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ABSTRACT

Tokenization is associated with many poorly understood shortcomings in language
models (LMs), yet remains an important component for long sequence scaling
purposes. This work studies how tokenization impacts model performance by
analyzing and comparing the stochastic behavior of tokenized models with their
byte-level, or token-free, counterparts. We discover that, even when the two mod-
els are statistically equivalent, their predictive distributions over the next byte
can be substantially different, a phenomenon we term as “tokenization bias”. To
fully characterize this phenomenon, we introduce the Byte-Token Representation
Lemma, a framework that establishes a mapping between the learned token dis-
tribution and its equivalent byte-level distribution. From this result, we develop a
next-byte sampling algorithm that eliminates tokenization bias without requiring
further training or optimization. In other words, this enables zero-shot conversion
of tokenized LMs into statistically equivalent token-free ones. We demonstrate its
broad applicability with two use cases: fill-in-the-middle (FIM) tasks and model
ensembles. In FIM tasks where input prompts may terminate mid-token, leading
to out-of-distribution tokenization, our method mitigates performance degradation
and achieves an approximately 18% improvement in FIM coding benchmarks,
consistently outperforming the standard token healing fix. For model ensembles
where each model employs a distinct vocabulary, our approach enables seamless
integration, resulting in improved performance (up to 3.7%) over individual mod-
els across various standard baselines in reasoning, knowledge, and coding.

1 INTRODUCTION

Transformers form the backbone of all widely-used state-of-the-art language models (LMs) such as
GPTs (Brown et al., 2020), Llama (Touvron et al., 2023), ans Mistral (Jiang et al., 2023a). A com-
mon pre-processing step in these models is tokenization, a method that shortens the input sequence
by mapping multiple bytes, i.e. characters into discrete tokens, i.e. words or subwords, from a fixed
vocabulary 1. Efforts to bypass tokenization have shown limited empirical success (Yu et al., 2024;
Limisiewicz et al., 2024), suggesting tokenization is critical to the performance of large language
models (LLMs). It has been speculated that the reason for the performance gap between tokenized
and byte-level models is due to the reduction of input tokens, allowing models to handle longer con-
texts at less compute (Zouhar et al., 2023; Goldman et al., 2024). Recent work by Rajaraman et al.
(2024) provides an additional explanation: Even for unlimited data and compute 2, tokenized models
can achieve better cross-entropy loss than untokenized ones, resulting in superior performance.

To contribute to the understanding of the impact of tokenization, we demonstrate that for any
tokenized LM, there exists a statistically equivalent byte-level process. Despite their statistical
equivalence in terms of training loss, we find a surprising discrepancy in their predictive behav-
iors—particularly in next-token and next-byte predictions, where there can be significant differ-
ences. We hence introduce the concept of tokenization bias to describe the discrepancy between

1In the context of this study, we use the terms “character” and “byte” interchangeably to refer to an element
from a subset of the tokenization vocabulary. This subset is somewhat flexible. Precision is only important in
the experiment section where we define the subset to be all utf-8 bytes.

2And assuming the data source can be approximated as a kth order Markov chain.
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Figure 1: Left: Tokenized LMs can experience tokenization bias when prompts end mid-token, as in
this code completion example. This means that the correct solution, a has zero probability of being
chosen. Our method avoids this problem and can predict the correct token while using the same
model. Right: Our method maps next-token predictions of arbitrary tokenized LMs to statistically
equivalent next-byte predictions (see Section 4.1 for details). This enables any model ensemble
strategy, such as averaging or mixture of experts.

the predictive distributions of the tokenized model and the byte-level equivalent. Towards mapping
tokenized predictions to byte-level predictions, we present the Byte-Token Representation Lemma
(Section 4.1). The lemma enables both byte-level predictions and an algorithmic correction of tok-
enization bias in any trained LM without the need for additional training or optimization, allowing
us to sample bias-free next-bytes from any tokenized LM.

Because our findings show that tokenization introduces an irreducible gap between the token and
byte domains by preventing certain token combinations, limiting the model’s ability to sample spe-
cific tokens, we investigate this issue in fill-in-the-middle (FIM) tasks. Tokenization bias is particu-
larly harmful in fill-in-the-middle (FIM) tasks when a prompt ends mid token. Tokenized language
models struggle to predict the correct completion (Dagan et al., 2024). Our theory predicts this
phenomenon precisely, and the failure example shown in Figure 1 (Left) can be reproduced with
any open-weight model to date. In our experiments, we demonstrate that our next-byte prediction
method outperforms tokenized models with the same cross-entropy by 18%, and even surpasses a
specialized fix, token healing (Dagan et al., 2024; Roziere et al., 2023), by 1%.

A byproduct of our byte-level prediction algorithm is that it enables ensembling of arbitrary LMs.
Ordinarily, one cannot average the predictions of LMs that do not share a vocabulary. However,
by mapping their predictions and conditioning domains to byte-space, one can easily aggregate
predictions from multiple models and leverage the benefits of ensembling. Combining multiple
models is advantageous because model ensembles are generally more accurate and robust than any
individual member (Hastie et al., 2009). We also confirm this experimentally: models that are
ensembled using our byte-level predictions outperform individual models in many cases.

In summary, the key contributions of this work are:

1. We convert tokenized LMs into statistically equivalent token-free models, and demonstrate
that their predictive distributions differ. We define this discrepancy as tokenization bias.

2. We introduce a method that enables next-byte prediction for any tokenized language model
to fully mitigate tokenization bias. This algorithm is applied at inference time and carries
an O(1) computational cost in terms of model runs.

3. We present strong empirical evaluations on an FIM benchmark (18% improvement) and
model ensemble tasks (up to 3.7% improvement), further demonstrating the effectiveness
of our approach.

2 NOTATIONS AND SETUP

2.1 STRING AND BYTE-LEVEL LANGUAGE MODELS

We denote the alphabet set as A and its element character, or byte, as x. By default and consistent
with real-world data, unless otherwise stated, we include the end of string <EOS> byte in A. For any
(finite) string s, we denote its substring from location i to j as xj

i := xixi+1..xj . We view any byte-
level LM as a discrete stochastic process that defines the autoregressive probability P (xn+1|xn

1 ) for
all n. This defines an infinite (stochastic) sequence x = x1x2... where x ∈ X . With the existence of

2
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<EOS>, we have P (xn+1|xn
1 ) = 1.0 for xn+1 = xn =<EOS> and P (xn+1 = <EOS>|xn

1 ) ̸= 0.0
for any xn

1 . This means all x effectively have finite length and the set X is countably infinite. We
refer to x as a byte sequence instead of a string, which has a finite length and does not necessarily
end with <EOS>.

Given xn
1 , the function prefix(.) returns all possible prefixes of xn

1 , i.e. prefix(xn
1 ) =

{x1
1, x

2
1, x

3
1, ..., x

n
1}. We denote the concatenation operation as concat(.), i.e. concat(xn1

1 , yn2
1 ) =

x1...xn1
y1...yn2

. Furthermore, we define X (xn
1 ) as the set consisting of all infinite sequence x with

prefix xn
1 , i.e.

X (xn
1 ) = {x|xn

1 ∈ prefix(x)},
which corresponds to the byte-level probability of obtaining a sequence with prefix xn

1 , or P (xn
1 ).

2.2 TOKENIZED LANGUAGE MODELS

We consider two commonly used tokenization algorithms, namely Byte-Pair Encoding (BPE) (see
Algorithm 2 in Appendix A.4) and Maximum Prefix Encoding (MPE). Tokens are elements within
a vocabulary V , where A ⊆ V , an individual token is denoted as t ∈ V . We also assume <EOS>
is not a part of any token but itself. An encoding of length k of a string xn

1 is tk1 = encode(xn
1 ).

