
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BREAKING SAFETY PARADOX WITH FEASIBLE DUAL
POLICY ITERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Achieving zero constraint violations in safe reinforcement learning poses a sig-
nificant challenge. We discover a key obstacle called the safety paradox, where
improving policy safety reduces the frequency of constraint-violating samples,
thereby impairing feasibility function estimation and ultimately undermining pol-
icy safety. We theoretically prove that the estimation error bound of the feasibility
function increases as the proportion of violating samples decreases. To overcome
the safety paradox, we propose an algorithm called feasible dual policy iteration
(FDPI), which employs an additional policy to strategically maximize constraint
violations while staying close to the original policy. Samples from both policies
are combined for training, with data distribution corrected by importance sam-
pling. Extensive experiments show FDPI’s state-of-the-art performance on the
Safety-Gymnasium benchmark, achieving the lowest violation and competitive-
to-best return simultaneously.

1 INTRODUCTION

Reinforcement learning (RL) has achieved promising performance in many challenging tasks such
as video games (Vinyals et al., 2019), board games (Schrittwieser et al., 2020), autonomous driv-
ing (Wurman et al., 2022), and drone racing (Kaufmann et al., 2023). RL solves an optimal control
problem by finding a policy that maximizes the expected cumulative rewards. However, real-world
control tasks often demand more than reward maximization—they require strict adherence to safety
constraints, where even rare violations can lead to catastrophic outcomes. Achieving zero constraint
violations in these tasks remains a significant challenge.

A key element in safe RL is the feasibility function, which evaluates whether a state can satisfy safety
constraints over an infinite horizon. This function not only defines the feasible region of a policy but
also serves as a safety-oriented learning target. Examples of feasibility functions include cost value
function (CVF) (Altman, 2021), Hamilton-Jacobi (HJ) reachability function (Bansal et al., 2017),
and constraint decay function (CDF) (Yang et al., 2023b). These functions are typically learned
through fixed-point iteration based on their risky self-consistency conditions (Li, 2023; Yang et al.,
2024)—analogous to the Bellman equation for value functions. These conditions establish recursive
relationships between temporally adjacent states, allowing feasibility functions to capture long-term
safety at all states.

While learning-based feasibility functions are crucial in ensuring safety, we discover that they in-
herently prevent policies from achieving zero violations due to a phenomenon we term the safety
paradox. Our analysis reveals that as policy safety improves and violating samples become sparser,
the estimation error of the feasibility function increases. This impairs the accuracy of the feasible
region and introduces bias into the policy’s learning target, ultimately undermining safety perfor-
mance. This phenomenon differs fundamentally from the sparse reward problem in standard RL,
where achieving higher rewards directly facilitates further reward improvement. In contrast, the
safety paradox forms a self-defeating cycle where improving safety degrades the learning condi-
tions for further safety optimization.

Existing methods for addressing sample sparsity, which we categorize as passive and active, are
inadequate for resolving the safety paradox. Passive methods such as prioritized experience replay
(PER) (Schaul et al., 2015) reweight samples in the replay buffer to emphasize critical transitions.
However, their efficacy is limited when critical samples are inherently rare, and they fail to break the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

safety paradox’s self-defeating cycle. Active methods such as curiosity-driven exploration (Pathak
et al., 2017) modify the environment or agent behavior to generate critical samples. While poten-
tially more effective, these methods induce behavioral shifts that can steer the policy away from
optimality, and their implementation often requires intrusive task modifications, which may not be
feasible in practice.

In this paper, we propose an algorithm called feasible dual policy iteration (FDPI), which breaks
the safety paradox by incorporating an additional dual policy designed to maximize constraint vio-
lations. This approach effectively increases the proportion of constraint-violating samples without
increasing the total number of samples, thereby reducing feasibility function estimation error and
pushing policy safety to a higher level. A challenge of this approach is the distributional shift that
occurs when combining data from both policies. We address this through an importance sampling
(IS) scheme that approximates the marginal state distribution with a truncated trajectory distribu-
tion. We further introduce KL divergence constraints between the two policies to ensure numerical
stability of IS. Extensive experiments on the Safety-Gymnasium benchmark demonstrate FDPI’s
state-of-the-art performance.

2 RELATED WORK

Safe RL algorithms A prominent class of safe RL algorithms is called iterative unconstrained
RL, which transforms the safe RL problem into a series of unconstrained RL problems, typically
via the method of Lagrange multipliers (Paternain et al., 2019). Under this framework, researchers
explored different kinds of feasibility functions, including CVF (Chow et al., 2018; Tessler et al.,
2018), HJ reachability function (Yu et al., 2022; 2023), and control barrier function (Yang et al.,
2023a;b). Another class of algorithms is called constrained policy optimization, which follows the
policy optimization framework and incorporates safety constraints in each iteration. The most rep-
resentative example is the CPO algorithm (Achiam et al., 2017), which adopts a trust region update
with a linearized objective function and safety constraints. Based on CPO, several improved al-
gorithms have been proposed, including projection-based methods (Yang et al., 2020; 2022) and
first-order methods (Zhang et al., 2020; 2022). For finite-horizon problems, Zhao et al. (2023) and
Zhao et al. (2024) convert state-wise constraints to cumulative constraints through cost reconstruc-
tion and bound the worst-case violation. A common feature of these algorithms is that they all
estimate feasibility functions from sampled data.

Critical sample augmentation in RL There are two kinds of methods to increase critical samples
in RL: passive methods and active methods. Passive methods focus on biasing the replaying process
to prioritize experiences that are likely to be more informative for learning. A representative exam-
ple is PER (Schaul et al., 2015), which replays samples with larger temporal difference (TD) errors
more frequently. Other methods include prioritizing similar experiences to the current policy (No-
vati & Koumoutsakos, 2019) and modifying certain information in replayed samples (Andrychowicz
et al., 2017). Active methods involve modifying the environment or the agent’s behavior to deliber-
ately generate critical samples. Some algorithms employ adversary policies to generate challenging
scenarios (Pinto et al., 2017; Feng et al., 2023), while others use auxiliary rewards to guide explo-
ration (Jaderberg et al., 2016; Pathak et al., 2017). Unlike these methods, our algorithm requires no
environment modifications or reward shaping, maintaining the integrity of the original task.

3 PROBLEM STATEMENT

Safe RL addresses control problems in which an agent aims to maximize long-term rewards while
strictly adhering to safety constraints at every step. We consider a Markov decision process (MDP)
(X ,U , dinit, P, r, γ), where X ⊆ Rn is the state space, U ⊆ Rm is the action space, dinit ∈ ∆X is
the initial state distribution, P : X × U → ∆X is the transition probability, r : X × U → R is the
reward function, and 0 < γ < 1 is the discount factor. We consider a stochastic policy π : X → ∆U ,
whose state-value function is defined as V π(x) = E [

∑∞
t=0 γ

tr(xt, ut)|x0 = x]. Safety is specified
through a state constraint expressed as an inequality h(x) < 0, where h : X → R is the constraint
function. The state constraint must be satisfied at every step:

h(xt) ≤ 0, ∀ t ≥ 0. (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The goal of safe RL is to find a policy that maximizes the state-value function while satisfying the
state constraints over an infinite horizon.

3.1 FEASIBILITY IN SAFE REINFORCEMENT LEARNING

Feasibility is a core concept in safe RL that describes the long-term safety of a state. To formally
define feasibility, we first introduce the reachable set.
Definition 1 (Reachable set). The reachable set of a policy π from a state x ∈ X , denoted Rπ(x),
is the set of states that can be reached with non-zero probability under π in finite time:

Rπ(x) = {x′ ∈ X |∃t ≥ 0, s.t. P (xt = x′|x, π) > 0}, (2)

where P (xt = x′|x, π) is the probability of reaching x′ at time t starting from x and following π.

The reachable set includes all states that will possibly be visited by π given an initial state. Feasibil-
ity is defined based on whether all states in the reachable set is constraint-satisfying.
Definition 2 (Feasible region). The feasible region of a policy π, denoted Xπ , is the set of states
from which every reachable set under π satisfies the safety constraint:

Xπ = {x ∈ X |∀x′ ∈ Rπ(x), h(x′) ≤ 0}. (3)

In safe RL, we need to find a policy whose feasible region includes all possible initial states. This
requirement can be expressed as a single constraint by the feasibility function.
Definition 3 (Feasibility function). Function Fπ : X → R is a feasibility function of π if its zero-
sublevel set equals the feasible region of π, i.e., {x ∈ X |Fπ(x) ≤ 0} = Xπ .

