

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BREAKING SAFETY PARADOX WITH FEASIBLE DUAL POLICY ITERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Achieving zero constraint violations in safe reinforcement learning poses a significant challenge. We discover a key obstacle called the safety paradox, where improving policy safety reduces the frequency of constraint-violating samples, thereby impairing feasibility function estimation and ultimately undermining policy safety. We theoretically prove that the estimation error bound of the feasibility function increases as the proportion of violating samples decreases. To overcome the safety paradox, we propose an algorithm called feasible dual policy iteration (FDPI), which employs an additional policy to strategically maximize constraint violations while staying close to the original policy. Samples from both policies are combined for training, with data distribution corrected by importance sampling. Extensive experiments show FDPI’s state-of-the-art performance on the Safety-Gymnasium benchmark, achieving the lowest violation and competitive-to-best return simultaneously.

1 INTRODUCTION

Reinforcement learning (RL) has achieved promising performance in many challenging tasks such as video games (Vinyals et al., 2019), board games (Schrittwieser et al., 2020), autonomous driving (Wurman et al., 2022), and drone racing (Kaufmann et al., 2023). RL solves an optimal control problem by finding a policy that maximizes the expected cumulative rewards. However, real-world control tasks often demand more than reward maximization—they require strict adherence to safety constraints, where even rare violations can lead to catastrophic outcomes. Achieving zero constraint violations in these tasks remains a significant challenge.

A key element in safe RL is the feasibility function, which evaluates whether a state can satisfy safety constraints over an infinite horizon. This function not only defines the feasible region of a policy but also serves as a safety-oriented learning target. Examples of feasibility functions include cost value function (CVF) (Altman, 2021), Hamilton-Jacobi (HJ) reachability function (Bansal et al., 2017), and constraint decay function (CDF) (Yang et al., 2023b). These functions are typically learned through fixed-point iteration based on their risky self-consistency conditions (Li, 2023; Yang et al., 2024)—analogous to the Bellman equation for value functions. These conditions establish recursive relationships between temporally adjacent states, allowing feasibility functions to capture long-term safety at all states.

While learning-based feasibility functions are crucial in ensuring safety, we discover that they inherently prevent policies from achieving zero violations due to a phenomenon we term the safety paradox. Our analysis reveals that as policy safety improves and violating samples become sparser, the estimation error of the feasibility function increases. This impairs the accuracy of the feasible region and introduces bias into the policy’s learning target, ultimately undermining safety performance. This phenomenon differs fundamentally from the sparse reward problem in standard RL, where achieving higher rewards directly facilitates further reward improvement. In contrast, the safety paradox forms a self-defeating cycle where improving safety degrades the learning conditions for further safety optimization.

Existing methods for addressing sample sparsity, which we categorize as passive and active, are inadequate for resolving the safety paradox. Passive methods such as prioritized experience replay (PER) (Schaul et al., 2015) reweight samples in the replay buffer to emphasize critical transitions. However, their efficacy is limited when critical samples are inherently rare, and they fail to break the

054 safety paradox's self-defeating cycle. Active methods such as curiosity-driven exploration (Pathak
 055 et al., 2017) modify the environment or agent behavior to generate critical samples. While potentially
 056 more effective, these methods induce behavioral shifts that can steer the policy away from
 057 optimality, and their implementation often requires intrusive task modifications, which may not be
 058 feasible in practice.

059 In this paper, we propose an algorithm called feasible dual policy iteration (FDPI), which breaks
 060 the safety paradox by incorporating an additional dual policy designed to maximize constraint
 061 violations. This approach effectively increases the proportion of constraint-violating samples without
 062 increasing the total number of samples, thereby reducing feasibility function estimation error and
 063 pushing policy safety to a higher level. A challenge of this approach is the distributional shift that
 064 occurs when combining data from both policies. We address this through an importance sampling
 065 (IS) scheme that approximates the marginal state distribution with a truncated trajectory distribution.
 066 We further introduce KL divergence constraints between the two policies to ensure numerical
 067 stability of IS. Extensive experiments on the Safety-Gymnasium benchmark demonstrate FDPI's
 068 state-of-the-art performance.