Conversely, a decoding of tk1 is a string denoted as xn
1 = decode(tk1). Encodings with an unspecified

number of tokens are denoted as t⃗ and t⃗[i:j] are the elements from i to j of t⃗. Note that BPE and
MPE are deterministic, i.e. each string s and sequence x correspond to a unique encoding (lossless
compression). Furthermore, we define X (tk1) as a set consisting of all sequences whose encodings
start with tk1 , i.e.

X (tk1) = {x|tk1 = encode(x)k1},
which corresponds to the token-level probability P (tk1), i.e the probability of obtaining a sequence
whose encoding starts with tk1 . We also view any tokenized LM as an autoregressive process that
defines P (tk+1|tk1) and refer to an infinite token sequence as t = t1t2... and t ∈ T . Similar as the
byte-level process, with the existence of <EOS>, t is effectively finite and T is countably infinite.

3 LANGUAGE MODELS AND TOKENIZATION BIAS

3.1 STATISTICAL EQUIVALENCE BETWEEN DATA GENERATING PROCESSES

We begin by establishing the definition of statistical equivalence between two stochastic processes.
Then, we show that byte-level LMs and their induced tokenized LMs are statistically equivalent.
Definition 1. (Statistical Equivalence) For a countably infinite set X , the byte-level data generating
processes G1 and G2 are statistically equivalent if and only if:

PG1
(x) = PG2

(x) for all x ∈ X ,

i.e., the chance of sampling a sequence x are identical for processes G1 and G2, denoted by their
subscripts.

We consider the following two stochastic processes:

• G1 : the ground truth byte-level language models P (xn+1|xn
1 ).

• G2 : consists of the tokenized model P (tk+1|tk1) induced from the process G1 and tokeniza-
tion. The process G2 generates sequence x by autoregressively sampling new tk+1 and
maps tk+1 to its byte-level representation using the decode(.) function.

Since the mapping defined by the tokenizer for the sequence x and its encoding t = encode(x) is
bijective, we have P (t) = P (x), leading to two processes being statistically equivalent. This implies
that it is possible to convert any tokenized LM to its statistically equivalent byte-level counterpart.

3.2 TOKENIZATION BIAS

Despite their statistical equivalence, the generation behavior of tokenized and byte-level LMs can
be significantly different when prompted with the same string. We characterize the tokenization bias
phenomenon that describes this discrepancy between conditioning domains, i.e. bytes versus tokens.

3
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Figure 2: Tokenization bias on a 1st-order Markov chain. Given the context token “A”, the model
will never sample the next token as “A”, rather than with probability 1 − α. In practice, this bias
occurs when prompts end with tokens that are part of another token, a common issue in the FIM
tasks, leading to incorrect completions by the model.

Definition 2. (Tokenization Bias) Let the input prompt xn
1 have the corresponding encoding

tk1=encode(xn
1 ). The tokenization bias occurs for this prompt when:

P (xn+1|xn
1 ) ̸= P (xn+1|tk1), (1)

where P (xn+1|tk1) =
∑

t∈E P (tk+1=t|tk1) and E = {t ∈ V|xn+1 = decode(t)1}, i.e. the set of
tokens whose first byte is xn+1.
For example, the probability of the next byte being “c” may be different from the sum of the prob-
abilities of all tokens that start with “c”, which offers a broader perspective compared to the proba-
bility of the subsequent token being exactly “c”.

3.2.1 TOKENIZATION BIAS IN MARKOV CHAINS

To systematically study tokenization bias, we employ a simplified autoregressive model, represent-
ing the data generating process as a Markov chain. As a result, we can derive a closed-form expres-
sion for the induced tokenized model and directly observe the tokenization bias phenomenon.

We consider a 1st order Markov chain with two states {“A”, “B”}, shown in Figure 2 (left) where
each string is tokenized with either MPE or BPE, which yields the same result. With the vocabulary
V = {“AA”, “A”, “B”}, we obtain a new Markov chain whose states and transition matrix are
shown in Figure 2 (right). Appendix A.7 provides details on computing the transition matrix. The
statistical equivalency between two chains is described in Rajaraman et al. (2024). First, notice that
no tokenization bias occurs when conditioning on t1=“AA” or t1=“B”, e.g.

P (x3=“A”|x2
1=“AA”) = P (t2=“AA”|t1=“AA”) + P (t2=“A”|t1=“AA”) = 1− α

0.0 0.2 0.4 0.6 0.8

Probability of Next Byte being A

AAA

AAB

ABA

ABB

BAA

BAB

BBA

BBB

La
st

3
B

yt
es

Ground Truth: P (xn+1|xnn−2)
Our Bias Correction Method
Biased Estimate: P (xn+1|ti1)

Figure 3: Tokenization bias on a
3rd order Markov chain. Our byte-
token conversion (bias correction)
method in Section 4 accurately re-
covers P (xn+1|xn

1 ) of the original
chain.

However, when conditioning on t1=“A”, tokenization bias
emerges, i.e. the probability P (x2=“A”|t1=“A”)=0.0 is not
equal to P (x2=“A”|x1=“A”) = 1−α, i.e. the token-level
Markov chain never samples “A” with any prompt ending with
token “A”. The reason is that whenever two consecutive bytes
“A” appear together, the tokenizer immediately merges them
into a single token “AA”, results in zero probability. Despite
being simple, this model portrays the exact phenomenon as the
coding example discussed in Figure 1(Left).

Higher-Order Markov Chain. We now show this phe-
nomenon in a more complex, 3rd order Markov chain, but
shift from mathematical derivation to an empirical approach to
demonstrate its relevance in practice. Furthermore, we lever-
age this example to illustrate the effectiveness of our byte-
token conversion method, to be introduced in Section 4, as
a viable bias correction technique. Here, we train a decoder
transformer on tokenized data and analyse its next-token prob-
abilities, shown in Figure 3. As we expect, the trained tok-
enized model exhibits severe bias in its predictions. Neverthe-
less, when combined with our bias correction technique, we
accurately recover the original transition probabilities, demonstrating its potential for generalization
to other LMs. We detail the experiment setup in Appendix A.7.
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Figure 4: Left: Representation of P (xn
1 ) using tokenized LM with an example of cover encodings

and valid/invalid encoding. Right: Illustration of Algorithm 1 for cover encodings search. Green
tick and red cross denote valid and invalid encodings respectively (Definition 3). The termination
step can be easily implemented despite not shown in the algorithm. We use BPE in this example.

3.2.2 INVALID ENCODINGS

The investigation on the zero probability events observed in our Markov chain example leads us
to introduce the definition of invalid encodings, which sets constraints on the probability P (⃗t) of
tokenized LMs.
Definition 3. (Invalid Encodings) An encoding t⃗ is invalid if encode(decode(⃗t)) ̸=t⃗, else it is valid.

In other words, invalid encodings represent the string with different tokens than the one produced
by the tokenizer. For example, assume MPE tokenizer and V={“c”, “a”, “t”, “at”, “cat”}, then
encode(“catt”)=[“cat”, “t”]. Encodings [“c”,“at”,“t”] and [“c”,“a”,“t”,“t”] are invalid.

With this definition, Proposition 1 states that no invalid encodings will exist in the token distribution.
Proposition 1. X (tk1) = ∅ if and only if tk1 is invalid. As a result, P (tk1) = 0.0. Furthermore,
P (tk|tk−1

1 ) = 0.0 if tk−1
1 is valid, otherwise, it is undefined.

Proof. See Appendix A.4

We note that Proposition 1 indicates the constraints of P (tk1) for tokenized LM induced the by byte-
level data generating process. For trained LMs, P (tk|tk−1

1 ) is not zero for invalid tk1 due to softmax
activations. Nevertheless, we observe it to be very low compared to the valid tk1 , as in Figure 3.
Finally, we can truncate these invalid probability to zero without any loss in terms of perplexity
score, detailed in Appendix A.6.