An example of a feasibility function is the CDF (Yang et al., 2023b).
Definition 4 (Constraint decay function). The CDF of a policy π is defined as

Fπ(x) = Eτ∼π

[
γN(τ)

∣∣x0 = x
]
, (4)

where γ ∈ (0, 1) is the discount factor, τ = {x0, u1, x1, u1, . . . } is a trajectory sampled by π, and
N(τ) ∈ N is the time step of the first constraint violation in τ .

In the rest of this paper, we use CDF as a concrete example of a feasibility function. However,
our analysis also applies to other feasibility functions with similar properties such as CVF. The
feasibility function is also called a constraint aggregation function (Yang et al., 2024) because we
can replace the original infinitely many constraints (1) with a single one expressed by the feasibility
function, leading to the following safe RL problem:

max
π

Ex∼dinit [V
π(x)] s.t. Ex∼dinit [F

π(x)] ≤ 0. (5)

4 SAFETY PARADOX

A core problem in safe RL is to estimate the feasibility function. We discover that as the policy
becomes safer, the estimation error of the feasibility function tends to increase. This makes the
identified feasible region less accurate, which, in turn, harms policy update and deteriorates policy
safety. This phenomenon is called the safety paradox.

4.1 ESTIMATION ERROR BOUND OF CDF

In safe RL, the CDF is computed by solving its risky self-consistency condition with fixed-point
iteration (Yang et al., 2023b):

Fπ(x) = Ex′∼P (·|x,u),u∼π(·|x) [c(x) + (1− c(x))γFπ(x′)] , (6)

where c(x) = I[h(x) > 0] is an indicator function for constraint violation. In practice, the expec-
tation above is estimated by sample average. Equation (6) can be viewed as a one-step TD estimate
of the CDF. Since TD involves bootstrapping of the estimated CDF itself, the analysis of estimation

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

error becomes complicated. Here, we consider a Monte Carlo (MC) estimate instead for theoret-
ical simplicity: F̂π(x) = 1/K

∑K
i=1 γ

N(τi), where τ1, τ2, . . . , τK are K independent trajectories
starting from x sampled by π. We discuss extension to TD estimate at the end of Section 4.2.

An inaccurate CDF leads to incorrect identification of the feasible region, i.e., feasible states
misidentified as infeasible and vice versa. To minimize misidentification, we must bound the es-
timation error. We show that the bound of the relative estimation error of CDF is related to the
expectation and variance of the number of steps to the first violation. Before that, we assume that
these two quantities are finite.
Assumption 1. For any infeasible state x ∈ X under policy π, let µπ

N (x) = Eτ∼π[N(τ)|x0 = x]

and σ2,π
N (x) = Varτ∼π[N(τ)|x0 = x]. We have µπ

N (x) < +∞ and σ2,π
N (x) < +∞.

Theorem 1. For any infeasible state x ∈ X under policy π, let F̂π(x) be the MC estimate of the
CDF. Under Assumption 1, the expected relative estimation error is bounded by:

Eτ1,τ2,...,τK

[∣∣∣∣∣ F̂π(x)− Fπ(x)

Fπ(x)

∣∣∣∣∣
]
≤ 1√

K
| ln γ|σπ

N (x) + (ln γ)2
σ2,π
N (x)

γµπ
N (x)

. (7)

Proof Sketch. Construct two auxiliary functions Hπ(x) = γµπ
N (x) and Ĥπ(x) = γµ̂π

N (x), where
µ̂π
N (x) = 1/K

∑K
i=1 N(τi). Use Taylor expansion to obtain the bounds of |Fπ(x) − Hπ(x)|,

|F̂π(x)−Ĥπ(x)|, and |Hπ(x)−Ĥπ(x)|. The result follows by the triangle inequality. See Appendix
A for the complete proof.

The number of samples K in the error bound (7) is related to the batch size and is a constant through-
out training. The only two variables relevant to the error bound is the expectation and variance of
steps to violation. While it is obvious that the expectation increases as the policy becomes safer,
how the variance changes is not easily observed and requires further analysis.

4.2 RELATIONSHIP BETWEEN POLICY SAFETY AND ESTIMATION ERROR BOUND

In this section, we show that under mild assumptions, the variance of steps to violation increases
as the policy becomes safer. To begin with, we introduce a function to measure the “distance” to
constraint violation.
Assumption 2. There exists a continuous function d : X → R, such that ∀x ∈ X , d(x) ≥ 0 and
d(x) = 0 ⇐⇒ h(x) > 0.

Examples of d include the Euclidean distance to obstacles in collision avoidance tasks, and the
margin to speed limit in velocity-constrained tasks. With a distance function, we can define what a
“safer” policy is.
Definition 5. A policy π′ is safer than a policy π in a state x if P (d(x′

π′) < d(x)) ≤ P (d(x′
π) <

d(x)), where x′
π ∼ pπ(·|x) is the next state under π.

A safer policy has a lower probability of decreasing the distance to violation. This definition natu-
rally connects to the proportion of violating samples: if the distance to violation decreases slower,
the number of steps to violation will be larger, resulting in fewer violating samples. The following
assumption requires the continuity of d and the system dynamics. This holds in most systems, where
the changing rate of states and the control inputs are bounded.
Assumption 3. The difference of d between any two adjacent states is bounded by δ > 0, i.e., for
any x, u, x′ such that p(x′|x, u) > 0, it holds that |d(x)− d(x′)| ≤ δ.

We split d(x) into a sequence of consecutive intervals: [d(x) − iδ, d(x) − (i − 1)δ), i =
1, 2, . . . ,m(x)− 1, where m(x) = ⌈d(x)/δ⌉. With Assumption 3, the agent must visit the (i− 1)th
interval before visiting the ith interval. We denote Nπ

i (x) as the first-visiting time from the (i−1)th
interval to the ith interval. Note that d(x) is not necessarily monotonic, i.e., the agent may revisit a
stage where it has visited before. Nπ

i (x) is counted until the first time the next stage is visited. The
following assumption requires that for states far from violation, Nπ

1 (x) is weakly correlated with
the sum of the rest first-visiting times.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Assumption 4. There exists M > 0, such that for all x with m(x) ≥ M , it holds that∣∣∣Cov
(
Nπ

1 (x),
∑m(x)

i=2 Nπ
i (x)

)∣∣∣ ≤ Var(Nπ
1 (x))/2.

This assumption is reasonable because (1) the influence of the initial state becomes weaker as the
trajectory becomes longer, and (2) the variance of Nπ

1 (x), which is a local property, does not change
much when m(x) increases. With the above assumptions, we have the following theorem.

Theorem 2. Let π, π′ be two policies. Consider a set of states XM ⊆ X such that for all x ∈ XM ,
(1) x is infeasible under both π and π′, (2) m(x) ≥ M , (3) min{P (d(x′

π) < d(x)), P (d(x′
π′) <

d(x))} ≥ 0.5. Under Assumptions 2–4, if π′ is safer than π in all states in XM , we have σ2,π′

N (x) ≥
σ2,π
N (x), ∀x ∈ XM .

Proof Sketch. First prove that for a given policy, a state further to violation has a larger variance by
stage decomposition. Then, prove that in a given state, a safer policy has a larger variance by law of
total variance. Finally, extending this result to all states in XM proves the theorem. See Appendix
B for the complete proof.

Remark The condition (3) in Theorem 2 follows from the requirement of finite mean and variance.
To ensure the violation happens in finite steps, the probability of approaching the violation, i.e.,
d(x′) < d(x), must be larger than that of moving away from it in each step. Theorem 2 tells us that
a safer policy (in the sense of lower probability of approaching violation) has larger variance of steps
to violation in infeasible states far from violation under mild assumptions. Combined with Theorem
1, we conclude that a safer policy leads to a larger CDF estimation error bound. To help better
understand this result, we give an intuitive example of a one-dimensional random walk in Appendix
C. It is worth mentioning that although the above analysis is based on MC estimate, the conclusion
also applies to TD estimate. Specifically, we can view Fπ(x′) in Equation (6) as a signal from the
environment. By applying the above analysis backward along a trajectory, a similar conclusion can
still be obtained.

