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ABSTRACT

Identifying how much a model p̂θY|X knows about the stochastic real-world process
pY|X it was trained on is important to ensure it avoids producing “hallucinated”
answers or taking unsafe actions, but this is difficult for generative models because
probabilistic predictions do not distinguish between per-response noise (aleatoric
uncertainty) and lack of knowledge about the process (epistemic uncertainty). We
propose a general strategy for decomposing these: train a model to predict pairs
of independent responses drawn from the true distribution, allow it to “cheat” by
observing one response while predicting the other, then measure how much it
cheats. We prove that this strategy incentivizes models to become second-order
calibrated, which allows you to both accurately estimate the gaps between p̂θY|X and
pY|X and also construct decoding algorithms with bounded probability of generating
an incorrect statement. Empirically, we show that our strategy outperforms other
filtering methods on a synthetic language modeling task, describing digits of π.
(An expanded version of this work is available at https://arxiv.org/abs/
2402.08733.)

1 INTRODUCTION

When using a generative model p̂θY|X that was trained to imitate a stochastic real-world process pY|X ,
missing information can lead the model to “hallucinate” incorrect claims (Ji et al., 2022; Kalai
& Vempala, 2023) or exhibit “self-delusions” that conflate cause and effect (Ortega et al., 2021).
Unfortunately, detecting missing information is very difficult when the true responses Y are not
deterministic functions of the input X , because probabilistic predictions made by p̂θY|X must account
for both the variability intrinsic to pY|X and the model’s uncertainty about the process. For example,
if responding to a query X = “Tell me about digit 5641 of π”, the predicted probability of a response
(e.g. “That is 7”) may be small either because the model does not know how pY|X would respond (e.g.
whether the answer is actually “That is 4”), or simply because there are many plausible responses
under pY|X (e.g. “Sure, it’s an odd number”).

If we want to know when to trust p̂θY|X , it would be useful how close it’s predictions p̂θY|X(y|x)
are to pY|X(y|x) for a particular query x. Unfortunately, although cross-entropy lets us measure
improvements in p̂θY|X toward pY|X , we do not generally know the entropy of pY|X itself, so it is difficult
to know if our model has failed to fit important patterns in the data. In fact, when training on a
dataset of (X,Y ) pairs it is in general impossible to tell how close p̂θY|X is to pY|X without making
assumptions about pY|X (Barber, 2020).

In this work, we show that these limitations can be overcome if we make a small modification to the
training procedure: collect and train on pairs of responses (Y1, Y2) for each X , then measure how
much observing Y1 changes the model’s predictions about Y2 (e.g. how much it “cheats” by using the
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first answer to improve its guess about the second). This modified procedure can be used to detect
gaps between p̂θY|X and pY|X , because models only benefit from cheating when they do not already
know the distribution. We prove that our approach allows you to identify “statistical hallucinations”
(responses y whose ground-truth probability pY|X(y|x) was zero) with high probability, propose
a novel cheat-corrected epistemic confidence that can be used to filter out possibly-hallucinated
samples, and show that it outperforms previously-proposed sample filtering strategies on a synthetic
language modeling task.

2 SECOND-ORDER CALIBRATED MODELS TELL WHERE THEY KNOW p(Y |X)

Suppose we train a model p̂θY|X on a dataset collected from a query distribution p(X) and a ground-
truth conditional pY|X(Y |X). A common way to evaluate p̂θY|X is to measure its calibration:

Definition 2.1. A model p̂θY|X is (first-order) calibrated if p̂θY|X maps each input x ∈ X to the
average ground-truth distribution pY|X over all inputs X in the same equivalence class [x]Φ = {x′ :
Φ(x) = Φ(x′)} ⊂X under some grouping function Φ:

p̂θY|X(y|x) = E
[
pY|X(y|X)

∣∣ X ∈ [x]Φ
]

= p
(
Y = y

∣∣ Φ(X) = Φ(x)
)
.

Calibration is usually defined for the specific grouping function ΦθY|X : X → RY with ΦθY|X(x)y =

p̂θY|X(y|x) which groups based on the model output (Kumar et al., 2019; Vaicenavicius et al., 2019;
Perez-Lebel et al., 2022), but it is equivalent to let Φ be arbitrary (Gupta et al., 2020) (also proven in
Appendix D.1). A well-calibrated predictor can still be a bad estimate of pY|X if it groups together
inputs with different true probabilities pY|X(y|X) and thus averages across them (Perez-Lebel et al.,
2022). For example, a calibrated coin-flip predictor might output p̂θY|X(HEADS|x) = 50% because it
knows coin x is fair, or because it cannot distinguish coins x+ and x− with opposite biases and thus
assigns Φ(x+) = Φ(x−). We thus propose a stronger definition, which ensures that predictors also
tell us how far p̂θY|X(y|x) might be from pY|X(y|x) for each x given what the model “knows”:

Definition 2.2. A predictor p̂θY|X : X → ∆Y and covariance estimator Σ̂θ : X → RY×Y are second-
order calibrated if there exists a grouping function Φ such that p̂θY|X and Σ̂θ map each input x ∈ X
to the average and covariance matrix of the ground truth probability vector pY|X(·|x) ∈ ∆Y across
inputs X in the same equivalence class under Φ (where pY|X(·|x)y = pY|X(y|x)):

p̂θY|X(y|x) = E
[
pY|X(y|X)

∣∣ X ∈ [x]Φ
]
, Σ̂θ(x) = Cov

[
pY|X(·|X), pY|X(·|X)

∣∣∣X ∈ [x]Φ

]
In our coin-flip example, a second-order-calibrated model would report Σ̂θ(x)y,y = 0 if it knows
the coin is fair, and Σ̂θ(x)y,y > 0 if it can’t tell which way x is biased; second-order calibration
thus requires the predictor to distinguish between epistemic and aleatoric uncertainty. Unfortunately,
it is not straightforward to construct a second-order-calibrated predictor, because we only observe
a sample Y ∼ pY|X(·|x) and not pY|X itself. Although a variety of techniques have been proposed
for quantifying epistemic uncertainty (e.g. Bayesian neural networks (Goan & Fookes, 2020) or
ensembles (Lakshminarayanan et al., 2016)), many of them require strong assumptions and can fail to
be second-order calibrated if those assumptions are violated; we give an example in Appendix A.2.

3 CALIBRATED PAIR PREDICTORS ARE SECOND-ORDER CALIBRATED

Remarkably, making second-order-calibrated predictions about individual response probabilities turns
out to be equivalent to making first-order-calibrated predictions about paired responses. Suppose we
have a model p̂θY1,Y2|X(Y1, Y2|X) predicting two independent responses Y1, Y2 ∼ pY|X(·|X). If p̂θY1,Y2|X
is calibrated, it must be the case that

p̂θY1,Y2|X(y1, y2|x) = E
[
pY|X(y1|X)·pY|X(y2|X)

∣∣∣X∈ [x]Φ

]
for some Φ. Although Y1 and Y2 are independent given X , they may not be independent conditioned
on Φ(X); if they aren’t, we should expect a calibrated model to “cheat” by using information about
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Figure 1: Calibrated models only need to cheat when there is something they don’t know, so if
we train a model on paired responses, the amount that the model cheats when its own guesses are
presented as expert answers can be used to construct provably-correct “cheat-corrected” estimates of
how well p̂θY|X is imitating pY|X .

y1 to better inform its prediction of y2. We can quantify this by measuring how correlated the
possible outcomes are under the model, and it turns out this is exactly what we need to construct a
second-order-calibrated predictor of pY|X :

Theorem 3.1. (proven in Appendix D.2) If p̂θY1,Y2|X is first-order calibrated at predicting pairs
(Y1, Y2), then its marginal p̂θY1|X and the covariance estimator Σ̂θ

Y1,Y2|X
(x)yi,yj = p̂θY1,Y2|X(yi, yj |x)−

p̂θY1|X(yi|x) p̂θY2|X(yj |x) are second-order calibrated at predicting pY|X . Moreover, this is a bijection:
every second-order-calibrated (p̂θ

′

Y|X , Σ̂
θ′) defines a first-order-calibrated pair predictor.

We thus propose to directly train a factorized model p̂θY1,Y2|X(Y1, Y2|X) = p̂θY1|X(y1|x) ·
p̂θY2|Y1,X(y2|y1, x) to predict pairs by minimizing the cross-entropy loss E

[
− log p̂θY1,Y2|X(Y1, Y2|X)

]
over a dataset of (X(i), Y

(i)
1 , Y

(i)
2 ) triples. Since cross-entropy is a proper scoring rule (Kull &

Flach, 2015), we can expect that our model will become more calibrated over Y × Y as it improves.
Indeed, calibration is linked to generalization ability (Carrell et al., 2022) and hallucination behavior
(Kalai & Vempala, 2023) and tends to emerge in sufficiently-high-capacity models (Błasiok et al.,
2023; OpenAI, 2023; Kadavath et al., 2022). Being calibrated requires that the model “cheat” by
copying information from Y1 to Y2; we can then detect this and use it to identify potentially incorrect
generated outputs, as visualized in Figure 1. Informally, an expert doesn’t need to cheat, so if you let
your model cheat and it does, it must not know the answer to your question.

4 PAIR PREDICTORS CAN DETECT HALLUCINATIONS BY SELF-CHEATING

If we have a calibrated pair-predictor, we can use the second-order calibration property to construct
provably-correct high-probability bounds on the distance between p̂θY|X and pY|X . We focus on
a particular special case: detecting responses y that actually have zero probability under pY|X
(pY|X(y|x) = 0), e.g. because they are incorrect. We call these responses statistical hallucinations,
and propose to detect them using the following metric:
Definition 4.1. The cheat-corrected epistemic confidence about response y under p̂θY1,Y2|X(·|x) is

CθCHEAT
(y|x) ,

p̂θY1|X(y|x)

p̂θY2|Y1,X(y|y, x)
(or 0 if p̂θY1|X(y|x) = 0).

CθCHEAT
(y|x) can be computed easily by scoring y twice, and measures the relative likelihood with and

without “self-cheating” (where we treat y as if it was an expert response and score y again). And we
can use it to bound the statistical-hallucination rate of any well-behaved decoding algorithm:
Theorem 4.2. (proven in Appendix D.3) Suppose p̂θY1,Y2|X is calibrated. Let A be the event that a
decoding algorithm responds to a query X , and Ỹ ∈ Y be its response. If A, Ỹ ⊥⊥ X | p̂θY1,Y2|X(·|X)

(e.g. if A and Ỹ were computed only using the model’s predicted distribution p̂θY1,Y2|X(·|X)), then the
chance of generating a statistical hallucination can be bounded above as

P
[
pY|X(Ỹ |X) = 0

∣∣∣ A] ≤ 1− E
[
CθCHEAT

(Ỹ |X)
∣∣∣ A] .

We are free to use CθCHEAT
(Ỹ |X) in the algorithm to ensure that 1 − CθCHEAT

is low. In particular, we
propose to fix a threshold β generate Ỹ using an arbitrary off-the-shelf sampler, but then reject any
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samples with 1− CθCHEAT
(Ỹ |X) > β; this ensures that at most β of the kept samples will be statistical

hallucinations as long as p̂θY1,Y2|X is calibrated.

We also note that, beyond checking for pY|X(y|x) = 0, calibrated pair predictors can also be used to
construct provably-correct high-probability upper and lower bounds on pY|X , which we discuss in
Appendix A.4.

5 RELATED WORK

Decomposing uncertainty with paired Y s. Focusing on regression tasks and asymptotic optimality,
Lahlou et al. (2021) estimate aleatoric uncertainty by predicting (y1−y2)2 for two real-valued samples
from p(Y |X), then use it to quantify epistemic uncertainty. For classification, Narimatsu et al. (2023)
use annotator agreement to quantify aleatoric uncertainty at the population level. Repeated annotations
have also been used to improve and evaluate classifiers (Peterson et al., 2019; Schmarje et al., 2022).

Uncertainty via LLM postprocessing. For language models, proposed techniques include verifying,
critiquing, or classifying samples (Cobbe et al., 2021; Ni et al., 2023; Li et al., 2022b; Kadavath et al.,
2022), or clustering semantically-equivalent samples (Kuhn et al., 2022; Li et al., 2022a; Wang et al.,
2022; Chen et al., 2023). This generally requires a task-specific correctness or similarity metric, and
may be less applicable for generation tasks without well-defined correct answers. Additionally, most
multiple-sample approaches focus on comparing many Y s at inference time, whereas our strategy
only uses paired Y s at training time and then scores each Y individually.

Prior-based and distribution-based uncertainty quantification techniques. Gaussian processes
(Bernardo et al., 1998) and Bayesian neural networks (Goan & Fookes, 2020) impose a prior distribu-
tion over the generative process, then evaluate the variance of the prediction under an approximate
posterior (Kendall & Gal, 2017). Other related strategies include ensembling (Lakshminarayanan
et al., 2016), injecting noise into the model or training process (Gal & Ghahramani, 2015; Osband
et al., 2021; Maddox et al., 2019), or predicting a “distribution over distributions” (Sensoy et al.,
2018; Malinin & Gales, 2018). Unfortunately, these approaches can underestimate uncertainty when
the model family is underfitting, as we discuss in Appendix A.2. Furthermore, Bengs et al. (2022;
2023) proved that many existing approaches for predicting “distributions over distributions” (also
called second-order distributions) do not incentivize faithful reports of uncertainty. Sale et al. (2023)
formalize uncertainty measures for second-order distribution predictors in terms of distances to sets of
reference distributions. (Note that our work uses “second-order” in the sense of the second-moment
statistics in Theorem 3.1, not second-order distributions; our approach does not predict a distribution
over distributions.)

Distribution-free uncertainty quantification. A number of approaches have been explored for
quantifying uncertainty without making assumptions about the functional form of p(Y |X), generally
by using a held-out calibration set. Many build on conformal prediction, and use exchangeability
to construct high-probability prediction sets; see Angelopoulos & Bates (2021) for an introduction.
Related approaches can be used to construct calibrated classifiers (Kumar et al., 2019; Gupta et al.,
2020; Park et al., 2020) and randomized predictive distributions (Vovk et al., 2017).

Extensions of calibration. Perez-Lebel et al. (2022) propose bounding the population grouping
error by partitioning the model’s feature space. Hébert-Johnson et al. (2018) study multicalibration,
which requires calibration to hold across all computable subsets of a population.

Other uses of pairs. In other contexts, paired inputs have been used to learn representations (Bromley
et al., 1993; Chen et al., 2020), and pairwise losses have been used to train energy-based models
(Gutmann & Hyvärinen, 2010). These works generally do not directly predict a distribution over
pairs and do not require them to be conditionally independent given some model input X . Instead,
the paired items are used during optimization to enable learning a distribution or representation for
each individual item.

We discuss additional related work in Appendix C.
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(a) Hallucination rate is usually ≤ 1 − Cθ
CHEAT

as predicted by Theorem 4.2.
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alternatives.

Figure 2: CθCHEAT
(y|x) is a useful uncertainty metric for the digits-of-pi task.

6 EXPERIMENT: ENGLISH DESCRIPTIONS OF DIGITS OF π

We apply our technique to a synthetic language modeling task: responding to requests like x =“Tell
me about digit 24 of π” with randomly-chosen true statements, such as “Sure, that is the number 6”,
“That’s an even number”, “It is spelled S I X”, or “Sure, it’s spelled with three letters”. We train a
19M-parameter transformer model (Vaswani et al., 2017) from scratch for 50k iterations, tokenizing
and concatenating the query X and two sampled responses Y1 and Y2 for each example. We then
draw 120 samples from the model for each digit from 1 to 3,000, and label each as a statistical
hallucination if pY|X(y|x) = 0.

To evaluate how well the bound in Theorem 4.2 holds in practice, we divide samples into bins
based on their predicted confidence CθCHEAT

and compute the fraction of samples in each bin that were
hallucinated. Figure 2a shows that the fraction of hallucinated samples is generally slightly lower
than 1− CθCHEAT

, as predicted by the bound in Theorem 4.2. Somewhat surprisingly, we observe that
CθCHEAT

(y|x) > 1 for some samples; we believe this stems from the inherent difficulty of making
calibrated predictions over the space of all (pairs of) sequences. In practice, we suggest to use
|1 − CθCHEAT

| for thresholding as an alternative to 1 − CθCHEAT
(which is equivalent if the model is

calibrated) and discuss this phenomenon more in Appendix E.3.

We next compare different strategies for distinguishing correct and hallucinated samples: ranking by
the log-probability of each sample under the model (Total LP), ranking by length-normalized log-
probability (Avg. Token LP) (Malinin & Gales, 2020), clustering semantically-equivalent answers in
groups of k samples and thresholding by cluster size (Clustered) (Kuhn et al., 2022; Li et al., 2022a),
and thresholding based on the adjusted confidence values so that only samples with |1−CθCHEAT

(y|x)| ≤
β are kept, sweeping across β. Figure 2b shows that filtering by our confidence measure allows
generation of more responses with a lower hallucination rate relative to previously-proposed methods.
See Appendix E.3 for details.

In the appendix, we also include results showing that our technique outperforms existing uncertainty
quantification baselines for ambiguous image classification (Appendix B.2) and can detect unsafe
trajectories for a partially-observable offline RL gridworld task (Appendix B.3).

7 CONCLUSION

We have proven that, given a calibrated pair predictor, our cheat-corrected epistemic confidence can
be used to detect errors with high probability. We have also demonstrated that training models to
predict pairs is effective way to detect unknown information in our synthetic sequence modeling task.
Although paired responses may not be available for all datasets, collecting paired fine-tuning data
may still be easier than applying architecture-dependent uncertainty quantification strategies, and we
are optimistic that our procedure will scale up to this use case.
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Figure 3: Each input point x (e.g. an ambiguous image) has its own ground-truth response distribution
pY|X(·|x) (e.g. possible human annotator labels for x), but first-order calibration only requires the
model’s prediction p̂θY|X to be an average of pY|X across an arbitrary grouping of examples (red and
blue), which means p̂θY|X can still be far from pY|X for each individual x. A second-order-calibrated
model additionally measures the suboptimality of this approximation by predicting the per-group
covariance Σ̂θ of pY|X , but this is challenging because pY|X itself is never observed.

A EXPANDED EXPLANATIONS AND THEORETICAL RESULTS

A.1 CALIBRATION AND SECOND-ORDER CALIBRATION

As discussed in Section 2, calibration is usually defined for the specific grouping function ΦθY|X:X →
RY with ΦθY|X(x)y= p̂θY|X(y|x), so that the groups are the subsets of X that map to the same predicted
distribution (Kumar et al., 2019; Vaicenavicius et al., 2019; Perez-Lebel et al., 2022).

We define calibration in terms of an arbitrary grouping function Φ to emphasize that a model p̂θY|X
can ignore parts of X and still be well-calibrated; in this case the grouping function Φ(x) identifies
the subsets of X that the model distinguishes between. These two definitions are equivalent (Gupta
et al., 2020), since ΦθY|X is the coarsest Φ satisfying Definition 2.1:

Proposition A.1. If Definition 2.1 holds for any Φ, then it also holds for ΦθY|X : X → RY , where
ΦθY|X(x)y , p̂θY|X(y|x).

(We defer proofs of all theoretical results to Appendix D.)

A well-calibrated predictor can still be a bad estimate of pY|X if it fails to distinguish inputs with
different true probabilities pY|X(y|X) and thus averages across them. The additional error due to
grouping together examples with different true probabilities is called the grouping loss (Perez-Lebel
et al., 2022; Kull & Flach, 2015), which can be lower-bounded but is difficult to upper-bound.