4 EXACT BYTE-LEVEL PROBABILITIES

4.1 BYTE-TOKEN REPRESENTATION LEMMA FOR P (xn
1 )

To addresses the tokenization bias, we derive byte-level predictions P (xn+1|xn
1 ) from token-level

predictions P (tk+1|tk1). To this end, we compute P (xn
1 ) and begin with the concept of cover en-

codings of xn
1 . These encodings are valid encodings that “optimally” contain xn

1 , i.e. their last
tokens start at locations i < n. Results in this section, i.e. Section 4.1, apply for any deterministic
tokenizer, not just BPE/ MPE.
Definition 4. (Cover Encodings) Given a prefix xn

1 , an encoding tk1 is said to be covering xn
1 when

all the following conditions satisfied:

1. tk1 is valid.

2. xn
1 ∈ prefix(decode(tk1)).

3. xn
i ∈ tk for some 1 ≤ i ≤ n, i.e. the last token tk covers a part of the string xn

1 .

We denote cover(xn
1 ) to be the set of all cover encodings of xn

1 , with examples in Figure 4 (mid-left).
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Following the definition of cover encoding, we establish the BTR Lemma that allows us to exactly
compute P (xn

1 ) using P (tk+1|tk1). The idea of the BTR Lemma is that for any sequence x starting
with xn

1 , its encoding encode(x) must start with one of the encodings in cover(xn
1 ).

Lemma 1. (Byte-Token Representation Lemma) For a language model P (tk+1|tk1), given a prefix
xn
1 , the following statements hold:

1. For any distinct t⃗, t⃗′ ∈ cover(xn
1 ), we have X (⃗t) ∩ X (t⃗′)=∅.

2. X (xn
1 ) =

⋃
t⃗∈cover(xn

1 )

X (⃗t).

As a result, P (xn
1 ) can be expressed as the marginal probability of all covering tokens of xn

1

P (xn
1 ) =

∑
t⃗∈cover(xn

1 )

P (⃗t). (2)

Proof. See Appendix A.2.

Remark 1. The BTR Lemma provides a general view of tokenization bias. Consider the cover en-
coding example in Figure 4 (middle-left). There, given the input string x5

1 = “yummy”, prompting
into the models encode(x5

1) = [“yum”, “my”] will discards the other two possibilities, resulting in
a skew distribution over the next-byte, i.e. tokenization bias.

Some scenarios requires conditioning on special tokens, such as when using control/synthetic tokens
(e.g., FIM code-infilling). In such cases, we want to compute the byte-level probability conditioned
on specific tokens, i.e. P (xn

m+1|tk1) where xm
1 = decode(tk1), or equivalently, P (xn

1 , t
k
1). Corollary

1 provides a closed-form expression for this quantity.

Corollary 1. We can express P (xn
1 , t

k
1) where decode(tk1) ∈ prefix(xn

1 ) as follows:

P (xn
1 , t

k
1) =

∑
t⃗′∈cover(xn

1 )

tk1=t⃗′[1:k]

P (t⃗′), (3)

i.e., to compute P (xn
1 , t

k
1), we limit the set of cover encodings to those that starts with tk1 .

Proof. See Appendix A.3.

Finally, to apply Lemma 1, we need to search for all t⃗ ∈ cover(xn
1 ), which can be time consuming

with naive search. For the tokenizers under consideration, i.e. BPE and MPE, there exists an efficient
algorithm by using the properties of invalid encodings (Definition 3). We explain this algorithm in
Section 4.1.1.

4.1.1 COVER ENCODING SEARCH ALGORITHM

We present the cover search process in Algorithm 1, which is illustrated in Figure 4 (right). Note
that the algorithm also returns P (⃗t) for t⃗ ∈ cover(xn

1 ) which we will use for the sampling later on.
The idea is as follows: instead of searching for cover encodings from left to right, which can be
computationally expensive, we search for valid encodings in reverse order, starting from the right.
Suppose the last token tk, of a cover encoding tk1 is known and it has suffix xn

i+1, then according to
Proposition 1, we must have: tk−1

1 =encode(xi
1), else tk1 will be invalid.

As a result, searching from the reverse order, for any suffix xn
i+1, we can find all tokens that start

with xn
i+1, tokenize xi

1 and check if their combination is valid or not. The number of model runs is at
most nℓ, where ℓ is length of the longest token in V , in order to compute P (⃗t). In practice, the actual
number of inference runs is much lower since encode(xi

1) of the current iterations often contains
encodings of the later iterations. Finally, while we can obtain P (xn+1|xn

1 ) through factorization
using this algorithm, it is not practical for sampling purpose as we need to repeat the process for all
xn+1 ∈ A. We next show an efficient alternative in Section 4.2.

6
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Algorithm 1 (Cover Encodings Search). Compute P (xn
1 ) and P (⃗t) for each t⃗∈cover(xn

1 ).

1: procedure EXTRACT COVER(xN
1 )

2: cover dict = {} # Dictionary {t⃗ : P (⃗t)}
3: for i = n− 1, ..., 0 do
4: # Find all tokens covering xn

i+1 and tokenize the remaining xi
1

5: B = {t ∈ V|xn
i+1∈prefix(decode(t))}

6: tk−1
1 = encode(xi

1)
7: # Compute P (tk1) where tk1 = t1, ...tk−1, t for all t ∈ V
8: P (tk1) = P (tk−1

1 )× P (tk+1 = t|tk−1
1 ) # Broadcast Multiplication for all t

9: # Remove invalid encodings.
10: for t ∈ B do
11: t⃗ = concat(tk−1

1 , t)

12: cover dict[ t⃗ ] = P ( t⃗ ) if is valid( t⃗ )
13: end for
14: end for
15: # cover(xn

1 ) = cover dict.keys()
16: P (xn

1 ) =
∑

t⃗∈cover dict

P ( t⃗ ) # from the BTR Lemma ( Lemma 1).

17: return P (xn
1 ), cover dict

18: end procedure

4.2 EFFICIENT NEXT-BYTE SAMPLING ALGORITHM FOR P (xn+1 | xn
1 )

To efficiently compute P (xn+1|xn
1 ) for any xn+1=a ∈ A, we note that cover(xn+1

1 ) contains:

• Cn+1(a): encodings t⃗ from the previous cover(xn
1 ) whose (n+ 1)th bytes is a. Formally,

we have: Cn+1(a)={t⃗∈cover(xn
1 )|decode(⃗t )n+1=a}.

• C̄n+1(a): encodings t⃗ whose last token starts with a at the (n+ 1) location. Formally, we
have: C̄n+1(a)={tk+1

1 |tk1=encode(xn
1 ),decode(tk+1 )1=a}.

Since Cn+1(a) ∩ C̄n+1(a) = ∅, then:

P (xn
1 , xn+1 = a) =

∑
Cn+1(a)

P (⃗t ) +
∑

C̄n+1(a)

P (⃗t ), (4)

With this formulation, we find cover(xn+1
1 ) following the process in Figure 5 ( also see Algorithm

3 in Appendix A.8). Specifically, to find Cn+1(a) and C̄n+1(a) for every a ∈ A, we:

1. Obtain cover(xn
1 ) using Algorithm 1 or from Step 4 of the previous sample.

2. Find Cn+1(a) by checking the (n+1)th byte of each t⃗ ∈ cover(xn
1 ). We accumulate them

for each a respectively.

3. Find C̄n+1(a) by querying the conditional distribution over all tokens P (tk+1|tk1). Note
that P (tk1) was already computed in cover(xn

1 ). The encoding accept/reject step is optional.

4. Obtain cover(xn+1
1 ) for all xn+1 = a ∈ A.

5. Sample xn+1 from all computed P (xn+1
1 ) (normalizing by P (xn

1 )).

