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ABSTRACT

Achieving zero constraint violations in safe reinforcement learning poses a sig-
nificant challenge. We discover a key obstacle called the safety paradox, where
improving policy safety reduces the frequency of constraint-violating samples,
thereby impairing feasibility function estimation and ultimately undermining pol-
icy safety. We theoretically prove that the estimation error bound of the feasibility
function increases as the proportion of violating samples decreases. To overcome
the safety paradox, we propose an algorithm called feasible dual policy iteration
(FDPI), which employs an additional policy to strategically maximize constraint
violations while staying close to the original policy. Samples from both policies
are combined for training, with data distribution corrected by importance sam-
pling. Extensive experiments show FDPI’s state-of-the-art performance on the
Safety-Gymnasium benchmark, achieving the lowest violation and competitive-
to-best return simultaneously.

1 INTRODUCTION

Reinforcement learning (RL) has achieved promising performance in many challenging tasks such
as video games (Vinyals et al., 2019)), board games (Schrittwieser et al.l 2020), autonomous driv-
ing (Wurman et al., [2022)), and drone racing (Kaufmann et al., 2023). RL solves an optimal control
problem by finding a policy that maximizes the expected cumulative rewards. However, real-world
control tasks often demand more than reward maximization—they require strict adherence to safety
constraints, where even rare violations can lead to catastrophic outcomes. Achieving zero constraint
violations in these tasks remains a significant challenge.

A key element in safe RL is the feasibility function, which evaluates whether a state can satisfy safety
constraints over an infinite horizon. This function not only defines the feasible region of a policy but
also serves as a safety-oriented learning target. Examples of feasibility functions include cost value
function (CVF) (Altman, [2021]), Hamilton-Jacobi (HJ) reachability function (Bansal et al., |2017)),
and constraint decay function (CDF) (Yang et al., 2023b). These functions are typically learned
through fixed-point iteration based on their risky self-consistency conditions (Lil 2023} [Yang et al.,
2024)—analogous to the Bellman equation for value functions. These conditions establish recursive
relationships between temporally adjacent states, allowing feasibility functions to capture long-term
safety at all states.

While learning-based feasibility functions are crucial in ensuring safety, we discover that they in-
herently prevent policies from achieving zero violations due to a phenomenon we term the safety
paradox. Our analysis reveals that as policy safety improves and violating samples become sparser,
the estimation error of the feasibility function increases. This impairs the accuracy of the feasible
region and introduces bias into the policy’s learning target, ultimately undermining safety perfor-
mance. This phenomenon differs fundamentally from the sparse reward problem in standard RL,
where achieving higher rewards directly facilitates further reward improvement. In contrast, the
safety paradox forms a self-defeating cycle where improving safety degrades the learning condi-
tions for further safety optimization.

Existing methods for addressing sample sparsity, which we categorize as passive and active, are
inadequate for resolving the safety paradox. Passive methods such as prioritized experience replay
(PER) (Schaul et al., 2015) reweight samples in the replay buffer to emphasize critical transitions.
However, their efficacy is limited when critical samples are inherently rare, and they fail to break the
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safety paradox’s self-defeating cycle. Active methods such as curiosity-driven exploration (Pathak
et al., 2017) modify the environment or agent behavior to generate critical samples. While poten-
tially more effective, these methods induce behavioral shifts that can steer the policy away from
optimality, and their implementation often requires intrusive task modifications, which may not be
feasible in practice.

In this paper, we propose an algorithm called feasible dual policy iteration (FDPI), which breaks
the safety paradox by incorporating an additional dual policy designed to maximize constraint vio-
lations. This approach effectively increases the proportion of constraint-violating samples without
increasing the total number of samples, thereby reducing feasibility function estimation error and
pushing policy safety to a higher level. A challenge of this approach is the distributional shift that
occurs when combining data from both policies. We address this through an importance sampling
(IS) scheme that approximates the marginal state distribution with a truncated trajectory distribu-
tion. We further introduce KL divergence constraints between the two policies to ensure numerical
stability of IS. Extensive experiments on the Safety-Gymnasium benchmark demonstrate FDPI’s
state-of-the-art performance.

2 RELATED WORK

Safe RL algorithms A prominent class of safe RL algorithms is called iterative unconstrained RL,
which transforms the safe RL problem into a series of unconstrained RL problems, typically via the
method of Lagrange multipliers (Paternain et al., 2019). Under this framework, researchers explored
different kinds of feasibility functions, including CVF (Chow et al.l 2018} [Tessler et al., [2018), HJ
reachability function (Yu et al., [2022; 2023)), and control barrier function (Yang et al., [2023ajb).
Another class is called constrained policy optimization, which incorporates safety constraints in
each iteration of policy optimization. The most representative example is CPO (Achiam et al.,|2017),
which adopts a trust region update with linearized objective and constraints. Several improvements
over CPO have been proposed, including projection methods (Yang et al.,[2020;/2022) and first-order
methods (Zhang et al.,[2020; 2022). For finite-horizon problems, Zhao et al.|(2023)) and |Zhao et al.
(2024) convert state-wise constraints to cumulative constraints and bound the worst-case violation.
A common practice of these algorithms is to estimate feasibility functions from sampled data.

Critical sample augmentation in RL  There are two kinds of methods to increase critical samples
in RL: passive methods and active methods. Passive methods focus on biasing the replaying process
to prioritize experiences that are likely to be more informative for learning. A representative exam-
ple is PER (Schaul et al., |2015), which replays samples with larger temporal difference (TD) errors
more frequently. Other methods include prioritizing similar experiences to the current policy (No-
vati & Koumoutsakos}[2019) and modifying certain information in replayed samples (Andrychowicz
et al.,[2017). Active methods involve modifying the environment or the agent’s behavior to deliber-
ately generate critical samples. Some algorithms employ adversary policies to generate challenging
scenarios (Pinto et al.l |2017; Feng et al.| 2023)), while others use auxiliary rewards to guide explo-
ration (Jaderberg et al., 2016; [Pathak et al., 2017). Unlike these methods, our algorithm requires no
environment modifications or reward shaping, maintaining the integrity of the original task. There
are also methods that address the sample sparsity challenge through representation learning, which
are discussed in Appendix

3 PROBLEM STATEMENT

Safe RL addresses control problems in which an agent aims to maximize long-term rewards while
strictly adhering to safety constraints at every step. We consider a Markov decision process (MDP)
(X, U, pinit, P, 1,7y), where X C R™ is the state space, Y C R™ is the action space, piniy € AX is
the initial state distribution, P : X x U/ — AX is the transition probability, r : X x U — R is the
reward function, and 0 < y < 1 is the discount factor. We consider a stochastic policy 7 : X — AU,
whose state-value function is defined as V™ (z) = E >, o v'r(z, us) |z = z|. Safety is specified
through a state constraint expressed as an inequality h(z) < 0, where h : X — R is the constraint
function. The state constraint must be satisfied at every step:

h(z;) <0, Vt=0. (D
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The goal of safe RL is to find a policy that maximizes the state-value function while satisfying the
state constraints over an infinite horizon.

3.1 FEASIBILITY IN SAFE REINFORCEMENT LEARNING
Feasibility is a core concept in safe RL that describes the long-term safety of a state. To formally
define feasibility, we first introduce the reachable set.