5 FEASIBLE DUAL POLICY ITERATION

The only way to break the safety paradox is to increase constraint-violating samples. We achieve
this by training an additional policy, called the dual policy, that intentionally violates the constraint.

5.1 COLLECTING MORE VIOLATING SAMPLES WITH A DUAL POLICY

We denote the dual policy as πd, and for distinguishing purposes, we call the original policy the
primal policy and denote it as πp. We train a dual feasibility function Gd(x, u) = Eτ∼πd [γ

N(τ)|x0 =
x, u0 = u] to help optimize the dual policy. Compared with Fd, Gd further fixes the current action
u0 and computes the feasibility value starting from the state-action pair (x, u). The dual policy is
updated by maximizing the dual feasibility function:

max
πd

Ex,u∼πd [Gd(x, u)].

Both the primal policy and the dual policy are used to sample data. In practice, the sampling ratio is
controlled by a hyperparameter called the dual threshold d, which is fixed at 0.95 in our experiments.
If the running averaged feasibility value is greater than d, the dual policy will be activated and collect
half of the samples. We ensure that the total number of samples used by our algorithm, i.e., collected
by both the primal and dual policies, equals that of other algorithms.

5.2 CORRECTING SAMPLE DISTRIBUTION VIA IMPORTANCE SAMPLING

The problem of directly using data collected by the dual policy is that the data distribution for
computing the expectation in loss functions is shifted. Take the loss function of the primal feasibility
function as an example:

LGp = Ex∼dπp ,u∼πp(·|x),x′∼P (·|x,u),u′∼πp(·|x′)

[
(Gp(x, u)− (c(x) + (1− c(x))γGp(x

′, u′)))
2
]
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Among the four random variables involved in the expectation, x and u have shifted distributions
because some of their samples are collected by the dual policy. To solve this problem, we use IS
to correct their distribution. The IS ratio for u can be readily computed by the ratio of probabilities
under two policies. The IS ratio for x involves the marginal state distribution under a policy, which
can be computed as: dπd(x) =

∑∞
t=0 P (xt = x|π) =

∑∞
t=0

∑
τ I[xt = x]pπd(τ), where pπd(τ) is

the probability of trajectory τ under πd:

pπd(τ) = dinit(x0)πd(u0|x0)P (x1|x0, u0)πd(u1|x1) · · · = dinit(x0)

∞∏
t=0

πd(ut|xt)P (xt+1|xt, ut).

To correct the distribution of x from dπd to dπp , we need to insert an IS ratio rpd(x) = dπp(x)/dπd(x)
into the loss function. However, directly computing the ratio is intractable because we cannot sum
over all possible trajectories. Instead, we approximate the ratio with a single trajectory τ that con-
tains x:

rpd(x) ≈
pπp(τ)

pπd(τ)
=

∞∏
t=0

πp(ut|xt)

πd(ut|xt)
≈

t(x)∏
s=0

πp(us|xs)

πd(us|xs)
:= r̂pd(x), (8)

where the second approximation operation truncates the product up to t(x), which is the appearing
step of x. This is because future actions beyond t(x) do not affect the probability of reaching x, and
truncating them reduces the variance of IS. To additionally account for the distribution shift of u,
we define the approximated IS ratio for a state-action pair as r̂pd(x, u) = r̂pd(x)πp(u|x)/πd(u|x).
The approximated IS ratios from the primal policy to the dual policy, r̂dp(x) and r̂dp(x, u), can be
defined similarly.

The sequential multiplication in the IS ratio can easily cause numerical underflow since the proba-
bility of an action under another policy is usually lower than that under the behavior policy. We find
that this problem can be effectively alleviated by constraining the KL divergence between the two
policies. Observe that

DKL(πd∥πp)[x] = Eu∼πd(·|x)

[
log

πd(u|x)
πp(u|x)

]
≤ δ ⇐⇒ Eu∼πd(·|x)

[
log

πp(u|x)
πd(u|x)

]
≥ −δ.

The KL divergence constraint ensures that the expected logarithm of each term in the product (8) is
not too small, thus preventing the IS ratio from collapsing to zero.

5.3 OVERALL ALGORITHM

Our algorithm, called feasible dual policy iteration (FDPI), follows the framework of feasible policy
iteration (FPI) proposed by Yang et al. (2023c). On the basis of FPI, we combine the maximum
entropy RL method from soft actor-critic (SAC) (Haarnoja et al., 2018) and name the resulting al-
gorithm as SAC-FDPI. Our algorithm learns two action-feasibility networks Gp,ϕp , Gd,ϕd , an action-
value network Qω , and two policy networks πp,θp , πd,θd , where ϕ, ω, and θ denote their parameters.
We additionally introduce a hyperparameter ϵ > 0 and approximate feasibility by Gϕ(x, u) ≤ ϵ.
This is because, in practice, approximation error causes the CDF to be positive almost everywhere
since its learning target is non-negative. This approximation is valid under the assumption that the
steps to violation is uniformly bounded (Thomas et al., 2021). In our experiments, we find that a
fixed value of ϵ = 0.1 works well for all environments.

The loss functions for the action-feasibility networks are

LG#
(ϕ#) = E

[
r̂#(x, u)

(
G#,ϕ#

(x, u)− yG#
(x, x′, u′)

)2]
, (9)

where “#” stands for “p” or “d”, r̂p(x, u) = r̂pd(x, u) for (x, u) sampled by πd, and equals 1 for
(x, u) sampled by πp, r̂d(x, u) is defined similarly, and

yG#
(x, x′, u′) = c(x) + (1− c(x))γG#,ϕ̄#

(x′, u′),

where ϕ̄ denote the parameters of the target networks. The loss functions for the action-value net-
works are

LQ(ω) = E
[
r̂p(x, u) (Qω(x, u)− yQ(x, x

′, u′))
2
]
,

yQ(x, x
′, u′) = r(x, u) + γ(Qω̄(x

′, u′)− α log πp(u
′|x′)),

(10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where α is a learnable parameter for entropy temperature. The primal policy network is updated by
maximizing the action-value network inside the feasible region and minimizing the primal action-
feasibility network outside the feasible region. The loss function is as follows:

Lπp(θp) = E
[
r̂p(x)

(
If[x, u](α log πp,θp(u|x)−Qω(x, u)) + (1− If[x, u])Gp,ϕp(x, u))

)]
, (11)

where If[x, u] = 1 if Gp,ϕp(x, u) ≤ ϵ and 0 otherwise. The dual policy is updated by maximizing
the dual action-feasibility network under the constraints of KL divergence. The constraints are
addressed by the Lagrange multiplier method. The loss function for the dual policy is as follows:

Lπd(θd) = −E [r̂d(x)Gd,ϕd(x, u)] + λdpDKL(πd,θd∥πp,θp) + λpdDKL(πp,θp∥πd,θd). (12)

The Lagrange multipliers λdp and λdp are updated by:

λdp ←
(
λdp + η

(
DKL(πd,θd∥πp,θp)− δ

))
+
, λpd ←

(
λpd + η

(
DKL(πp,θp∥πd,θd)− δ

))
+
, (13)

where η is the learning rate and (·)+ denotes the projection to R≥0. The pseudocode of our algorithm
is in Appendix D.

6 EXPERIMENTS

We aim to answer the following questions through our experiments:

Q1 How does SAC-FDPI perform in terms of safety and return compared to existing algorithms?
Q2 Does learning an additional dual policy help increase violating samples?
Q3 Does the estimation error of the feasibility function decrease with more violating samples?

6.1 EXPERIMENT SETUPS

Environments Our experiments cover 14 environments in the Safety-Gymnasium benchmark (Ji
et al., 2023a), including navigation and locomotion. The navigation environments include two
robots, i.e., Point and Car, and four tasks, i.e., Goal, Push, Button, and Circle, with all difficulty
levels set as 1 and constraints set as default. The locomotion environments include six classic robots
from Gymnasium’s MuJoCo environments, i.e., HalfCheetah, Hopper, Swimmer, Walker2d, Ant,
and Humanoid, with maximum velocity constraints.