Our definition of second-order calibration addresses this limitation of first-order calibration. If we
had a second-order-calibrated predictor, we could use it to identify how tightly concentrated the true
probability vector pY|X is around the model’s best guess p̂θY|X (as shown in Figure 3), which would tell
us whether p̂θY|X is a good approximation of pY|X . Unfortunately, it is not straightforward to construct
a second-order-calibrated predictor, because we only observe a sample Y ∼ pY|X(·|x) and not the full
pY|X . Second-order calibration requires the predictor to distinguish between epistemic and aleatoric
uncertainty, but the variance Var(Y |Φ(X)) of Y itself (for a binary Y ) still only measures the total
uncertainty and is thus a first-order quantity.

A.2 EXISTING EPISTEMIC UNCERTAINTY ESTIMATORS UNDER- OR OVER-ESTIMATE THE
GAP FOR UNDERFIT MODELS

Existing techniques for estimating epistemic uncertainty often attempt to estimate how much pY|X
could vary given what the model “knows”. For instance, Gaussian processes (Bernardo et al., 1998)
and Bayesian neural networks (Goan & Fookes, 2020) impose a prior distribution over the generative
process, then evaluate the variance of the prediction under an approximate posterior (Kendall & Gal,
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Figure 4: Popular epistemic uncertainty quantification methods are under- or overconfident when pY|X
does not match their assumptions. Given a large number of samples X ∈ R, Y ∈ {0, 1}, ensembles
and misspecified Gaussian process classifiers report low uncertainty at convergence despite failing to
match pY|X around x ≈ 0; Evidential DL (Sensoy et al., 2018) reports high uncertainty near x ≈ 2.0
despite fitting well. In contrast, by using two samples (Y1, Y2) for each X , our method reports
uncertainty that matches the true gap (p̂θY|X − pY|X)2 even when it underfits.

2017). Other related strategies include ensembling (Lakshminarayanan et al., 2016), injecting noise
into the model or training process (Gal & Ghahramani, 2015; Osband et al., 2021; Maddox et al.,
2019), or predicting a “distribution over distributions” (Sensoy et al., 2018; Malinin & Gales, 2018).

We might hope that these estimates would be second-order calibrated, but unfortunately this is not
generally the case, especially if the model is misspecified or underfit relative to pY|X . We demonstrate
this in Figure 4 by applying a variety of methods to a fixed pY|X with both low- and high-frequency
variation (discussed more in Appendix E.1). With a large training set, an ensemble and a Gaussian
Process classifier both converge to highly confident but incorrect solutions, because the prior was
misspecified and did not include pY|X . Evidential DL (Sensoy et al., 2018), on the other hand, is
underconfident because its objective biases its uncertainty estimates (Bengs et al., 2022; 2023). In
practice, even the largest models are likely to underfit in some regions of X , making this a serious
concern if we wish to reliably estimate how far p̂θY|X actually is from pY|X .

A.3 CHEAT-CORRECTED CONFIDENCE AND DECODING STRATEGIES

We note that CθCHEAT
is a properly-normalized relative measurement of confidence.

Proposition A.2. If p̂θY1,Y2|X is calibrated, then for any x ∈ X , y ∈ Y we have 0 ≤ CθCHEAT
(y|x) ≤ 1,

with CθCHEAT
(y|x) = 1 if and only if p̂θY1|X(y|x) = pY|X(y|x).

Theorem 4.2 imposes minimal restrictions on the decoding algorithm; all that is required is that the
decoded response only depends on X through p̂θY1,Y2|X . Compatible decoding strategies include tem-
perature sampling, top-k/top-p sampling, or beam search (see Zarrieß et al. (2021) for an overview).
Moreover, we are free to use CθCHEAT

(Ỹ |X) in the algorithm to ensure that 1 − CθCHEAT
is low. For

example, these decoding strategies will all have a statistical hallucination rate at most β when p̂θY1,Y2|X
is calibrated:

• Cheat-corrected selective generation / filtering: Generate Ỹ using an arbitrary off-the-
shelf sampler, but reject it (and don’t respond) if 1− CθCHEAT

(Ỹ |X) > β.

• Cheat-corrected rejection sampling: Repeatedly sample Ỹ ∼ p̂θY1|X until 1 −
CθCHEAT

(Ỹ |X) < β.
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• Cheat-corrected top-1 search: Deterministically output (or approximate)
arg maxy∈S p̂

θ
Y1|X

(y|X), where S = {y : 1 − CθCHEAT
(Ỹ |X) < β}, or abstain if

S = ∅.

Selectively responding only when we find a Ỹ with 1− CθCHEAT
(Ỹ |X) < β ensures that, conditioned

on responding (e.g. on the event A), our responses will be non-hallucinated with probability at least
1− β.

A.4 PAIR PREDICTORS CAN BOUND THEIR DISTANCE FROM p(Y |X)

As discussed in Section 3, if we obtain a calibrated pair-predictor, we can use it to construct a
second-order-calibrated model. We now derive a number of additional properties which allow us
to bound the deviation between p̂θY|X and pY|X . These results, as well as Theorem 4.2 in the main
paper, rely on the fact that, conditioned on the matrix ΦθY1,Y2|X(x) ∈ RY×Y of model outputs (with
ΦθY1,Y2|X(x)y1,y2 = p̂θY1,Y2|X(y1, y2|x)), we can treat pY|X(y|X) as a random variable whose mean is
p̂θY1|X(y|X) and variance is V̂ θCHEAT

(y|X), defined below:
Definition A.3. The cheat-corrected epistemic variance of pY|X for response y to query x (under
p̂θY1,Y2|X) is

V̂ θCHEAT
(y|x) , p̂θY1|X(y|x)

(
p̂θY2|Y1,X(y|y, x)− p̂θY1|X(y|x)

)
.

V̂ θCHEAT
can be computed easily by scoring y twice, once under the marginal distribution of Y1 and

once when the model “self-cheats” by conditioning on y (as Y1) when predicting y again (as Y2).
Furthermore, it agrees with the diagonal entries of Σ̂θ

Y1,Y2|X
(x) as long as p̂θY1,Y2|X is symmetric (which

is true if p̂θY1,Y2|X is calibrated). This means we can use it to bound the distance between p̂θY1|X and
pY|X .

Theorem A.4. Suppose p̂θY1,Y2|X is calibrated. Let A be any event and Ỹ ∈ Y be any (possibly
random) value such that Ỹ , A ⊥⊥ X | ΦθY1,Y2|X(X). Then

E
[(
p̂θY1|X(Ỹ |X)− pY|X(Ỹ |X)

)2 ∣∣∣A] = E
[
V̂ θCHEAT

(Ỹ |X)
∣∣∣A].

Furthermore, for any β ∈ (0, 1),

P

[∣∣∣p̂θY1|X(Ỹ |X)− pY|X(Ỹ |X)
∣∣∣ ≥√V̂ θCHEAT(Ỹ |X)

β

∣∣∣∣∣A
]
≤ β.

This is a input-dependent (frequentist) confidence interval for Ỹ ; if our model reports a small value of
V̂ θCHEAT

(Ỹ |X), we can guess that p̂θY1|X(Ỹ |X) is close to pY|X(Ỹ |X) and be right most of the time. (For
instance, if A is the event where our example coin-flip predictor predicts 50% HEADS with epistemic
variance ≤ ε, at least 95% of the coins with that property must have a bias within

√
ε/.05 of 50%.)

A.5 PAIRED DATA ENABLES DISTRIBUTION-FREE FREQUENTIST CONFIDENCE INTERVALS
FOR p(Y |X)

Our previous results assumed the model p̂θY1,Y2|X was calibrated, but this may not always be true
in practice. We now show that we can adjust imperfectly-calibrated estimators p̂θY|X : X → ∆Y

and V̂ θ : X → RY to obtain robust statistical guarantees about the unobserved true conditional
probabilities pY|X(Y |X) without assumptions about pY|X , as long as we have access to a held-out
calibration set {(x(i), y

(i)
1 , y

(i)
2 )}Ni=1 containing paired response data. This demonstrates that the

impossiblity result of Barber (2020) does not apply when we have access to two Y s for each X . For
simplicity we assume Y = {0, 1}.
Theorem A.5. Let p̂θY|X , V̂ θ, and pY|X be arbitrary. With probability at least 1−α (over draws of the
calibration set), Algorithm 1 returns a value γ+

ε such that, for a randomly sampled input X ∼ p(X),
and any β ∈ (0, 1), y ∈ {0, 1},

P

[∣∣∣p̂θY|X(y|X)− pY|X(y|X)
∣∣∣ ≥√γ+

ε max{V̂ θ(y|X),ε}
β

]
≤β.
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Algorithm 1 Conservative adjustment of V̂ θ

Input: Calibration set {(x(i), y
(i)
1 , y

(i)
2 )}Ni=1, variance cutoff ε > 0, tolerance α, p̂θY|X , V̂ θ

for i = 1 to N do
p̂(i) := p̂θY|X(1|x(i)), v̂

(i)
ε := max{V̂ θ(1|x(i)), ε}

s
(i)
ε := (y

(i)
1 − p̂(i))(y

(i)
2 − p̂(i))/v̂

(i)
ε

end for
(γ−ε , γ

+
ε ) := MEANCONFITVL

(
{s(i)
ε }Ni=1,− 1

ε ,
1
ε , α

)
return γ+

ε
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Figure 5: Applying Algorithm 1 to our model from Figure 4 produces frequentist confidence
intervals for pY|X(y|X) which are provably correct with high probability over random X . Here
N = 106, ε = 0.022, and α = 0.05; see Appendix B.4.

In Algorithm 1, MEANCONFITVL can be any subroutine that builds a (1− α) confidence interval
for the mean of a bounded random variable, e.g. Hoeffding’s inequality (Hoeffding, 1994) or betting-
based algorithms (Waudby-Smith & Ramdas, 2020). Smaller ε allows more precise bounds but
requires a well-calibrated V̂ θ and a large calibration set, and if p̂θY|X and V̂ θ are in fact second-order
calibrated then γ+

ε will approach 1 as N → ∞ and ε → 0. The failure probability β should be
interpreted as an aggregate over X ∼ p(X) rather than pointwise; for a fixed process pY|X and fixed
x either pY|X(y|x) lies in the interval or it does not. We show an example of the resulting confidence
intervals in Figure 5, and discuss them further in Appendices B.4 and D.4.

A.6 PROPERTIES OF CALIBRATED MODELS OF PAIRS

Finally, we derive some properties that any calibrated model p̂θ(Y1, Y2|X) must satisfy, which can
be useful when designing neural network architectures for pair prediction.

Proposition A.6. Suppose |Y| = K, and order it as Y = {v1, . . . , vK}. If p̂θ(Y1, Y2|X) is a
perfectly-calibrated predictor of outcomes (Y1, Y2) ∈ Y × Y , then

(i) p̂θ(y1, y2|x) is a proper probability distribution, i.e. p̂θ(y1, y2|x) ≥ 0 for all x ∈
X , y1, y2 ∈ Y and

∑
y1,y2

p̂θ(y1, y2|x) = 1 for all x ∈ X ,

(ii) p̂θ(y1, y2|x) is symmetric, i.e. p̂θ(Y1 = y1, Y2 = y2|x) = p̂θ(Y1 = y2, Y2 = y1|x),

(iii) The joint probability matrix P̂ [x] ∈ RK×K given by P̂ [x]
ij = p̂θ(Y1 = vi, Y2 = vj |x) is

positive semidefinite for each x ∈ X .

Proof. Since p̂θ is perfectly calibrated, there exists a grouping function Φ such that

p̂θ(Y1 = y1, Y2 = y2|X = x) = E
[
p(Y1 = y1, Y2 = y2|X)

∣∣ Φ(X) = Φ(x)
]

= E
[
p(Y = y1|X)p(Y = y2|X)

∣∣ Φ(X) = Φ(x)
]
,

which implies properties (i) and (ii).
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If we let p[x] ∈ RK be the vector such that p[x]
k = p(Y = vk|X = x), we can write this in matrix

form as
P̂ [x] = E

[
p[x]
(
p[x]
)T ∣∣∣ Φ(X) = Φ(x)

]
.

For any v ∈ RK , we must then have

vT P̂ [x]v = E
[
vTp[x]

(
p[x]
)T
v
∣∣∣ Φ(X) = Φ(x)

]
= E

[(
vTp[x]

)2 ∣∣∣ Φ(X) = Φ(x)
]
≥ 0,

so P̂ [x] is positive semidefinite.

We note that a nonnegative matrix satisfying (ii) and (iii) is known as a “doubly nonnegative” matrix,
and if p(Y |X) takes only finitely many values the matrix P [x] will also be “completely positive”
(i.e. factorizable as P [x] = BTB where B is entrywise nonnegative) (Berman & Shaked-Monderer,
2003).

If Y is a binary outcome, we can characterize the space of calibrated predictors even more precisely:
Proposition A.7. If p̂θ(Y1, Y2|X) is a perfectly-calibrated predictor of paired binary outcomes
(Y1, Y2) ∈ {0, 1} × {0, 1}, then the matrix P̂ [x] can be written in the form

P̂ [x] = ρ(x)

[
1− µ(x) 0

0 µ(x)

]
+ (1− ρ(x))

[
(1− µ(x))2 µ(x)(1− µ(x))

µ(x)(1− µ(x)) µ(x)2

]
(1)

for some µ : X → [0, 1] and ρ : X → [0, 1].

Proof. Fix a particular x. By Proposition A.6 we know we can write

P̂ [x] =

[
a b
b c

]
for some nonnegative a, b, c ∈ R such that a+ 2b+ c = 1. Choose

µ(x) = b+ c, ρ(x) =
ac− b2

(a+ b)(b+ c)
= 1− b

µ(1− µ)
. (2)

Substituting shows that P̂ [x] can then be expressed as Equation (1). 0 ≤ µ(x) ≤ 1 because b and c
are nonnegative and sum to at most 1. ρ(x) ≤ 1 because ac − b2 ≤ ac ≤ (a + b)(c + d). Finally,
since P̂ [x] must be positive semidefinite, the determinant |P̂ [x]| = ac− b2 must be nonnegative, so
ρ(x) ≥ 0.

Note that µ is the predicted probability of Y = 1, and ρ is the predicted correlation between Y1 and
Y2. (In fact, ρ is exactly the Pearson correlation coefficient of Y1 and Y2 given Φ(X), also referred to
as the “Phi coefficient” (Chedzoy, 2005).) Given this parameterization, we can efficiently compute

p̂θ(Y = 1|X = x) = µ(x), vCHEAT
θ (Y = 1|X = x) = κ(x)µ(x)(1− µ(x)).

Neural network architectures for Y = {0, 1}: When we know Y is a binary outcome, we suggest
parameterizing the output head of a pair predictor p̂θ(y1, y2|x) using Equation (1). Specifically,
we can parameterize our model to produce two-dimensional vectors hθ : X → R2, then set
φ(x) = σ(hθ(x)[0]), ρ(x) = σ(hθ(x)[1]), where σ is the logistic sigmoid function.

Neural network architectures for enumerable Y = {0, 1, . . . ,K}: For classification tasks, where
Y is a finite (and “reasonably-sized”) set of classes, we suggest using the properties in Proposition A.6
to design the architecture. In particular, we can enforce property (i) by applying the softmax
operation across the set of Y × Y possible outputs, and enforce property (ii) by constraining the
output layer to output a symmetric matrix of logits RY×Y before applying the softmax operation.

We are not aware of a simple method for strictly enforcing property (iii) as part of the architecture
while simultaneously ensuring that property (i) holds. However, empirically we observe that violations
of property (iii) can lead to unreasonable negative variance estimates. We thus suggest computing
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the eigenvalues of the post-softmax matrix P̂ [x] and adding a regularization penalty to negative
eigenvalues, e.g.

Lregularized(x, y1, y2) = − log p̂θ(y1, y2|x) + α

K∑
i=1

max{0, λi(x)}2

where λi(x) is the ith eigenvalue of P̂ [x]. (Since this regularization penalty only applies to negative
eigenvalues, and a calibrated model should never produce negative eigenvalues, this regularization
penalty should not change the optimal calibrated solution if one exists.)

Neural network architectures for sequential or exponentially-large Y: When Y is an exponen-
tially large set, such as the set of all sequences, it may be intractable to enforce either condition (ii)
or condition (iii) of Proposition A.6. For our experiments, we settled on only enforcing property
(i) by concatenating the two outputs Y1 and Y2 together. We found that padding them to a constant
length improved performance by ensuring that Y1 and Y2 each have consistent positional embeddings,
because othewise the positional shift in Y2 can make it harder to predict Y2 than Y1 and thus introduce
additional noise into the confidence metric. We believe adjusting the architecture for sequence models
to enforce (or encourage) it to satisfy properties (ii) and (iii) is an exciting area for future work.
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B EXPANDED EXPERIMENTAL RESULTS

B.1 DIGITS-OF-π MODEL SAMPLES

Prompt: 

Sampled Y_1 ~ p_theta(Y_1|X)                       Sampled Y_2 ~ p_theta(Y_2|Y_1, X)

                                 
Log prob.: -4.783                                  Log prob.: -4.662

                           
Log prob.: -3.811                                  Log prob.: -3.615

                                               
Log prob.: -2.858                                  Log prob.: -3.850

                                     
Log prob.: -2.858                                  Log prob.: -4.035

                                    
Log prob.: -4.026                                  Log prob.: -4.126

                        
Log prob.: -3.811                                  Log prob.: -4.743

                                          
Log prob.: -3.954                                  Log prob.: -4.465

                 
Log prob.: -4.846                                  Log prob.: -4.767

                                            
Log prob.: -3.400                                  Log prob.: -4.314

                                        
Log prob.: -3.139                                  Log prob.: -2.921

                    
Log prob.: -8.958                                  Log prob.: -4.055

<BOS> Tell me about digit 0 2 3 6 of pi. <SEP>

Sure, it's spelled with 5 letters _ _ _ _ Sure, it's 8 _ _ _ _ _ _ _

Sure, that's spelled E I G H T _ _ Sure, that's the number eight _ _ _ _ _

That's eight _ _ _ _ _ _ _ _ It is eight _ _ _ _ _ _ _

That's eight _ _ _ _ _ _ _ _ Sure, it's an even number _ _ _ _ _

It's spelled E I G H T _ _ _ Sure, that is an even number _ _ _ _

Sure, that's spelled E I G H T _ _ Sure, that is spelled with 5 letters _ _ _

That is 8 _ _ _ _ _ _ _ Sure, that's the number 8 _ _ _ _ _

Sure, that is spelled with 5 letters _ _ _ Sure, it's spelled with 5 letters _ _ _ _

It's eight _ _ _ _ _ _ _ _ That is the number 8 _ _ _ _ _

Sure, that's eight _ _ _ _ _ _ _ That's eight _ _ _ _ _ _ _ _

Sure, that is spelled with 8 letters _ _ _ That is spelled with 5 letters _ _ _ _

Figure 6: Results of sampling pairs (Y1, Y2) from the model p̂θY1,Y2|X when asked about the 236th digit
of π, which it “knows” is eight. (Our method does not actually require sampling Y2; we show samples
for illustrative purposes only.) Color denotes likelihood, with red denoting less-likely tokens. The
left column is Y1 and the right column is Y2 (drawn conditional on Y1); each row is an independent
pair of samples for the prompt at the top. Note that the last row’s Y1 is a low-probability mistake
which was sampled due to the high temperature. (The model “knows” eight is spelled with 5 letters,
so Y2 is inconsistent with Y1).