Definition 1 (Reachable set). The reachable set of a policy 7 from a state x € X, denoted R™(x),
is the set of states that can be reached with non-zero probability under 7 in finite time:

R™(x) = {2’ € X|3t >0, s.t. P(x; = 2’|z, 7) > 0}, )
where P(xy = a'|x, ) is the probability of reaching x’ at time t starting from x and following .
The reachable set includes all states that will possibly be visited by 7 given an initial state. Feasibil-

ity is defined based on whether all states in the reachable set is constraint-satisfying.

Definition 2 (Feasible region). The feasible region of a policy m, denoted X, is the set of states
from which every reachable set under m satisfies the safety constraint:

X" ={z € X|Va' € R™(z),h(z") < 0}. (3)

In safe RL, we need to find a policy whose feasible region includes all possible initial states. This
requirement can be expressed as a single constraint by the feasibility function.

Definition 3 (Feasibility function). Function F™ : X — R is a feasibility function of w if its zero-
sublevel set equals the feasible region of m, i.e., {x € X|F™(z) <0} = X".

An example of a feasibility function is the CDF (Yang et al., |2023b).

Definition 4 (Constraint decay function). The CDF of a policy 7 is defined as

F™(z) =E;nn {’yN(T)|x0 = x} , 4)

where v € (0,1) is the discount factor, T = {xg,u1,21,u1, ...} is a trajectory sampled by m, and
N(71) € NU {+o00} is the time step of the first constraint violation in T.

In the rest of this paper, we use CDF as a concrete example of a feasibility function. However,
our analysis also applies to other feasibility functions with similar properties such as CVF. The
feasibility function is also called a constraint aggregation function (Yang et al., 2024) because we
can replace the original infinitely many constraints (I)) with a single one expressed by the feasibility
function, leading to the following safe RL problem:

max Epmpm VT ()] 8.t Egp [F7 (2)] < 0. Q)

4 SAFETY PARADOX

A core problem in safe RL is to estimate the feasibility function. We discover that as the policy
becomes safer, the estimation error of the feasibility function tends to increase. This makes the
identified feasible region less accurate, which, in turn, harms policy update and deteriorates policy
safety. This phenomenon is called the safety paradox.

4.1 ESTIMATION ERROR BOUND OF CDF

In safe RL, the CDF is computed by solving its risky self-consistency condition with fixed-point
iteration (Yang et al., |2023b):

F™ () = EorwP(fa,u)umn(clo) [6(2) + (1= c(2))vF7 ()], (6)

where ¢(z) = I[h(xz) > 0] is an indicator function for constraint violation. In practice, the expec-
tation above is estimated by sample average. Equation (6] can be viewed as a one-step TD estimate
of the CDF. Since TD involves bootstrapping of the estimated CDF itself, the analysis of estimation
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error becomes complicated. Here, we consider a Monte Carlo (MC) estimate instead for theoret-
ical simplicity: F™(z) = 1/K Zf{:l AN where 11,79, ..., Tk are K independent trajectories
starting from x sampled by 7. We discuss extension to TD estimate at the end of Section[4.2]

An inaccurate CDF leads to incorrect identification of the feasible region, i.e., feasible states
misidentified as infeasible and vice versa. To minimize misidentification, we must bound the es-
timation error. We show that the bound of the relative estimation error of CDF is related to the
expectation and variance of the number of steps to the first violation. Before that, we assume that
these two quantities are finite.

Assumption 1. For any infeasible state x € X under policy m, let u%;(x) = Errn[N(7)|x0 = ]
and 0% (x) = Var, .- [N(7)|zo = x]. We have 7 (x) < +oo and o5 () < +00.

Theorem 1. For any infeasible state x € X under policy T, let 2 T(z) be the MC estimate of the

CDF. Under Assumption the expected relative estimation error is bounded by:

F7(z) — F™(x)
Fr(z)

1 2,7
] < ol + P2 )

EleT27~~~;7K

Proof Sketch. Construct two auxiliary functions H™(z) = *~¥(®) and H™(z) = ~*~() where
ay(z) = 1/K ZZK:1 N(7;). Use Taylor expansion to obtain the bounds of |F™(z) — H™(z)],
|F™(2)—HT™ ()], and |[H™ (2)— H™ (z)|. The result follows by the triangle inequality. See Appendix
[A-T]for the complete proof. O

The number of samples K in the error bound (7)) is related to the batch size and is a constant through-
out training. The only two variables relevant to the error bound is the expectation and variance of
steps to violation. While it is obvious that the expectation increases as the policy becomes safer,
how the variance changes is not easily observed and requires further analysis.

4.2 RELATIONSHIP BETWEEN POLICY SAFETY AND ESTIMATION ERROR BOUND

In this section, we show that under mild assumptions, the variance of steps to violation increases
as the policy becomes safer. To begin with, we introduce a function to measure the “distance” to
constraint violation.

Assumption 2. There exists a continuous function D : X — R, such thatVx € X, D(z) > 0 and
D(z) =0 < h(z) > 0.

Examples of D include the Euclidean distance to obstacles in collision avoidance tasks, and the
margin to speed limit in velocity-constrained tasks. With a distance function, we can define what a
“safer” policy is.

Definition 5. A policy @' is safer than a policy  in a state x if P(D(x!,) < D(z)) < P(D(z}.) <
D(x)), where x!. ~ pr(-|x) is the next state under .

A safer policy has a lower probability of decreasing the distance to violation. This definition natu-
rally connects to the proportion of violating samples: if the distance to violation decreases slower,
the number of steps to violation will be larger, resulting in fewer violating samples. The following
assumption requires the continuity of D and the system dynamics. This holds in most systems,
where the changing rate of states and the control inputs are bounded.

Assumption 3. The difference of D between any two adjacent states is bounded by § > 0, i.e., for
any x,u,x’ such that p(z'|x,u) > 0, it holds that |D(x) — D(z')| < 4.

We split D(z) into a sequence of consecutive intervals: [D(z) — i, D(x) — (i — 1)d),i =
1,2,...,m(z)—1, where m(z) = [D(x)/d]. With Assumption [3] the agent must visit the (i — 1)th
interval before visiting the ith interval. We denote N/ () as the first-visiting time from the (i — 1)th
interval to the ith interval. Note that D(x) is not necessarily monotonic, i.e., the agent may revisit a
stage where it has visited before. N7 () is counted until the first time the next stage is visited. The
following assumption requires that for states far from violation, N7 (z) is weakly correlated with
the sum of the rest first-visiting times.
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Assumption 4. There exists M > 0, such that for all x with m(z) > M, it holds that
Cov (NF (@), S5 N7 (2))| < Var(NF (@) /2.

?

The intuition behind this assumption is that for a state far from violation, the initial step NT (z)

is primarily influenced by local dynamics. In contrast, the subsequent trajectory ZZ";(; ) NI (z) is
governed by future stochastic events. Their correlation is weak relative to the variability of the initial
step itself. With the above assumptions, we have the following theorem.

Theorem 2. Let 7, 7' be two policies. Consider a set of states X p; C X such that for all x € Xy,
(1) x is infeasible under both w and 7', (2) m(z) > M, (3) min{P(D(z,) < D(x)), P(D(z..,) <

D(x))} > 0.5. UnderAssumptions if ™ is safer than 7 in all states in X s, we have 012\;”/ (z) >
o%™ (), Yz € Xar.