10
−2

10
−1

Normalized cost

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

 re
tu

rn

CPO
RCPO
FOCOPS
CUP
PPO-Lag
SAC-Lag
DSAC-T-Pen
SAC-FPI
SAC-FDPI

Figure 1: Normalized cost-return plot. Error
bars represent 95% confidence intervals.

Baselines We compare our algorithm with a wide
variety of mainstream safe RL algorithms im-
plemented in the Omnisafe toolbox (Ji et al.,
2023b), including iterative unconstrained RL algo-
rithms RCPO (Tessler et al., 2018), PPO-Lag (Ray
et al., 2019), and SAC-Lag (Ha et al., 2021),
and constrained policy optimization algorithms
CPO (Achiam et al., 2017), FOCOPS (Zhang et al.,
2020), and CUP (Yang et al., 2022). In addition, we
combine the state-of-the-art unconstrained RL algo-
rithm DSAC-T (Duan et al., 2023) with the penalty
method and name the resulting algorithm DSAC-T-
Pen. We also include a version of our algorithm
without the dual policy, named SAC-FPI. Hyperpa-
rameters for all algorithms are detailed in Appendix
E.1.

6.2 EXPERIMENT RESULTS

Cost-return performance In safe RL, we evaluate algorithms by two metrics: (1) episode cost,
representing the average number of constraint-violating steps per episode, and (2) episode return,
representing the average cumulative rewards per episode. To perform a comprehensive evaluation,
we place the scores of all algorithms in a cost-return plot in Figure 1. The scores are first normalized

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

by those of PPO and then averaged on all 14 environments. SAC-FDPI simultaneously achieves the
lowest cost and an almost tied highest return (with SAC-FPI) among all algorithms, demonstrating
its superior performance. We further plot the training curves of SAC-FDPI and six baselines across
eight environments in Figure 2, with remaining results in Appendix E.2. SAC-FDPI achieves near-
zero constraint violations on all environments while maintaining comparable or higher returns than
the baselines. Notably, SAC-FPI exhibits persistent cost spikes even at final training stages, while
SAC-FDPI maintains near-zero violations by continually feeding a controlled trickle of unsafe tran-
sitions through its dual policy. These results answer Q1.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

6

12

18

24

30

Ep
is

od
e

co
st

PointGoal

1.9 2.0
1e6

0

1

2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

10

20

30

40

50

Ep
is

od
e

co
st

PointPush

1.9 2.0
1e6

0

2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

15

30

45

60

75

Ep
is

od
e

co
st

PointCircle

1.9 2.0
1e6

0

2

4

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

10

20

30

40

50

Ep
is

od
e

co
st

HalfCheetahVelocity

1.9 2.0
1e6

0

2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−8

0

8

16

24

Ep
is

od
e

re
tu

rn

PointGoal

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−8

0

8

16

24

32

Ep
is

od
e

re
tu

rn

PointPush

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

10

20

30

40

50

Ep
is

od
e

re
tu

rn

PointCircle

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

800

1600

2400

Ep
is

od
e

re
tu

rn

HalfCheetahVelocity

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

10

20

30

40

50

Ep
is

od
e

co
st

CarGoal

1.9 2.0
1e6

0

2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

10

20

30

40

50

Ep
is

od
e

co
st

CarPush

1.9 2.0
1e6

0

2

4

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

15

30

45

60

75

Ep
is

od
e

co
st

CarCircle

1.9 2.0
1e6

0

2

4

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0.0

0.4

0.8

1.2

1.6

2.0

Ep
is

od
e

co
st

HumanoidVelocity

1.9 2.0
1e6

0.00

0.05

0.10

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−10

0

10

20

30

40

Ep
is

od
e

re
tu

rn

CarGoal

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−6

0

6

12

18

Ep
is

od
e

re
tu

rn

CarPush

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

5

10

15

20

Ep
is

od
e

re
tu

rn

CarCircle

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

1500

3000

4500

6000

Ep
is

od
e

re
tu

rn

HumanoidVelocity

RCPO FOCOPS CUP SAC-Lag DSAC-T-Pen SAC-FPI SAC-FDPI

Figure 2: Training curves on eight environments in Safety-Gymnasium benchmark. The shaded
areas represent 95% confidence intervals over 5 seeds.

Proportion of violating samples Figure 3 compares the average proportion of violating samples
in the replay buffer during the final 10% of training iterations for SAC-FPI and SAC-FDPI. It shows
that SAC-FDPI maintains a significantly higher proportion of violating samples than SAC-FPI—an
order of magnitude greater in most environments. SAC-FPI’s violation ratio falls below 1% in nearly
all environments, undermining the accuracy of its feasibility function and leading to the cost spikes
observed in its training curves. In contrast, SAC-FDPI’s dual policy mechanism ensures persistent
availability of a proper number of violating samples, which answers Q2.

Accuracy of feasibility function Figure 4 compares the estimation error of the feasibility function
learned by SAC-FPI (blue) and SAC-FDPI (orange) in four environments. The errors are computed
on 100k states collected by the two policies after convergence. The true values of the feasibility
function are computed by definition on collected trajectories. It shows that SAC-FDPI produces

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CarC
irc

le

Poin
tC

irc
le

Hop
pe

rVelo
cit

y

Half
Che

eta
hV

elo
cit

y

Walk
er2

dV
elo

cit
y

CarP
us

h

CarG
oa

l

Poin
tG

oa
l

Poin
tPus

h

AntV
elo

cit
y

Poin
tButt

on

Swim
merV

elo
cit

y

CarB
utt

on

Hum
an

oid
Velo

cit
y

0.000

0.025

0.050

0.075

0.100

0.125

Vi
ol

at
io

n
sa

m
pl

e
ra

tio

SAC-FDPI
SAC-FPI

Figure 3: Average proportion of violating samples in the replay buffer. The error bars represent 95%
confidence intervals over 5 seeds.

a sharp, symmetric peak tightly centered at zero, which is an evidence of low bias and estimation
error. In contrast, SAC-FPI exhibits flatter, more dispersed errors, reflecting the inflated estimation
error bound caused by vanishing violating samples under the safety paradox. These results confirm
that maintaining an adequate number of violating samples significantly reduces feasibility function
estimation error, answering Q3.

−1.0 −0.5 0.0 0.5 1.0
G error

10
0

10
1

10
2

10
3

10
4

10
5

Fr
eq

ue
nc

y

PointGoal

SAC-FPI
SAC-FDPI

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
G error

10
0

10
1

10
2

10
3

10
4

10
5

Fr
eq

ue
nc

y

PointPush

SAC-FPI
SAC-FDPI

−1.0 −0.5 0.0 0.5 1.0
G error

10
0

10
1

10
2

10
3

10
4

10
5

Fr
eq

ue
nc

y

CarGoal

SAC-FPI
SAC-FDPI

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
G error

10
0

10
1

10
2

10
3

10
4

10
5

Fr
eq

ue
nc

y

CarPush

SAC-FPI
SAC-FDPI

Figure 4: Distribution of feasibility function estimation error after convergence.

(a) CarGoal (b) PointGoal

Figure 5: Trajectories of primal policy (red) and
dual policy (cyan). Blue disks mark hazards, and
green cylinder denotes the goal.

Exploration patterns To understand how the
dual policy specifically helps collect violating
samples, we visualize the trajectories of the pri-
mal policy and dual policy in Figure 5. The
primal policy conservatively steers around the
hazards so that no violation is incurred. In con-
trast, the dual policy augments the samples col-
lected by the primal policy by deliberately cut-
ting through the hazards, injecting constraint-
violating samples while staying close to the pri-
mal policy. This richer mixture of safe and
unsafe data keeps the feasibility function well-
estimated, allowing the primal policy to con-
verge to higher performance and with lower
constraint violations.

7 CONCLUSION

This paper discovers a fundamental obstacle in safe RL called the safety paradox, where improved
policy safety leads to increased estimation error bound of the feasibility function, and ultimately
harms policy safety. To address this paradox, we propose FDPI, which introduces a dual policy
to maximize constraint violations while staying close to the primal policy through KL divergence
constraints. We incorporate IS to correct distribution shifts between two policies. Extensive ex-
periments on Safety-Gymnasium show that FDPI significantly increases violating samples, reduces
feasibility function estimation error, and achieves state-of-the-art performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pp. 2242–2253. IEEE, 2017.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained rein-
forcement learning with percentile risk criteria. Journal of Machine Learning Research, 18(167):
1–51, 2018.

Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, and Shengbo Eben Li. Dsac-t: Distribu-
tional soft actor-critic with three refinements. arXiv preprint arXiv:2310.05858, 2023.

Shuo Feng, Haowei Sun, Xintao Yan, Haojie Zhu, Zhengxia Zou, Shengyin Shen, and Henry X Liu.
Dense reinforcement learning for safety validation of autonomous vehicles. Nature, 615(7953):
620–627, 2023.

Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real world
with minimal human effort. In Conference on Robot Learning, pp. 1110–1120. PMLR, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yi-
fan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement learn-
ing benchmark. Advances in Neural Information Processing Systems, 36:18964–18993, 2023a.

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
Yiran Geng, Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe
reinforcement learning research. arXiv preprint arXiv:2305.09304, 2023b.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

Shengbo Eben Li. Reinforcement learning for sequential decision and optimal control. Springer
Verlag, Singapore, 2023.

Guido Novati and Petros Koumoutsakos. Remember and forget for experience replay. In Interna-
tional Conference on Machine Learning, pp. 4851–4860. PMLR, 2019.

Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained re-
inforcement learning has zero duality gap. Advances in Neural Information Processing Systems,
32, 2019.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In International conference on machine learning, pp. 2817–2826. PMLR, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Garrett Thomas, Yuping Luo, and Tengyu Ma. Safe reinforcement learning by imagining the near
future. Advances in Neural Information Processing Systems, 34:13859–13869, 2021.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–
228, 2022.

Long Yang, Jiaming Ji, Juntao Dai, Linrui Zhang, Binbin Zhou, Pengfei Li, Yaodong Yang, and
Gang Pan. Constrained update projection approach to safe policy optimization. Advances in
Neural Information Processing Systems, 35:9111–9124, 2022.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

Yujie Yang, Yuxuan Jiang, Yichen Liu, Jianyu Chen, and Shengbo Eben Li. Model-free safe rein-
forcement learning through neural barrier certificate. IEEE Robotics and Automation Letters, 8
(3):1295–1302, 2023a.

Yujie Yang, Yuhang Zhang, Wenjun Zou, Jianyu Chen, Yuming Yin, and Shengbo Eben Li. Syn-
thesizing control barrier functions with feasible region iteration for safe reinforcement learning.
IEEE Transactions on Automatic Control, 69(4):2713–2720, 2023b.

Yujie Yang, Zhilong Zheng, Shengbo Eben Li, Jingliang Duan, Jingjing Liu, Xianyuan Zhan, and
Ya-Qin Zhang. Feasible policy iteration. arXiv preprint arXiv:2304.08845, 2023c.

Yujie Yang, Zhilong Zheng, Shengbo Eben Li, Masayoshi Tomizuka, and Changliu Liu. The
feasibility of constrained reinforcement learning algorithms: A tutorial study. arXiv preprint
arXiv:2404.10064, 2024.

Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
learning. In International conference on machine learning, pp. 25636–25655. PMLR, 2022.

Dongjie Yu, Wenjun Zou, Yujie Yang, Haitong Ma, Shengbo Eben Li, Yuming Yin, Jianyu Chen, and
Jingliang Duan. Safe model-based reinforcement learning with an uncertainty-aware reachability
certificate. IEEE Transactions on Automation Science and Engineering, 21(3):4129–4142, 2023.

Linrui Zhang, Li Shen, Long Yang, Shixiang Chen, Bo Yuan, Xueqian Wang, and Dacheng
Tao. Penalized proximal policy optimization for safe reinforcement learning. arXiv preprint
arXiv:2205.11814, 2022.

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.
Advances in Neural Information Processing Systems, 33:15338–15349, 2020.

Weiye Zhao, Rui Chen, Yifan Sun, Tianhao Wei, and Changliu Liu. State-wise constrained policy
optimization. arXiv preprint arXiv:2306.12594, 2023.

Weiye Zhao, Feihan Li, Yifan Sun, Yujie Wang, Rui Chen, Tianhao Wei, and Changliu Liu. Absolute
state-wise constrained policy optimization: High-probability state-wise constraints satisfaction.
arXiv preprint arXiv:2410.01212, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROOF OF CDF ERROR BOUND

Theorem 1. For any infeasible state x ∈ X under policy π, let F̂π(x) be the MC estimate of the
CDF. Under Assumption 1, the expected relative estimation error is bounded by:

Eτ1,τ2,...,τK

[∣∣∣∣∣ F̂π(x)− Fπ(x)

Fπ(x)

∣∣∣∣∣
]
≤ 1√

K
| ln γ|σπ

N (x) + (ln γ)2
σ2,π
N (x)

γµπ
N (x)

. (7)

Proof. Construct two auxiliary functions

Hπ(x) = γµπ
N (x),

Ĥπ(x) = γµ̂π
N (x),

where

µ̂π
N (x) =

1

K

K∑
i=1

N(τi).

Perform a second-order Taylor expansion with the Lagrange remainder to Ĥπ(x):

Ĥπ(x) = γµπ
N (x) + γµπ

N (x) ln γ · (µ̂π
N (x)− µπ

N (x)) +
1

2
γM (ln γ)2(µ̂π

N (x)− µπ
N (x))2,

where M is a point between µ̂π
N (x) and µπ

N (x). Thus,

|Ĥπ(x)−Hπ(x)| =
∣∣∣∣γµπ

N (x) ln γ · (µ̂π
N (x)− µπ

N (x)) +
1

2
γM (ln γ)2(µ̂π

N (x)− µπ
N (x))2

∣∣∣∣
≤ |γµπ

N (x) ln γ · (µ̂π
N (x)− µπ

N (x))|+ 1

2
|γM (ln γ)2(µ̂π

N (x)− µπ
N (x))2|

≤ γµπ
N (x)| ln γ||µ̂π

N (x)− µπ
N (x)|+ 1

2
(ln γ)2(µ̂π

N (x)− µπ
N (x))2,

where the last inequality holds because γM < 1. Since the squared function (·)2 is a convex
function, by Jensen’s inequality, we have

E[|µ̂π
N (x)− µπ

N (x)|] ≤
√
E[(µ̂π

N (x)− µπ
N (x))2] =

σπ
N (x)√
K

.

Thus,

E[|Ĥπ(x)−Hπ(x)|] ≤ γµπ
N (x)| ln γ|E[|µ̂π

N (x)− µπ
N (x)|] + 1

2
(ln γ)2E[(µ̂π

N (x)− µπ
N (x))2]

≤ 1√
K
| ln γ|γµπ

N (x)σπ
N (x) +

1

2K
(ln γ)2σ2,π

N (x).

(14)

For any trajectory τi, perform a Taylor expansion to γN(τi):

γN(τi) = γµ̂π
N (x) + γµ̂π

N (x) ln γ · (N(τi)− µ̂π
N (x)) +

1

2
γMi(ln γ)2(N(τi)− µ̂π

N (x))2,

where Mi is a point between N(τi) and µ̂π
N (x). Then,

|F̂π(x)− Ĥπ(x)| =

∣∣∣∣∣ 1K
K∑
i=1

γN(τi) − γµ̂π
N (x)

∣∣∣∣∣
=

∣∣∣∣∣γµ̂π
N (x) ln γ · 1

K

K∑
i=1

(N(τi)− µ̂π
N (x)) +

1

2
(ln γ)2

1

K

K∑
i=1

γMi(N(τi)− µ̂π
N (x))2

∣∣∣∣∣
=

1

2
(ln γ)2

1

K

K∑
i=1

γMi(N(τi)− µ̂π
N (x))2

≤ 1

2
(ln γ)2

1

K

K∑
i=1

(N(τi)− µ̂π
N (x))2.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Using the relationship between sample variance and variance:

E

[
1

K − 1

K∑
i=1

(N(τi)− µ̂π
N (x))2

]
= σ2,π

N (x),

we have

E[|F̂π(x)− Ĥπ(x)|] ≤ 1

2
(ln γ)2E

[
1

K

K∑
i=1

(N(τi)− µ̂π
N (x))2

]

=
K − 1

2K
(ln γ)2σ2,π

N (x).