As a result, we only need to run Algorithm 1 at the beginning of the sampling process. For Step 3,
the mapping of what tokens start with what bytes can be pre-computed and the sum over tokens can
be parallelized via matrix multiplication. Also, one can avoid storing a large number of encodings at
Step 4 by sampling the next byte immediately after Step 3, following Equation (4), and only create
the set of the sampled value xn+1, i.e. C̄n+1(xn+1).
Remark 2. Computing P (xn

1 ) requires accessing to P (t1) but models such as the Yi series (Young
et al., 2024) do not provide P (t1). Nevertheless, it is possible to compute P (xn+1|xn

1 ) by leveraging
the pre-tokenization pattern such as white spaces or punctuation. Details in Appendix A.1.
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Figure 5: Illustration of the sampling process for xn+1 from tokenized LM P (tk+1|tk1), with exam-
ple following Figure 4. We do not include P (⃗t) for simplicity. Details in Section 4.2.

5 RELATED WORK

Algorithms for Tokenization Bias. Tokenization bias has been empirically observed when model
produces unusual generations when prompted with string ends with trailing whitespace (Gao et al.,
2023) or mid-word (Dagan et al., 2024). Token healing (Dagan et al., 2024; guidance ai, 2023) mit-
igates this issue by searching for tokens prefixed with the incomplete word. This method, however,
fails to consider all matching possibilities. In the “yummy” example in Figure 4, it can only recover
two encodings “yum|my” and “yum|myu” (tokens separated by “|”) , as “my” is a prefix string of
tokens “my” and “myu”, missing “yum|m|yum” (also see Appendix D). Other proposed solution
is using specific prompting strategies (Bavarian et al. (2022), also see PSM Mode in Section 6.1),
requiring additional training and specific prompt structure. In contrast, we tackle the underlying
issue by identifying the probabilistic root cause, i.e. the token-byte domain gap, and introduce a
conversion technique to recover the unbiased byte-level distribution without requiring retraining.
Finally, Pimentel & Meister (2024) address a different but related problem of computing next word
probability, sharing some similar analysis. Unlike our work, their approach is limited to whitespace-
separated tokenizers and does not support autoregressive byte sampling.

Language Model Ensembles To the best of our knowledge, our work is the first to (i) compute next
token probabilities in a universal space for both input and output domains while (ii) guaranteeing
that the statistical properties of all member models are preserved (see Section 4), and (iii) without the
need for additional training, data or model modifications. Several works also attempted to combine
multiple LMs. Wan et al. (2024) introduce a model distillation technique by combining predictions
from various LMs to fine-tune a primary model, which does not tackle the issue of vocabulary
discrepancies. Jiang et al. (2023b) use ranking approach and evaluating outputs at the paragraph
level and comparing them pairwise. However, their approach requires training a scoring function,
making it sensitive to the distribution of training data and model choice. Huang et al. (2024) maps
the token probabilities of member models to a universal space, which relies on token embedding’s
similarity and involves solving an optimization task. Gu et al. (2024) also investigate character-
level ensembling, but does not provide expressions for P (xn

1 ) or P (xn+1|xn
1 ) and overlooks the

issue of invalid encodings. Since their method condition on tokens without addressing the bias, it is
susceptible to invalid encoding states and division-by-zero errors, particularly with optimal sources.

6 EXPERIMENTS

6.1 CODE COMPLETION

Code completion with LLMs is well-suited for our byte-level predictions because the model is fre-
quently prompted with incomplete code snippets. Here, we briefly introduce the setting and show
that the byte-level predictions significantly improve upon the standard performance.

Fill-in-the-middle (FIM) code completion. Code completion is the process of taking source code
as input along with a point in the middle to generate the completion, e.g., the point the user’s cursor
is at. So, generating new code in the middle does not fit into the standard autoregressive genera-
tion provided by pre-training models, nor does it fit into standard system-user-assistant conversation
prompt templates. The solution has been to introduce a fill-in-the-middle (FIM) prompt template
that turns the middle generation back into a standard prompt that can be completed by an autoregres-
sive model (Bavarian et al., 2022). These FIM prompt templates introduce new tokens or control
sequences and cannot be used with a model that is not aware of them, so code models are then
trained (or fine-tuned) on a dataset of code formatted into these FIM prompt templates.
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PSM SPM
Predictions Greedy @10 Greedy @10

Token-level 64.9 84.0 45.0 66.5
+ healing | | 62.7 83.8

+ alignment | | 63.0 82.9

Byte-level 65.7 84.1 63.9 84.3
@10 here is the max over the temperature sweep on the right
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Figure 6: Pass rates for the HumanEval Random Span benchmark from Bavarian et al.
(2022) with CodeLlama-7b for infilling Python. Across all settings, the byte-level predic-
tions yield better completions. We evaluate the two standard infilling prompt templates of
Prefix-Suffix-Middle (PSM) and Suffix-Prefix-Middle (SPM), and as baselines
use token healing (Dagan et al., 2024) and alignment (Athiwaratkun et al., 2024). The SPM template
forces the model to make predictions from the middle of a token, which our byte-level predictions
successfully handle.

Prompt templates for FIM. Given a {prefix} and {suffix} along with the control
tokens <PRE>, <MID>, and <SUF>, there are two main prompt formats for querying a
code model to generate the middle portion: the Prefix-Suffix-Middle (PSM) format
"<PRE> {prefix} <SUF>{suffix} <MID>", and Suffix-Prefix-Middle (SPM)
format is "<PRE> <SUF>{suffix} <MID> {prefix}".

Upsides and downsides of PSM and SPM. The default and most widely-used mode is PSM (Bavar-
ian et al., 2022; Roziere et al., 2023). We speculate this is the default mode because there are no
tokenization issues in it: the incomplete prefix is clearly separated from the middle portion to gener-
ate by the control tokens. While the PSM format solves tokenization issues with this separation, the
downside is that it creates an unnatural separation between the prefix and middle generation. SPM
mode overcomes this by prompting the model to generate immediately after the prefix, without any
separating tokens. This contiguity is desirable as it would leverage more knowledge from the pre-
training task, but now creates a tokenization issue when the prefix stops in the middle of a token.
A standard heuristic to overcoming this in SPM mode is called token healing, e.g., as described
in Dagan et al. (2024), but it does not correct every tokenization issue here. Another fix is token-
alignment (Athiwaratkun et al., 2024) but the scheme is biased and suboptimal (see Appendix E).
These tokenization issues make the PSM template outperform the SPM template in every previous
results for code infilling.

Our results. We experimented with the standard random-span infilling benchmark from (Bavarian
et al., 2022). Figure 6 shows that our byte-level predictions in SPM mode attain superior perfor-
mance when using 10 samples, using CodeLlama-7b. This corroborates our hypothesis that the
contiguity between the prompted prefix and generated middle in SPM mode is more natural and con-
sistent with the pre-training objective of the model. Another surprising result is that the byte-level
greedy generations outperform the token-level greedy generations.

Ablation This is surprising because each token typically spans over multiple bytes, hence for greedy
generation the token model should have a slight advantage. We wanted to further investigate this
finding and hence performed beam search with beam width 2 and 4, which led to consistent improve-
ment of up to 2.9% and best performance at 67.7. The complete ablation is located in Appendix C.

6.2 MODEL ENSEMBLES

Ensemble methods rely on two principles; model prediction averaging (aggregation) and training
each member of a model ensemble on a subset of all available data (bootstrapping). Ensemble
methods are a popular choice because aggregation reduces the variance of the expected empirical
test error, and bootstrapping reduces model bias. As a result, bootstrap aggregation leads to model
ensembles that are generally more accurate and robust than any individual member model (Hastie
et al., 2009). The recent surge of open-weights LMs, each presumably trained on different subsets
of available text, makes these LLMs ideal candidates for bootstrap aggregation.