Proof Sketch. First prove that for a given policy, a state further to violation has a larger variance by
stage decomposition. Then, prove that in a given state, a safer policy has a larger variance by law of
total variance. Finally, extending this result to all states in X 5, proves the theorem. See Appendix
[A.2]for the complete proof. O

Remark The condition (3)in Theorem|2|follows from the requirement of finite mean and variance.
To ensure the violation happens in finite steps, the probability of approaching the violation, i.e.,
d(z') < d(z), must be larger than that of moving away from it in each step. Theorem 2]tells us that
a safer policy (in the sense of lower probability of approaching violation) has larger variance of steps
to violation in infeasible states far from violation under mild assumptions. Combined with Theorem
[I} we conclude that a safer policy leads to a larger CDF estimation error bound. To help better
understand this result, we give an intuitive example of a one-dimensional random walk in Appendix
[A73] It is worth mentioning that although the above analysis is based on MC estimate, it can be
extended to TD estimate. The core reason is that the increased variance identified in Theorem
propagates to the TD target. The analysis can also be extended to the CVF widely used in the
constrained MDP. A detailed explanation of the extensions can be found in Appendices[D.2]

5 FEASIBLE DUAL POLICY ITERATION

The only way to break the safety paradox is to increase constraint-violating samples. We achieve
this by training an additional policy, called the dual policy, that intentionally violates the constraint.

5.1 COLLECTING MORE VIOLATING SAMPLES WITH A DUAL POLICY

We denote the dual policy as 74, and for distinguishing purposes, we call the original policy the
primal policy and denote it as 7,. We train a dual feasibility function G4(z,u) = E,wr, [vV () |zo =
x,up = u| to help optimize the dual policy. Compared with Fy, G4 further fixes the current action
uo and computes the feasibility value starting from the state-action pair (x,u). The dual policy is
updated by maximizing the dual feasibility function:

max Ey yon, [Ga(z, u)].
™d

Both the primal policy and the dual policy are used to sample data. In practice, the sampling ratio is
controlled by a hyperparameter called the dual threshold d, which is fixed at 0.95 in our experiments.
If the running averaged proportion of feasible states is greater than d, the dual policy will be activated
and collect half of the samples. We ensure that the total number of samples used by our algorithm,
i.e., collected by both the primal and dual policies, equals that of other algorithms.

5.2 CORRECTING SAMPLE DISTRIBUTION VIA IMPORTANCE SAMPLING

The problem of directly using data collected by the dual policy is that the data distribution for
computing the expectation in loss functions is shifted. Take the loss function of the primal feasibility
function as an example:

2
LGP = E.’IJNZ)WP,UN‘ITP(".’L‘),"I/NP(".’L‘,u),u/’\/ﬂp('ll'/) [(Gp(xau) - (C(IL‘) =+ (1 - C(JZ))"}/GP(IE/, u/))) .
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Among the four random variables involved in the expectation, = and w have shifted distributions
because some of their samples are collected by the dual policy. To solve this problem, we use IS
to correct their distribution. The IS ratio for u can be readily computed by the ratio of probabilities
under two policies. The IS ratio for  involves the marginal state distribution under a policy, which
can be computed as: p™(z) = > oy Pz = z|m) = Y ;00 >, I[lay = x]p™(7), where p™(7) is
the probability of trajectory 7 under 7y4:

P™(7) = panic(wo) Ta(uo|wo) P (1|0, uo)wa(ur 1) - - - = pinit(0) [ [ wa(uelae) P(wigalae, ue).
t=0

To correct the distribution of = from p™ to p™, we need to insert an IS ratio rpq(x) = p™(x)/p™ (x)
into the loss function. However, directly computing the ratio is intractable because we cannot sum
over all possible trajectories. Instead, we approximate the ratio with a single trajectory 7 that con-

tains x:
00 t(z)

() ~ p(r) _ I mp(ulee) 11 mp(uslzs) (@), )

pr(r) g malwelw) S ma(usles)

where the second approximation operation truncates the product up to ¢(x), which is the appearing
step of . This is because future actions beyond ¢(x) do not affect the probability of reaching x, and
truncating them reduces the variance of IS. To additionally account for the distribution shift of w,
we define the approximated IS ratio for a state-action pair as 7pq(z, u) = Fpa(z)mp(u|x) /7 (ulx).
The approximated IS ratios from the primal policy to the dual policy, 74,(x) and 74p(2, u), can be
defined similarly.

The sequential multiplication in the IS ratio can easily cause numerical underflow since the proba-
bility of an action under another policy is usually lower than that under the behavior policy. We find
that this problem can be effectively alleviated by constraining the KL divergence between the two
policies. Observe that

ma(u|z)

D (7allmp) [2] = By () {log

] <) — ]Euwm(.‘w) |:10g 7Tp(u|$):| > 4.

mp(ulz) ma(ulz)

The KL divergence constraint ensures that the expected logarithm of each term in the product (8)) is
not too small, thus preventing the IS ratio from collapsing to zero.

5.3 OVERALL ALGORITHM

Our algorithm, called feasible dual policy iteration (FDPI), follows the framework of feasible policy
iteration (FPI) proposed by |Yang et al.| (2023c). On the basis of FPI, we combine the maximum
entropy RL method from soft actor-critic (SAC) (Haarnoja et al., 2018)) and name the resulting al-
gorithm as SAC-FDPI. Our algorithm learns two action-feasibility networks G/, 4,, Gd,¢,, an action-
value network @, and two policy networks Tp,6y> Td, 04 where ¢, w, and 6 denote their parameters.
We additionally introduce a hyperparameter ¢ > 0 and approximate feasibility by G (x,u) < e.
This is because, in practice, approximation error causes the CDF to be positive almost everywhere
since its learning target is non-negative. This approximation is valid under the assumption that the
steps to violation is uniformly bounded (Thomas et al., 2021). In our experiments, we find that a
fixed value of € = 0.1 works well for all environments.

The loss functions for the action-feasibility networks are

. 2
Loy (04) = E |74 (@, 0) (Gipoy (2.0) =y, (.07, 0))?] ©)
where “#” stands for “p” or “d”, 7, (x,u) = 7pa(x,u) for (x,u) sampled by 74, and equals 1 for
(x,u) sampled by mp, 7#4(z, u) is defined similarly, and
yay (@, 2, u') = o) + (1 = c(2))VGy g, (2, ),

where ¢ denote the parameters of the target networks. The loss functions for the action-value net-
works are

Lo(w) = E [fy(w,u) (Qulz,u) — yo(z, @', u'))’]

yQ(x,x’,u’) = T(I,U) + ’Y(Q@(I‘/,u/) - alog ﬂ-p(u/|x/))7

(10)
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where « is a learnable parameter for entropy temperature. The primal policy network is updated by
maximizing the action-value network inside the feasible region and minimizing the primal action-
feasibility network outside the feasible region. The loss function is as follows:

L., (6,) =E [fp(x) (]If[x,u](a log mp 0, (u]®) — Qu(x,u)) + (1 — Iz, u])Gp7¢p(x,u)))] , (1D

where Iz, u] = 1if G} 4 (z,u) < € and 0 otherwise. The dual policy is updated by maximizing
the dual action-feasibility network under the constraints of KL divergence. The constraints are
addressed by the Lagrange multiplier method. The loss function for the dual policy is as follows:

Lz, (0a) = —E [fa(2)Gap, (2, u)] + AapDxr(7a,0,[7p,0,) + Apa Dki(Tp 6, 17a0,)-  (12)
The Lagrange multipliers Ag, and Aqp are updated by:

)\dp — ()\dp +n (DKL<7Td79dH7Tp,9p> — (5)>+ , /\pd — ()\pd +n (DKL(Wp,Gp”ﬂ'd,&d) — 5))+ , (13)

where 7 is the learning rate and (-) 1 denotes the projection to R>. The pseudocode of our algorithm
is in Appendix

6 EXPERIMENTS

We aim to answer the following questions through our experiments:

Q1 How does SAC-FDPI perform in terms of safety and return compared to existing algorithms?
Q2 Does learning an additional dual policy help increase violating samples?