(15)

For any trajectory τ , perform another Taylor expansion to γN(τi):

γN(τi) = γµπ
N (x) + γµπ

N (x) ln γ · (N(τi)− µπ
N (x)) +

1

2
γMi(ln γ)2(N(τi)− µπ

N (x))2,

where Mi is a point between N(τi) and µπ
N (x). Then,

|Fπ(x)−Hπ(x)| =
∣∣∣E[γN(τi)]− γµπ

N (x)
∣∣∣

=

∣∣∣∣γµπ
N (x) ln γ · E[N(τi)− µπ

N (x)] +
1

2
(ln γ)2E[γMi(N(τi)− µπ

N (x))2]

∣∣∣∣
=

1

2
(ln γ)2E[γMi(N(τi)− µπ

N (x))2]

≤ 1

2
(ln γ)2E[(N(τi)− µπ

N (x))2]

=
1

2
(ln γ)2σ2,π

N (x).

Thus,

E[|Fπ(x)−Hπ(x)|] ≤ 1

2
(ln γ)2σ2,π

N (x). (16)

Combining (14), (15), and (16), we have

E[|F̂π(x)− Fπ(x)|] = E[|F̂π(x)− Ĥπ(x) + Ĥπ(x)−Hπ(x) +Hπ(x)− Fπ(x)|]
≤ E[|F̂π(x)− Ĥπ(x)|] + E[|Ĥπ(x)−Hπ(x)|] + E[|Hπ(x)− Fπ(x)|]

≤ 1√
K
| ln γ|γµπ

N (x)σπ
N (x) +

1

2K
(ln γ)2σ2,π

N (x)

+
K − 1

2K
(ln γ)2σ2,π

N (x) +
1

2
(ln γ)2σ2,π

N (x)

=
1√
K
| ln γ|γµπ

N (x)σπ
N (x) + (ln γ)2σ2,π

N (x)

Since γN is a convex function for γ ∈ (0, 1), by Jensen’s inequality, we have

Fπ(x) = E[γN(τ)] ≥ γE[N(τ)] = Hπ(x).

Thus,

E

[∣∣∣∣∣ F̂π(x)− Fπ(x)

Fπ(x)

∣∣∣∣∣
]
≤ E

[∣∣∣∣∣ F̂π(x)− Fπ(x)

Hπ(x)

∣∣∣∣∣
]
≤ 1√

K
| ln γ|σπ

N (x) + (ln γ)2
σ2,π
N (x)

γµπ
N (x)

,

which proves the theorem.

B PROOF OF VARIANCE RELATIONSHIP

Theorem 2. Let π, π′ be two policies. Consider a set of states XM ⊆ X such that for all x ∈ XM ,
(1) x is infeasible under both π and π′, (2) m(x) ≥ M , (3) min{P (d(x′

π) < d(x)), P (d(x′
π′) <

d(x))} ≥ 0.5. Under Assumptions 2–4, if π′ is safer than π in all states in XM , we have σ2,π′

N (x) ≥
σ2,π
N (x), ∀x ∈ XM .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. We prove the theorem in three steps.

Step 1: For a given policy, a state further to violation has a larger variance.

Let x+ be a state with d(x+) ∈ [d(x), d(x) + δ). To violate the constraint starting from x+, the
agent first needs move to some state x− with d(x−) ∈ [d(x)− δ, d(x)). Thus, we have

Nπ(x+) = Nπ
1 (x+) +

m(x+)∑
i=2

Nπ
i (x+) = Nπ

1 (x+) +Nπ(x−).

Take the variance on both sides:

σ2,π
N (x+) = Var(Nπ

1 (x+) +Nπ(x−))

= Var(Nπ
1 (x+)) + σ2,π

N (x−) + 2Cov(Nπ
1 (x+), N

π(x−))

= Var(Nπ
1 (x+)) + σ2,π

N (x−) + 2Cov

Nπ
1 (x+),

m(x+)∑
i=2

Nπ
i (x+)

 ≥ σ2,π
N (x−).

The last inequality follows from Assumption 4.

Step 2: In a given state, a safer policy has a larger variance.

Starting from x and taking one step under π, the agent will arrive at a state x− with d(x−) ∈ [d(x)−
δ, d(x)) with probability P (d(x′

π) < d(x)) and arrive at a state x+ with d(x+) ∈ [(d(x), d(x) + δ]
with probability 1− P (d(x′

π) < d(x)). Let pπ = P (d(x′
π) < d(x)), we have

Nπ(x) =

{
1 +Nπ(x−) w.p. pπ
1 +Nπ(x+) w.p. 1− pπ

According to the law of total variance,

σ2,π
N (x) = pπσ

2,π
N (x−) + (1− pπ)σ

2,π
N (x+) + pπ(1− pπ)(µ

π
N (x−)− µπ

N (x+))
2.

Consider a policy π̃ that is safer than π in x and identical to π in all other states, i.e., π̃ only modifies
the action in x and follows π thereafter. We have

pπ̃ ≤ pπ,

N π̃(x−) = Nπ(x−),

N π̃(x+) = Nπ(x+).

Since σ2,π
N (x−) ≤ σ2,π

N (x+), we have

pπ̃σ
2,π̃
N (x−) + (1− pπ̃)σ

2,π̃
N (x+) ≥ pπσ

2,π
N (x−) + (1− pπ)σ

2,π
N (x+).

Since pπ ≥ pπ̃ ≥ 0.5, we have

pπ̃(1− pπ̃)(µ
π̃
N (x−)− µπ̃

N (x+))
2 ≥ pπ(1− pπ)(µ

π
N (x−)− µπ

N (x+))
2.

Summing the above two inequalities, we have,

σ2,π̃
N (x) ≥ σ2,π

N (x).

Step 3: For all states in XM , a safer policy has a larger variance.

A safer policy can be obtained by modifying the actions state by state. Each time we modify the
action in a single state, we obtain a safer policy in that state. The variance in that state increases,
and the variance in other states remain unchanged. After modifying the actions in all states in XM ,
we obtain the safer policy π′ with σ2,π′

N (x) ≥ σ2,π
N (x), ∀x ∈ XM , which proves the theorem.

Note that modifying the actions state by state is just a technique to facilitate the proof. It is not
required in the actual policy update. The policy can be updated “globally” at once, which is a
common practice for function approximated policies. The intermediate “virtual” policies, with each
one safer in one state, are constructed only for the proof and do not need to be found in practice.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C CASE STUDY: ONE-DIMENSIONAL RANDOM WALK

Consider a one-dimensional random walk where the state space X = Z and the action space U =
{−1, 1}. The initial state is fixed at x = 0, and the transition dynamics follows x′ = x + u. In
each step, the policy chooses u = 1 with probability p, and u = −1 with probability 1 − p. We
require p > 0.5 to ensure finite expectation and variance of steps to violation. The state x = L > 0
is constraint-violating, and every time the agent reaches this state, it is reset to x = 0. Let N be
the number of steps to the first violation, with its expectation and variance denoted as µN and σ2

N .
To measure policy safety, let r be the expected proportion of violating samples under continuous
sampling. It is easily observed that r = 1/µN . Our aim is to find the relationship between r and
σ2
N .

Observe that N can be decomposed as the sum of L random variables: N = LM , where M is
the number of steps to the first time the agent visits the step on its right. This is because going
from x = 0 to x = L can be decomposed as going to the step on the right L times. We derive the
expectation and variance of M , denoted as µM and σ2

M , respectively. Consider the following two
cases:

1. With probability p, the agent moves right and reaches x+ 1 in one step.

2. With probability 1 − p, the agent moves left to x − 1. Now, the agent must first return to x and
then proceed to x+ 1. The expected number of steps of returning to x from x− 1 is the same as
that of moving from x to x + 1, which equals µM . Thus, the total expected number of steps in
the case is 1 + 2µM .

Thus, the expectation µM satisfies

µM = p · 1 + (1− p) · (1 + 2µM),

which gives

µM =
1

2p− 1
.