Prompt: 

Sampled Y_1 ~ p_theta(Y_1|X)                       Sampled Y_2 ~ p_theta(Y_2|Y_1, X)

                                          
Log prob.: -6.109                                  Log prob.: -2.749

                                         
Log prob.: -4.798                                  Log prob.: -4.391

                                 
Log prob.: -5.281                                  Log prob.: -4.304

                                      
Log prob.: -5.761                                  Log prob.: -4.293

                                                   
Log prob.: -6.976                                  Log prob.: -4.110

                             
Log prob.: -6.320                                  Log prob.: -4.164

                             
Log prob.: -4.649                                  Log prob.: -3.943

                                 
Log prob.: -3.671                                  Log prob.: -5.055

                                        
Log prob.: -5.671                                  Log prob.: -3.322

                                  
Log prob.: -4.649                                  Log prob.: -3.153

                                          
Log prob.: -11.261                                 Log prob.: -2.863

<BOS> Tell me about digit 2 5 0 6 of pi. <SEP>

That's spelled S E V E N _ _ _ That's seven _ _ _ _ _ _ _ _

Sure, that's six _ _ _ _ _ _ _ It's the number 6 _ _ _ _ _ _

That is spelled with 5 letters _ _ _ _ It is an odd number _ _ _ _ _

It's one _ _ _ _ _ _ _ _ That is spelled with 3 letters _ _ _ _

It is spelled T H R E E _ _ It's 3 _ _ _ _ _ _ _ _

Sure, that's 5 _ _ _ _ _ _ _ Sure, that's spelled with 4 letters _ _ _ _

That's the number six _ _ _ _ _ _ That is spelled with 3 letters _ _ _ _

That's an even number _ _ _ _ _ _ That's the number zero _ _ _ _ _ _

That is 6 _ _ _ _ _ _ _ Sure, that's an even number _ _ _ _ _

That's the number six _ _ _ _ _ _ That's an even number _ _ _ _ _ _

That's spelled E two _ _ _ _ _ _ That's two _ _ _ _ _ _ _ _

Figure 7: Results of sampling pairs (Y1, Y2) from the model p̂θY1,Y2|X , when asked about the 2506th
digit of π (which it has not learned). The sampled Y2 is usually consistent with the Y1 sample,
indicating that the model is “cheating” well. The last sample of Y1 is malformed due to sampling a
low-probability token.
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Prompt: 

Sampled Y_1 ~ p_theta(Y_1|X)                       Scored by p_theta(Y_2=y|Y_1=y, X)

                  
Log prob.: -4.783                                  Log prob.: -4.739                                  => Confidence: exp(-0.044) = 0.96

                                
Log prob.: -3.811                                  Log prob.: -3.957                                  => Confidence: exp(0.146) = 1.2

                                            
Log prob.: -2.858                                  Log prob.: -2.905                                  => Confidence: exp(0.046) = 1.0

                                            
Log prob.: -2.858                                  Log prob.: -2.905                                  => Confidence: exp(0.046) = 1.0

                                            
Log prob.: -4.026                                  Log prob.: -4.061                                  => Confidence: exp(0.035) = 1.0

                                
Log prob.: -3.811                                  Log prob.: -3.957                                  => Confidence: exp(0.146) = 1.2

                                                      
Log prob.: -3.954                                  Log prob.: -3.940                                  => Confidence: exp(-0.015) = 0.99

                
Log prob.: -4.846                                  Log prob.: -4.776                                  => Confidence: exp(-0.070) = 0.93

                                                
Log prob.: -3.400                                  Log prob.: -3.388                                  => Confidence: exp(-0.012) = 0.99

                                    
Log prob.: -3.139                                  Log prob.: -3.177                                  => Confidence: exp(0.038) = 1.0

                
Log prob.: -8.958                                  Log prob.: -18.563                                 => Confidence: exp(9.605) = 1.5e+04

<BOS> Tell me about digit 0 2 3 6 of pi. <SEP>

Sure, it's spelled with 5 letters _ _ _ _ Sure, it's spelled with 5 letters _ _ _ _

Sure, that's spelled E I G H T _ _ Sure, that's spelled E I G H T _ _

That's eight _ _ _ _ _ _ _ _ That's eight _ _ _ _ _ _ _ _

That's eight _ _ _ _ _ _ _ _ That's eight _ _ _ _ _ _ _ _

It's spelled E I G H T _ _ _ It's spelled E I G H T _ _ _

Sure, that's spelled E I G H T _ _ Sure, that's spelled E I G H T _ _

That is 8 _ _ _ _ _ _ _ That is 8 _ _ _ _ _ _ _

Sure, that is spelled with 5 letters _ _ _ Sure, that is spelled with 5 letters _ _ _

It's eight _ _ _ _ _ _ _ _ It's eight _ _ _ _ _ _ _ _

Sure, that's eight _ _ _ _ _ _ _ Sure, that's eight _ _ _ _ _ _ _

Sure, that is spelled with 8 letters _ _ _ Sure, that is spelled with 8 letters _ _ _

Figure 8: Scoring samples using our cheat-corrected epistemic confidence, for the 236th digit of
π (which it “knows”). We repeat each response twice, comparing the probabilities p̂θY1|X(y|x) and
p̂θY2|Y1,X(y|y, x). Conditioning on Y1 does not significantly change the prediction of the model, because
it already knows the value of the 236th digit. However, in the last row, the probability decreases when
the model fixes its mistake, leading to an outlier confidence value greater than one. We recommend
discarding samples with confidences significantly larger than one, e.g. by keeping only those with
|1− CθCHEAT

| ≤ β.

Prompt: 

Sampled Y_1 ~ p_theta(Y_1|X)                       Scored by p_theta(Y_2=y|Y_1=y, X)

                                        
Log prob.: -6.109                                  Log prob.: -3.747                                  => Confidence: exp(-2.361) = 0.094

                                        
Log prob.: -4.798                                  Log prob.: -3.429                                  => Confidence: exp(-1.369) = 0.25

                        
Log prob.: -5.281                                  Log prob.: -4.020                                  => Confidence: exp(-1.261) = 0.28

                                                    
Log prob.: -5.761                                  Log prob.: -3.358                                  => Confidence: exp(-2.403) = 0.09

                                              
Log prob.: -6.976                                  Log prob.: -4.354                                  => Confidence: exp(-2.622) = 0.073

                                            
Log prob.: -6.320                                  Log prob.: -3.944                                  => Confidence: exp(-2.376) = 0.093

                                  
Log prob.: -4.649                                  Log prob.: -3.403                                  => Confidence: exp(-1.246) = 0.29

                                  
Log prob.: -3.671                                  Log prob.: -3.042                                  => Confidence: exp(-0.629) = 0.53

                                                      
Log prob.: -5.671                                  Log prob.: -4.257                                  => Confidence: exp(-1.414) = 0.24

                                  
Log prob.: -4.649                                  Log prob.: -3.403                                  => Confidence: exp(-1.246) = 0.29

                                    
Log prob.: -11.261                                 Log prob.: -19.752                                 => Confidence: exp(8.492) = 4.9e+03

<BOS> Tell me about digit 2 5 0 6 of pi. <SEP>

That's spelled S E V E N _ _ _ That's spelled S E V E N _ _ _

Sure, that's six _ _ _ _ _ _ _ Sure, that's six _ _ _ _ _ _ _

That is spelled with 5 letters _ _ _ _ That is spelled with 5 letters _ _ _ _

It's one _ _ _ _ _ _ _ _ It's one _ _ _ _ _ _ _ _

It is spelled T H R E E _ _ It is spelled T H R E E _ _

Sure, that's 5 _ _ _ _ _ _ _ Sure, that's 5 _ _ _ _ _ _ _

That's the number six _ _ _ _ _ _ That's the number six _ _ _ _ _ _

That's an even number _ _ _ _ _ _ That's an even number _ _ _ _ _ _

That is 6 _ _ _ _ _ _ _ That is 6 _ _ _ _ _ _ _

That's the number six _ _ _ _ _ _ That's the number six _ _ _ _ _ _

That's spelled E two _ _ _ _ _ _ That's spelled E two _ _ _ _ _ _

Figure 9: Scoring samples using our cheat-corrected epistemic confidence, for the 2506th digit of π
(which it has not learned). Conditioning on Y1 = y reveals information about this digit, so the log
probability increases when outputting Y2 = y, and we can use the magnitude of the increase as a
measurement of confidence. (The last row is malformed, so has very low probability as either Y1 or
Y2, which again leads to an outlier confidence greater than 1.)
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B.2 CLASSIFYING AMBIGUOUS IMAGES

We demonstrate our technique on CIFAR-10-H (Peterson et al., 2019), a relabeling of the CIFAR-10
test set (Krizhevsky, 2009) by > 50 independent annotators per image. We cast it as a distribution-
matching problem rather than an accuracy-maximization problem: the goal is to estimate the fraction
of human annotators assigning each label y to each image x. In this setting, we expect epistemic
uncertainty quantification techniques to distinguish between between images that human annotators
find ambiguous and images that the model has not learned to identify. Our primary evaluation metric
is second-order expected calibration error (ECE-2), the difference between each technique’s variance
estimate V̂ θ and the true squared error

(
p̂θ(Y |X)− p(Y |X)

)2
, on an in-distribution test set. Since

some uncertainty-quantification methods may affect predictive accuracy, we additionally report the
ordinary expected calibration error of p̂θ(Y |X) relative to the true annotator labels (ECE-1), the KL
divergence between p̂θ(Y |X) and the empirical annotator distribution, and the top-1 accuracy with
respect to the clean CIFAR-10 labels. We compute ECE-1 and ECE-2 by averaging over 100 quantile
bins and summing across classes, as described in Appendix E.2.

We train pair-prediction models p̂θY1,Y2|X to jointly predict two random annotator labels for each
minibatch example, with a symmetric 10 × 10 softmax output head and either an ordinary wide
ResNet backbone (Cheat NN) from Zagoruyko & Komodakis (2016) or a SNGP backbone (Cheat
SNGP) as proposed by Liu et al. (2020). We then use the marginal p̂θY1|X and cheat-corrected variance
V̂ θCHEAT

for evaluation. We observed that our models occasionally overfit on the small dataset and
produced negative V̂ θCHEAT

estimates due to miscalibration; we regularize them by adding a small
penalty for negative eigenvalues, since p̂θY1,Y2|X(·, ·|x) must be positive semidefinite if p̂θY1,Y2|X is
calibrated (proven in Appendix A.6).

We compare our approach to a variety of existing uncertainty quantification techniques: SNGP Cov.
(Liu et al., 2020), which uses spectral normalization and a Laplace random-features approximation to a
Gaussian process covariance; Evidential DL (Sensoy et al., 2018), which uses a regularized Dirichlet
output to estimate epistemic uncertainty; Epinet (Osband et al., 2021), which models uncertainty
by feeding a random “index” input through a fixed “prior” network and a learned corrector; NN
Ensemble (Lakshminarayanan et al., 2016), which uses the mean and variance across 8 independent
ResNet models; and Naive NN, which uses p̂θ(Y |X)(1 − p̂θ(Y |X)) as an estimate of variance
(i.e. assuming Y is a deterministic function of X). We train these baselines by trating the two
randomly-selected annotator labels as separate minibatch examples.

Since CIFAR-10-H includes only the original CIFAR-10 test set, we pretrain all models on CIFAR-
10-N (Wei et al., 2021), a relabeling of CIFAR-10’s training set by three annotators per image.
We then divide CIFAR-10-H’s images into two disjoint 5,000-image subsets (with > 50 annotator
labels per image), using the first to train/validate and the second for evaluation metrics. We tune
hyperparameters to maximize likelihood on our validation set, but intentionally avoid tuning based
on second-order calibration since this may not be computable under a standard training setup.

Table 1: Cheat-corrected uncertainty estimates are better second-order-calibrated than other
techniques, while maintaining similar accuracy. Our primary metrics: ECE-2 is second-order
calibration error of the variance estimate (results within 2x of best ECE-2 in bold), E[v̂θ] is predicted
epistemic variance, and E[(p̂θ−p)2] is actual grouping error (ideally close to E[v̂θ]). For comparison,
ECE-1 is first-order calibration error of predicted probabilities, Acc is top-1 accuracy on the original
labels from CIFAR-10, and KL measures the divergence from pY|X (ground-truth annotator labels) to
p̂θY|X . All metrics summed across classes except Acc and KL.

CIFAR-10H W/ EXTRA CLASSES, SCRAMBLED

METHOD ECE-2 E[v̂θ]E[(p̂θ−p)2]ECE-1 ACC KL ECE-2 E[v̂θ]E[(p̂θ−p)2]ECE-1 KL

NAIVE NN 0.075 0.141 0.066 0.02 93.8 0.18 0.518 0.680 0.163 0.07 0.71
NN ENSEMBLE 0.039 0.014 0.053 0.03 95.0 0.15 0.137 0.013 0.150 0.03 0.65
EVIDENTIAL DL 0.378 0.053 0.432 1.03 88.3 1.09 0.387 0.031 0.418 0.79 2.36
SNGP COV. 0.047 0.006 0.053 0.02 94.9 0.15 0.108 0.034 0.142 0.05 0.62
EPINET 0.057 0.015 0.072 0.02 93.3 0.19 0.084 0.090 0.160 0.07 0.70

CHEAT NN 0.017 0.052 0.067 0.02 93.7 0.18 0.021 0.133 0.154 0.07 0.67
CHEAT SNGP 0.008 0.055 0.052 0.02 94.8 0.15 0.011 0.151 0.150 0.05 0.65
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Figure 10: Our cheat-corrected decoding strategies (with β = 0.05) avoid unsafe actions in the
“Frozen Lake” task. When the unsafe patch (red square) is visible, model samples imitate the expert
distribution, and the highest-likelihood path crosses the lake. When it is hidden, CθCHEAT

is low for
possibly-unsafe sampled paths (dashed lines), so our decoding strategies reject them in favor of safe
paths.

As shown in Table 1, our model’s cheat-corrected variance estimates are substantially better second-
order calibrated than other methods, without sacrificing first-order calibration or predictive accuracy.
In particular, most other methods tend to underestimate in-distribution epistemic uncertainty (with
E[(p̂θY|X − pY|X)2] > E[v̂θ]), although Naive NN overestimates it. We additionally train and evaluate
models on a harder task variant, where we both add extra classes to make pY|X more stochastic and also
scramble the central image pixels to make underfitting more likely, and find that our method remains
second-order calibrated, whereas other techniques become increasingly over- or under-confident.
Of our two models, the SNGP variant performs the best, suggesting that well-known techniques
for improving first-order calibration also improve second-order calibration when training on pairs.
Further details are provided in Appendix E.2.

B.3 SAFE OFFLINE RL WITH UNOBSERVED CONFOUNDERS

Finally, we show as a proof of concept that our approach can detect confounders when doing imitation
learning in POMDPs and thus avoid the “self-delusions” described by Ortega et al. (2021). We focus
on the “Frozen Lake” gridworld task (Warrington et al., 2020), where agents can take shortcuts across
a lake to reach the goal, but a random part of the lake is unsafe to cross in each episode. We train a
model to imitate expert demonstrations, where the experts always know and avoid the location of
the unsafe patch, but the model can only see it 50% of the time. This partial-observation setting is
an extreme example of misspecification, and can be viewed as a restriction on Φ(X): the model is
forbidden from using part of the “true” input. Naive imitation learning in this setting would cause the
model to learn to cross the lake randomly, which would be unsafe.

We train an 85M-parameter Transformer to imitate pairs of tokenized trajectories (Y1, Y2) drawn
randomly from the expert policy, where the two demonstrations always share the same location of
the unsafe patch. We then apply two of our cheat-corrected decoding strategies (rejection sampling
and top-1 search) with the constraint |1− CθCHEAT

| ≤ 0.05, and visualize the resulting trajectories in
Figure 10. Our strategies behave like ordinary sampling and top-1 search when the unsafe location
is visible to the model, but reject paths that cross the lake when the location is hidden, since any
such path might have pY|X(y|x) = 0. Only the always-safe paths that avoid the lake are kept, since
the model is confident that pY|X(y|x) ≈ p̂θY1|X(y|x) for those trajectories. Additional trajectories are
shown in Figures 11 to 13.
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Figure 11: Model samples and confidences for the fully-observable version of the “Frozen Lake”
task, with the unsafe patch in the bottom left. Dashed trajectories indicate samples that we would
reject using a |1− CθCHEAT

| ≤ 0.05 threshold. We add a small diagonal offset when plotting so that it is
easier to follow paths that backtrack; the model itself only predicts discrete actions (left, right, up,
down) and moves between grid cells. There is a fair amount of diversity among samples, although
our strict decoding strategy does occasionally reject safe paths.
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Figure 12: Model samples and confidences for the fully-observable version of “Frozen Lake” with
the unsafe patch in the middle right.
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Figure 13: Model samples and confidences for “Frozen Lake” when the unsafe patch is hidden. Note
that samples that cross the lake have much lower confidence when the unsafe patch is hidden, relative
to similar trajectories in Figures 11 and 12.
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B.4 OUR DISTRIBUTION-FREE CONFIDENCE INTERVALS

We next present the results of applying Theorem A.5 to the 1D binary regression problem in Figure 4.

101

102

103

Avg. of D  (using oracle knowledge of p(Y|X)) Avg. of S  (estimated from X, Y1, Y2)

Hoeffding's @ = 0.01
Hoeffding's @ = 0.05
Hoeffding's @ = 0.1
Hoeffding's @ = 0.25

confseq @ = 0.01
confseq @ = 0.05
confseq @ = 0.1
confseq @ = 0.25

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Best-case = [D ] (at convergence) 
Using = 0.0001, = 1.815826

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

102 103 104 105 106 107 108 109

Number of samples in calibration set (N)

1

0

1

2

3

4

5

Es
tim

at
ed

 

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Estimating  with confseq: N = 106, = 0.05 
Using = 0.0001, = 6.608104

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

Distribution-free bounds with threshold = 0.0001 = 0.012

101

102

Avg. of D  (using oracle knowledge of p(Y|X)) Avg. of S  (estimated from X, Y1, Y2)

Hoeffding's @ = 0.01
Hoeffding's @ = 0.05
Hoeffding's @ = 0.1
Hoeffding's @ = 0.25

confseq @ = 0.01
confseq @ = 0.05
confseq @ = 0.1
confseq @ = 0.25

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Best-case = [D ] (at convergence) 
Using = 0.0004, = 1.100404

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

102 103 104 105 106 107 108 109

Number of samples in calibration set (N)

1

0

1

2

3

4

5

Es
tim

at
ed

 

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Estimating  with confseq: N = 106, = 0.05 
Using = 0.0004, = 2.2

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

Distribution-free bounds with threshold = 0.0004 = 0.022

101

102

Avg. of D  (using oracle knowledge of p(Y|X)) Avg. of S  (estimated from X, Y1, Y2)

Hoeffding's @ = 0.01
Hoeffding's @ = 0.05
Hoeffding's @ = 0.1
Hoeffding's @ = 0.25

confseq @ = 0.01
confseq @ = 0.05
confseq @ = 0.1
confseq @ = 0.25

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Best-case = [D ] (at convergence) 
Using = 0.0025, = 0.764635

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

102 103 104 105 106 107 108 109

Number of samples in calibration set (N)

1

0

1

2

3

4

5

Es
tim

at
ed

 

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Estimating  with confseq: N = 106, = 0.05 
Using = 0.0025, = 1.0

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

Distribution-free bounds with threshold = 0.0025 = 0.052

Figure 14: Visualization of our distribution-free bound for the toy 1-D binary regression problem
in Figure 4, with ε set to 0.012, 0.022, or 0.052. Left: Convergence of γε based on Hoeffding’s
inequality and confseq, with running averages of Dε and Sε for reference. Right: Resulting
confidence intervals for p(Y |X), using either the best-case γε = E[Dε] or a value of γε returned by
Algorithm 1.
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Figure 15: Visualization of our distribution-free bound with ε set to 0.0012 (leading to a blowup
of γε and a very pessimistic bound) or 0.52 (for which the bound ignores vCHEAT

θ entirely and has a
constant width for all X , because V̂ θCHEAT

(y|x) ≤ 0.52 everywhere).