Q3 Does the estimation error of the feasibility function decrease with more violating samples?

6.1 EXPERIMENT SETUPS

Environments Our experiments cover 14 environments in the Safety-Gymnasium benchmark (Ji
et al., 2023a)), including navigation and locomotion. The navigation environments include two
robots, i.e., Point and Car, and four tasks, i.e., Goal, Push, Button, and Circle, with all difficulty
levels set as 1 and constraints set as default. The locomotion environments include six classic robots
from Gymnasium’s MuJoCo environments, i.e., HalfCheetah, Hopper, Swimmer, Walker2d, Ant,
and Humanoid, with maximum velocity constraints.

Baselines We compare our algorithm with a wide
variety of mainstream safe RL algorithms im- Fﬁ—
plemented in the Omnisafe toolbox (Ji et all

2023b), including iterative unconstrained RL algo-

o
3

o
o

rithms RCPO (Tessler et al} 2018), PPO-Lag (Ray| £ os + +
et_all 2019), and SAC-Lag (Ha et al| 2021), ¢ & cro

and constrained policy optimization algorithms £ ** 8 RCPO
CPO (Achiam et al.,|2017), FOCOPS (Zhang et al., E 03 % = Zﬁiops
2020), and CUP (Yang et al.| 2022)). In addition, we PPO-Lag
combine the state-of-the-art unconstrained RL algo- ~ °? % i
rithm DSAC-T (Duan et al.| 2023)) with the penalty 04 % SAC-FPI
method and name the resulting algorithm DSAC-T- L SRR
Pen. We also include a version of our algorithm 0 102

without the dual policy, named SAC-FPI. Hyperpa- Normalized cost

rameters for all algorithms are detailed in Appendix

[C1 Figure 1: Normalized cost-return plot. Error

bars represent 95% confidence intervals.
6.2 EXPERIMENT RESULTS

Cost-return performance In safe RL, we evaluate algorithms by two metrics: (1) episode cost,
representing the average number of constraint-violating steps per episode, and (2) episode return,
representing the average cumulative rewards per episode. To perform a comprehensive evaluation,
we place the scores of all algorithms in a cost-return plot in Figure[T] The scores are first normalized
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by those of PPO and then averaged on all 14 environments. SAC-FDPI simultaneously achieves the
lowest cost and an almost tied highest return (with SAC-FPI) among all algorithms, demonstrating
its superior performance. We further plot the training curves of SAC-FDPI and six baselines across
eight environments in Figure 2] with remaining results in Appendix [C.2}] SAC-FDPI achieves near-
zero constraint violations on all environments while maintaining comparable or higher returns than
the baselines. Notably, SAC-FPI exhibits persistent cost spikes even at final training stages, while
SAC-FDPI maintains near-zero violations by continually feeding a controlled trickle of unsafe tran-
sitions through its dual policy. These results answer Q1.
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Figure 2: Training curves on eight environments in Safety-Gymnasium benchmark. The shaded
areas represent 95% confidence intervals over 5 seeds.
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Figure 3: Average proportion of violating samples in the replay buffer. The error bars represent 95%
confidence intervals over 5 seeds.
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Proportion of violating samples Figure [3|compares the average proportion of violating samples
in the replay buffer during the final 10% of training iterations for SAC-FPI and SAC-FDPI. It shows
that SAC-FDPI maintains a significantly higher proportion of violating samples than SAC-FPI—an
order of magnitude greater in most environments. SAC-FPI’s violation ratio falls below 1% in nearly
all environments, undermining the accuracy of its feasibility function and leading to the cost spikes
observed in its training curves. In contrast, SAC-FDPI’s dual policy mechanism ensures persistent
availability of a proper number of violating samples, which answers Q2. It is worth mentioning
that our method is designed for training in a simulator instead of the real world, and thus additional
violation does not cause real damage. A detailed discussion can be found in Appendix [D.3]
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10" 10 o'

10°
| l
10 II o' -
10 --II I I - 10" II I IIlI IIIIIII I III- = 10" IIIIIIII II'I

-1.00 -0.75 -0.50 uzs uuu 025 050 075 10 -1.00 -075 -0.50 025 uuo 025 050 075
Germ Germ

Frequency
Frequen;:y
Fre equengv
Frequen;y

Figure 4: Distribution of feasibility function estimation error after convergence.

Accuracy of feasibility function Figure[|compares the estimation error of the feasibility function
learned by SAC-FPI (blue) and SAC-FDPI (orange) in four environments. The errors are computed
on 100k states collected by the two policies after convergence. The true values of the feasibility
function are computed by definition on collected trajectories. It shows that SAC-FDPI produces a
sharp, symmetric peak tightly centered at zero, which is an evidence of low bias and estimation error.
In contrast, SAC-FPI exhibits flatter, more dispersed errors, reflecting the inflated estimation error
bound caused by vanishing violating samples under the safety paradox. An empirical evidence of the
relationship between violating samples and estimation error can be seen by combining Figures 3 and
4. Figure 3 shows that SAC-FDPI maintains about 10x more violating samples compared to SAC-
FPI in most environments. This richer violation data directly leads to significantly lower estimation
errors shown in Figure 4. These results support our theoretical analysis that richer violation data
leads to better feasibility estimation, answering Q3.

Exploration patterns To understand how the
dual policy specifically helps collect violating

samples, we visualize the trajectories of the pri- ® e O© ® L

mal policy and dual policy in Figure 5] The Py

primal policy conservatively steers around the @ : d. ._©
hazards so that no violation is incurred. In con- ®
trast, the dual policy augments the samples col- s U ® v
lected by the primal policy by deliberately cut-

ting through the hazards, injecting constraint- (a) CarGoal (b) PointGoal

violating samples while staying close to the pri-
mal policy. This richer mixture of safe and
unsafe data keeps the feasibility function well-
estimated, allowing the primal policy to con-
verge to higher performance and with lower
constraint violations.

Figure 5: Trajectories of primal policy (red) and
dual policy (cyan). Blue disks mark hazards, and
green cylinder denotes the goal.

7 CONCLUSION

This paper discovers a fundamental obstacle in safe RL called the safety paradox, where improved
policy safety leads to increased estimation error bound of the feasibility function, and ultimately
harms policy safety. To address this paradox, we propose FDPI, which introduces a dual policy
to maximize constraint violations while staying close to the primal policy through KL divergence
constraints. We incorporate IS to correct distribution shifts between two policies. Extensive ex-
periments on Safety-Gymnasium show that FDPI significantly increases violating samples, reduces
feasibility function estimation error, and achieves state-of-the-art performance.
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A  PROOFS

A.1 PROOF OF CDF ERROR BOUND

Theorem 1. For any infeasible state x € X under policy , let F“(z) be the MC estimate of the

CDF. Under Assumption[l] the expected relative estimation error is bounded by:

F™(z) — F™(x) 205" ()
Fr(x)

ETI sT2

sy TK

] < \/%Ilnvlo%(x) + (In7)

Proof. Construct two auxiliary functions

where

Perform a second-order Taylor expansion with the Lagrange remainder to HT™ (2):

A7 () = A5 4 45 - (1 (@) — iR () + 57 ()20 (@) — i ()

where M is a point between 7% (z) and u7, (x). Thus,

,yuN(r) ’

2
)

[H™(z) = H ()] = |y"V Iny - (i (2) - pf(2)) + ;7 (Iny)? (R (z) — pi (2))?