Our method. Unfortunately, vocabulary discrepancies between LMs prevent direct aggregation, as
models map to different token spaces. Our method solves this by enabling exact next-byte predic-
tion, allowing any LM to map into the same space, so byte probabilities can be aggregated without
restrictions on the aggregation function and preserving the statistical properties of the member mod-
els. In this work, we choose simple averaging. We leave more complex methods for future work.
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MMLU PIQA NQ TriviaQA GSM8K

Model Token Byte Token Byte Token Byte Token Byte Token Byte
LLama2-7B 45.4 45.7 78.1 78.2 25.0 23.4 58.4 58.1 15.1 12.5
Yi-1.5-6B 63.4 63.4 78.5 78.5 22.8 22.7 53.7 53.4 61.3 61.5
Mistral-7B-v0.3 62.1 62.1 80.1 80.3 28.5 28.8 63.6 63.5 39.0 39.0

Voting (top-2) 62.1 80.1 | | |
Top-2 ensemble (Our) 65.4 80.7 30.0 64.2 55.8

Table 1: We evaluate the token and equivalent byte-level model performance of various open source
LMs. We further show the byte-ensemble performance of the top-2 performing models. For all
benchmarks but GSM8K, byte-level ensembles outperform single models and voting.

Human Eval @1 MBPP@1

Model Token Byte Token Byte
CodeLlama2-7b 32.3 28.7 40.6 42.4
Codellama2-13b 35.8 33.5 47.6 47.4
Yi-Coder-1.5B 38.4 36.5 52.8 53.6
Top-2 Ensemble 42.1 53.6

Table 2: We evaluate the token and equiva-
lent byte-level model performance of open-weight
code LMs. We show the byte-ensemble perfor-
mance of the top-2 performing models. Ensemble
Model achieves best result on Human Eval bench-
mark while drawing Yi-Coder-1.5B on MBPP.

Benchmarks and setup. We compare next-
token, next-byte, voting and byte-ensembles
against one another on multiple knowledge,
reasoning, and coding benchmarks. We chose
our benchmarks due to their prevalence in test-
ing general LM ability. Due to computational
constraints, we test on 7B models primarily.
Note that multiple choice tasks require likeli-
hood evaluation (MMLU, PIQA) while other
tasks require mid to long generations. Finally,
voting is not trivially extended to reasoning
tasks without training an evaluator network.

Our results. The results of this experiment are
in Table 1 and 2. Byte and token predictions are often on par with one another. Ensembling the
top-2 performing models seems consistently lead to performance boost except when member model
performance is too divergent, as in the case of GSM8K dataset where Yi-1.5-6B outperforms
Mistral-7B-v0.3, the second best model, by a margin of 20%. For coding tasks, the ensem-
ble of Yi-Coder-1.5B and CodeLlama2-13b improves up to 3.7% on Human Eval dataset.
Overall, these results show the benefits of ensemble as an exciting direction for LMs collaboration.

7 CONCLUSION

Conclusion and limitations. This work shows that tokenized LMs have different predictive distribu-
tions than their statistically equivalent byte-level counterpart, i.e. tokenization bias. We introduced
an O(1) next-byte prediction algorithm to mitigate this bias at inference time and showed its empir-
ical relevance for FIM benchmarks and model ensemble tasks. Yet, our method introduces notable
memory consumption in its current implementation, and incurs additional linear computational costs
(one token = multiple bytes). At present, these factors may limit its practical application in resource-
constrained environments. While our work provides new insights into the effects of tokenization, it
can not explain or mitigate all related phenomena such as poor performance on arithmetic tasks.

Future work. While this work sheds some light on token- and byte-level LMs, several open ques-
tions remain. Notably, our theory does not provide insight into the employed greedy evaluation
process, nor do we examine the cumulative impact of tokenization bias. Regarding the latter, our
analysis is limited to single-token predictions, while real-world applications require generating hun-
dreds of tokens. Building on our findings, future research can explore broader topics, such as bias-
variance decomposition in LM ensembles, or interplays between bootstrapping and scaling laws.
Apart from theoretical work, future development could explore model distillation, where larger mod-
els with larger vocabularies could be distilled into smaller models with specialized tokenization. It
also enables model-independent prompt optimization, such as for universal adversarial attacks, and
facilitates relative uncertainty estimation, allowing for comparisons of model uncertainty. Our work
only scratched the surface of the possibility of model ensembles: For example, models trained on
different languages may outperform a single model trained on all languages simultaneously, as indi-
vidual models can achieve more optimal entropy bounds by utilizing distinct tokenizations tailored
to their respective languages. This might also improve the representation of otherwise underrepre-
sented languages in a training data corpus. Furthermore, our results also open up new possibilities
for tackling mechanism design problems (Duetting et al., 2024) involving different language models,
where the tokenization bias issue can potentially create unfair advantages for certain models.
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A APPENDIX

A.1 ESTIMATE P (xn+1|xn
1 ) WHEN P (t1) IS NOT AVAILABLE

In practice, several models such as the Yi series do not provide P (t1) since it does not include
the beginning of sequence token. As a result, we cannot compute P (⃗t). However, we can still
compute P (xn+1|xn

1 ) since their tokenization algorithm often force splitting words by using pre-
tokenization pattern such as the whitespace. Let xi be the last whitespace byte in xn

1 such that xi−1

is not a whitespace. Then we know that tk1 = encode(xi
1) must be the prefix encoding of all cover

encodings of xn
1 . This holds not only for xn

1 but also any string s = concat(xn
1 , s

′) where s′ is an
arbitrary suffix.

As such, using the BTR Lemma 1, we have:

P (xn
1 ) =

∑
t⃗∈cover(xn

1 )

P (⃗t) = P (tk1) ×
∑

t⃗′∈cover(xn
i+1)

P (t⃗′|tk1) (5)

and hence, with factorization:

P (xn+1|xn
1 ) =

 ∑
t⃗′∈cover(xn+1

i+1 )

P (t⃗′|tk1)

 /  ∑
t⃗′∈cover(xn

i+1)

P (t⃗′|tk1)

 , (6)

which shows that we do not need P (tk1) to compute P (xn
1 ), since conditioning on them is sufficient.

For autoregressive byte generation, we condition each probability term in Algorithm 3 with tk1 .

A.2 PROOF OF LEMMA 1

Lemma 1. (Byte-Token Representation Lemma) For a consistent tokenizer and a corresponding
language model P (tk+1|tk1), given a prefix xn

1 , we have the followings:

1. For any distinct t⃗, t⃗′ ∈ cover(xn
1 ), then X (⃗t) ∩ X (t⃗′)=∅.

2. X (xn
1 ) =

⋃
t⃗∈cover(xn

1 )

X (⃗t).

As a result, P (xn
1 ) can be expressed as the marginal probability of all covering tokens of xn

1

P (xn
1 ) =

∑
t⃗∈cover(xn

1 )

P (⃗t). (7)

Proof. We prove each point as follows:

1. Proof by contradiction, let ti1, t
′j
1 ∈ cover(xn

1 ) and ti1 ̸= t′j1 . Suppose that there exists a
sequence x where ti1 = encode(x)i1 and t′j1 = encode(x)j1. Without the loss of general-
ization, suppose i < j, then ti1 = t′i1 since our tokenizer is deterministic. Hence, t′j1 cannot
be a cover encoding of xn

1 .

2. This follows the definition of cover encodings.

Since each X (⃗t) is pair-wise disjoint, we arrive at the final equation.

A.3 PROOF OF COROLLARY 1

Corollary 1. We can express P (xn
1 , t

k
1) where decode(tk1) ∈ prefix(xn

1 ) as follows:

P (xn
1 , t

k
1) =

∑
t⃗′∈cover(xn

1 )

tk1=t⃗′[1:k]

P (t⃗′). (8)
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Algorithm 2 Byte Pair Encoding Algorithm.