We hold (p̂θY1|X , Σ̂
θ
Y1,Y2|X

) fixed (to the “Cheat-corrected NN” described in Appendix E.1), and study
the behavior of the bound for different confidence interval algorithms, variance thresholds ε, failure
tolerances α, and calibration set sizesN . We compare two confidence interval algorithms, Hoeffding’s
inequality (Hoeffding, 1994), discussed in Appendix D.4, and confseq (Waudby-Smith & Ramdas,
2020), desribed below.

In Figures 14 and 15, we enumerate ε ∈ {0.001, 0.01, 0.02, 0.05, 0.5} and plot values of γε as the
number of calibration set examples N ranges from 100 to 109. For comparison, we also plot running
average estimates of E[Dε] (which require knowledge of p(Y |X)) and of E[Sε] (as computed in
Algorithm 1). We also plot the resulting confidence intervals for p(Y |X) at various confidence levels
β, using either an estimate based on 106 calibration set examples or the best-possible value E[Dε] at
convergence (computed using oracle knowledge of p(Y |X)).

Overall, we observe that confseq’s bounds are considerably tighter than those based on Hoeffding’s
inequality. Because our model p̂θY1,Y2|X is not perfectly calibrated on pairs, setting ε too small leads to
a blowup of E[Dε] and an ineffective bound. Smaller ε also reduces the rate at which γ converges, so
setting it to a larger value may be necessary if there is a limit on the size of the calibration set. On
the other hand, setting ε too large produces confidence intervals that are the same width everywhere,
ignoring V̂ θCHEAT

and instead using the marginal variance of pY|X(1|X) across all X .

Note that, regardless of ε, the resulting bounds are provably correct with high probability (in the
sense described by Theorem A.5). However, when ε is set too small, it is more likely that the bound is
overly conservative, and when ε is too large, the coverage guarantees are more likely “trade off” errors
between values of X , assigning conservative bounds to some regions and under-covered bounds to
others so that the overall coverage target β is met. This can be seen in the plot for ε = 0.25. (In
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a sense every such bound must trade off errors between values of X , because after fixing pY|X , for
each x the value of pY|X(y|x) is either in the interval or not. But if ε is small and the model is well
calibrated, this trading-off only occurs between examples in the same equivalence class, i.e. with the
same value of Φ(x).)

confseq implementation details: For our confseq bounds, we use the betting cs function
from the confseq Python package,1 which implements the algorithm described by Waudby-Smith
& Ramdas (2020). We rescale our Sε values so that they are bounded between 0 and 1, as assumed
by the algorithm. betting cs maintains a finite set of hypotheses about E[Sε] and uses hypothesis
testing to reject them; these hypotheses are evenly spaced over the unit interval by default, but we
modify it slightly to choose a set of hypotheses that are more-closely concentrated around 0.5, which
gives higher precision for γε ≈ 0 after inverting our rescaling. (The finite hypothesis set is the reason
for the discrete jumps in the estimates produced by confseq in Figures 14 and 15.) We configure
betting cs with a prior mean of 1 and a prior variance of 0.54

ε2 for Sε, which correspond to a prior
mean of 1

2 + 1
2ε and prior variance of 0.56 after rescaling Sε to the unit interval. Since betting-based

confidence intervals are more computationally expensive than confidence intervals from Hoeffding’s
inequality, we only run confseq for calibration set sizes smaller than 107.

1https://github.com/gostevehoward/confseq
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C ADDITIONAL DISCUSSION AND RELATED WORK

Distribution-free uncertainty quantification.

Conformal prediction is a particularly common and powerful form of distribution-free inference; see
Angelopoulos & Bates (2021) for an introduction. In general, conformal prediction lifts a predictor
of points (i.e. samples yi ∈ Y) into a predictor of prediction sets (subsets of Y) such that, for a new
input drawn from the same distribution, the result lies in the predicted set with high probability. The
basic idea is to associate a “conformal score” to each outcome in Y that measures how badly the
predictor was wrong (e.g. the prediction error), estimate an upper quantile of the conformal scores for
the actual outcomes in the dataset, then construct a prediction set by removing any observation whose
conformal score would be higher than this quantile). This idea is closely linked to that of hypothesis
testing.

Directly applying conformal prediction to a binary classification problem produces prediction sets
that are subsets of Y = {0, 1}, but this is not ideal if there is uncertainty about Y , because then the
best prediction set will often be {0, 1} itself, which is trivial and uninformative; similar issues may
also arise for larger Y in high-uncertainty settings. Related to our work, Barber (2020) investigated
the feasibility of constructing confidence intervals for the probability p(Y = 1|X) instead of the
samples Y themselves. Working under the assumption that the data consists of (X,Y ) pairs and
that each X is seen at most once, Barber proved that any confidence intervals for p(Y = 1|X) must
necessarily also be a prediction set for Y itself. In other words, the confidence interval cannot be
a tight bound on the true p(Y = 1|X), since it must include at least one of the endpoints 0 or 1
with high probability, and may need to cover the whole unit interval for highly-stochastic Y . (Our
approach avoids this limitation by assuming each input X is seen twice.)

Gupta et al. (2020) study the relationship between calibration, grouping functions, confidence
intervals, and predictive sets for binary classification problems. They introduce the notion of
confidence intervals and predictive sets with respect to a function f , where f plays the same role as
our grouping function Φ, and study methods for bounding the true expectation E[Y |f(X)]. They
prove that, in general, parametric recalibration methods cannot be distribution-free calibrated, but if
outputs of f are discretized to a finite set of bins first, then it is possible to construct distribution-free
confidence intervals for the conditional probability E[Y |f(X)]. A similar guarantee about calibration
error was given by Kumar et al. (2019), who also proposed an efficient combined scaling-binning
scheme, and a refined analysis that allows re-using samples was also given by Gupta & Ramdas
(2021).

We note that confidence intervals for the expectation E[Y |f(X)] with respect to f(X) are not the same
as confidence intervals for the true conditional probability p(Y = 1|X) = E[Y |X]. Constructing
a confidence interval for E[Y |f(X)] allows you to guarantee that your model is nearly first-order
calibrated; it gives an interval of values that is likely to contain the answer to the question “across all
of the inputs for which my model’s output is φ, how many will have Y = 1?” However, it does not
tell you whether your model is doing a good job at separating examples with different true conditional
probabilities. In contrast, our procedure directly produces a confidence interval for p(Y = 1|X); it
gives an interval of values in answer to the question “what is the chance that Y = 1 for this specific
x?” such that the answer is likely2 to be correct for most3 randomly-chosen x.

For an estimator with finitely-many bins, and an infinite number of recalibration examples, the
confidence intervals for E[Y |f(X)] will eventually converge on the exact value of E[Y |f(X)].
However, our confidence intervals for p(Y = 1|X) may never converge to the exact value of
p(Y = 1|X) if the model is unable to distinguish Xs with different label probabilities. This is
unavoidable, since our model may not have capacity to express p(Y = 1|X) without additional
assumptions (whereas a lookup table always has enough capacity to estimate E[Y |f(X)] over
finitely many bins). Nevertheless, if we happen to be lucky, and our model is actually able to
predict the exact value for p(Y = 1|X) (and is both calibrated and confident about this prediction,
i.e. V̂ θCHEAT

(y|x) = 0), then our confidence intervals will converge to that value. Our procedure is
thus adaptive to the complexity of the specific dataset being used while remaining correct without
additional assumptions, a desirable property for a distribution-free algorithm.

2With probability at least 1− α.
3At least 1− β of them.
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Pair prediction (two Y for the same X) v.s. “joint prediction” (different Xs and Y s) for epis-
temic uncertainty: As motivation for the Epinet uncertainty-quantification technique, Osband et al.
(2021) have argued that uncertainty-aware agents should be judged not based on their uncertainty
about Y for individual inputs X , but instead based on their joint distribution over a sequence of Y (i)

drawn for a sequence of inputs X(i); they refer to this as “joint prediction”. While somewhat similar
to our proposed pair-prediction formalism in terms of motivation, the focus and applicability of the
approaches is quite different.

Probabistic structure: The joint prediction criterion assumes the model has some hierarchical
structure, such that it is possible to express a joint distribution over the outcomes Y (i) for different
inputs X(i). Bayesian neural networks and Epinets satisfy this criterion, but not all neural networks
express a joint in this way. In particular, a cheat-corrected pair-prediction neural network (as we
propose) does not assume any joint distribution over outcomes for different X; its outputs can be
converted into well-calibrated pointwise estimates of variance, but each prediction is made pointwise
(e.g. for this particular x or the xes in a particular equivalence class).

Evaluation criterion: Osband et al. (2021) propose to use joint prediction primarily as an evaluation
metric, based on theoretical results showing that joint predictions perform well for decision making
(Wen et al., 2021). This can be interpreted as measuring how quickly a model can “learn” from new
data to improve its predictions on future data points. In contrast, our work focuses on pair prediction
as a way to train a model to be second-order calibrated, which then lets us estimate how accurately a
model predicts its distance from p(Y |X). Our evaluation metric is then the pointwise calibration of
the second-order estimates.

Training objective: Our proposed training objective in directly trains a model to predict pairs, and
our distribution-free adjustment procedure also directly uses paired data. This ensures that our
approach can be statistically valid even if the model is misspecified or computationally limited, but
requires the data collection process to be modified. On the other hand, Osband et al. (2021) do
not train their models based on a joint prediction objective, but instead show that a per-sample log-
likelihood objective leads to good joint predictions under the assumption that the data was generated
by a distribution with a specific known form. This implies that the Epinet training objective is not
necessarily second-order calibrated or robust to misspecification, and we find empirical evidence of
this in Appendix B.2.

Pair prediction v.s. minimum Bayes risk / repeated sampling techniques: Many
postprocessing-based techniques improving model outputs using multiple samples, including
clustering-based approaches, can be interpreted as instances of minimum Bayes risk (MBR) de-
coding (Bertsch et al., 2023). In MBR decoding, after obtaining a model p̂θ approximating some
generative process, actions are selected not based on their likelihood under the model, but instead
based on some error function L(y, y′) that compares possible outputs; an output y′ is “good” if it
achieves a low error in expectation across alternative outputs y sampled from the model p̂θ(Y |X = x).
For instance, L might return 1 if two outputs are semantically equivalent.

Although our approach and MBR decoding both draw repeated samples from a conditional distribution
of Y given X , they differ on which distribution is sampled. In MBR decoding, the training data
usually consists of only one Y drawn from p(Y |X) for each X , but multiple samples are drawn from
p̂θ(Y |X) and compared at inference time. In contrast, in our pair-prediction technique, the training
data must consist of two samples Y1, Y2 drawn from p(Y |X) for each X , but at inference time we
can sample and score single outputs from p̂θ(Y |X).

MBR also requires specification of a task-relevant error function L(y, y′), and does not distin-
guish between aleatoric and epistemic uncertainty in p̂θ(Y |X), but instead distinguishes between
“risky”/“unusual” and “safe”/“common” samples using L(y, y′). In contrast, our technique is task-
agnostic and explicitly distinguishes aleatoric and epistemic uncertainty. Note that, because it is
task-agnostic, our approach may report uncertainty about hard-to-predict parts of Y even if they are
not relevant to the downsteram task, whereas MBR decoding can explicitly ignore the irrelevant parts
when computing L.

Previous uses of “second-order calibration” terminology: The term “second-order calibration”
has been previously used by Muralidharan & Najmi (2015) to refer to a particular method for adjusting
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an arbitrary system to give approximate posteriors over a latent real-valued parameter, under strong
distributional assumptions. Here “calibration” is used in the sense of “a calibration procedure” rather
than as “the property of being calibrated”, and the goal is to distinguish error in estimating the
parameter from the intrinsic noise in the response-generating process, using an estimate of variance.
The calibration procedure relies on binning examples x based on the output t of a learned model,
assuming that the real-valued true parameter θ of interest follows a simple parameteric family, and
then fitting the parameters of the family for each bin separately using maximum (marginal) likelihood;
this is an extension of (re)calibration procedures that try to post-process a non-calibrated model to
make it more (first-order) calibrated (e.g. Kumar et al. (2019)). Since true data for the parameter is
not available, the focus of the work is primarily on ensuring that the simple parametric model fits the
data well rather than on measuring the accuracy of the variance estimates.

We are not aware of any previous work that uses “second-order calibration” to refer to a formally-
defined property of a predictive model rather than to a technique for postprocessing an existing model,
nor any that considers it in the sense of predicting the squared error between a predicted discrete
distribution and an unknown ground-truth discrete distribution (e.g. for a classifier or generative
model) without distributional assumptions.

Joint, marginal, and class-wise calibration: Our definition of first-order calibration requires
that all elements of the output joint distribution match their true expectation conditional on a single
grouping function (or, equivalently, conditional on the full vector of model outputs). This is sometimes
referred to as being “jointly calibrated”. There are also weaker definitions of calibration. Following
the terminology of Perez-Lebel et al. (2022), “classwise calibrated” models make individually-
calibrated binary predictions about each possible class y (Zadrozny & Elkan, 2002), and “top-label
calibrated” models first identify a most likely label and then make a calibrated binary predictions
about the correctness of that guess (Guo et al., 2017).

Our technique fundamentally requires making predictions about a pair of outcomes (y1, y2). In
particular, it is not enough to make separately-calibrated predictions p̂θY1|X(y1|x) and p̂θY2|Y1,X(y2|y1, x),
since the procedure works by comparing how much more likely any given outcome y would be to occur
a second time. In principle, however, we could still transform a multi-class classification problem into
a set of binary classification problems, then apply our technique to the binary problems. In this setting,
instead of predicting a full joint p̂θY1,Y2|X(Y1, Y2|x), we could introduce binary outcome variables Oyi
such that Oyi = 1 whenever Yi = y, then make a set of individually-calibrated pair predictions
p(Oy1 , O

y
2 |x), one for each y. This could then be used to construct second-order marginally-calibrated

versions of classwise calibration or top-label calibration. Note that this approach would still allow
you to estimate the epistemic variance for any particular class, but would not tell you a full covariance
matrix.

How much does the choice of X matter? Our work has assumed the existence of a joint dis-
tribution of variables X,Y given by a conditional pY|X(Y |X) and a distribution of queries P (X).
However, a first-order calibrated model is free to condition on an arbitrary function of X instead of
X itself. This means that, in a standard machine learning setup, there may be some metaphysical
ambiguity about what X “really” refers to.

A concrete example of this is our “Frozen Lake” experiments, where we randomly sample an
environment X , then occasionally hide information about the unsafe patch to obtain XPARTIAL, and
finally train a model to map XPARTIAL to a distribution over expert trajectories Y . If all we care
about is first-order calibration, we could think of the procedure that transforms X into XPARTIAL as
either being part of the model’s grouping function Φ or as being part of the ambient probability
space. Similarly, we could either think of this as learning to approximate p(Y |X) with a misspecified
model, or as learning to approximate p(Y |XPARTIAL) directly. These two are in a sense equivalent,
since they produce the same samples of XPARTIAL and would use the same cross entropy loss over
Y , and a perhaps more standard choice would be to think of the hidden information as being some
other variable Z, and think of the “true conditional” the model is learning as being p(Y |XPARTIAL).
You could make a similar argument for ordinary classifiers also, e.g. are feature normalization or
augmentation strategies part of the data distribution or are they part of the model?

Once we involve second-order calibration, however, this distinction becomes practical rather than
metaphysical: the query X is whatever information makes the two responses Y1, Y2 independent and
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identically distributed. In other words, if we construct a process that samples two responses Y1, Y2

that are i.i.d. given Z, the true conditional we are estimating will then be the conditional p(Y |Z)
regardless of what transformation we apply to Z before giving it to our model.

We believe this is a powerful strength of our approach, because it allows you to specify the “boundaries”
of your desired conditional distribution by example rather than by assumption. If you wish to imitate
a set of experts, you can collect a dataset by asking those experts, and any “common knowledge” that
those experts have will become “part of X”, regardless of whether or not you can encode it as part of
the input to the model itself; a pair-predictor model will thus be incentivised to estimate whether or
not it also knows that common knowledge. Similarly, anything that is independent between those
experts will be treated as part of the aleatoric uncertainty in Y , since it cannot be used to help predict
the answer of a different expert.

How tight is Theorem 4.2 (hallucination rate)? Our results in Theorem 4.2 provide an upper
bound on the rate of statistical hallucinations when using a sufficiently well-behaved decoding
algorithm. A natural question is whether this bound is tight, and in what circumstances.

The bound in Theorem 4.2 will be tight if there are exactly two values for pY|X conditioned on what
the model “knows”: zero, and some nonzero constant value. In this case, all of the variance in pY|X
conditioned on Φ(X) is caused by these two point masses, and the ratio of probabilities in CθCHEAT

will
tell you the fraction of inputs X for which pY|X takes the nonzero value. This might be the case if
the model is very confident about the probability of the particular response y assuming it is correct,
but does not know whether or not y is correct. Our experiments in the digits-of-pi task (discussed in
Appendix E.3) approximately satisfy this property, since the only thing that changes between digits is
the set of statements that are correct; the probability of any given statement is consistent across all
queries for which it is correct.

In more realistic scenarios, there may be other aspects that influence the probability of a given
response other than its correctness, e.g. the model may not know something about the typical
style of answers to a particular type of question. This will lead to increased variance in pY|X and a
lower confidence. The epistemic confidence may still be useful in those settings as a normalized
measurement of uncertainty in general, but it will likely produce a conservative overestimate of the
chance of hallucination in particular.

We also note that the bound in Theorem 4.2 is particularly simple because it attempts to bound the
rate of generating statements whose ground truth probability was exactly zero. However, this bound
is a special case of Cantelli’s inequality (Cantelli, 1929), a more general upper bound on a random
variable given its mean and variance. We demonstrate how to use this to construct other one-sided
bounds in Appendix D.3.

Partial observability and misspecification for decision making: The general problem of deci-
sion making under uncertainty is a well-studied problem, with much analysis under the formalism of
partially-observable Markov decision processes (POMDPs) (Kaelbling et al., 1998). Agents acting
in POMDPs must perform inference about their unknown state, based on a limited view of the
environment.

Of particular relevance to our work is asymmetric imitation learning: the problem of learning to
correctly imitate expert demonstrations when the experts may have access to additional information
not known to the imitation agent. Naive imitation can cause an agent to take unsafe or undesirable
actions, while “deluding itself” into expecting that every action it takes will be safe; Ortega et al.
(2021) demonstrate this problem and identify it as an instance of confounding in a causal graph. This
problem can be avoided if all training data is collected under the imitation-learning policy, where
the expert actions are queried but only the imitation-learner’s action are used. Relatedly, Warrington
et al. (2020) describe a procedure for modifying the expert policy so that it can be safely imitated.
Unfortunately, these procedures require the ability to dynamically query or adjust the expert policy,
which is not always possible.

In the “Frozen Lake” experiment, we used the same hidden location when drawing the two expert
decisions, so that making calibrated predictions about pairs of expert trajectories would requires us to
quantify the influence of that extra information. As discussed above, this is essentially folding the
partial observability of the “Frozen Lake” experiments into the grouping function Φ(X).
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We think this is an interesting perspective which may be useful for thinking about the behavior of
misspecified agents more broadly: training a calibrated predictor is roughly the same as having an
optimal predictor that only sees some restricted view of its input, so perhaps techniques that work
under partial observability could also be extended to work for arbitrary calibrated models.

Conditional independence requirements in Pair prediction v.s. randomized causal effect esti-
mation: Our technique fundamentally assumes that Y1 and Y2 are independent and identically
distributed according to p(Y |X) for each X . A straightforward way to ensure this holds is to sample
Y1 and Y2 from an explicit process for generating Y from X , e.g. by querying a random human
annotator for each. Unfortunately, if direct access to an explicit response process is not available, our
technique may not be directly applicable unless conditional independence is satisfied in some other
way.