< Iy Iy - (AR (@) — pi (@) + 5 \7 (iny)? (4R (2) — ujy (2))?]

< VO Iy l|aR (@) — uf (@) + 5 (hw) (iR (2) = pi (@))%,

where the last inequality holds because v» < 1. Since the squared function (-)?
function, by Jensen’s inequality, we have

E[|i% (2) - ud ()] < EI(0F (@) - u5(2))?] = U@%X

Thus,

E[|H"(x) = H™ (2)|] < v**@ | Iny|E[| 4R (x) — pf ()] + 1(hfw)QE[(/l}Tv(w) — pi(x))’]

< —— |y 5o (x) + o (Iny)%o N (@).

2K

2l

For any trajectory 7;, perform a Taylor expansion to ™ (i)

; a7 (z 07 (x AT 1 i AT
YN = AR BN 0y (N () = i (2)) + 5™ (i) (N (73) = i (2)?,

where M is a point between N (7;) and 4% (). Then,

KZ,}/ (13) _ N(z)

BT () —

)

is a convex

(14)
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Using the relationship between sample variance and variance:

we have

15)

For any trajectory 7, perform another Taylor expansion to ™ (7):

; TN = T 1 ; T
AN = R @) R @ Iy (N(7) — pf(2)) + §7M’ (Inv)*(N () — i (2))?,

where M is a point between N (7;) and u73 (). Then,
[F™ (@) ~ H (@) = [Bpy ) = 5

V& @ Iny B[N (1) — p (2 )]+%(lnw)21EhMi(N(n)—u}’v(w))2]

S (nPELM (N (7) — i ()]
< 5 (A E(N(r) - i (2))?
L0203 @),
Thus,

E[|F™(x) — H™ ()] <

Combining (T4), (T3), and (T6), we have
E[|F™(x) — F™(2)[] = E[|F™(z) — H™ () + H"(x) — H™ (z) + H™ () — F™(z)|]
<EHF”( ) — H™(2)|| + E[|H™ (z) — H™ (2)[] + E[|[H" () — F" ()]]

M@0 (@) + Q—an? o} ()

(Inv)20y™ (2). (16)

l\D\»—t

\Fllnvlv
+K2K (102037 (2) + 5 (1n7)%0%7 (@)

:\/?Ihwlw”fv @of () + (Iny)’oy (x)

Since v¥ is a convex function for € (0, 1), by Jensen’s inequality, we have
F7 (@) = ERV O] = 4500 = B (),

Thus,
F™(x) - F™(x) F7(z) — F™(x) 1 L0237 (@)
ol | S CON ) I ) i G e CON § RS o |
Fﬂ(l‘) - HW(I) — \/?' D’Y|0'N($(}) + ( DW) r}/ll«}{;(fr) )
which proves the theorem. 0

A.2 PROOF OF VARIANCE RELATIONSHIP

Theorem 2. Ler w, 7' be two policies. Consider a set of states Xy C X such that for all x € Xy,
(1) z is infeasible under both m and 7', (2) m(z) > M, (3) min{ P(D(z) < D(z)), P(D ( )<

D( )} >0.5. UnderAssumptlons ! if ' is safer than  in all states in X yr, we have o (m)
oy (x),Yz € X

14
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Proof. We prove the theorem in three steps.
Step 1: For a given policy, a state further to violation has a larger variance.

Let 24 be a state with D(x1) € [D(z), D(x) + 0). To violate the constraint starting from z ., the
agent first needs move to some state x_ with D(z_) € [D(x) — 4, D(x)). Thus, we have

m(z4)

N™(z4) = N[ (z4) + Z N (z4) = N[ (z4) + N7 (z-).

Take the variance on both sides:
07 (2+) = Var(N] (24) + N™(2_))

= Var(NT (24)) + 037 (2-) + 2Cov(NT (24), N™ ()

m(z4)

— Var(N7 (1)) + 037 () + 2Cov | N7 (w2), S N(as) | > 037 (am).
=2

The last inequality follows from Assumption [}
Step 2: In a given state, a safer policy has a larger variance.

Starting from z and taking one step under 7, the agent will arrive at a state z_ with D(z_) €
[D(x) — 4, D(x)) with probability P(D(x}) < D(x)) and arrive at a state x4 with D(z;) €
[(D(z), D(z) + §] with probability 1 — P(D(z).) < D(x)). Letp, = P(D(z}) < D(z)), we have
N7 () = {1 + N™(z_) W.p.pr
1+ N™(zy) wp.1l—pg
According to the law of total variance,

2,7

oN"(x) = proy (@-) + (1= pr)oy" (w4) + pr(l = pr) (R (@) — pRe(24)).
Consider a policy 7 that is safer than 7 in x and identical to 7 in all other states, i.e., 7 only modifies
the action in x and follows 7 thereafter. We have

Since 03" (z_) < 03" (), we have

proy (w-) + (1= pr)oy" (24) = proy™ (z-) + (1 = pr)oy™ (z+).
Since p, > p7 > 0.5, we have

pa(l = pr)(uR (2-) = iR (24))* = pr(1 = pr) (R (2-) — pRy (z4))*.
Summing the above two inequalities, we have,

012\}7}(33) > Ui}” (z).

Step 3: For all states in X, a safer policy has a larger variance.

A safer policy can be obtained by modifying the actions state by state. Each time we modify the
action in a single state, we obtain a safer policy in that state. The variance in that state increases,
and the variance in other states remain unchanged. After modifying the actions in all states in Xy,

we obtain the safer policy 7’ with 012\}”/ (z) > o%™ (x), Y& € X, which proves the theorem.
Note that modifying the actions state by state is just a technique to facilitate the proof. It is not
required in the actual policy update. The policy can be updated “globally” at once, which is a

common practice for function approximated policies. The intermediate “virtual” policies, with each
one safer in one state, are constructed only for the proof and do not need to be found in practice. [
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A.3 CASE STUDY: ONE-DIMENSIONAL RANDOM WALK

Consider a one-dimensional random walk where the state space X = Z and the action space U =
{—1,1}. The initial state is fixed at z = 0, and the transition dynamics follows =’ = z + . In
each step, the policy chooses u = 1 with probability p, and w = —1 with probability 1 — p. We
require p > 0.5 to ensure finite expectation and variance of steps to violation. The state x = L > 0
is constraint-violating, and every time the agent reaches this state, it is reset to x = 0. Let IV be
the number of steps to the first violation, with its expectation and variance denoted as y and o3,
To measure policy safety, let r be the expected proportion of violating samples under continuous
sampling. It is easily observed that = 1/u. Our aim is to find the relationship between r and
o2

Observe that NV can be decomposed as the sum of L random variables: N = LM, where M is
the number of steps to the first time the agent visits the step on its right. This is because going
from z = 0 to z = L can be decomposed as going to the step on the right L times. We derive the
expectation and variance of M, denoted as s and 012\4, respectively. Consider the following two
cases:

1. With probability p, the agent moves right and reaches « + 1 in one step.

2. With probability 1 — p, the agent moves left to x — 1. Now, the agent must first return to x and
then proceed to x + 1. The expected number of steps of returning to  from = — 1 is the same as
that of moving from x to = 4 1, which equals j5s. Thus, the total expected number of steps in
the case is 1 + 2.