To derive the variance of M , first consider the second-order moment E[M2]. Following the above
analysis, we have

E[M2] = p · 12 + (1− p) · E[(1 +M ′ +M)2],

where M ′ is the number of steps to move from x − 1 to x for the first time. Since M ′ and M are
i.i.d., we have

E[(1 +M ′ +M)2] = E[1 + 2(M ′ +M) + (M ′ +M)2]

= 1 + 4µM + E[(M ′ +M)2]

= 1 + 4µM + E[M ′2 + 2M ′M +M2]

= 1 + 4µM + 2E[M2] + 2µ2
M .

Thus,
E[M2] = p+ (1− p) · (1 + 4µM + 2E[M2] + 2µ2

M).

Solving for E[M2]:

E[M2] =
1 + 4(1− p)µM + 2(1− p)µ2

M

2p− 1
.

Thus, the variance is

σ2
M = E[M2]− µ2

M =
4p(1− p)

(2p− 1)3
.

Since N = LM , by the property of the summation of random variables, we have

µN = LµM =
1

2p− 1
· L,

σ2
N = L2σ2

M =
4p(1− p)

(2p− 1)3
· L2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

With r = 1/µN , we have

L = (2p− 1)µN =
2p− 1

r
.

Thus,

σ2
N =

4p(1− p)

(2p− 1)3
· (2p− 1)2

r2
=

4p(1− p)

2p− 1
· 1
r2

The above equation reveals that as the policy becomes safer, the variance of steps to violation in-
creases. Combining with the error bound in Equation (7), we conclude that a safer policy leads to a
higher relative estimation error bound.

D PSEUDOCODE

Algorithm 1: Soft actor-critic with feasible dual policy iteration (SAC-FDPI)
Initialize: Network parameters ϕp, ϕd, ω, θp, θd. IS ratios r̂dp = r̂pd = 1. Replay buffer D = ∅.

Feasibility threshold d = 0.95.
1 for each iteration do

// Sample with primal policy
2 Sample action up ∼ πθp ;
3 Get next state x′, reward r, and cost c from environment;
4 Store transition in replay buffer D ← D ∪ {(x, u, x′, r, c, r̂dp)};
5 Update IS ratio r̂dp ← r̂dp · πd(u|x)/πp(u|x) or r̂dp ← 1 if episode ends;
6 if Running averaged Gp(x, u) > d then

// Sample with dual policy
7 Sample action τd ∼ πθd ;
8 Get next state x′, reward r, and cost c from environment;
9 Store transition in replay buffer D ← D ∪ {(x, u, x′, r, c, r̂pd)};

10 Update IS ratio r̂pd ← r̂pd · πp(u|x)/πd(u|x) or r̂pd ← 1 if episode ends;
11 else

// Sample with primal policy
12 Repeat Lines 2–5;
13 end

// Update network parameters
14 Update primal action-feasibility network ϕp ← ϕp − η∇ϕpLGp(ϕp); // Equation (9)
15 Update dual action-feasibility network ϕd ← ϕd − η∇ϕdLGd(ϕd); // Equation (9)
16 Update action-value network ω ← ω − η∇ωLQ(ω); // Equation (10)
17 Update primal policy network θp ← θp − η∇θpLπp(θp); // Equation (11)
18 Update dual policy network θd ← θd − η∇θdLπd(θd); // Equation (12)
19 Update Lagrange multipliers by Equation (13);
20 end

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E EXPERIMENTS

The Safety-Gymnasium benchmark (Ji et al., 2023a) and the Omnisafe toolbox (Ji et al., 2023b) are
both released under the Apache License 2.0.

All experiments are conducted on a workstation equipped with Intel(R) Xeon(R) Gold 6246R CPUs
(32 cores, 64 threads), an NVIDIA GeForce RTX 3090 GPU, and 256GB of RAM. A single ex-
perimental trial—comprising one environment, one algorithm, and one random seed—takes about 2
hours to execute. Executing all experiments with a properly configured concurrent running scheme
requires approximately 400 hours.

E.1 HYPERPARAMETERS

Table 1: Hyperparameters
Category Hyperparameter Value

Shared Number of vector environments 2
Number of samples per iteration 2
Number of updates per iteration 1
Replay buffer size 2e6
Batch size 256
Reward discount factor 0.99
Cost discount factor 0.97
Cost limit 0
Actor learning rate 1e-4
Actor network hidden sizes (256, 256)
Actor activation function ReLU
Critic learning rate 1e-4
Critic network hidden sizes (256, 256)
Critic activation function ReLU
Network weight initialization method Truncated normal
Optimizer Adam
Target network soft update weight 0.005
Maximum gradient norm 40

SAC Initial entropy temperature 1.0
Target entropy − dim(U)
Entropy temperature learning rate 1e-4

Penalty Penalty coefficient 1.0

Lagrangian Initial multiplier 0.0
Multiplier learning rate 1e-4
Multiplier update delay 10

FDPI Primal policy step per iteration 1
Dual policy step per iteration 1
Feasibility threshold ϵ 0.1
Maximum KL divergence δ 5.0

E.2 ADDITIONAL RESULTS

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

6

12

18

24

30
Ep

is
od

e
co

st

PointGoal

1.9 2.0
1e6

0

1

2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

10

20

30

40

50

Ep
is

od
e

co
st

PointPush

1.9 2.0
1e6

0

2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

20

40

60

80

100

Ep
is

od
e

co
st

PointButton

1.9 2.0
1e6

0

2

4

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

15

30

45

60

75

Ep
is

od
e

co
st

PointCircle

1.9 2.0
1e6

0

2

4

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−8

0

8

16

24

Ep
is

od
e

re
tu

rn

PointGoal

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−8

0

8

16

24

32

Ep
is

od
e

re
tu

rn

PointPush

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−9

−6

−3

0

3

6

9

Ep
is

od
e

re
tu

rn

PointButton

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

10

20

30

40

50

Ep
is

od
e

re
tu

rn

PointCircle

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

10

20

30

40

50

Ep
is

od
e

co
st

CarGoal

1.9 2.0
1e6

0

2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

10

20

30

40

50

Ep
is

od
e

co
st

CarPush

1.9 2.0
1e6

0

2

4

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

30

60

90

120

150

Ep
is

od
e

co
st

CarButton

1.9 2.0
1e6

0

5

10

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

15

30

45

60

75

Ep
is

od
e

co
st

CarCircle

1.9 2.0
1e6

0

2

4

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−10

0

10

20

30

40

Ep
is

od
e

re
tu

rn

CarGoal

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−6

0

6

12

18

Ep
is

od
e

re
tu

rn

CarPush

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−6

−4

−2

0

2

4

Ep
is

od
e

re
tu

rn

CarButton

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

5

10

15

20

Ep
is

od
e

re
tu

rn

CarCircle

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

1

2

3

4

5

Ep
is

od
e

co
st

AntVelocity

1.9 2.0
1e6

0.0

0.2

0.4

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

10

20

30

40

50

Ep
is

od
e

co
st

HalfCheetahVelocity

1.9 2.0
1e6

0

2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

10

20

30

40

50

Ep
is

od
e

co
st

HopperVelocity

1.9 2.0
1e6

0

1

2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0.0

0.4

0.8

1.2

1.6

2.0

Ep
is

od
e

co
st

HumanoidVelocity

1.9 2.0
1e6

0.00

0.05

0.10

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−800

0

800

1600

2400

3200

Ep
is

od
e

re
tu

rn

AntVelocity

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

800

1600

2400

Ep
is

od
e

re
tu

rn

HalfCheetahVelocity

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

400

800

1200

1600

Ep
is

od
e

re
tu

rn

HopperVelocity

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

1500

3000

4500

6000

Ep
is

od
e

re
tu

rn

HumanoidVelocity

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

15

30

45

60

75

Ep
is

od
e

co
st

SwimmerVelocity

1.9 2.0
1e6

0

1

2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

−25

0

25

50

75

100

Ep
is

od
e

re
tu

rn

SwimmerVelocity

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

2

4

6

8

10

Ep
is

od
e

co
st

Walker2dVelocity

1.9 2.0
1e6

0.0

0.2

0.4

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment step 1e6

0

600

1200

1800

2400

3000

Ep
is

od
e

re
tu

rn

Walker2dVelocity

RCPO FOCOPS CUP SAC-Lag DSAC-T-Pen SAC-FPI SAC-FDPI

Figure 6: Training curves on all 14 environments in Safety-Gymnasium benchmark. The shaded
areas represent 95% confidence intervals over 5 seeds.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 2: Average cost and return in the last 10% iterations
AntVelocity CarButton CarCircle