This use of an explicit label process in some ways resembles the use of treatment assignment in
randomized controlled trials, where treatments are explicitly chosen by a randomized algorithm
to ensure that treatments are conditionally independent of the outcomes (Ding, 2023). In the case
of causal inference, this randomness allows estimating average treatment effects without making
assumptions about the causal mechanism that induces those effects. In the case of our pair-prediction
technique, the randomness of the label process allows us to distinguish aleatoric uncertainty from
underfitting without making assumptions about the form of the distribution p(Y |X).

We note also that a variety of techniques have been proposed for estimating causal effects without
control of the treatment-assignment process, usually by making assumptions about the causal structure
of the naturally-occuring data; studies that estimate causal effects in this way are referred to as
“observational” studies (Ding, 2023). Such techniques can be effective if correctly designed, but
can produce incorrect estimates if the causal model is misspecified (due to not accounting for all
confounders). Similarly, methods such as Bayesian inference can produce good uncertainty estimates
without using paired Y data if they are well specified, but can fail if misspecified.

Handling uncertainty using privileged information: Collier et al. (2022) propose a technique
(TRAM) for improving robustness to label noise by training on privileged information. At training
time, they allow the later layers of a network to condition on information such as annotator IDs,
which can help explain away label noise. At inference time, this privileged information can then be
marginalized out.

Similar to our method, TRAM involves collecting additional data from the response process p(Y |X)
at training time, but does not require this additional information when scoring new inputs. However,
the additional information in TRAM can be seen as “explaining away” the aleatoric uncertainty
in the process, allowing the model to focus on learning the link between X and Y ; this aleatoric
variation is then added back in through marginalization. In contrast, our technique conditions on a
separate sample y1 when predicting y2, which can roughly be seen as “explaining away” the epistemic
uncertainty. The remaining noise in p̂θ(y2|y1, x) is likely aleatoric, so we can correct for it by
dividing it out.

Calibration, forecasting, and game-theoretic probability: In machine learning, calibration is
usually formulated and evaluated with respect to an i.i.d. distribution of inputs X and outcomes Y .
However, much of the initial work on calibration focused instead on sequential forecasting (Dawid,
1984), where the inputs X arrive sequentially and may not be identically distributed, and the goal is
to produce a sequence of forecasts that are calibrated in the long run (e.g. asymtotically) and also
achieve good performance according to a scoring rule. Although our contributions are focused on the
i.i.d. setting, and paired responses seem difficult to extend to the sequential-forecasting setting, we
briefly review some of the results on calibration for sequential forecasts for the interested reader.

Dawid (1982) proved that a coherent Bayesian reasoner must assign probability 1 to being eventually
well-calibrated on any sequence of outcomes. This is roughly because a coherent Bayesian must
be certain about their own prior (over the set of possible sequences); observed miscalibration can
sometimes provide evidence about the sequence but can never convince the Bayesian to change their
inference algorithm. Dawid (1985) expanded the notion of calibration to range over all computable
subsequences (akin to the definition of multicalibration in the i.i.d. setting (Hébert-Johnson et al.,
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2018)), and showed that any computable forecasting strategies that achieve this stronger notion of
calibration must eventually agree with each other.

Unfortunately, Oakes (1985) showed that no deterministic algorithm can be calibrated on every
sequence: given any deterministic forecasting strategy, there exists an adversarial distribution of
sequences for which it is miscalibrated. Interestingly, Foster & Vohra (1998) proved that a (non-
Bayesian) forecaster can achieve asymptotic calibration on every sequence if they are allowed to add
noise to their forecasts independently of the adversarially-selected outcomes in the sequence, but
this comes at the cost of higher prediction error on each sequence due to the added noise. Sandroni
et al. (2003) strengthened this result, showing that there exist (randomized) computable forecasting
strategies that are asymptotically calibrated over all computable subsets of any sequence.

The above works show that calibration can be formalized in both probabilistic and game-theoretic
terms. Game theory can also be used as a foundation for probability theory and hypothesis testing
(Shafer & Vovk, 2019; Waudby-Smith & Ramdas, 2020), and approaches based on betting can even
be used to define coherent “probabilities” over logical implications (Garrabrant et al., 2016). A
promising property of this kind of formalization is that it can naturally account for computational
constraints, by restricting the computational capabilities of the reasoner or adversary; this is much
more difficult to do from a purely Bayesian perspective.

We note that, although it is difficult to define a coherent probability system over logical statements
that converges to the truth, it is fairly easy to produce nearly-calibrated predictions about the truth
values of a fixed distribution of logical statements, as long as you are OK with taking a non-Bayesian
perspective and having a large grouping loss: you can simply output the fraction of all statements
that are true, optionally after partitioning the space of statements into groups. Our experiments with
predicting digits of π are closer to this simple procedure than they are to the algorithm of Garrabrant
et al. (2016), and we conjecture that observed logical reasoning errors in language models can be
thought of as more complex versions of this simple procedure as well.

30



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

D DETAILS ABOUT AND PROOFS OF THEORETICAL RESULTS

In this section, we prove our theoretical results and discuss their implications.

D.1 FIRST-ORDER CALIBRATION

We first prove that our definition of calibration is equivalent to the more specific definition used in
previous work (Kumar et al., 2019; Vaicenavicius et al., 2019; Perez-Lebel et al., 2022). This result
was previously shown by Gupta et al. (2020).

Proposition A.1. If Definition 2.1 holds for any Φ, then it also holds for ΦθY|X : X → RY , where
ΦθY|X(x)y , p̂θY|X(y|x).

Proof. Fix Φ and suppose p̂θY|X(Y=y|X=x) = E
[
p(Y=y|X)

∣∣ Φ(X) = Φ(x)
]
. Then

ΦθY|X(x) =
[
p̂θY|X(Y=y1|X=x), . . . , p̂θY|X(Y=y|Y||X=x),

]
=
[
E
[
p(Y=y1|X)

∣∣ Φ(X) = Φ(x)
]
, . . . , E

[
p(Y=y|Y||X)

∣∣ Φ(X) = Φ(x)
] ]

Let h(φ) be the vector

h(φ) =
[
E
[
p(Y=y|X)

∣∣ Φ(X) = φ
] ]

y∈Y

=
[
E
[
p(Y=y1|X)

∣∣ Φ(X) = φ
]
, . . . , E

[
p(Y=y|Y||X)

∣∣ Φ(X) = φ
] ]

and observe then that ΦθY|X(x) = h(Φ(x)). It follows that, for any x ∈ X and yi ∈ Y ,

E
[
p(Y=yi|X)

∣∣ ΦθY|X(X) = ΦθY|X(x)
]

= E
[
p(Y=yi|X)

∣∣ h(Φ(X)) = h(Φ(x))
]

= E
[
E
[
p(Y=yi|X)

∣∣ Φ(X)
] ∣∣∣ h(Φ(X)) = h(Φ(x))

]
= E

[
h(Φ(X))i

∣∣∣ h(Φ(X)) = h(Φ(x))
]

= h(Φ(x))i

= E
[
p(Y=yi|X)

∣∣ Φ(X) = Φ(x)
]

= p̂θY|X(Y=yi|X=x).

In words, conditioning on the output of a calibrated model p̂θY|X instead of on a more refined grouping
Φ(X) only combines equivalence classes φ that have the same conditional expected value of p(Y |X),
so the overall expected value doesn’t change in the larger equivalence classes.

D.2 EQUIVALENCE OF PAIR CALIBRATION AND SECOND-ORDER CALIBRATION

We now prove our main result Theorem 3.1, which we restate below:

Theorem 3.1. If p̂θY1,Y2|X is first-order calibrated at predicting pairs (Y1, Y2), then its marginal p̂θY1|X
and the covariance estimator Σ̂θ

Y1,Y2|X
(x)yi,yj = p̂θY1,Y2|X(yi, yj |x)− p̂θY1|X(yi|x) p̂θY2|X(yj |x) are second-

order calibrated at predicting pY|X . Moreover, this is a bijection: every second-order-calibrated
(p̂θ

′

Y|X , Σ̂
θ′) defines a first-order-calibrated pair predictor.

Proof. This equivalence follows from the standard decomposition of the (conditional) covariance
into a difference of expectations, the observation that the product of two probability distributions
defines a joint distribution, and the fact that a probability distribution is itself an expectation. Omitting
the restriction X ∈ [x]Φ for notational convenience, and expanding the definition of the covariance
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matrix elementwise, we have

Cov
[
pY|X(y|X), pY|X(y′|X)

]
= E

[(
pY|X(y|X)− E[pY|X(y|X)]

)(
pY|X(y′|X)− E[pY|X(y′|X)]

)]
= E

[
pY|X(y|X)pY|X(y′|X)

]
− E

[
pY|X(y|X)

]
E
[
pY|X(y′|X)

]
= E

[
P (Y1 = y|X)P (Y2 = y′|X)

]
− E

[
P (Y1 = y|X)

]
E
[
P (Y2 = y′|X)

]
= E

[
P (Y1 = y, Y2 = y′|X)

]
− E

[
P (Y1 = y|X)

]
E
[
P (Y2 = y′|X)

]
.

Having a first-order-calibrated predictor of pairs means that

p̂θY1,Y2|X(y1, y2|x) = E
[
P (Y1 = y1, Y2 = y2|X)

∣∣ X ∈ [x]Φ
]

and marginalizing out y2 gives

p̂θY1|X(y1|x) =
∑
y2

E
[
P (Y1 = y1, Y2 = y2|X)

∣∣ X ∈ [x]Φ
]

= E
[∑
y2

P (Y1 = y1, Y2 = y2|X)
∣∣ X ∈ [x]Φ

]
= E

[
P (Y1 = y1|X)

∣∣ X ∈ [x]Φ
]

= E
[
pY|X(y1|X)

∣∣ X ∈ [x]Φ
]

so p̂θY1|X is first-order calibrated at predicting Y . The same is true for p̂θY2|X . We then also have

Σ̂θ
Y1,Y2|X

(x)y,y′ = p̂θY1,Y2|X(y, y′|x)− p̂θY1|X(y|x) p̂θY2|X(y′|x)

= E
[
P (Y1 = y1, Y2 = y2|X)

∣∣∣ X ∈ [x]Φ

]
− E

[
P (Y1 = y|X)

∣∣∣ X ∈ [x]Φ

]
E
[
P (Y2 = y′|X)

∣∣∣ X ∈ [x]Φ

]
= Cov

[
pY|X(y|X), pY|X(y′|X)

∣∣∣ X ∈ [x]Φ

]
.

Thus by definition, (p̂θY1|X , Σ̂
θ
Y1,Y2|X

) are second-order calibrated.

The converse follows observing that we can define p̂θY1,Y2|X in terms of (p̂θY|X , Σ̂
θ) as

p̂θY1,Y2|X(y1, y2|x) = Σ̂θ(x)y1,y2 − p̂θY|X(y1|x)p̂θY|X(y2|x)

which is a well-defined and first-order-calibrated probability distribution as long as (p̂θY|X , Σ̂
θ) are

second-order calibrated because then

p̂θY1,Y2|X(y1, y2|x) = E
[
P (Y1 = y1, Y2 = y2|X)

∣∣ X ∈ [x]Φ
]
.

Applying the logic above shows that p̂θ
′

Y|X = p̂θY1|X and Σ̂θ′ = Σ̂θ
Y1,Y2|X

.

Since predictors can always reduce their expected loss (under a proper scoring rule) by becoming
better calibrated on their training task, Theorem 3.1 implies that our pair-prediction procedure
incentivizes second-order calibration.

D.3 PROOFS OF ERROR BOUNDS FOR CALIBRATED PAIR PREDICTORS

Theorem A.4. Suppose p̂θY1,Y2|X is calibrated. Let A be any event and Ỹ ∈ Y be any (possibly
random) value such that Ỹ , A ⊥⊥ X | ΦθY1,Y2|X(X). Then

E
[(
p̂θY1|X(Ỹ |X)− pY|X(Ỹ |X)

)2 ∣∣∣A] = E
[
V̂ θCHEAT

(Ỹ |X)
∣∣∣A].

Furthermore, for any β ∈ (0, 1),

P

[∣∣∣p̂θY1|X(Ỹ |X)− pY|X(Ỹ |X)
∣∣∣ ≥√V̂ θCHEAT(Ỹ |X)

β

∣∣∣∣∣A
]
≤ β.
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Proof. We will show that these properties hold individually for every value of ΦθY1,Y2|X(X) and Ỹ
conditioned on A, and so they must also hold overall.

Let φ and y be arbitrary, and x be such that Φ(x) = φ. Since p̂θY1,Y2|X is calibrated, it must be
symmetric, so V̂ θCHEAT

(y|X) = Σ̂θ
Y1,Y2|X

(X)y,y. Furthermore (p̂θY1|X , Σ̂
θ
Y1,Y2|X

) must be second-order
calibrated, and A, Ỹ are independent of X given Φ(X) = φ, so

p̂θY1|X(y|x) = E
[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ
]

= E
[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ, Ỹ = y,A
]

V̂ θCHEAT
(y|x) = Var

[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ
]

= Var
[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ, Ỹ = y,A
]

Let B be the event where (ΦθY1,Y2|X(X) = φ, Ỹ = y,A) all occur.

For the first part, we have

E
[(
p̂θY1|X(y|X)− pY|X(y|X)

)2 ∣∣∣B]
= E

[(
E
[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ, Ỹ = y,A
]
− pY|X(y|X)

)2
∣∣∣∣B]

= Var
[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ, Ỹ = y,A
]

= V̂ θCHEAT
(y|x) = E

[
V̂ θCHEAT

(y|X)
∣∣B]

where the last step follows because x is an arbitrary input with ΦθY1,Y2|X(x) = φ and every such x has
the same value for V̂ θCHEAT

(y|x). Taking expectations over all values of X and Ỹ given A yields the
desired result.

For the second part, Chebyshev’s inequality ensures that

P

[
|E[Z]− Z| ≥

√
Var(Z)

β

]
≤ β

for any random variable Z and any β. Applying this with Z = pY|X(y|X) conditioned on B gives

P

∣∣∣E[pY|X(Ỹ |X)|B]− pY|X(Ỹ |X)
∣∣∣ ≥
√√√√Var

[
pY|X(y|X)

∣∣∣ B]
β

∣∣∣∣∣∣∣∣B
 ≤ β.

so

P

∣∣∣p̂θY1|X(y|x)− pY|X(Ỹ |X)
∣∣∣ ≥
√
V̂ θCHEAT

(y|x)

β

∣∣∣∣∣∣B
 ≤ β.

We can now marginalize over ΦθY1,Y2|X(X) and Ỹ conditioned on A to obtain the desired result.

Proposition A.2. If p̂θY1,Y2|X is calibrated, then for any x ∈ X , y ∈ Y we have 0 ≤ CθCHEAT
(y|x) ≤ 1,

with CθCHEAT
(y|x) = 1 if and only if p̂θY1|X(y|x) = pY|X(y|x).

Proof. CθCHEAT
(y|x) ≥ 0 because both its numerator and denominator are nonnegative. Furthermore, if

CθCHEAT
(y|x) = 1, the numerator and denominator must be equal.

To show that CθCHEAT
(y|x) ≤ 1, algebraic manipulation allows us to write it in the form

CθCHEAT
(y|x) =

p̂θY1|X(y|x)

p̂θY2|Y1,X(y|y, x)
=

p̂θY1|X(y|x)2

p̂θY1,Y2|X(y, y|x)
=

(
p̂θY1,Y2|X(y, y|x)

p̂θY1|X(y|x)2

)−1

=

(
1 +

p̂θY1,Y2|X(y, y|x)− p̂θY1|X(y|x)2

p̂θY1|X(y|x)2

)−1

=

(
1 +

V̂ θCHEAT
(y|x)

p̂θY1|X(y|x)2

)−1

.
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If p̂θY1,Y2|X is calibrated, it must be symmetric, so V̂ θCHEAT
(y|X) = Σ̂θ

Y1,Y2|X
(X)y,y , which is a conditional

variance and thus cannot be negative. It follows that V̂ θCHEAT(y|x)

p̂θ
Y1|X

(y|x)2
≥ 0, so CθCHEAT

(y|x) ≤ 1.

Note of caution: When p̂θY1,Y2|X is not calibrated, it is no longer true that V̂ θCHEAT
(y|X) is necessarily

equal to Σ̂θ
Y1,Y2|X

(X)y,y, because p̂θY1,Y2|X is not necessarily symmetric. It is also not necessarily true
that Σ̂θ

Y1,Y2|X
(X)y,y is an epistemic variance, since Theorem 3.1 does not hold. This can mean that,

for miscalibrated p̂θY1,Y2|X , it is possible to observe V̂ θCHEAT
(y|x) < 0 and CθCHEAT

> 1, and we do observe
this in some of our experiments. We discuss this further in Appendix E.

Theorem 4.2. Suppose p̂θY1,Y2|X is calibrated. Let A be the event that a decoding algorithm responds
to a query X , and Ỹ ∈ Y be its response. If A, Ỹ ⊥⊥ X | p̂θY1,Y2|X(·|X) (e.g. if A and Ỹ were
computed only using the model’s predicted distribution p̂θY1,Y2|X(·|X)), then the chance of generating
a statistical hallucination can be bounded above as

P
[
pY|X(Ỹ |X) = 0

∣∣∣ A] ≤ 1− E
[
CθCHEAT

(Ỹ |X)
∣∣∣ A] .

Proof. Similar to our proof of Theorem A.4, we can prove that this holds individually for every
value of ΦθY1,Y2|X(X) and Ỹ conditioned on A and then take an expectation. As before, let φ and y be
arbitrary, and x be such that Φ(x) = φ. By Cantelli’s inequality (Cantelli, 1929) (also known as the
one-sided Chebyshev’s inequality),

P [Z ≤ E[Z]− λ] ≤ Var(Z)

Var(Z) + λ2

for any random variable Z and any β. Substituting λ = E[Z],

P [Z ≤ 0] ≤ Var(Z)

Var(Z) + E[Z]2
=

E[Z2]− E[Z]2

E[Z2]
= 1− E[Z]2

E[Z2]

Now letting Z = pY|X(y|X) and conditioning on B = (ΦθY1,Y2|X(X) = φ, Ỹ = y,A) as before, and
using the fact that p̂θY1,Y2|X is calibrated,

P
[
pY|X(y|X) ≤ 0

∣∣ B] ≤ 1− E[pY|X(y|X)|B]2

E[pY|X(y|X)2|B]
= 1− E[pY|X(y|X)|Φ(X) = φ]2

E[pY|X(y|X)2|Φ(X) = φ]
= 1−

p̂θY1|X(y|x)2

p̂θY1,Y2|X(y, y|x)

= 1−
p̂θY1|X(y|x)

p̂θY2|Y1,X(y|y, x)
= 1− CθCHEAT

(y|x) = 1− E[CθCHEAT
(y|X)|B]

where here x is an arbitrary input with ΦθY1,Y2|X(x) = φ, since every such x has the same value for
CθCHEAT

(y|x). Taking expectations of both sides over all values for φ and y completes the proof.

As an aside, we note that it’s possible to prove a one-sided bound on pY|X(y|X) by combining the
proof ideas from Theorem A.4 and Theorem 4.2:

Proposition D.1. Suppose p̂θY1,Y2|X is calibrated. Let A be any event and Ỹ ∈ Y be any (possibly
random) output such that Ỹ , A ⊥⊥ X | ΦθY1,Y2|X(X). Then for any β ∈ (0, 1),

P

[
pY|X(y|X) ≤ p̂θY1|X(y|X)−

√
V̂ θCHEAT

(y|x)

(
1

β
− 1

) ∣∣∣∣∣ A
]
≤ β.