Thus, the expectation pi, satisfies
par =p -1+ (1 =p) - (14 2pn),

which gives
1

Hr = 2]37_1

To derive the variance of M, first consider the second-order moment E[M?2]. Following the above
analysis, we have
E[M?)=p-1°+ (1 —p) - E[(1+ M+ M)?],

where M’ is the number of steps to move from 2 — 1 to z for the first time. Since M’ and M are
i.i.d., we have
E[(1+M +M)*=E[1+2(M + M)+ (M + M)?
=14 4up +E[(M + M)?]
=1+ 4up +E[M? +2M'M + M?]
=1+ 4ups + 2E[M?] + 243,
Thus,
E[M?) =p+ (1 —p)- (1 + 4 + 2E[M?] + 2443)).
Solving for E[M?]:

1+4(1 = p)um +2(1 = p)ud,

E[M?] =
Thus, the variance is
4p(1 —p)
2 2 2 _
o = B[M?] = pyy = (2p —1)3"

Since N = LM, by the property of the summation of random variables, we have

1
UN 1238 %1 )
4p(1 —p)
2 _r2. 2 __ 2
UN—LUM—W-L.
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With r = 1/, we have
2p —1
L=2p—1Dpun = pr :

Thus,

g2 _w=p) (2p—1)* dp(l—p) 1
N7 (op—1)3 72 2p—1 12

The above equation reveals that as the policy becomes safer, the variance of steps to violation in-
creases. Combining with the error bound in Equation (7)), we conclude that a safer policy leads to a
higher relative estimation error bound.

B PSEUDOCODE

Algorithm 1: Soft actor-critic with feasible dual policy iteration (SAC-FDPI)

Initialize: Network parameters ¢, ¢4, w, 0, 0. IS ratios 7y, = 7,q = 1. Replay buffer D = 0.
Feasibility threshold d = 0.95.

for each iteration do

// Sample with primal policy

Sample action up, ~ 6,5

Get next state «’, reward 7, and cost ¢ from environment;

Store transition in replay buffer D < D U {(z,u, 2’, 7, ¢, fap) }5

Update IS ratio 7'y 4 7ap - 7a(u|x) /7, (u|x) or 7y < 1 if episode ends;

if Running averaged proportion of G,(x,u) < € greater than d then

// Sample with dual policy

Sample action 74 ~ g,;

Get next state =/, reward 7, and cost ¢ from environment;

Store transition in replay buffer D < D U {(z,u, 2’, 7, ¢, fpa) }5

Update IS ratio 7pq 4= pa - 7p(u|x) /7 (u|x) or 7pq <= 1 if episode ends;

else

// Sample with primal policy
Repeat Lines 2-5;

end

// Update network parameters

Update primal action-feasibility network ¢, <— ¢, — 1V L, (#p); // Equation
Update dual action-feasibility network ¢4 <— ¢g — 7V, Lg,(¢a); // Equation
Update action-value network w <+ w — nV,, Lo (w); // Equation
Update primal policy network 6, <— 6, — nVg, L (6,); // Equation
Update dual policy network 64 < 64 — nV g, L, (64); // Equation
Update Lagrange multipliers by Equation ;

end

17
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C EXPERIMENTS

The Safety-Gymnasium benchmark (J1 et al.| [2023a) and the Omnisafe toolbox (J1 et al., 2023b)) are

both released under the Apache License 2.0.

All experiments are conducted on a workstation equipped with Intel(R) Xeon(R) Gold 6246R CPUs
(32 cores, 64 threads), an NVIDIA GeForce RTX 3090 GPU, and 256GB of RAM. A single ex-
perimental trial—comprising one environment, one algorithm, and one random seed—takes about 2
hours to execute. Executing all experiments with a properly configured concurrent running scheme

requires approximately 400 hours.

C.1 HYPERPARAMETERS

Table 1: Hyperparameters

Category Hyperparameter Value
Shared Number of vector environments 2
Number of samples per iteration 2
Number of updates per iteration 1
Replay buffer size 2e6
Batch size 256
Reward discount factor 0.99
Cost discount factor 0.97
Cost limit 0
Actor learning rate le-4
Actor network hidden sizes (256, 256)
Actor activation function ReLU
Critic learning rate le-4
Critic network hidden sizes (256, 256)
Critic activation function ReLU
Network weight initialization method  Truncated normal
Optimizer Adam
Target network soft update weight 0.005
Maximum gradient norm 40
SAC Initial entropy temperature 1.0
Target entropy — dim(U)
Entropy temperature learning rate le-4
Penalty Penalty coefficient 1.0
Lagrangian Initial multiplier 0.0
Multiplier learning rate le-4
Multiplier update delay 10
FDPI Primal policy step per iteration 1
Dual policy step per iteration 1
Feasibility threshold e 0.1
Maximum KL divergence § 5.0

C.2 ADDITIONAL RESULTS

18
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Figure 6: Training curves on all 14 environments in Safety-Gymnasium benchmark. The shaded
areas represent 95% confidence intervals over 5 seeds.
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Table 2: Average cost and return in the last 10% iterations