1: procedure ENCODE BPE(xN
1 , V)

2: # Set initial encodings:
3: c tokens = xN

1

4: # Iterate over merging order in V , the first |A| entries correspond the the alphabet (no merge happens):
5: for i = |A|+ 1, ...|V| do
6: c tokens←− find merge(c tokens,V[i])
7: end for
8: return c tokens
9: end procedure

10:
11: procedure find merge(c tokens, v)
12: # Left and right tokens for merging
13: tleft, tright, tnew = v[1], v[2], v[3]
14: old tokens = c tokens
15: new tokens = []
16: # Find and merge tokens from left to right
17: j = 1
18: while j < |old tokens| do
19: if old tokens[i, i+ 1] = tleft, tright then
20: new tokens.append(tnew)
21: j = j + 2
22: else
23: new tokens.append(old tokens[i])
24: j = j + 1
25: end if
26: end while
27: return new tokens
28: end procedure

Proof. The proof follows the one for the BTR Lemma 1, where we only consider the cover encod-
ings that start with tk1 .

A.4 PROOF OF PROPOSITION 1

For completeness, we first show the BPE encoding algorithm in Algorithm 2. For the MPE algo-
rithm, the rule is greedily looking for the longest token that matches the prefix of the given text.

Proposition 1. X (tk1) = ∅ if and only if tk1 is invalid.

Proof. For the case of BPE, we prove each direction as follows.

• If X (tk1) = ∅ then tk1 is invalid: Since X (tk1) = ∅, we know that there exist no sequence x
such that encode(x)k1 = tk1 . This means there is also no string s that satisfy encode(s)k1 =
tk1 . As such, for s = decode(tk1), we do not have encode(decode(tk1)) = tk1 , which proves
the result.

• If tk1 is invalid then X (tk1) = ∅: Let xn
1 = decode(tk1), it is sufficient to consider two string

s1 and s2 that both have prefix xn
1 . Furthermore, we assume the first i tokens of s1 covers

exactly xn
1 , i.e. xn

1 = decode(ti1) and similarly, the first j tokens of s2 covers exactly xn
1 ,

i.e. xn
1 = decode(t′j1 ). Then:

1. Proving invalid tk1 leads to X (tk1) = ∅ is equivalently to proving ti1 = t′j1 for any
s1, s2.

2. Re-running the BPE algorithm for s1 and s2 in parallel, we know that there will be no
merge between any suffix of xn

1 and the rest of strings, i.e. s1\xn
1 and s2\xn

1 due to
the condition above (See Algorithm 2, line 6).

3. Furthermore, for s1, any time a merge happens within xn
1 then the same merge must

also happen within xn
1 for s2 and vice versa.

14
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As the result, we have ti1 = t′j1 and they must be equal to encode(xn
1 ).

For the case of MPE, the proof is similar:

• If X (tk1) = ∅ then tk1 is invalid: Since X (tk1) = ∅, similar to the case of BPE, we know
that there exist no string s such that encode(s)k1 = tk1 . As such, for s = decode(tk1), we do
not have encode(decode(tk1)) = tk1 , which proves the result.

• If tk1 is invalid then X (tk1) = ∅: Let xn
1 = decode(tk1), we consider two string s1 and s2

that both have prefix xn
1 . Furthermore, we assume the first i tokens of s1 covers exactly

xn
1 , i.e. xn

1 = decode(ti1) and similarly, the first j tokens of s2 covers exactly xn
1 , i.e.

xn
1 = decode(t′j1 ). Since the MPE tokenizer will greedily looking for the longest token,

hence one of the the encodings must not follow MPE encoding rule (contradiction).

This concludes the proof.

A.5 TOKENIZATION BIAS UNDER STOCHASTIC TOKENIZERS

Another class of tokenizers is non-deterministic, such as BPE Dropout (Provilkov et al., 2020), to
address model’s weakness against text fragmentation by randomly omitting tokens before text pro-
cessing, theoretically training the model in multiple vocabularies. Although intended to enhance
robustness, our analysis suggests that tokenization bias still exists despite less obvious. It is partially
mitigated, nevertheless, since the model needs to minimize loss across varied vocabulary sets. The
BTR lemma (Lemma 1) holds, requiring consideration of all valid encodings under this variability.
In practice, given the substantial size of the vocabulary, BPE-dropout is expected to be robust to
tokenization bias, i.e. assigning non-zero probabilities to invalid encodings. Yet, it is not commonly
employed in training large-scale LLMs because the randomized tokenization introduces a compu-
tational bottleneck, which slows down the training process. Also, it may require greater model
capacity to handle the increased complexity.

We demonstrate the tokenization bias in BPE-droupt in the following experiment. Here, we use the
1st order Markov chain example as in Figure 2 where (α, β) = (0.4, 0.3). We train a LLM with
BPE dropout where a sequence can be tokenized either with the vocabulary V1 = {“A”, “B”, “AA”}
or V2 = {“A”, “B”} with equal probability. Consider the following input tokens (separated by |)
and their next-token probabilities:

• “|B|A|” and next token probabilities {“A” : 0.43, “B” : 0.57, “AA” : 10−5}: tokenization
bias happens according to Definition 2 but the probability does not go to 0.0 as the cross
entropy loss is distributed between the two vocabularies.

• “|B|A|A|” and next token probabilities {“A” : 0.59, “B” : 0.41, “AA” : 10−5}: which
approximately equal to the original byte-level probabilities since the LLM detects that the
only possible vocabulary that produces these tokens is V2 = {“A”, “B”}.

• “|B|AA|A|” and next token probabilities {“A” : 10−4, “B” : 0.99, “AA” : 10−5}: tok-
enization bias occurs, i.e. the LM only outputs token “B”. Since “AA” only occurs in the
vocabulary V1 = {“A”, “B”, “AA”}, the LLM detects the tokenization pattern and infer
that the sequence must be tokenized with this vocabulary.

Finally, for the first case “BA”, we can recover the exact probability by using the BTR lemma.
In this case, its cover encoding and associated probabilities are t1 = |B|A|, t2 = |B|AA| and
P (t1) = 0.104 and P (t2) = 0.0415. For the string “BAA”, the first cover encoding is t2, which is
already computed and the other one is t3 = |B|A|A| and P (t3 = 0.0443). Using factorization,
we obtain α = 0.405, which is approximately equal the the original value of 0.4.

A.6 ON PREDICTIVE DISTRIBUTION OF LANGUAGE MODELS

In practice, LMs often do not strictly follow Proposition 1 due to softmax activations. In this section,
we show that given any tokenized LM, we can force its output probabilities to obey Proposition 1,
without any loss in terms of perplexity score on the token domain. In other words, we can turn a
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tokenized language model that does not follow Proposition 1 to the one that does while guaranteeing
that the new model will always result in a lower token-level perplexity score.

We first introduce Proposition 2. In this proposition, we are given a target discrete probability distri-
bution p where we know some of the values will not happen, says Φ∗. Assume that we have another
distribution q that approximates p, then we can produce another distribution q∗ that is closer to p in
terms of KL divergence by setting corresponding probabilities of q in Φ∗ to 0.0 and renormalize it.
Proposition 2. Given a discrete distribution p = {p1, p2, ..., pm} and q = {q1, q2, ..., qm} with
qi > 0.0 for all i. Let Φ = {i ∈ Z|pi = 0.0} and Φ∗ ⊆ Φ, we define q∗ = {q∗1 , q∗2 , ..., q∗m} where
q∗i = 0.0 for i ∈ Φ∗, and q∗j = qj/(

∑
l/∈Φ∗ ql). Then we have:

DKL(p||q∗) ≤ DKL(p||q), (9)

which implies that q∗ is closer to p than q. We refer to the process of producing q∗ as truncate-
renormalization (TR).