Proof. As above, but let λ =

√
V̂ θCHEAT

(y|x)
(

1
β − 1

)
in Cantelli’s inequality. Then substituting V̂ θCHEAT

as before we obtain

P
[
pY|X(y|X) ≤ p̂θY1|X(y|X)− λ

∣∣ B] ≤ V̂ θCHEAT
(y|x)

V̂ θCHEAT
(y|x) + V̂ θCHEAT

(y|x)
(

1
β − 1

) = β,

and taking expectations completes the proof.
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This is a better bound than the one in Theorem A.4 in the case where we want a conservative estimate
of how small pY|X(y|X) could be with confidence 1− β, instead of wanting to bound the distance to
p̂θY1|X(y|X).

D.4 DISTRIBUTION-FREE BOUNDS ON p(Y |X)

Suppose Y = {0, 1}. Our distribution-free high-probability bound on p(Y |X) is based on the random
variable

Dε =

(
pY|X(1|X)− p̂θY|X(1|X)

)2
max{V̂ θ(1|X), ε}

.

Dε is always nonnegative, and if p̂θY|X and V̂ θ are second-order well-calibrated (or, more precisely, if
V̂ θ is the diagonal of the epistemic covariance matrix) the expected value E[Dε] should be at most 1.

The following lemma shows that we can use E[Dε] to bound p(Y |X), even if p̂θY|X is not well
calibrated:
Lemma D.2. Suppose E[Dε] ≤ γε. Then for a randomly sampled input X ∼ p(X) and any
β ∈ [0, 1), the true conditional p(Y = 1|X) lies within

p̂θY|X(1|X)±
√

max{V̂ θ(Y = 1|X), ε} γε/β (3)
with probability at least 1− β.

Proof. By Markov’s inequality, for any β ∈ [0, 1), p
(
Dε ≥ E[Dε]/β

)
≤ β. In other words, with

probability at least 1− β, Dε < E[Dε]/β. Since E[Dε] ≤ γε, this means that(
pY|X(1|X)− p̂θY|X(1|X)

)2
max{V̂ θ(1|X), ε}

< γε/β

with probability at least 1− β, in which case∣∣pY|X(1|X)− p̂θY|X(1|X)
∣∣ <√max{V̂ θ(1|X), ε}γε/β.

We can use this to prove Theorem A.5, which we restate below:
Theorem A.5. Let p̂θY|X , V̂ θ, and pY|X be arbitrary. With probability at least 1−α (over draws of the
calibration set), Algorithm 1 returns a value γ+

ε such that, for a randomly sampled input X ∼ p(X),
and any β ∈ (0, 1), y ∈ {0, 1},

P

[∣∣∣p̂θY|X(y|X)− pY|X(y|X)
∣∣∣ ≥√γ+

ε max{V̂ θ(y|X),ε}
β

]
≤β.

Proof. It remains to show that the γε produced by Algorithm 1 is an upper bound on E[Dε], at which
point we can apply Lemma D.2.

Define the random variable

Sε =

(
Y1 − p̂θY|X(1|X)

)(
Y2 − p̂θY|X(1|X)

)
max{V̂ θ(1|X), ε}

and observe that

E[Sε] = E

[(
Y1 − p̂θY|X(1|X)

)(
Y2 − p̂θY|X(1|X)

)
max{V̂ θ(1|X), ε}

]

= E

[
E
[(
Y1 − p̂θY|X(1|X)

)(
Y2 − p̂θY|X(1|X)

) ∣∣ X]
max{V̂ θ(1|X), ε}

]

= E

[(
E[Y1|X]− p̂θY|X(1|X)

)(
E[Y2|X]− p̂θY|X(1|X)

)
max{V̂ θ(1|X), ε}

]

= E

[(
p(Y = 1|X)− p̂θY|X(1|X)

)2
max{V̂ θ(1|X), ε}

]
= E[Dε].
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This means that any confidence interval for E[Sε] is also a confidence interval for E[Dε]. Furthermore,
we know that − 1

ε ≤ Sε ≤ 1
ε , and we can construct samples of Sε by using p̂θY|X and samples

(X,Y1, Y2), as described in Algorithm 1.

By assumption, the subroutine MEANCONFITVL constructs a confidence interval for the mean of
a bounded random variable. In other words, it satisfies the property that, for any bounded i.i.d.
random variables V (i) ∈ (a, b), if we let (L,U) = MEANCONFITVL

(
{V (1), . . . , V (N)}, a, b, α

)
,

then L ≤ E[V ] ≤ U with probability at least α.

Algorithm 1 then applies MEANCONFITVL to the samples of S(i)
ε , which are each bounded between

−1/ε and 1/ε. As such, we know that the returned value γ+
ε will satisfy E[Sε] ≤ γ+

ε with probability
at least (1−α). This confidence interval must also be a bound on E[Dε], so we can apply Lemma D.2,
which completes the proof.

There are multiple possible implementations of the subroutine MEANCONFITVL, based on different
confidence intervals for the mean of a bounded random variable. A particularly simple implementation
is based on Hoeffding’s inequality (Hoeffding, 1994):
Proposition D.3 (Confidence interval via Hoeffding’s inequality). In Algorithm 1, an implementation
of subroutine MEANCONFITVL

(
{s(i)
ε }Ni=1,− 1

ε ,
1
ε , α

)
that returns the values

γ−ε = −1

ε
, γ+

ε =
1

N

N∑
i=1

s(i)
ε +

√
2
− logα

nε2

guarantees that γ−ε ≤ E[Sε] ≤ γ+
ε with probability at least 1− α (and thus that Theorem A.5 holds).

Proof. For the lower bound, we know that γ−ε = − 1
ε ≤ E[Sε] due to the boundedness of Sε. For the

upper bound, Hoeffding’s inequality gives us

p

(
E[Sε]−

1

N

N∑
i=1

s(i)
ε ≥ t

)
≤ exp

(
−nt

2ε2

2

)
.

Choosing t =
√

2− logα
nε2 , this becomes

p

(
E[Sε]−

1

N

N∑
i=1

s(i)
ε ≥ t

)
≤ α,

so we must have

E[Sε] ≤
1

N

N∑
i=1

s(i)
ε + t =

1

N

N∑
i=1

s(i)
ε +

√
2
− logα

nε2
= γ+

ε

with probability at least 1− α.

There are also more complex algorithms which may require fewer samples to give an accurate upper
bound. For instance, Waudby-Smith & Ramdas (2020) describe an algorithm for constructing tighter
confidence intervals based on “betting strategies”. This algorithm is available in the confseq
Python package4. See Appendix B.4 for additional experiments studying the convergence of our
bound in practice, and comparing the bounds constructed using Hoeffding’s inequality to bounds
using confseq.

D.4.1 IS THEOREM A.5 THE BEST WE CAN DO WITHOUT DISTRIBUTIONAL ASSUMPTIONS?

Theorem A.5 does not require that the model is perfectly calibrated. If p̂θY|X and V̂ θ are actually
epistemically perfectly calibrated, and we take ε → 0, we will have E[Sε] = E[Dε] → 1, so in
principle we can make Equation (3) arbitrarily close to Theorem A.4 by choosing a small enough ε
and a large enough calibration set. (This assumes that the confidence interval for E[Sε] will converge

4https://github.com/gostevehoward/confseq
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asymptotically to the true value of E[Sε], which is true for both Hoeffding’s inequality and the
betting-based algorithms in confseq).

Even so, the guarantee provided by Theorem A.5 is somewhat weaker than that of Proposition A.2,
because the 1− β chance only holds for random X ∼ p(X) and may not hold after conditioning on
additional information (e.g. the event A, which can be any function of the output of the model). To
give some intuition of why this occurs, suppose we perturb a calibrated model with a tiny amount
of per-input noise, e.g. p̂θY|X(y|X) = p(y|Φ(X)) + η(X). Even if η(X) is very small, conditioning
on p̂θY|X(y|X) may then be enough to identify X itself, and if there is a single such X that is outside
of the range given by Proposition A.2, the stronger statement will no longer hold. One way to
circumvent this in principle would be to explicitly bin the outputs of a model to a finite number of
outputs, similar to the method proposed by Kumar et al. (2019); it would then be possible to construct
a separate bound for each bin. Effectively, this would mean that we enumerate all of the events A that
we care about in advance, and then apply Theorem A.5 separately to each subset of the dataset. (Note
that neither bound holds conditioned on X itself, because once X is observed then either p(Y |X) is
in the interval or it is not, so the conditional probability is either 0 or 1, not 1− β. This is why the
event in Proposition A.2 must be conditionally independent of X given the output of the model.)

An interesting point of comparison is Theorem 1 of Barber (2020), which states that any distribution-
free (1− α)-confidence interval for the probability p(Y = 1|X) must also be a (1− α)-confidence
interval for any random variable Z ∈ [0, 1] for which E[Z|X] = p(Y |X), as long as the interval
was constructed using only one sample Y ∼ p(Y |X) for each X (and as long as Z is conditionally
independent of the interval-construction procedure given X). In particular, if we choose Z = Y , this
means that any distribution-free (1− α)-confidence interval must contain 0 or 1 with probability at
least (1− α), and so the interval cannot precisely identify p(Y |X) if p(Y |X) is bounded away from
0 and 1.

We can roughly interpret Barber’s theorem as stating that distribution-free confidence intervals
constructed using one Y for each X can only effectively estimate the first moment of p(Y |X), and
must be wide enough to contain the worst-case variable Z with the correct expected value. Our
Theorem A.5, on the other hand, uses two Y s for each X , and converges to a bound based on the
first two moments (mean and variance). Moreover, Theorem 3.1 suggests that two samples may in
fact be necessary to estimate the second moment in this manner. We conjecture that this is a general
constraint for distribution-free confidence intervals based on samples: if we are allowed to use k
samples Y1, . . . , Yk ∼ p(Y |X) for each X , it seems likely that only the first k moments can be
identified in a distribution-free way, and thus that our confidence intervals must be wide enough
to contain any random variable Z with the same first k moments as the true probability p(Y |X)
conditioned on the output of our model or algorithm. If true, this would suggest that we can’t do
much better than Theorem A.5 with only two samples of Y for each X , unless we are willing to
make distributional assumptions about the form of p(Y |X), but we might be able to do better with
more than two samples.

We also note that if you want a one-sided bound instead of a two-sided bound, it is possible to
do better than Chebyshev’s inequality by instead using Cantelli’s inequality (Cantelli, 1929). This
inequality was used to prove Theorem 4.2 and Proposition D.1, and it could likely be generalized to
apply without assuming calibration using a similar technique to the proof of Theorem A.5.
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E DETAILS OF EXPERIMENTAL RESULTS

E.1 ONE-DIMENSIONAL BINARY REGRESSION (FIGURE 4)

E.1.1 DATA DISTRIBUTION

We choose p(X) as a standard normal random variable N (0, 1), and define p(Y |X) as a Bernoulli
distribution with

p(Y = 1|X = x) =
0.98u(x) + 1

2
,

u(x) = 0.6 cos(v(x)) + 0.4 cos(4.2x),

v(x) = sign(x) · (120|x| − 112w(|x|)− 0.0635).

w(z) = 0.2 log
(

1 + exp
(
(z − 1.0)/.2

))

This function was chosen to have higher-frequency variation near x = 0 with a lower-frequency
component throughout.

We construct a dataset of 25,000 samples of X , each of which have two corresponding samples
Y1, Y2 ∼i.i.d. p(Y |X), for a total of 50,000 Y s.

E.1.2 ARCHITECTURES AND TRAINING DETAILS

For the NN Ensemble, Evidential NN, and Cheat-corrected NN models, we use a small
MLP/LayerNorm/Residual architecture inspired by the MLP blocks in a Transformer (Vaswani
et al., 2017), with the following form:

Algorithm 2 NN architecture for 1D Binary Regression

Input: value x ∈ R, output dimension d
Input layer:
v(0) := w(0,a) � (x · 1 + b(0,a)) where w(0,a) ∈ R512, b(0,a) ∈ R512

r(0) := W (0,b)relu(v(0)) + b(1,b) whereW (0,b) ∈ R128×512, b(0,b) ∈ R128

for i = 1 to 3 do
Residual block:
u(i) := LayerNorm(i)(v(i−1)) with learnable scale and shift (Ba et al., 2016)
v(i) := W (i,a)u(i) + b(i,a) whereW (i,a) ∈ R512×128, b(i,a) ∈ R512

r(i) := r(i−1) +W (i,b)relu(v(i)) + b(i,b) whereW (i,b) ∈ R128×512, b(i,b) ∈ R128

end for
Output head:
u(4) := LayerNorm(4)(v(3)) with learnable scale and shift
v(4) := W (4,a)u(4) + b(4,a) whereW (4,a) ∈ R512×128, b(4,a) ∈ R512

o(4) := W (4,b)relu(v(4)) + b(4,b) whereW (4,b) ∈ Rd×512, b(4,b) ∈ Rd
Return o(4)

NN Ensemble: We randomly initialize 8 copies of the architecture with output dimension d = 1,
then train each for 10,000 training iterations with a batch size of 512, randomly selecting (X,Y1, Y2)
triples from the 25,000 training examples. For each example (x, y1, y2) we use the loss

LNN(x, y1, y2, θi) =
1

2

2∑
i=1

− log p̂θi(Y = yi|X = x)

where p̂θi(Y = 1|X = x) = σ(hθi(x)), σ is the logistic sigmoid function, and hθi is the network
defined in Algorithm 2. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with a 100-step
warmup to a 0.002 learning rate, followed by cosine decay.

Evidential NN: Following (Sensoy et al., 2018), we set the output dimension to d = 2 and interpret
α(x) = 1 + softplus(hθ(x)) as the parameters of a 2-class Dirichlet distribution. (We use
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Figure 16: Visualization of the dependence of the evidential deep learning technique (Sensoy et al.,
2018) on the final regularization strength λmax. Sensoy et al. (2018) recommend setting λmax = 1,
which leads to high-uncertainty predictions even in regions that the model can fit well. We are unable
to find any λmax value that allows the model to identify underfitting.

softplus rather than relu to stabilize learning, since otherwise we observed that output units
would “die” and produce bad estimates.)

We then apply the regularized cross-entropy loss described by Sensoy et al. (2018):

LEDL(x, y1, y2, θ) =
1

2

2∑
i=1

[
Eq∼Dirichlet(α(x))[− log q(yi)] + λDKL

(
Dirichlet(α̃(x, yi)) ‖ Dirichlet([1, 1])

)]
=

1

2

2∑
i=1

[
ψ(1Tα(x))− ψ(eTyiα(x)) + λDKL

(
Dirichlet(α̃(x, yi)) ‖ Dirichlet([1, 1])

)]
,

where α(x) is the two-dimensional vector of model outputs, eyi is a one-hot indicator vector (either
[1,0] or [0,1] depending on yi), ψ is the digamma function, and α̃(x, yi) = eyi + (1− eyi)�α(x)
is a vector where the Dirichlet parameter for the correct label has been replaced with 1.

Similar to the NN ensemble, we train the model for 10,000 training iterations with a batch size of
512, randomly selecting (X,Y1, Y2) triples from the 25,000 training examples, and use the AdamW
optimizer (Loshchilov & Hutter, 2017) with a 100-step warmup to a 0.002 learning rate, followed
by cosine decay. We interpolate λ from 0 to 1 over 5,000 training steps, based on the recommended
values for λ in (Sensoy et al., 2018).

Sensoy et al. (2018) suggest using the magnitude of α(x) as a measurement of evidence, with the
uncertainty corresponding to the value 2/1Tα(x) (for two classes). However, in order to treat
Evidential Deep Learning in the same way as other uncertainty estimates, we instead use the variance
of the predicted probability under Dirichlet(α(x)) as our measurement of uncertainty.

In Figure 4, we plot the mean probability p̂(x) under the distribution Dirichlet(α(x)), as well as
the variance v̂(x) = p̂(x)(1−p̂(x))

S(x)+1 . We additionally trained variants of EDL with different maximum
values for λ, and found that the magnitude of the variance estimate is highly sensitive to this, as we
demonstrate in Figure 16. The model in Figure 4 uses λ = 1.0. (We also tried applying EDL with the
MSE loss, as suggested by Sensoy et al. (2018), but saw roughly identical behavior.)

Cheat-corrected NN: We parameterize our version of the architecture by setting d = 2 and applying
the decomposition in Equation (1) of Appendix A.6. We then train it to predict pairs using the loss

LCHEAT(x, y1, y2, θ) = − log p̂θ(Y1 = y1, Y2 = y2|X = x).

We again train for 10,000 training iterations with a batch size of 512, randomly selecting (X,Y1, Y2)
triples from the 25,000 training examples, and use the AdamW optimizer (Loshchilov & Hutter,
2017) with a 100-step warmup to a 0.002 learning rate, followed by cosine decay. We then compute
p̂θ(Y = 1|X = x) and vCHEAT

θ (Y = 1|X = x) as described in Appendix A.6.

Gaussian process classifier: For our Gaussian process experiment, we follow a standard discrim-
inative Gaussian process classifier setup (Rasmussen & Williams, 2005): we impose a Gaussian
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Figure 17: Visualization of the dependence of the Gaussian process inducing-points classifier on the
length scale, and the estimated marginal likelihood of the dataset points under each prior.

process prior over a latent “logit” function f : R → R, then feed it through the logistic sigmoid
transformation to obtain a conditional likelihood

p(Y = 1|f, x) = σ(f(x)) =
1

1 + exp(−f(x))
.

Given an observed dataset D =
{(
x(i), y(i)

)}N
i=1

of (X,Y ) pairs, we can then approximately
compute the posterior distribution

p
(
f
∣∣∣ {(x(i), y(i)

)}N
i=1

)
∝ p(f)

N∏
i=1

p(y(i)|f, x(i))

and use it to compute the posterior mean and variance for a new data point x:

p(Y = 1|x,D) =

∫
f

σ(f(x))p(f |D) df,

Var
[
p(Y = 1|f, x)

∣∣D] =

∫
f

σ(f(x))2p(f |D) df − p(Y = 1|x,D)2.

For this task, we select a rational-quadratic kernel with standard deviation 2.0, mixture parameter 1.0,
and length scale 0.15:

Cov
(
f(a), f(b)

)
= 2.02

(
1 +

(b− a)2

2× 0.152

)−1

Our training set includes 50,000 Y samples, so computing an analytic posterior over f is compu-
tationally difficult. We instead use a variational approximation using inducing points, following
(Hensman et al., 2015): we choose K inducing points z(1), . . . , z(K), let u = {f(z(k))}Kk=1 be the
latent function values for those points, then impose an approximate posterior

q(f) =

∫
u

p(f |u)q(u) du,

which can be used to construct an evidence lower bound on the likelihood

log p(D) ≥ Eq(f)

[∑
i

log p(y(i)|f, x(i))

]
+DKL(q(u)‖p(u)).

We selectK = 512 inducing points evenly spaced between -4 and 4, parameterize q(u) as a Cholesky-
factorized multivariate normal distribution q(u) = N (u;µ,LLT ) where µ ∈ R512, L ∈ R512×512,
and use the Cholesky factorization to analytically compute the KL divergence. (For numerical
stability purposes, we add 0.001 to the diagonal of the prior covariance matrix.) We then maximize
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the evidence lower bound above, approximating the expectation by subsampling 512 (x, y1, y2)
triples per iteration and using Gauss-Hermite quadrature over the distribution q(f(x(i))|u); we treat
the two samples y1 and y2 for each x as independent observations (x, y1), (x, y2). We optimize µ
and L for 20,000 training iterations using stochastic gradient descent, with a maximum learning rate
of 0.05, 100 steps of warmup, and a cosine decay schedule, although we observe that the approximate
posterior converges within about half of that time.