AntVelocity CarButton CarCircle
Algorithm Cost Return Cost Return Cost Return
CPO 0.03+0.01  —3227.47+1314.35 4.48+1.06 —1.57+0.83 2.20+2.19 5.15 4+ 3.28
RCPO 0.87+0.29 2745.86 + 208.04 11.27 +£2.83 1.06 £0.17 5.31 £ 3.00 16.10 + 1.46
FOCOPS 1.00 +1.34 429.32 + 389.58 19.45 + 4.80 0.58 £0.14 6.49 +2.84 15.12+0.88
CUP 0.84 +0.24 1415.50 + 127.41 18.59 +19.44 0.14+0.21 4.46 +2.68 12.29 +1.59
PPO-Lag 2.324+0.31 2507.59 £ 79.48 38.50 £+ 10.90 0.944+0.23 14.38 £15.54 13.63 £0.85
SAC-Lag 0.04 £+ 0.05 2859.28 + 122.94 0.31 +0.16 —0.66 + 0.30 0.00 £ 0.00 0.14 4+ 0.08
FCSRL 2.13+0.86 2747.50 + 445.29 1.28 +1.08 —1.10+£0.94 8.73 £10.62 3.18 £5.16
DSAC-T-Pen  0.02 + 0.02 2680.46 + 97.58 0.80 + 0.39 0.59 +0.34 0.71+0.37 15.73 £ 0.65
SAC-FPI 0.16 +0.19 2863.46 + 85.96 3.71+0.57 2.40 £+ 0.50 1.74 £0.81 17.02 + 1.39
SAC-FDPI 0.03 £ 0.02 2764.44 + 136.64 2.68 +£1.39 1.83 +£0.23 0.60 + 0.65 14.72 £1.36
CarGoal CarPush HalfCheetahVelocity
Algorithm Cost Return Cost Return Cost Return
CPO 1.27+1.09 3.12£0.99 0.59 +0.53 1.60 £0.47 0.03 £0.02 855.39 & 239.61
RCPO 3.54+1.31 22.06 £+ 0.26 3.70 £ 2.75 3.42 £+ 0.56 1.29 +£0.38 2389.86 £ 341.21
FOCOPS 11.57 £ 17.86 8.68 & 3.87 2.63 +1.99 1.324+0.34 34.15 + 14.09 2606.12 £ 214.08
Cup 1.23+1.07 5.35 + 1.82 0.96 + 0.61 1.68 +0.71 0.91+0.90 1619.77 &+ 259.74
PPO-Lag 6.50 + 8.06 11.03 £4.51 3.04+2.35 2.31+0.63 2.67 +1.54 2234.27 £+ 499.64
SAC-Lag 0.07 +0.03 30.33 + 3.40 0.24 +0.16 13.95 £1.22 0.00 + 0.00 2783.54 + 26.26
FCSRL 0.27 +£0.52 29.86 +1.48 13.15 £ 25.43 13.13+£1.31 0.59 + 0.63 2791.22 £ 75.79
DSAC-T-Pen  0.12+0.16 34.19+0.29 0.21 £0.17 14.02 £ 1.16 0.00 £ 0.00 2760.54 + 14.76
SAC-FPI 0.40 £ 0.32 3444+ 0.34 3.62+2.51 17.21+1.18 0.00 £ 0.00 2809.33 £+ 23.42
SAC-FDPI 0.04 +0.03 33.73+0.53 0.29+0.14 17.55+1.73 0.00 £ 0.00 2831.97 £9.13
HopperVelocity Humanoid Velocity PointButton
Algorithm Cost Return Cost Return Cost Return
CPO 0.00 + 0.00 304.43 £+ 243.06 0.00 + 0.00 250.84 £ 18.05 2.16 +£0.70 —1.08 £0.64
RCPO 4.41+2.34 1236.59 + 471.32 0.28+0.10  3862.34 + 405.31 7.544+2.71 2.51 4+ 0.40
FOCOPS 17.50 £10.19 1587.08 + 48.20 0.35+0.13 562.29 £ 74.98 8.80 £ 3.58 1.19+£0.63
Cup 2.09 +3.24 873.75 & 445.49 0.06 +0.03 482.02 £ 34.07 9.72+£7.64 0.15+0.50
PPO-Lag 3.29+1.87 1508.78 + 90.96 0.224+0.07  1300.45 + 425.44 11.60 + 5.85 1.19 £ 0.36
SAC-Lag 1.19+2.34 1032.86 + 35.68 0.10+£0.09  5212.90 +110.20 0.23 +0.26 —0.50+0.35
FCSRL 0.29+0.29 1163.18 + 133.00 6.63 £ 3.40 895.86 £ 134.69 1.07£1.71 —0.09 +0.52
DSAC-T-Pen  0.00 £ 0.00 1271.16 + 229.74 0.05+0.05  5229.07 + 176.58 0.69 +0.34 2.06 +0.63
SAC-FPI 0.00 + 0.00 1131.13 + 316.65 0.09+0.08  5351.34 + 183.96 1.76 £ 0.54 3.92 +1.86
SAC-FDPI 0.00 + 0.00 1285.17 + 289.89 0.01+0.01  5269.77 + 201.84 0.72+0.43 2.89 +0.89
PointCircle PointGoal PointPush
Algorithm Cost Return Cost Return Cost Return
CPO 0.40 + 0.30 20.14 £ 5.63 0.90 +0.45 1.45+0.99 0.60 + 0.66 0.49 £0.75
RCPO 4.59 +1.77 46.77 £1.11 4.08+1.18 13.14 £1.92 1.96 £+ 0.81 7.24£1.10
FOCOPS 5.28 £2.15 47.17 £ 0.44 3.16 £0.83 1.85+0.56 2.21+£1.18 1.14+£0.28
Cup 4.21+2.55 42.11+1.74 3.01+3.24 2.91+0.98 0.91+0.51 1.37£0.52
PPO-Lag 547+ 1.72 45.84+1.31 5.55 + 3.37 3.83+2.13 5.17 £+ 3.86 1.89£1.23
SAC-Lag 0.81 + 1.52 35.80 + 1.65 0.09 +0.10 14.66 £ 3.01 2.27+3.29 14.48 £3.38
FCSRL 2.17+4.25 27.95 + 14.47 0.57 +0.65 14.36 £ 0.87 0.47 £0.91 13.76 £ 14.13
DSAC-T-Pen  1.33+1.10 42.10 +0.39 0.58 +0.28 24.65 + 0.62 0.38 +0.27 21.13 4+ 6.82
SAC-FPI 2.58 +2.68 40.84 + 2.63 0.61+0.24 26.45 +0.41 0.78 £0.52 19.05 £6.63
SAC-FDPI 0.84+0.70 40.54 £+ 2.59 0.09 £ 0.06 25.77 + 0.49 0.44 £+ 0.67 2271 £1.21
SwimmerVelocity Walker2dVelocity SafetyHopper
Algorithm Cost Return Cost Return Cost Return
CPO 0.09 £+ 0.06 22.94 + 23.57 0.02+0.01 188.35+96.17  519.61 £509.11  —4599.10 £ 6207.66
RCPO 21.40+1.93 42.29 4+ 3.88 1.11+0.54  1913.68 £ 765.27 577.12 +413.10 1481.77 £ 639.77
FOCOPS 24.31 +9.58 37.56 +4.24 2.72+£0.99  1629.19 +£516.49  763.58 £ 19.10 1332.04 + 297.91
Cup 0.87+0.28 54.75 + 38.58 1.60+0.59  1360.46 +814.21 206.51 +213.09 —1266.47 + 1504.74
PPO-Lag 24.83 4+ 3.45 73.51 4 20.49 2.00+0.61  2166.22 + 595.72  507.99 + 209.61 1337.05 4 204.90
SAC-Lag 0.00 & 0.00 2.52 4+ 3.43 0.00 +£0.00  2681.36 +126.54  84.39 +20.99 1585.24 + 1252.75
FCSRL 1.10 £0.85 41.01 +3.47 2.144+1.22  2577.23 +£199.16
DSAC-T-Pen  0.10 £ 0.09 36.45 + 2.17 0.01+£0.02  2752.25+106.80 6.70 £4.83 3122.00 £ 179.75
SAC-FPI 0.00 = 0.00 43.69 = 1.42 0.01+£0.02  2787.28 + 126.27 223+3.15 2947.83 £+ 227.69
SAC-FDPI 0.00 £ 0.00 42.71 +1.39 0.00 £0.00 2619.63 + 148.14 0.33 +0.39 3118.77 £+ 75.85

Note: The bold values indicate top 2 algorithms in a column. The colored cells indicate top 2 in both cost and

return in an environment.
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We evaluated the feasibility threshold € € {0.05,0.1,0.2} across 8 environments. The results indi-
cate that a smaller € leads to more conservative behavior, i.e., lower cost and lower return.

Table 3: Normalized cost and return under different feasibility threshold e

Environment e =0.05 e=20.1 e=10.2
Cost Return Cost Return Cost Return
PointGoal 0.001 0998 0.002 1.073 0.017 1.080
PointPush 0.000 0.822 0.002 0.770 0.001 0.816
PointCircle 0.000 0.703 0.004 0.797 0.040 0.862
CarGoal 0.000 1.087 0.001 1.115 0.000 1.085
CarPush 0.001 0.862 0.016 0934 0.008 0.888
CarCircle 0.001 0.681 0.003 0619 0.016 0.824

HalfCheetahVelocity 0.000 1.386 0.000 1385 0.000 1.418
Humanoid Velocity 0.001 0487 0.000 0.810 0.000 0.736

Average 0.000 0.878 0.003 0938 0.010 0.964

We evaluated the dual threshold d € {0.5,0.9,0.95,0.98}. The results show that within a reasonable
range (i.e., for d > 0.9), a smaller d, which corresponds to more frequent activation of the dual
policy, leads to lower costs without sacrificing return. However, an excessively small d results in
higher costs, possibly because of severe distributional shift.