Algorithm Cost Return Cost Return Cost Return

CPO 0.03± 0.01 −3227.47± 1314.35 4.48± 1.06 −1.57± 0.83 2.20± 2.19 5.15± 3.28
RCPO 0.87± 0.29 2745.86± 208.04 11.27± 2.83 1.06± 0.17 5.31± 3.00 16.10± 1.46
FOCOPS 1.00± 1.34 429.32± 389.58 19.45± 4.80 0.58± 0.14 6.49± 2.84 15.12± 0.88
CUP 0.84± 0.24 1415.50± 127.41 18.59± 19.44 0.14± 0.21 4.46± 2.68 12.29± 1.59
PPO-Lag 2.32± 0.31 2507.59± 79.48 38.50± 10.90 0.94± 0.23 14.38± 15.54 13.63± 0.85
SAC-Lag 0.04± 0.05 2859.28± 122.94 0.31± 0.16 −0.66± 0.30 0.00± 0.00 0.14± 0.08
DSAC-T-Pen 0.02± 0.02 2680.46± 97.58 0.80± 0.39 0.59± 0.34 0.71± 0.37 15.73± 0.65
SAC-FPI 0.16± 0.19 2863.46± 85.96 3.71± 0.57 2.40± 0.50 1.74± 0.81 17.02± 1.39
SAC-FDPI 0.03± 0.02 2764.44± 136.64 2.68± 1.39 1.83± 0.23 0.60± 0.65 14.72± 1.36

CarGoal CarPush HalfCheetahVelocity

Algorithm Cost Return Cost Return Cost Return

CPO 1.27± 1.09 3.12± 0.99 0.59± 0.53 1.60± 0.47 0.03± 0.02 855.39± 239.61
RCPO 3.54± 1.31 22.06± 0.26 3.70± 2.75 3.42± 0.56 1.29± 0.38 2389.86± 341.21
FOCOPS 11.57± 17.86 8.68± 3.87 2.63± 1.99 1.32± 0.34 34.15± 14.09 2606.12± 214.08
CUP 1.23± 1.07 5.35± 1.82 0.96± 0.61 1.68± 0.71 0.91± 0.90 1619.77± 259.74
PPO-Lag 6.50± 8.06 11.03± 4.51 3.04± 2.35 2.31± 0.63 2.67± 1.54 2234.27± 499.64
SAC-Lag 0.07± 0.03 30.33± 3.40 0.24± 0.16 13.95± 1.22 0.00± 0.00 2783.54± 26.26
DSAC-T-Pen 0.12± 0.16 34.19± 0.29 0.21± 0.17 14.02± 1.16 0.00± 0.00 2760.54± 14.76
SAC-FPI 0.40± 0.32 34.44± 0.34 3.62± 2.51 17.21± 1.18 0.00± 0.00 2809.33± 23.42
SAC-FDPI 0.04± 0.03 33.73± 0.53 0.29± 0.14 17.55± 1.73 0.00± 0.00 2831.97± 9.13

HopperVelocity HumanoidVelocity PointButton

Algorithm Cost Return Cost Return Cost Return

CPO 0.00± 0.00 304.43± 243.06 0.00± 0.00 250.84± 18.05 2.16± 0.70 −1.08± 0.64
RCPO 4.41± 2.34 1236.59± 471.32 0.28± 0.10 3862.34± 405.31 7.54± 2.71 2.51± 0.40
FOCOPS 17.50± 10.19 1587.08± 48.20 0.35± 0.13 562.29± 74.98 8.80± 3.58 1.19± 0.63
CUP 2.09± 3.24 873.75± 445.49 0.06± 0.03 482.02± 34.07 9.72± 7.64 0.15± 0.50
PPO-Lag 3.29± 1.87 1508.78± 90.96 0.22± 0.07 1300.45± 425.44 11.60± 5.85 1.19± 0.36
SAC-Lag 1.19± 2.34 1032.86± 35.68 0.10± 0.09 5212.90± 110.20 0.23± 0.26 −0.50± 0.35
DSAC-T-Pen 0.00± 0.00 1271.16± 229.74 0.05± 0.05 5229.07± 176.58 0.69± 0.34 2.06± 0.63
SAC-FPI 0.00± 0.00 1131.13± 316.65 0.09± 0.08 5351.34± 183.96 1.76± 0.54 3.92± 1.86
SAC-FDPI 0.00± 0.00 1285.17± 289.89 0.01± 0.01 5269.77± 201.84 0.72± 0.43 2.89± 0.89

PointCircle PointGoal PointPush

Algorithm Cost Return Cost Return Cost Return

CPO 0.40± 0.30 20.14± 5.63 0.90± 0.45 1.45± 0.99 0.60± 0.66 0.49± 0.75
RCPO 4.59± 1.77 46.77± 1.11 4.08± 1.18 13.14± 1.92 1.96± 0.81 7.24± 1.10
FOCOPS 5.28± 2.15 47.17± 0.44 3.16± 0.83 1.85± 0.56 2.21± 1.18 1.14± 0.28
CUP 4.21± 2.55 42.11± 1.74 3.01± 3.24 2.91± 0.98 0.91± 0.51 1.37± 0.52
PPO-Lag 5.47± 1.72 45.84± 1.31 5.55± 3.37 3.83± 2.13 5.17± 3.86 1.89± 1.23
SAC-Lag 0.81± 1.52 35.80± 1.65 0.09± 0.10 14.66± 3.01 2.27± 3.29 14.48± 3.38
DSAC-T-Pen 1.33± 1.10 42.10± 0.39 0.58± 0.28 24.65± 0.62 0.38± 0.27 21.13± 6.82
SAC-FPI 2.58± 2.68 40.84± 2.63 0.61± 0.24 26.45± 0.41 0.78± 0.52 19.05± 6.63
SAC-FDPI 0.84± 0.70 40.54± 2.59 0.09± 0.06 25.77± 0.49 0.44± 0.67 22.71± 1.21

SwimmerVelocity Walker2dVelocity

Algorithm Cost Return Cost Return

CPO 0.09± 0.06 22.94± 23.57 0.02± 0.01 188.35± 96.17
RCPO 21.40± 1.93 42.29± 3.88 1.11± 0.54 1913.68± 765.27
FOCOPS 24.31± 9.58 37.56± 4.24 2.72± 0.99 1629.19± 516.49
CUP 0.87± 0.28 54.75± 38.58 1.60± 0.59 1360.46± 814.21
PPO-Lag 24.83± 3.45 73.51± 20.49 2.00± 0.61 2166.22± 595.72
SAC-Lag 0.00± 0.00 2.52± 3.43 0.00± 0.00 2681.36± 126.54
DSAC-T-Pen 0.10± 0.09 36.45± 2.17 0.01± 0.02 2752.25± 106.80
SAC-FPI 0.00± 0.00 43.69± 1.42 0.01± 0.02 2787.28± 126.27
SAC-FDPI 0.00± 0.00 42.71± 1.39 0.00± 0.00 2619.63± 148.14

Note: The bold values indicate top 2 algorithms in a column. The colored cells indicate top 2 in both cost and
return in an environment.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F LARGE LANGUAGE MODEL USAGE DISCLOSURE

We used Large Language Model (LLM) solely for the purpose of improving grammar and polishing
writing. The LLM was not used for any core research tasks such as retrieval, discovery, ideation, or
analysis.

20

	Introduction
	Related work
	Problem statement
	Feasibility in safe reinforcement learning

	Safety paradox
	Estimation error bound of CDF
	Relationship between policy safety and estimation error bound

	Feasible dual policy iteration
	Collecting more violating samples with a dual policy
	Correcting sample distribution via importance sampling
	Overall algorithm

	Experiments
	Experiment setups
	Experiment results

	Conclusion
	Proof of CDF error bound
	Proof of variance relationship
	Case study: one-dimensional random walk
	Pseudocode
	Experiments
	Hyperparameters
	Additional results

	Large Language Model usage disclosure