We note that the degree of misspecification varies based on the length scale, as shown in Figure 17,
because the true function does not have a consistent length scale and was not chosen from the prior.
If we know in advance which length scales to try, the marginal likelihood estimates (our bound on
p(D)) may allow us to identify the best-fitting model (in this case, the version with length scale 0.05,
although it is imperfect). However, the estimates of the variance of f does not provide a good estimate
of pointwise misspecification; we chose to use length scale 0.15 in Figure 4 to emphasize this. (In real
world settings, misspecification would likely be much harder to detect or correct, especially without a
thorough hyperparameter sweep.) We also note that the marginal likelihoods of each approach are
roughly of the same order; similar-looking data could plausibly have been generated by even the
misspecified models because the data itself consists of binary outputs.

An expanded version of each of the parts of Figure 4 is shown in Figure 18.
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Figure 18: Expanded comparison of methods for the 1D binary regression task shown in Figure 4,
showing both sides of the normal distribution p(X). Note that our method is the best at distinguishing
underfitting (near 0) from accurate estimation (1 to 3). Our technique does not directly do out-of-
distribution detection, so this model’s uncertainty estimates are overconfident outside the range of
the dataset (x > 3); this could be fixed by combining our method (which detects underfitting) with
another method that improves out-of-distribution calibration (as we did with the Cheat-SNGP model
in the CIFAR-10H task).
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E.2 CIFAR-10H

E.2.1 TRAINING AND HYPERPARAMETER TUNING STRATEGY

Due to the small size of CIFAR-10H (Peterson et al., 2019), we split the dataset into multiple parts
and combine it with CIFAR-10N (Wei et al., 2021):

• We use the 50,000 images in CIFAR-10N as a pretraining set; this corresponds to the training
set of the original CIFAR-10 dataset. Each image has three labels from random annotators;
we select two from these randomly at each training step. (Note that the distribution of
aleatoric noise in CIFAR-10N is not exactly the same as the aleatoric noise in CIFAR-10H,
likely due to being labeled at different times by different annotators, under the direction of
different authors.)
• We use the first 3,000 images in CIFAR-10H as finetuning set 1. Each image has at least 50

annotations; we select two from these randomly at each training step.
• We use the next 2,000 images in CIFAR-10H as our validation set. We use the 50 labels

per image as a proxy for the true distribution p(Y |X = x), and take the KL divergence
between this empirical distribution and the model’s predictions as our hyperparameter tuning
objective. After hyperparameter tuning, we reuse this set of images as finetuning set 2,
combining it with the first 3,000 images in CIFAR-10H to form a 5,000-image set.
• Finally, we use the last 5,000 images in CIFAR-10H as our test set, and use it to evaluate

our final metrics.

We apply the AugMix augmentation strategy (Hendrycks et al., 2019) when sampling examples from
the pretraining and finetuning sets, to improve robustness of all methods. We also normalize pixel
values based on the mean and standard deviation of pixels across the full CIFAR-10 dataset, following
the implementation in uncertainty baselines.

We train each method using the AdamW optimizer (Loshchilov & Hutter, 2017) with batch size 512.
We divide our training and hyperparameter tuning into the following phases:

• Phase 1: Pretraining hyperparameter sweep. We train each method on the CIFAR-10N
pretraining set for 50 epochs. We perform a random search over learning rate and weight
decay strength with 250 trials: we choose learning rate logarithmically spaced between
10−5 and 5× 10−3, and we either sample weight decay uniformly between 0.05 and 0.5, or
logarithmically between 10−6 and 0.05, since different tasks and methods may benefit from
either very strong or very weak weight decay. We use a linear warmup for the learning rate
during the first epoch, then use cosine weight decay.
• Phase 2: Pretraining extended. We take the best-performing hyperparameters from phase 1,

as judged by validation KL divergence, and retrain that configuration from scratch for both
500 and 200 epochs.
• Phase 3: Fine-tuning hyperparameter sweep. We train each method on our CIFAR-10H

finetuning set 1. We perform a random search over learning rate and weight decay, as in
phase 1, and also randomly search over the number of epochs to use, either 30, 50, 100, or
200. We initialize the parameters from either of the checkpoints from Phase 2, using 250
trials in the random sweep for each checkpoint. (Effectively, we do 500 trials, where we are
also tuning the number of epochs of pretraining.)
• Phase 4: Expanded fine-tuning. We take the best-performing configuration from Phase 3,

again judged by validation KL divergence. We then reset to the checkpoint from Phase 2
(depending on the Phase 3 configuration), and train it on the combination of of finetuning
set 1 and finetuning set 2 (the validation set), so that we maximize the amount of finetuning
data.
• Phase 5: Evaluation. We take the resulting model from Phase 4 and evaluate our metrics on

our test set (the second half of CIFAR-10H).

The best-performing hyperparameters for each method are shown in Table 2. Interestingly, we found
that very strong weight decay was the most effective during pretraining for all models, perhaps
because of the relatively small dataset and large number of epochs.
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Table 2: Best-performing hyperparameters for each model architecture, based on our hyperparameter
sweeps.

PRETRAIN (CIFAR-10N) FINETUNE (CIFAR-10H)

METHOD LEARNING RATE WEIGHT DECAY EPOCHS LEARNING RATE WEIGHT DECAY EPOCHS

NAIVE NN 3.799E-03 3.656E-01 50 9.071E-05 2.363E-01 50
EVIDENTIAL DL 7.465E-04 2.950E-01 200 1.455E-04 2.146E-03 200
SNGP COV. 1.221E-03 4.742E-01 200 6.032E-05 1.457E-01 100
EPINET 1.327E-03 4.513E-01 50 7.345E-05 2.954E-01 50
CHEAT NN 1.113E-03 4.835E-01 50 4.265E-05 1.865E-01 50
CHEAT SNGP 1.687E-03 4.411E-01 200 4.972E-05 7.621E-05 30

E.2.2 MODEL ARCHITECTURES

We implement all of our models and baselines using the uncertainty baselines Python
library (Nado et al., 2021). All methods are based on the wide ResNet architecture (Zagoruyko &
Komodakis, 2016) as implemented in uncertainty baselines, with depth 28 and a width
multiplier of 10.

Naive NN: We configure the wide ResNet with 10 output classes and a softmax output layer, and
train it using the ordinary cross entropy (negative log likelihood) loss.

At test time, we use V̂ θ(y|x) = p̂θY|X(y|x)(1−p̂θY|X(y|x)) as an estimate of variance. This corresponds
to the assumption that all noise is epistemic, and would make sense if we knew Y was a deterministic
function of X . (However, for this task we know this is not the case, so this will overestimate
uncertainty.)

NN Ensemble: We use the same configuration as for Naive NN, but train eight copies of the model.
(We do not perform a separate hyperparameter tuning sweep for NN ensemble, since it would be the
same as the sweep for Naive NN.)

At test time, we take the empirical mean and variance across the ensemble as our prediction and
epistemic uncertainty estimates:

p̂θ1,...,θ8(y|x) =
1

8

8∑
i=1

p̂θi(y|x)

v̂θ1,...,θ8(y|x) =
1

7

8∑
i=1

(
p̂θY|X(y|x)− p̂θ1,...,θ8(y|x)

)2
We divide by 7 so that our sample variance estimator is an unbiased estimate of the variance under a
hypothetical infinite ensemble.

SNGP Cov.: We use the SNGP variant of a wide ResNet from uncertainty baselines, which
applies spectral normalization to the intermediate layers of the ResNet and replaces the normal linear
output layer with a random-feature Gaussian process approximation (Liu et al., 2020). We configure
it using the default configuration for CIFAR-10: 1024 orthogonal random features, a 1.0 ridge penalty,
a 20 mean-field factor, and a spectral-norm bound of 6.0.

Following the training script for SNGP in uncertainty baselines, we use the ordinary logits
of the model during training; this roughly corresponds to using the posterior mean of the learned
Gaussian process posterior. After training the model, we perform another pass over the training
set to compute a Laplace approximation of the covariance matrix. To transform the mean and
covariance over the logits into a mean and variance over output probabilities, we use a Monte Carlo
approximation by applying softmax to each of 1000 samples, then taking the mean and variance of
the resulting probability vectors.

Epinet: We augment our ResNet base network architecture with a MLP epinet head, using the
implementation in the official enn library5 (Osband et al., 2021). We copy the hyperparameters

5https://github.com/google-deepmind/enn
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from the CIFAR-10 checkpoints in that repository: a 20-dimensional index vector, 50-dimensional
hiddens, an epinet prior scale of 4.0, and no additional convolutional prior network. The epinet
head takes the penultimate layer features from the ResNet and makes an additive contribution to the
ResNet’s outputs, indexed by a random input. (Note that, although the enn library checkpoints are
for a non-wide ResNet, we instead use our wide ResNet backbone for consistency with the other
baselines, and train the epinet from scratch.)

We train the base network and epinet head jointly from scratch, taking an average of the ordinary
cross-entropy loss across five randomly-sampled “index” vectors, as recommended by (Osband et al.,
2021). We then evaluate the epinet predictions on our test set by taking the mean and variance of the
post-softmax probabilities across 1000 sampled index vectors for each input.

Evidential NN: We set up the wide ResNet architecture with 10 outputs, and convert them into
parameters for a Dirichlet distribution according to α(x) = 1 + softplus(hθ(x)). We then apply
the regularized cross-entropy loss described by Sensoy et al. (2018):

LEDL(x, y1, y2, θ) =
1

2

2∑
i=1

[
Eq∼Dirichlet(α(x))[− log q(yi)]

+ λDKL

(
Dirichlet(α̃(x, yi)) ‖ Dirichlet([1, 1])

)]
=

1

2

2∑
i=1

[
ψ(1Tα(x))− ψ(eTyiα(x))

+ λDKL

(
Dirichlet(α̃(x, yi)) ‖ Dirichlet([1, 1])

)]
,

where eyi ∈ R10 is a one-hot indicator vector for the correct class, ψ is the digamma function, and
α̃(x, yi) = eyi + (1− eyi)� α(x) is a vector where the Dirichlet parameter for the correct label
has been replaced with 1. We interpolate λ from 0 to 1 over 10 epochs as recommended by Sensoy
et al. (2018).

At test time, we compute the average probabilities and variances as

p̂θY|X(Y = y|X) =
eTyα(x)

1Tα(x)
,

V̂ θ(Y = y|X) =
p̂θY|X(Y = y|X)

(
1− p̂θY|X(Y = y|X)

)
1Tα(x) + 1

.

This is the mean and variance of the probability q(y) when q ∼ Dirichlet(α(x)), as described by
Sensoy et al. (2018).

We were initially surprised to find that the Evidential NN has significantly worse KL divergence
and calibration scores in Table 1 compared to other methods, but only a moderate reduction in
classification error. After further investigation, we determined that this is because, in the presence of
label noise between a few classes, the Evidential NN’s regularization causes it to predict an almost-
uniform distribution across all classes, even classes that never appear (as shown in Figure 19), due to
predicting a Dirichlet distribution that is nearly uniform over the simplex. Additionally, because the
denominator 1Tα(x) + 1 is always at least num classes + 1, the variance estimate will never be
larger than 0.52

11 ≈ 0.022, and if the predicted probability is close to uniform, the variance estimate
will be around 0.1·0.9

11 ≈ 0.0082. This may be smaller than the actual squared error of the predictor.
(This occurs because the uniform distribution over a high-dimensional simplex actually has very low
variance along each dimension.)

Cheat NN: We parameterize the output layer of the wide ResNet with 10× 10 = 100 output classes.
We then reshape them into a 10× 10 matrix and add it to its transpose to enforce that it is symmetric,
and then take a softmax over all rows and columns. To regularize this output and prevent negative
variance estimates due to overfitting, we compute the eigenvalues of this probability matrix at each
training step, then regularize any negative eigenvalues by multiplying their squared norm by 10.0.
See Appendix A.6 for additional discussion.
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Figure 19: Optimizing the Evidential Deep Learning objective Sensoy et al. (2018) produces biased
probability estimates in the presence of label noise. We let α = 1 + softplus(v) and directly
minimize the EDL objective with respect to v, taking an expectation over a synthetic ground-truth
label distribution (blue bars). We then visualize the mean and standard deviation of the learned
distribution (orange). When the ground-truth distribution has aleatoric uncertainty, EDL both over-
estimates the probability for never-observed classes, and under-estimates the distance from the true
label distribution.

In contrast to the previous approaches, which average the loss over the two samples y1, y2 for each
example seen, for our method we directly compute the log-likelihood of the pair of outputs, by
indexing into the appropriate row and column of our joint probability matrix.

At test time, we compute p̂θY1|X(y|x) by marginalizing out one of the axes of our symmetric 10× 10

matrix. We compute V̂ θCHEAT
(y|x) using

V̂ θCHEAT
(y|x) = p̂θY1,Y2|X(y, y|x)− p̂θY1|X(y|x)2.

Note that, for hyperparameter tuning, we compute the KL divergence according to the predicted
marginal distribution of Y1 only, and compare it to the empirical distribution of all 50 annotator
labels; we do not use the conditional p̂θY2|Y1,X (or the joint p̂θY1,Y2|X) for hyperparameter tuning.

Cheat SNGP: We follow the same procedure as for Cheat NN, but use the SNGP variant of the wide
ResNet architecture. This means we use the spectral normalization layers and random-feature Gaus-
sian process output head. However, we do not compute any posterior covariance using the Gaussian
process output head, and instead merely use the random features as a convenient parameterization for
a deterministic output layer. This allows us to take advantage of the distance-awareness inductive
biases in the SNGP architecture (Liu et al., 2020) without needing to approximate an actual posterior
distribution.

E.2.3 DATASET VARIANTS

In addition to the original dataset, we consider three dataset variants: extra classes, scrambled, and
extra classes + scrambled. Each of these variants is implemented by transforming either the images
or the annotator labels for the tasks, and we apply the transformations to all of the dataset splits
(pretraining, fine-tuning, validation, and test). Results for the original and extra classes + scrambled
variants are in the main paper in Table 1; the results for the other two variants are in Table 3.

We do not perform separate hyperparameter sweeps for each variant; instead we re-use the optimal
hyperparameters for the unmodified dataset, and just run training phases 2, 4, and 5 (as described
above). Example images from each of these dataset variants are shown in Figure 20.

Extra Classes: In this variant, we add label noise by artificially increasing the number of classes.
For each of the classes in the original CIFAR-10 dataset, we create three new classes (e.g. dog→ {
dog-1, dog-2, dog-3} ), and arbitrarily construct a distribution over them (e.g. p(Y ′|Y = dog) for
Y ′ ∈ {dog-1, dog-2, dog-3}) by sampling from Dirichlet([1, 1, 1]). This produces a classification
problem with 30 classes instead of 10, where there is aleatoric variation between the sub-classes even
for unambiguous images. The conditional distribution for each class is held fixed for all models and
all dataset splits (i.e. it is treated as part of the data distribution itself).
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Figure 20: Input images X and ground-truth annotator label distributions p(Y |X) for two images in
the CIFAR-10H dataset, selected due to having natural aleatoric uncertainty in the label distribution.
The “Extra classes” variant modifies the label distribution, whereas the “Scrambled” variant scrambles
the center patch of the image.
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Table 3: Results for the additional CIFAR-10H dataset variants we consider, which include only
one of the two increased difficulty types each. Results within 2x of best ECE-2 in bold. All metrics
summed across classes except Acc and KL.

EXTRA CLASSES SCRAMBLED

METHOD ECE-2 E[v̂θ] E[(p̂θ−p)2] ECE-1 KL ECE-2 E[v̂θ] E[(p̂θ−p)2] ECE-1 KL

NAIVE NN 0.540 0.574 0.034 0.02 0.18 0.051 0.354 0.314 0.07 0.69
NN ENSEMBLE 0.020 0.007 0.027 0.03 0.15 0.261 0.028 0.289 0.04 0.64
EVIDENTIAL DL 0.386 0.031 0.417 1.14 2.34 0.561 0.068 0.629 0.97 1.59
SNGP COV. 0.017 0.030 0.026 0.03 0.15 0.271 0.014 0.285 0.06 0.63
EPINET 0.054 0.083 0.041 0.04 0.20 0.271 0.044 0.314 0.08 0.69

CHEAT NN 0.010 0.029 0.037 0.04 0.19 0.056 0.252 0.303 0.08 0.66
CHEAT SNGP 0.009 0.032 0.028 0.02 0.15 0.029 0.280 0.286 0.05 0.62

When training with this variant, we increase the number of outputs of each method accordingly;
methods that had output dimension 10 instead use output dimension 30, and our cheat-corrected
models are configured to produce 30× 30 joint matrices. We then sample a sub-class for each class
in each training iteration, potentially using different sub-classes for the same image in different epoch.
When evaluating metrics, we multiply the empirical distribution over the original labels and the
closed-form conditional distribution for the sub-labels to construct a partially-empirical distribution
over the sub-labels.

We note that this dataset has more aleatoric variation, but it shouldn’t require more capacity, since the
noise is added in an image-agnostic way.

Scrambled: In this variant, we increase the task difficulty by applying a fixed permutation to the
pixels in the center of the image. This permutation applies across all channels and all pixels except
for a 4-pixel border around the sides of the image. Since the content is usually in the center of the
image, and since a ResNet is a convolutional architecture, this permutation is likely to interfere with
the inductive biases of all of the methods, and may cause them to focus on less-informative features
in the image border.

Since our permutation is invertible, it is always possible in principle to reconstruct the original image
from the scrambled form. This means that the true conditional p(Y |X) is not affected by using a
scrambled view of X , so all of the additional uncertainty from this transformation is epistemic in
nature.

We apply this permutation after the AugMix augmentations during training.

Extra + Scrambled: We apply both of the transformations above together.

E.2.4 EVALUATION METRICS

ECE-2: Our primary evaluation metric is the expected second-order calibration error between the
predicted epistemic variance and the actual squared difference between the predicted probability and
p(Y |X). In other words, we wish to evaluate how closely the following correspondence holds:

E
[(
p(y|X)− p̂θY|X(y|X)

)2 ∣∣∣ V̂ θ(y|X)
]

?
≈ V̂ θ(y|X).

(We expect this correspondence to hold because it is a special case of Theorem A.4 where the event
A is V̂ θ(y|X) = c for each possible c ∈ R.) Specifically, we focus on expected calibration error,
which has the form

E

[∣∣∣∣E[(p(y|X)− p̂θY|X(y|X)
)2 ∣∣∣ V̂ θ(y|X)

]
− V̂ θ(y|X)

∣∣∣∣
]

We estimate this using expected calibration error over 100 equal-probability bins, based on the
quantiles of the predicted probability V̂ θ(y|X), which we compute as follows:
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1. For each example x, for each class y, compute the variance estimate V̂ θ(y|x), and an
unbiased estimate of the squared error p(y|X)− p̂θY|X(y|X)

)2
using the K annotations for

this image x:

SQERREST(y, p̂θY|X(y|x), [yi]
K
i=1)

= p̂θY|X(y|x)2 − 2p̂θY|X(y|x)
|{i : yi = y}|

K
+
|{(i, j) : i 6= j, yi = y, yj = y}|

K(K − 1)

≈ p̂θY|X(y|x)2 − p̂θY|X(y|x)p(y|x) + p(y|x)2 = (p̂θY|X(y|x)2 − p(y|x))2

K is the number of annotator labels for this image, which is always at least 50 but is
sometimes greater. When evaluating for the “extra classes” variant, we compute the modified
estimate

SQERREST(y′, p̂θY|X(y′|x), [yi]
K
i=1) = p̂θY|X(y′|x)2 − 2p̂θY|X(y′|x)p(y′|y)

|{i : yi = y}|
K

+ p(y′|y)2 |{(i, j) : i 6= j, yi = y, yj = y}|
K(K − 1)

where y′ is one of the three sub-classes corresponding to the original class y.

2. Sort all of the (x, y) pairs in ascending order of V̂ θ(y|x). Note that each x appears multiple
times in this ordering, due to the different possible labels y.