Table 4: Normalized cost and return under different dual threshold d

Environment d = 0.50 d=0.90 d=0.95 d=0.98
Cost Return Cost Return Cost Return Cost Return
PointGoal 0.001 0988 0.000 1.091 0.002 1.073 0.008 1.076
PointPush 0.003 0.747 0.000 0.746 0.002 0.770 0.005 0.798
PointCircle 0.004 0.773 0.000 0.787 0.004 0.797 0.019 0.861
CarGoal 0.003 1.107 0.000 1.142 0.001 1.115 0.000 1.110
CarPush 0.150 0.943 0.005 1.028 0.016 0.934 0.021 0.789
CarCircle 0.000 0.625 0.001 0.739 0.003 0.619 0.001 0.703

HalfCheetahVelocity 0.000 1.374 0.000 1.382 0.000 1.385 0.000 1.374
Humanoid Velocity 0.000 0.825 0.000 0.682 0.000 0.810 0.000 0.763

Average 0.020 0923 0.001 0949 0.003 0938 0.007 0.934
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We evaluated the KL divergence threshold 6 € {2,5,10}. The results show that the overall per-
formance is stable within a reasonable range ( < 5), with a smaller § slightly decreases both cost
and return. However, an excessively large ¢ significantly increases cost due to excessive policy
divergence.

Table 5: Normalized cost and return under different KL divergence threshold §

Environment 6=2 60=25 6=10
Cost Return Cost Return Cost Return
PointGoal 0.002 1.000 0.002 1.073 0.015 1.036
PointPush 0.000 0.335 0.002 0770 0.061 0.647
PointCircle 0.005 0.775 0.004 0.797 0.012 0.861
CarGoal 0.000 1.108 0.001 1.115 0.002 1.144
CarPush 0.010 0.857 0.016 00934 0.387 0.021
CarCircle 0.002 0.766 0.003 0619 0.005 0.824

HalfCheetahVelocity 0.000 1.433  0.000 1.385 0.000 1.425
Humanoid Velocity 0.000 0.843 0.000 0.810 0.000 0.709

Average 0.002 0.890 0.003 0.938 0.060 0.833

We compared SAC-FDPI with IPO (Liu et al.,2020) and CRPO (Xu et al.,[2021)) on 8 environments.
The results show that SAC-FDPI achieves a lower cost and higher return than these two algorithms.

Table 6: Normalized cost and return comparison with IPO and CRPO.

Environment IPO CRPO SAC-FDPI
Cost Return Cost Return Cost  Return
PointGoal 0.060 0.086 0.142 0.607 0.002 1.073
PointPush 0.188 0.063 0.057 0.193 0.002 0.770
PointCircle 0.052 0.816 0.013 0918 0.004 0.797
CarGoal 0.122 0.555 0.123 0546  0.001 1.115
CarPush 0.551 0.131 0.831 0.175 0.016 0.934
CarCircle 0.045 0.624 0.025 0.677 0.003 0.619

HalfCheetahVelocity 0.073  1.435 0.004 1.146 0.000 1.385
HumanoidVelocity 0.001 0.162 0.002 0.635 0.000 0.810

Average 0.136 0484 0.149 0.612 0.003 0.938
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D DISCUSSION

D.1 RELATED WORK ON REPRESENTATION LEARNING

Another class of methods address the challenge of sparse violation signals in feasibility function
estimation through representation learning. (2024) propose Feasibility Consistent Safe
Reinforcement Learning (FCSRL), which extracts safety-related information from the observation
to improve feasibility function learning. This is achieved by learning a encoder that maps the obser-
vation to a latent states, which serves as a better input for the feasibility function. FCSRL focuses
on representation learning, which tries to better exploit safety-related information from given data.
In contrast, our method addresses the safety paradox, where violation signals become increasingly
sparse as the policy becomes safer. Our solution is to actively collect more violating data using a dual
policy, targeting the root cause of the sparsity. Therefore, FCSRL and our method are orthogonal:
one improves data utilization, while the other improves data collection.

D.2 EXTENSION TO TD ESTIMATE AND CVF

Our theoretical analysis can be extended to TD estimate. Specifically, Section [f.2] proves that the
variance of steps to violation, N (7), increases with safer policies. Consider an initial state z, its
subsequent state =/, and the sub-trajectory 7’ starting from a’. Since N(7') = N(7) — 1, the
variance of N(7') also increases with policy safety. This implies a higher variance in the true
feasibility value F™(x’). Consequently, the TD target, which is computed by F™ ('), inherits this

increased variance, leading to a larger estimation error in F'™ (z).

Our analysis can also be extended to the CVF widely used in the CMDP, defined as

Z'ytc(ﬂctﬂxo = x] .

t=0

F™(2) =FE;un

The key insight is that the CVF can be decomposed into a discounted sum of CDF-like terms.
Specifically, we can break down any infinite-horizon trajectory into segments that end immediately
after a constraint violation. The total CVF is the discounted sum of costs along the entire trajectory.
We can now group the costs by the segment in which they occur. The cost incurred in each segment
is, by construction, a discounted sum that starts from an initial state and ends with a violation.
Crucially, the value of the CVF in each segment is precisely a CDF. The total CVF can be expressed
as:

F™(x) = E[discounted cost of Segment 1] ++7* E[discounted cost of Segment 2] + - - -

CDF term CDF term

where T; is the time step of the ith violation. Our main theoretical result establishes that the esti-
mation error bound of a single CDF term increases as the policy becomes safer (i.e., as violations
become rarer, making each segment longer). This directly implies that the error bound for the total
CVF must also increase.

D.3 ADDITIONAL VIOLATION DURING TRAINING

In the broader safe RL community, there are two training and implementation modes: (1) offline
training and online deployment (OTOD), which first trains a policy in simulator and then deploys
it in the real world, and (2) simultaneous online training and deployment (SOTD), which directly
interacts with the real world to collect data for training. The OTOD mode only requires the final
policy to be safe because intermediate policies will not be deployed in the real world. The SOTD
model requires both the final policy and all intermediate policies to be safe.

FDPI, along with the baselines we compare in the paper, belongs to the OTOD mode. We focus
primarily on learning a safe policy at convergence, rather than guaranteeing safety during training.
Therefore, FDPI does not involve unsafe exploration in the real world during training.

For the SOTD mode, one must ensure safety throughout training. Achieving this goal would require
integrating additional safe exploration techniques like those proposed by Berkenkamp et al.| (2017)
and[Yu et al| (2022). These methods typically employ a model of the environment, either known or
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learned. Constraint violations are allowed in the model but not allowed in the environment. They
alternate between learning a safe policy within the current model and refining the model with newly
collected data. These approaches are complementary to our contribution, which focuses on solving
the safe policy within a fixed model/environment.

E LARGE LANGUAGE MODEL USAGE DISCLOSURE

We used Large Language Model (LLM) solely for the purpose of improving grammar and polishing
writing. The LLM was not used for any core research tasks such as retrieval, discovery, ideation, or
analysis.
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