our
classification architecture comprises a single linear classification layer with 0.1 dropout applied to the input, which consists
of the final hidden state from the [CLS] token. Regarding learning dynamics, we implemented linear warmup and linear
decay via the Sentence-Transformers library (Reimers & Gurevych, 2020), employing a learning rate of 5e-6 and training
batch size of 64 across all experimental setups.

44

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 24: WEAVER Distilled - Pareto Frontiers: ∗We train/evaluate on an 80:20 split.

C.7. Individual Verifier Optimization

While WEAVER primarily focuses on aggregating multiple weak verifiers to improve overall verification quality, this
appendix explores complementary techniques for optimizing individual verifiers. As mentioned earlier in the paper, existing
weak verifiers often suffer from high false positive rates (Stroebl et al., 2024), which can limit their effectiveness, even
within an ensemble.

As we scale the number of repeated samples and employ multiple verifiers, the precision of each individual verifier becomes
increasingly important relative to recall. When many candidate solutions are available, a verifier can afford to miss some
correct solutions (false negatives) as long as its positive predictions are highly reliable (high precision).

This observation motivates exploring methods to enhance individual verifier quality through methods such as prompt
optimization — tailoring verifier prompts to maximize performance, particularly precision, with minimal or no labeled data.

C.7.1. LM JUDGE PROMPT OPTIMIZATION

LM judges often suffer from biases such as position bias (favoring answers in certain positions), verbosity bias (preferring
longer answers), and self-enhancement bias (preferring answers similar to their own generation patterns) (Zheng et al.,
2023a; Li et al., 2023), suggesting sensitivity to system and input prompt design.

Throughout our WEAVER experiments, we used fixed, manually engineered prompts for our LM judge verifiers. However,
optimizing these prompts could potentially improve individual verifier precision and reliability. Multi-Agent Verification
(Lifshitz et al., 2025) demonstrates this by crafting specialized prompts for specific verification aspects.

We explored systematically optimizing verifier prompts using DSPy (Khattab et al., 2023), an open-source library that
provides algorithms for optimizing language model prompts through discrete search over prompt candidates guided by a

45

Shrinking the Generation-Verification Gap with Weak Verifiers

Table 22: Distillation Comparison of WEAVER and Naive Ensemble Across Different Training Set Sizes

Methodology Dataset
Training Set as Percentage of Entire Dataset Full

System5% 10% 20% 50% 80%

WEAVER

MATH500 78.4% 80.7% 83.9% 88.2% 91.4% 93.4%
GPQA Diamond 42.6% 46.8% 52.7% 63.1% 71.8% 73.2%
MMLU College 83.5% 85.2% 87.6% 91.0% 93.1% 94.9%

MMLU Pro 69.2% 72.5% 76.8% 83.7% 87.8% 90.2%

NaiveEnsemble

MATH500 77.8% 79.6% 82.1% 86.4% 89.1% 92.4%
GPQA Diamond 42.1% 44.7% 48.9% 56.2% 62.8% 66.2%
MMLU College 84.0% 85.3% 87.2% 90.8% 93.5% 95.1%

MMLU Pro 69.5% 71.8% 74.9% 80.3% 84.7% 87.4%

Figure 25: LM judge prompt optimization using 250 labeled examples consistently yields precision gains. Baseline
methods (CoT and Custom) are compared against DSPy-optimized prompts with varying numbers of demonstrations (0-shot,
3-shot, and 5-shot).

metric function. DSPy optimization works by generating, evaluating, and refining prompts that maximize task performance
on a small labeled dataset.

Experimental Setup: We investigate two dimensions of prompt optimization: (1) optimization space scaling, where we
progressively expand what the optimizer can modify from system instruction only (0-shot) to including 3 demonstrations
(3-shot) and 5 demonstrations (5-shot); and (2) training data size scaling, where we vary labeled data from 1% to 16% to
determine how much data is necessary for effective prompt optimization.

Our experimental setup uses training examples containing instruction-generation pairs. Since our datasets have multiple
generations per instruction (up to 100), we group examples by instruction before splitting to prevent data leakage between
train and validation sets. We hold out 50% of the dataset instructions (each paired with 100 candidate generations) for
evaluation. For the optimization space scaling experiment, we randomly select n generations such that n× len(dataset)/2 =
250, maximizing training set diversity while maintaining a fixed training set size. For the data scaling experiment,
we train on different percentages (1%, 2%, 4%, and 16%) of the dataset by calculating the number of instructions as
⌈num_problems_in_dataset × (train_percentage/100)⌉ and selecting repeated samples for each instruction with samples =
min(max(4, num_problems× 2), 20) to avoid overfitting. We use a consistent random seed to ensure identical dataset splits
between optimization runs.

Results: Figure 25 shows results across different datasets and optimization configurations. While we don’t observe clear
scaling relationships across all datasets (possibly due to the increased stochasticity of LLM-based optimization), we observe
an average precision gain of 3.8% of the best judge over the chain-of-thought (CoT) baseline judge. MATH500 shows the
largest jump in precision of 9% and shows clear improvement in precision as the optimization space is scaled.

46

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 26: Scaling LM judge prompt optimization training data leads to modest precision gains. The x-axis shows the
percentage of training data used (log scale), and the y-axis shows precision.

The scaling behavior with training data size (Figure 26) shows slight log-linear improvements in precision as we increase
training data, though gains differ by dataset. MMLU-College shows minimal benefit from additional data, while the
remaining datasets see an average boost of 3.2% in precision when scaling the training data size from 1% to 16% of the
original dataset.

(Figure 27) reveals that optimized prompts often improve both precision and accuracy by reducing false positive rates -
essentially making judges more conservative in their correctness assessments. This is particularly valuable in the repeated
sampling regime, where higher precision improves overall verification quality.

These findings suggest that prompt optimization can be a valuable complement to WEAVER’s aggregation approach. Even
with limited labeled data, targeted prompt engineering can enhance individual verifier quality, benefiting the ensemble as
a whole. Further research is needed to define a more systematic recipe for verifier prompt optimization. Additionally, it
remains a question of whether we can extend prompt optimization to discriminative reward models to enjoy similar gains in
performance.

D. Miscellaneous
D.1. Compute Requirements

Hardware Infrastructure. Our experiments were conducted using 4 compute nodes, each equipped with 8 NVIDIA H100
GPUs (80GB HBM3 memory per GPU), for a total of 32 H100 GPUs. Each node was configured with high-bandwidth
NVLink connections between GPUs and inter-node communication was facilitated via NVIDIA NVLink Switch System to
minimize communication overhead during distributed training and inference.

Model Parallelism and Distribution. For our 72B parameter language models, we employed a hybrid parallelism strategy
combining tensor parallelism, pipeline parallelism, and data parallelism:

• 8-way tensor parallelism across GPUs within each node

• 4-way pipeline parallelism across nodes

• Data parallelism for batch processing

47

Shrinking the Generation-Verification Gap with Weak Verifiers

Figure 27: Optimized prompts often improve LM judge performance by reducing false positive rates.

Storage Requirements. Processing datasets of 100GB+ required significant storage infrastructure:

• 4TB NVMe SSDs per node for dataset caching and checkpoints

• 100TB shared network storage for full dataset repository

Software Stack. Our experiments were powered by:

• NVIDIA CUDA 12.2

• PyTorch 2.1 with NVIDIA NCCL for distributed communication

• DeepSpeed ZeRO Stage 3 for memory optimization

• Distributed data loading with webdataset format for efficient streaming

48