Proof. Let Z = (
∑

l/∈Φ ql) is the normalizing factor in q∗. Note that Z ≤ 1 and as such log(Z) ≤ 0.
Then:

DKL(p||q∗) =
∑
i

pi log

(
pi
q∗i

)
(10)

=
∑
i/∈Φ∗

pi log

(
pi
q∗i

)
, use 0 log 0 = 0.0 (11)

=
∑
i/∈Φ∗

pi log

(
pi

qi/Z

)
(12)

=

[∑
i/∈Φ∗

pi log

(
pi
qi

)]
+ log(Z) (13)

≤
∑
i/∈Φ∗

pi log

(
pi
qi

)
= DKL(p||q), (14)

which completes the proof.

Applying to our scenario, for any autoregressive LM P1(tk+1|tk1) that does not follow Proposition 1
(due to the softmax activations), we can perform the TR process (since we know which encoding is
invalid) to obtain a new LM P2(tk+1|tk1), which is guaranteed to better approximate the ground-truth
model P (tk+1|tk1). Thus, we are guaranteed that the token-level perplexity score of P2(tk+1|tk1) is
always lower than or equal to P1(tk+1|tk1). Finally, in practice, we observe that the conditional
P1(tk+1|tk1) for invalid tk+1

1 is significantly smaller than the valid tokens.

A.7 THE MARKOV CHAIN EXAMPLE

We provide a detail computation of the Markov chain example in the main paper. Recall that in the
original chain (in the character domain), we have the following:

P (x2 = “A”|x1 = “A”) = 1− α (15)
P (x2 = “B”|x1 = “A”) = α (16)
P (x2 = “A”|x1 = “B”) = β (17)
P (x2 = “B”|x1 = “B”) = 1− β (18)

We also assume the initial probability π = {γ, 1 − γ} for “A” and “B” respectively. In the token
domain, let first compute P (t2 = “A”|t1 = “AA”) where we have:

P (t2 = “A”|t1 = “AA”) = P (x6
3 = “ABA”|x2

1 = “AA”) + P (x6
3 = “ABB”|x2

1 = “AA”) (19)

= P (x5
3 = “AB”|x2

1 = “AA”) (20)
= α(1− α), (21)
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where in the first equality, we do not include the case x6
3 = “AAA” and x6

3 = “AAB” since
encode(“AAA”)1 = “AA” and encode(“AAB”)1 = “AA”, which are not the token “A” that we
are interested in. For other tokens when t1 = “B”, the computation follows the same arguments.

Finally, for the case of t1 = “A”, we note that it implies the second token must be “B” since any “A”
after the first “A” must be tokenized into “AA” (invalid tokens). Hence, we have P (t2 = “B”|t1 =
“A”) = 1.0. Finally, in this specific Markov chain, since order of the Markov chain in the character
domain is 1, we do not need to consider the higher order of the Markov chain in the token domain.

Higher-Order Markov Chain Experiment Setup. We validate the estimated byte-level probabil-
ities of the BTR Lemma (Lemma 1) using the Markov chain’s transition probabilities as ground
truth. Specifically, we simulate the data generating process as a 3rd order Markov chain with two
states A = {“A”,“B”}, where we randomly construct the transition matrix and the vocabulary
V = {“A”, “B”, “B·A”, “BA·A”, “B·BAA”, “A·A”, “BA·BA”, “B·B”}. Here, the order within V is
the merging order for the BPE encoding process and the “·” separates the merging tokens. We then
train a LM model using GPT-2 architecture with 6 hidden layers on the synthetically generated data.
Since the model is agnostic to the Markov chain order, we average the probability from 100 runs on
different context length while fixing the last 3 bytes.

A.8 NEXT-BYTE SAMPLING ALGORITHM

Algorithm 3 shows the next-byte algorithm in Section 4.2. Note that for C̄n+1(a), we do not need to
iterate over every time since the mapping from tokens to their prefix byte can be precomputed (line
30-33).

B NOTEWORTHY IMPLEMENTATION CONSIDERATIONS

Theoretically, we do not have to predict into utf-8 byte space. We could predict into the largest
set of tokens A that is contained in the vocabularies of all members of our model ensemble:
maxA ∥A∥ s.t. A ⊆ Vi for all i. This can have certain advantages, the primary one being
that generation would be faster: for example imagine an average token has four bytes. Our method
now needs to predict four times instead of one to generate the same expected amount of text. In this
context, note that symbol based languages such as Chinese characters are often based on multiple
bytes. Hence our method can be performance optimized by specializing the alphabet. Please note
that our choice of alphabet does not change the statistical properties of the model, hence we would
not expect accuracy differences due alphabet choice. However, the primary reason for us to choose
the byte alphabet regardless was the ease of use for model ensemble: To run any experiment we
need to map tokens probabilities to a universal alphabet, that is the easiest defining the alphabet as
255 bytes and the necessary control tokens.

C ABLATION: BEAM SEARCH

Beam
width PSM SPM

1 65.7 63.9
2 66.8 65.9
4 67.7 66.8

Table 3: Performance in-
creases for the next-byte
prediction on our FIM-
task when beam search is
applied.

Each token is made of 6.6 byte on average. Thus, a tokenized model
might have more foresight compared to a byte-level one when predicting
one step at a time. Hence, even though, beam-search has not led to
improvements in tokenized models (Holtzman et al., 2020; Stahlberg &
Byrne, 2019; Koehn & Knowles, 2017), this might be different for byte-
level models.

We repeat the FIM experiments with beam-width 1, 2 and 4, shown in
Table 3. Consistently, we see an about 1% improvement for each prompt-
ing style and each beam-width increase. However, beam-search notably
increases the memory footprint of any LLM because modern transformer
based models need to store the KV-cache of each beam for efficient gen-
eration. Since the KV-cache makes about 2/3 of the overall memory
consumption beam search is a memory intense operation.
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Algorithm 3 Compute PA(.|xn
1 ), which is a conditional distribution on xn

1 over all bytes x ∈ A.
Cn+1(a) and C̄n+1(a) also contain the encoding probability P (⃗t) for each encoding they contain.

1: procedure COMPUTE(xn
1 , cover dict(xn

1 ) = None)
2: if cover dict(xn

1 ) = None:
3: P (xn

1 ), cover dict(xn
1 ) = EXTRACT COVER(xn

1 )
4: # Get the set Cn+1(a) (See Section 4.2) for all a ∈ A
5: [Cn+1(a1), ...,Cn+1(a|A|)] = REGROUP ENCODINGS(cover dict(xn

1 ))

6: # Get the set C̄n+1(a) (See Section 4.2) for all a ∈ A
7: t⃗ = encode(xn

1 ); Query P (⃗t) from cover dict(xn
1 ).

8: [C̄n+1(a1), ..., C̄n+1(a|A|)] =ADD NEW ENCODINGS(⃗t, P (⃗t))
9: # Merge cover dictionaries.

10: for a ∈ A do
11: xn+1 = a
12: cover dict(xn+1

1 ) = Cn+1(a) ∪ C̄n+1(a)

13: P (xn+1
1 ) =

∑
t⃗∈cover dict(xn+1

1 ) P (⃗t)

14: end for
15: Obtain PA(.|xn

1 ) by renormalizing P (xn+1
1 ).