3. Divide the examples into 100 evenly-sized bins, each of which correspond to an empirical
quantile range of 1%.

4. Compute the average vBi of V̂ θ(y|x) for all examples (x, y) in each bin Bi. Also compute
the average SQERRESTBi of the error estimates SQERREST(y, p̂θY|X(y|x), [yi]

K
i=1) for those

same examples.
5. Let

T =
1

N

∑
Bi

|Bi| ·
∣∣vBi − SQERRESTBi

∣∣ ,
where N is the total number of test set examples and |Bi| is the size of the ith bin (approxi-
mately N/100).

6. Return ECE-V = C · T where C is the number of classes.

We scale up the expected calibration error by the number of classes in the last step so that our final
metric represents a sum over classes instead of an average over classes, since we usually care about
the full vector of predictions rather than the prediction for a single random class. Note that some
papers evaluate expected calibration error for the most likely predicted class only, which avoids
this problem (Perez-Lebel et al., 2022). However, it is not obvious that this criterion makes sense
when evaluating epistemic uncertainty, especially in the presence of significant aleatoric uncertainty.
In principle, we could also compute a separate calibration score for each class and then add them
together at the end, instead of averaging over them and then scaling the average, but we choose not to
do this because of the small size of our dataset (which would potentially make per-class calibration
error estimates very noisy).

We also note that, in general, the binning procedure will under-estimate the exact expected calibration
error, although this can be avoided by using the binned outputs instead of the original ones (Kumar
et al., 2019).

E[v̂θ], E[(p̂θ−p)2]: To compute these values, we use the same estimates from the ECE-V com-
putation, but instead of averaging differences over each bin, we simply compute separate sums of
V̂ θ(y|x) and SQERREST(y, p̂θY|X(y|x), [yi]

K
i=1). We divide by the total number of examples, so that

these numbers again reflect sums over all classes (30 classes in this case).

ECE-1: We also estimate the expected calibration error for the ordinary predictions, again using
100 quantile bins, combining classes together, and scaling up by the number of classes. We apply
the same procedure as for ECE-2, except that we use the predicted probability estimates p̂θY|X(y|x)

instead of the variance estimates V̂ θ(y|x), and we use the empirical probability |{i:yi=y}|K instead of
the squared error measurement SQERREST(y, p̂θY|X(y|x), [yi]

K
i=1).
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KL: Finally, we compute the average KL divergence between the empirical probability distribution
of the annotator labels and the model predictions

DKL

(
pD(y|x)

∥∥∥ p̂θY|X(y|x)
)

=
|{i : yi = y}|

K

(
log p̂θY|X(y|x)− log

|{i : yi = y}|
K

)
,

where pD(y|x) is the distribution of annotator labels for image x, e.g.

pD(y|x) =
|{i : yi = y}|

K

where [yi]
K
i=1 is the collection of annotator labels for image x.

We use this KL divergence metric to tune the hyperparameters of each method.
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E.3 DIGITS OF π

E.3.1 TRAINING DATA

To construct the queries X , we sample digit offsets I according to a mixture of geometric random
variables: we sample

Q ∼ Uniform(0.001, 0.1), I ∼ Geometric(Q),

then keep I if it is less than 10,000 and reject it otherwise. We then embed this as a tokenized
sequence of the form “Tell me about digit 0 0 1 4 of pi.”, where I is zero-padded to four digits long.

Given I , we then look up the actual Ith digit after the decimal point in π (so digit 1 is 1, digit 2 is 4,
digit 3 is 1, digit 4 is 5, etc.).

Depending on the value d of this digit, we then sample responses Y from the following hand-written
probabilistic context-free grammar (with mostly randomly-chosen weights):

STATEMENT(d)→ INTRO VALUE(d) with probability 0.99
→ “Reply hazy, try again” with probability 0.01

INTRO→ “It’s” with probability 0.138
→ “It is” with probability 0.086
→ “That’s” with probability 0.218
→ “That is” with probability 0.185
→ “Sure, it’s” with probability 0.096
→ “Sure, it is” with probability 0.02
→ “Sure, that’s” with probability 0.17
→ “Sure, that is” with probability 0.087

VALUE(d)→ SAY-DIGIT(d) with probability 0.56
→ “an” EVEN-ODD(d) “number” with probability 0.19
→ “spelled” SPELL(d) with probability 0.13
→ “spelled with” SPELL-LENGTH(d) “letters” with probability 0.9

SAY-DIGIT(d)→ DIGIT(d) with probability 0.616
→ “the number” DIGIT(d) with probability 0.384

DIGIT(d)→ DIGIT-NAME(d) with probability 0.323
→ DIGIT-VAL(d) with probability 0.677

The nonterminals DIGIT-NAME(d), DIGIT-VAL(d), EVEN-ODD(d), SPELL(d), and SPELL-
LENGTH(d) depend on the digit:

• DIGIT-NAME takes values “zero”, “one”, “two”, . . .

• DIGIT-VAL takes values “0”, “1”, “2”, . . .

• EVEN-ODD takes values “even”, “odd”, “even”, . . .

• SPELL takes values “Z E R O”, “O N E”, “T W O”, . . .

• SPELL-LENGTH takes values “4” (the number of letters in “zero”), “3” (the number of
letters in “one”), “3” (the number of letters in “two”), . . .
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Using this context free grammar, we can both sample sequences and look up the true probability of
any given sequence. In particular, given a statement, we can look up whether it is in the support of
the grammar given the true digit value.

We also maintain a lookup table of semantically-equivalent sentences. When doing this, we treat as
equivalent any two sentences that differ only based on how they expanded INTRO, SAYDIGIT, and
DIGIT. So, for instance, “Sure, it’s the number 3” and “That is three” are equivalent, and “It’s spelled
T H R E E” and “Sure, it’s spelled T H R E E” are equivalent, but “Sure, it’s the number three” and
“It’s spelled T H R E E” are not judged equivalent (one is about the value and the other is about the
spelling). Similarly “It’s spelled F O U R” and “It’s spelled with 4 letters” are not equivalent.

We train our model by concatenating X and two samples Y1, Y2. Before concatenation, we pad Y1

and Y2 out to a constant length, producing examples of the form

<BOS> Tell me about digit 0 1 2 6 of pi. <SEP>
That’s the number four _ _ _ _ _ _ That’s spelled with 4 letters
_ _ _ _ _

<BOS> Tell me about digit 0 0 4 8 of pi. <SEP>
Sure, that is an odd number _ _ _ _ It’s 5 _ _ _ _ _ _ _ _

<BOS> Tell me about digit 0 0 1 2 of pi. <SEP>
Sure, that’s 9 _ _ _ _ _ _ _ It is the number nine _ _ _ _ _

<BOS> Tell me about digit 0 0 1 5 of pi. <SEP>
Sure, that is 3 _ _ _ _ _ _ That is spelled T H R E E _ _

We use a tabular vocabulary, where each word or letter that could possibly be generated by the above
process has its own token index.

E.3.2 MODEL ARCHITECTURE AND TRAINING DETAILS

Our model architecture is a 6-layer causally-masked pre-LayerNorm Transformer (Vaswani et al.,
2017; Xiong et al., 2020), with 8 attention heads, an embedding dimension of 512, an MLP dimension
of 2048, a per-head embedding dimension of 64, and fixed sinusoidal positional embeddings.

We train this model for 50,000 training iterations at batch size 1024 using the AdamW optimizer
(Loshchilov & Hutter, 2017) with 1,000 warmup steps, a maximum learning rate of 2× 10−5, and a
cosine decay schedule. We use the ordinary maximum-likelihood objective, and apply masking so
that only the tokens after <SEP> are scored (so the model does not have to learn to predict X).

E.3.3 SAMPLING AND FILTERING

After training our model, we iterate through all of the digit offsets from 1 to 3000, and sample 120
statements from the model’s approximate conditional p̂θY1|X(·|x). We sample at temperature 1 but
mask out any tokens with predicted probability less than 0.005 during sampling. We note that the
model has learned to sample pairs (Y1, Y2), but we interrupt generation after it has generated Y1; thus
each of the 120 statements are drawn independently and identically distributed from p̂θY1|X(·|x), not
p̂θY2|Y1,X).

We first check whether each sample was correct, where we judge a sample as correct if it had a
nonzero probability under p(Y |X) (the context-free grammar described in Appendix E.3.1). We then
assign scores to each sample:

• For the total probability ranking, we rank by the probability p̂θY1|X(y1|x) of the sample under
the model.
• For average token log probability, we divide log p̂θY1|X(y1|x) by the length |y1| of the sample;

this is thus an average of the log probabilities of each token, and approximates a “rate” of
log probability (Malinin & Gales, 2020).
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• When clustering into groups of 10, we split the 120 samples for each digit into 12 groups of
size 10 each, then assign a score to each sample based on the number of other samples in the
same group that were semantically equivalent (according to the criterion in Appendix E.3.1).
So, if 4 out of the first 10 samples were semantically equivalent, each of those samples
would get a score of 4. (Malformed samples that could not possibly appear under the data
distribution are given a score 1.)

• When clustering into groups of 120, we assign a score to each sample based on the number
of other samples among all 120 that were semantically equivalent.

• When ranking based on our epistemic confidence measure CθCHEAT
, we evaluate log p̂θY1|X(y|x)

and log p̂θY2|Y1,X(y|y, x) by concatenating the padded output y with itself when scoring
using the model, and separately summing the log-probabilities for Y1 and Y2. We then
exponentiate the difference of these probabilities to evaluate CθCHEAT

, and finally assign a score
of −|1− CθCHEAT

| so that examples closer to 1 have a higher score.

We additionally explored a number of alternative ranking strategies for the case where CθCHEAT
> 1.

According to Proposition A.2, CθCHEAT
will never be greater than 1 if p̂θY1,Y2|X is calibrated, so our

theoretical results do not provide any particular guidance for how to rank these samples. We plot four
options in Figure 21: 1− CθCHEAT

(the simplest, but nonsensical when CθCHEAT
is very large), |1− CθCHEAT

|
(used in the main paper results), 1−min{1, CθCHEAT

}, and 1−min
{
CθCHEAT

, 1
CθCHEAT

}
. Using 1− CθCHEAT

alone leads to high hallucination rates when using very strict thresholds, because the only samples
that are kept are the outliers.

E.3.4 INVESTIGATING MODEL SAMPLES

For each score type, we sort the samples (randomizing in the case of ties), and then compute the
running hallucination rate (fraction of samples seen so far that actually had pY|X(y|x) = 0) and
response rate (total fraction of samples seen so far) over prefixes of the sorted ordering; the results
are shown in Figure 2a in the main paper.

To get a better understanding of the relationship between the model’s behavior, its accuracy, and
its cheat-corrected epistemic confidence, we conduct a deeper study of the scores and accuracies
assigned to each of the digits.

We start by visualizing some samples drawn from the model directly, colored based on the log-
probability of each token. In Figures 6 and 7 (in Appendix B), we show samples of Y1 and Y2

generated by the model. Note that the samples of Y2 are not actually used under our uncertainty-
quantification scheme. However, visualizing these samples reveals an interesting behavior: when
querying digits that the model does not know, the samples Y1 often show “hallucinations” of plausible
facts, but the corresponding Y2 is almost always consistent with Y1; the two samples do not contradict
one another. This means that the model has learned to “cheat” well; it is able to condition on the
information in Y1 to make a more consistent prediction of Y2. There are, however, a few exceptions
where Y1 and Y2 are inconsistent or incoherent; in this case we find that Y2 tends to be more correct
than Y1.

In Figures 8 and 9 (in Appendix B), we next visualize the log-probabilities of each token when reuse
the sampled Y1 sequences as Y2, by concatenating each Y1 with itself; this is how we compute our
confidence scores CθCHEAT

(y|x). We see that conditioning on Y1 does not usually significantly alter the
probability of tokens with aleatoric variation (e.g. the initial stylistic tokens), but usually raises the
probability of tokens with epistemic prediction error (e.g. tokens that state facts about the digit). This
means the difference between the two log probabilities is usually a good indicator of the unknown
parts of the original samples.

There are a few samples which show the opposite pattern, where the likelihood decreases in the
second sample (in the last row of each figure). This seems to occur when the originally sampled Y1

was incorrect and had a very low probability, whereas the prediction for Y2 was more accurate. This
pattern of an incorrect Y1 but correct Y2 is an indication of miscalibration with respect to the paired
outcomes (Y1, Y2): if the model was truly conditioning on some property Φ(X) of the input query,
its predictions on Y1 should be just as accurate as its prediction of Y2, and it should never predict an
inconsistent Y1, Y2 pair that cannot occur under the data distribution. These samples tend to interfere
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Figure 21: Hallucination rates when ranking by alternative versions of CθCHEAT
, each of which agree

with CθCHEAT
when it is less than 1 but handle CθCHEAT

> 1 differently. For comparison, the original
baselines from Figure 2a are shown as dotted lines.
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Figure 22: Predicted epistemic confidence closely tracks the model’s actual accuracy after removing
outliers. Row 1: We compute the confidence for each of the 120 samples for each digit, and also
compute the fraction of those 120 samples that are correct. Row 2: We take the average confidence
over all of the samples for each digit, ignoring outliers. Row 3: We divide digit offsets into groups
of 40 digits, and compute the average of both confidence and fraction correct. Row 4: Zoomed out
version of row 3, showing the full sequence.

with our epistemic confidence metric, and result in predicted confidences greater than 1 (and negative
predicted variances).

E.3.5 RELATIONSHIP BETWEEN CONFIDENCE AND CORRECTNESS

We also investigate the relationship between the epistemic confidence and the correctness of generated
samples. This is somewhat complex, because each individual sample is either correct or not correct,
and the model may assign different confidences to each sample. Determining whether the model’s
confidence was appropriate thus requires some sort of aggregation.

Figure 23 shows an expanded version of the confidence-vs-hallucination-rate plot in Figure 2a (left).
Overall, when the confidence is less than 1, the quantity 1− CθCHEAT

is a good estimate of hallucination
rate. Samples with confidence close to 1 tend to be correct, but samples with extremely large
confidence values tend to be wrong. We find that most of these outliers are due to having an incorrect
Y1 but fixing the mistake in Y2, as detailed in the previous section.

To show how confidence varies based on digit offset, we additionally aggregate these across nearby
digits, since we know from the data distribution that nearby digits appear with similar frequency and
should thus be similarly difficult. We compute the fraction of samples that are correct for each digit,
and compare it to the average confidence of the samples. To get a meaningful aggregate confidence
measurement, we need to throw out samples with extremely large confidences due to miscalibration.
The results are shown in Figure 22.
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Figure 23: Expanded version of Figure 2a (left), which shows the hallucination rate of the samples in
different confidence bins, with dot size proportional to the number of samples with that confidence.
We use a logarithmic scale for CθCHEAT

to include the outliers which are much larger than 1; the
prediction of Theorem 4.2 is shown as a dashed line. We see that confidences between 1 and 2 usually
indicate a correct answer, but this quickly falls off, and most samples with extremely large CθCHEAT

values are usually incorrect.
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Figure 24: Expert policies for the frozen lake task, depending on the location of the unsafe patch.
Arrow length is proportional to probability of taking that action in each state.

E.4 OFFLINE RL - FROZEN LAKE

E.4.1 ENVIRONMENT AND EXPERT POLICIES

We represent the Frozen Lake environment (Figure 10) as a graph, where each gridworld cell is a
node in the graph, and there are four outgoing connections from each node to the adjacent nodes in
each direction. Costs of each transition are determined by the destination state:

• Moving onto the goal state (green square) gives a reward of 40 and ends the episode.

• Moving onto one of the non-lake squares (white border) gives a reward of -3.

• Moving onto one of the eight non-central lake squares gives a reward of -5.

• Moving onto the center lake square gives a reward -10.

These costs were chosen so that cutting across the center of the lake gives slightly more reward than
going around it (−5− 10− 5 + 40 = 20 vs −3× 7 + 40 = 19), but only slightly.

For each of the nine possible locations of the unsafe patch, we then solve for the optimal entropy-
regularized tabular policy by iterating the soft Q-learning Bellman backup operator (Schulman et al.,
2017) with a discount rate of 0.9 and a temperature of 2.5. We explicitly disallow moving onto the
unsafe patch or leaving the bounds of the gridworld by assigning −∞ reward to each; the resulting
expert policy never takes those actions.

The resulting expert policies for each of the 9 possible unsafe patch locations are shown in Figure 24.

E.4.2 IMITATION LEARNING

Our model architecture for this task is a 12-layer causally-masked pre-LayerNorm Transformer
(Vaswani et al., 2017; Xiong et al., 2020) based on GPT-2 (Radford et al., 2019), with 12 attention
heads, an embedding dimension of 768, an MLP dimension of 3072, a per-head embedding dimension
of 64, and fixed sinusoidal positional embeddings.

For each example, we first tokenize the model’s view of the environment, using a single token per
gridworld cell. In 50% of the examples, we mark the unsafe region with a token ”C” identifying it,
and the safe parts of the lake with ”I”. In the other 50%, we mark all potentially-unsafe regions with
a ”?”. We also include tokens for the start state (”S”), goal state (”G”) and border states (”P”). (Since
these tokens are constant across all examples, they are likely not important to include, but we include
them for simplicity.)
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Loosely inspired by the setup of Chen et al. (2021), we next represent the expert trajectories as
sequences of states and actions. We do not tokenize the rewards, since our objective is simply to
imitate the expert trajectories. We also concatenate two independent samples together, padding them
to a maximum length of 16 steps each.

This produces examples of the following form (with each word mapped to its own token index, and
padding denoted by “ ”):

P P P P P
P I I I P
S I I C G
P I I I P
P P P P P
<SEP> c0 r2 down c0 r3 up c0 r2 down c0 r3 up c0 r2 down c0 r3
down c0 r4 right c1 r4 up c1 r3 right c2 r3 right c3 r3 right c4
r3 up FINISH _ _ _ _ _ _ _ _ _ _
_ _ _
<SEP> c0 r2 right c1 r2 right c2 r2 down c2 r3 up c2 r2 down c2
r3 left c1 r3 down c1 r4 right c2 r4 right c3 r4 right c4 r4 left
c3 r4 right c4 r4 up c4 r3 up FINISH _ _ _ _ _ _ _

P P P P P
P ? ? ? P
S ? ? ? G
P ? ? ? P
P P P P P
<SEP> c0 r2 right c1 r2 right c2 r2 right c3 r2 right FINISH _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _
<SEP> c0 r2 up c0 r1 right c1 r1 down c1 r2 up c1 r1 down c1 r2
up c1 r1 up c1 r0 down c1 r1 down c1 r2 right c2 r2 right c3 r2
right FINISH _ _ _ _ _ _ _ _ _ _ _ _ _

We train by maximizing log-likelihood under a standard autoregressive training setup. We only train
it to imitate the sequences of states and actions, by masking out all tokens prior to the <SEP> token.
We train this model for 50,000 training iterations at batch size 512 using the AdamW optimizer
(Loshchilov & Hutter, 2017) with 1,000 warmup steps, a maximum learning rate of 2× 10−5, and a
cosine decay schedule.

We then sample trajectories from the model at temperature 0.9, conditioning on either a full or partial
view of the environment, and compute the cheat-corrected epistemic confidence for each. For our
“cheat-corrected rejection sampling” decoding strategy, we reject any sample with |1−CθCHEAT

| > 0.05
and resample it; rejected samples are shown as dashed lines in Figure 10 in the main paper. For our
“cheat-corrected top-1 search” decoding strategy, we sample 6400 samples, then identify the sample y
with the largest predicted probability p̂θY1|X(y|x) subject to the constraint |1− CθCHEAT

| ≤ 0.05.

We show additional trajectories sampled by our model, along with their confidences, in Figures 11
to 13 (in Appendix B).
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