16: return PA(.|xn
1 ), [cover dict(xn+1

1 ) forxn+1 = a ∈ A]
17: end procedure
18:
19: procedure REGROUP ENCODINGS(cover dict(xn

1 ))
20: for t⃗, P (⃗t) ∈ cover dict(xn

1 ) do
21: byte = decode(⃗t)
22: Cn+1(byte)[⃗t] = P (⃗t)
23: end for
24: return [Cn+1(a1), ...,Cn+1(a|A|)]
25: end procedure
26:
27: procedure ADD NEW ENCODINGS(tk1 , P (tk1))
28: Compute P (tk+1 = t|tk1) for all t ∈ V # Run 1 model inference for all t
29: Compute P (tk+1

1 ) = P (tk+1 = t|tk1)P (tk1) for all t ∈ V # Broadcasting for all t
30: for t ∈ V do
31: byte = decode(tk+1

1 )

32: C̄n+1(byte)[t
k+1
1 ] = P (tk+1

1 )
33: end for
34: return [C̄n+1(a1), ..., C̄n+1(a|A|)]
35: end procedure

D FIM CODE GENERATION EXAMPLES

Here, we show three examples from the random span FIM benchmark from Bavarian et al. (2022)
that we evaluate on in Figure 6. Our greedy byte-level generations significantly improve upon the
greedy token-level generations in the SPM (suffix-prefix-middle) mode with CodeLlama-7b be-
cause the prompt ends with the “prefix” portion of the code and the generation starts at a token
boundary. Each figure visualizes an example from the benchmark with the prefix and suffix at the
beginning and separated by ⟨FILL-ME⟩ indicating the portion for the LLM to generate. Then, we
show the generations from the token and byte-level models in SPM mode along with token healing
as a baseline. They illustrate exactly where tokenization issues arise when generating and show how
the byte-level predictions correct them.
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Listing 1: Code generation example with CodeLlama-7b. This one is interesting because of the
typo in the variable “delimeter” in the dataset and the prefix ends with “delim”. The mis-
spelled “delimeter” is tokenized as two tokens: “del imeter” while the correctly spelled
“delimiter” is tokenized as a single token. This makes the 1) token-level prediction incorrectly
generate “ter” as the continuation because “delimter” is tokenized as three tokens “del im
ter”, which has a token boundary at the end of the prefix, 2) token-healed predictions incorrectly
generate “iter” because at the token-level, “delimiter” is more likely, and 3) byte-level pre-
dictions correctly generate “eter” because the probability at the byte-level correctly marginalizes
out the byte-level probability despite the context and many possible tokenizations.

# RandomSpanInfilling/HumanEval/5/1
from typing import List

def intersperse(numbers: List[int], delimeter: int) -> List[int]:
""" Insert a number 'delimeter' between every two consecutive

elements of input list `numbers'↪→
>>> intersperse([], 4)
[]
>>> intersperse([1, 2, 3], 4)
[1, 4, 2, 4, 3]
"""
if not numbers:

return []

result = []

for n in numbers[:-1]:
result.append(n)

result.append(delim ⟨FILL-ME⟩ mbers[-1])

return result

token predictions (did not pass ✗):
ter)

result.append(nu

token predictions with token healing (did not pass ✗):
iter )

result.append(nu

byte predictions (passed ✓):
eter)

result.append(nu

Listing 2: Code generation example with CodeLlama-7b. This one is interesting because of the
tokenization of “collatz” and the prefix starting with “colla”. “collatz” is tokenized as two
tokens “coll atz”. This makes the 1) token-level prediction incorrectly generate “zt” as the
continuation because “collazt” is tokenized as three tokens “col la zt”, which has a token
boundary at the end of the prefix, 2) token-healed predictions incorrectly generate “pse” because
at the token-level after backing up, “collapse” (a single token) is more likely, and 3) byte-level
predictions correctly generate “tz” because the probability at the byte-level correctly marginalizes
out the byte-level probability despite the context and many possible tokenizations.

# RandomSpanInfilling/HumanEval/123/1
def get_odd_collatz(n):

"""
Given a positive integer n, return a sorted list that has the odd

numbers in collatz sequence.↪→

The Collatz conjecture is a conjecture in mathematics that concerns a
sequence defined↪→

as follows: start with any positive integer n. Then each term is
obtained from the↪→
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previous term as follows: if the previous term is even, the next term
is one half of↪→

the previous term. If the previous term is odd, the next term is 3
times the previous↪→

term plus 1. The conjecture is that no matter what value of n, the
sequence will always reach 1.↪→

Note:
1. Collatz(1) is [1].
2. returned list sorted in increasing order.

For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5,

16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.↪→
"""
if n%2==0:

odd_collatz = []
else:

odd_colla ⟨FILL-ME⟩ 1

if n%2 == 1:
odd_collatz.append(int(n))

return sorted(odd_collatz)

token predictions (did not pass ✗):
zt = [n]

while n != 1:
if n%2 == 0:

n = n/2
else:

n = 3*n +

token predictions with token healing (did not pass ✗):
pse = []

odd_collatz = [n]
while n != 1:

if n%2 == 0:
n = n/2

else:
n = 3*n +

byte predictions (passed ✓):
tz = [n]

while n != 1:
if n%2 == 0:

n = n/2
else:

n = 3*n +

Listing 3: Code generation example with CodeLlama-7b. This one is interesting because of
the tokenization of “palindrome” and the prefix starting with “palindr”. “palindrome” is
tokenized as three tokens “pal ind rome”. This makes the 1) token-level prediction incorrectly
generate “one” as the continuation because “palindrone” is tokenized as four tokens “pal
ind r one”, which has a token boundary at the end of the prefix, 2) token-healed predictions
incorrectly generate “eome” and results in the three-token chunk “pal indre ome” because the
token healing did not successfully search backward enough, and 3) byte-level predictions correctly
generate “ome” because the probability at the byte-level correctly marginalizes out the byte-level
probability despite the context and many possible tokenizations.
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# RandomSpanInfilling/HumanEval/107/8
def even_odd_palindrome(n):

"""
iven a positive integer n, return a tuple that has the number of even

and odd↪→
integer palindromes that fall within the range(1, n), inclusive.

Example 1:

Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of

them are odd.↪→

Example 2:

Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of

them are even, and 6 of them are odd.↪→

Note:
1. 1 <= n <= 10ˆ3
2. returned tuple has the number of even and odd integer

palindromes respectively.↪→
"""

def is_palindr ⟨FILL-ME⟩ odd_palindrome_count = 0

for i in range(1, n+1):
if i%2 == 1 and is_palindrome(i):

odd_palindrome_count += 1
elif i%2 == 0 and is_palindrome(i):

even_palindrome_count += 1
return (even_palindrome_count, odd_palindrome_count)

token predictions (did not pass ✗):
one(n):

return str(n) == str(n)[::-1]

def is_palindrome(n):
return is_palindrone(n) and n >= 10

even_palindrome_count = 0

token predictions with token healing (did not pass ✗):
eome(n):

return str(n) == str(n)[::-1]

even_palindrome_count = 0

byte predictions (passed ✓):
ome(n):

return str(n) == str(n)[::-1]

even_palindrome_count = 0
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E ANALYSIS OF TOKEN ALIGNMENT

Recently, Athiwaratkun et al. (2024) also proposed a similar method to mitigate the tokenization
bias issue. In this method, they start regenerating the last B tokens in the prompt by restricting
the next-token to be either a prefix of the prompt’s remaining string or cover it, i.e. the remaining
string is the prefix of the generated token. Although this appears to overlap with our Corollary 1, the
sampling procedure is biased and can produce invalid encodings due to the greedy masking process.

Consider the following example where we use the following vocabulary
{< >,<1>, <a>, < a>, < aa>} with MPE tokenizer. For a prompt string “ a” which
is tokenized as < a>, token alignment will regenerate from the beginning and force the generated
tokens to match the template “ a”. This is problematic when the first token generated is < >.
Given this token, tokenization bias occurs and the second token must not be <a> , since < a>
is a whole token. On the other hand, according to token alignment, the only possible next token
after < > is <a> , but < ><a> is an invalid encoding. The correct way to align is to by rejection
sampling without greedy masking. We can use also our method by generating bytes until seeing a
white space, then switch to token level generation. In this case, the prompt should exclude the last
whitespace, and the first generated token must start with a whitespace.
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