069 2 RELATED WORK

070 **Safe RL algorithms** A prominent class of safe RL algorithms is called iterative unconstrained RL,
 071 which transforms the safe RL problem into a series of unconstrained RL problems, typically via the
 072 method of Lagrange multipliers (Paternain et al., 2019). Under this framework, researchers explored
 073 different kinds of feasibility functions, including CVF (Chow et al., 2018; Tessler et al., 2018), HJ
 074 reachability function (Yu et al., 2022; 2023), and control barrier function (Yang et al., 2023a;b).
 075 Another class is called constrained policy optimization, which incorporates safety constraints in
 076 each iteration of policy optimization. The most representative example is CPO (Achiam et al., 2017),
 077 which adopts a trust region update with linearized objective and constraints. Several improvements
 078 over CPO have been proposed, including projection methods (Yang et al., 2020; 2022) and first-order
 079 methods (Zhang et al., 2020; 2022). For finite-horizon problems, Zhao et al. (2023) and Zhao et al.
 080 (2024) convert state-wise constraints to cumulative constraints and bound the worst-case violation.
 081 A common practice of these algorithms is to estimate feasibility functions from sampled data.
 082

083 **Critical sample augmentation in RL** There are two kinds of methods to increase critical samples
 084 in RL: passive methods and active methods. Passive methods focus on biasing the replaying process
 085 to prioritize experiences that are likely to be more informative for learning. A representative example
 086 is PER (Schaul et al., 2015), which replays samples with larger temporal difference (TD) errors
 087 more frequently. Other methods include prioritizing similar experiences to the current policy (No-
 088 vati & Koumoutsakos, 2019) and modifying certain information in replayed samples (Andrychowicz
 089 et al., 2017). Active methods involve modifying the environment or the agent's behavior to deliber-
 090 ately generate critical samples. Some algorithms employ adversary policies to generate challenging
 091 scenarios (Pinto et al., 2017; Feng et al., 2023), while others use auxiliary rewards to guide explo-
 092 ration (Jaderberg et al., 2016; Pathak et al., 2017). Unlike these methods, our algorithm requires no
 093 environment modifications or reward shaping, maintaining the integrity of the original task. **There**
 094 **are also methods that address the sample sparsity challenge through representation learning, which**
 095 **are discussed in Appendix D.1.**

096 3 PROBLEM STATEMENT

097 Safe RL addresses control problems in which an agent aims to maximize long-term rewards while
 098 strictly adhering to safety constraints at every step. We consider a Markov decision process (MDP)
 099 ($\mathcal{X}, \mathcal{U}, \mathbf{p}_{\text{init}}, P, r, \gamma$), where $\mathcal{X} \subseteq \mathbb{R}^n$ is the state space, $\mathcal{U} \subseteq \mathbb{R}^m$ is the action space, $\mathbf{p}_{\text{init}} \in \Delta \mathcal{X}$ is
 100 the initial state distribution, $P : \mathcal{X} \times \mathcal{U} \rightarrow \Delta \mathcal{X}$ is the transition probability, $r : \mathcal{X} \times \mathcal{U} \rightarrow \mathbb{R}$ is the
 101 reward function, and $0 < \gamma < 1$ is the discount factor. We consider a stochastic policy $\pi : \mathcal{X} \rightarrow \Delta \mathcal{U}$,
 102 whose state-value function is defined as $V^\pi(x) = \mathbb{E} [\sum_{t=0}^{\infty} \gamma^t r(x_t, u_t) | x_0 = x]$. Safety is specified
 103 through a state constraint expressed as an inequality $h(x) < 0$, where $h : \mathcal{X} \rightarrow \mathbb{R}$ is the constraint
 104 function. The state constraint must be satisfied at every step:
 105

$$h(x_t) \leq 0, \quad \forall t \geq 0. \quad (1)$$

108 The goal of safe RL is to find a policy that maximizes the state-value function while satisfying the
 109 state constraints over an infinite horizon.
 110

111 3.1 FEASIBILITY IN SAFE REINFORCEMENT LEARNING
 112

113 Feasibility is a core concept in safe RL that describes the long-term safety of a state. To formally
 114 define feasibility, we first introduce the reachable set.
 115

116 **Definition 1** (Reachable set). *The reachable set of a policy π from a state $x \in \mathcal{X}$, denoted $\mathcal{R}^\pi(x)$,
 117 is the set of states that can be reached with non-zero probability under π in finite time:*

$$118 \quad \mathcal{R}^\pi(x) = \{x' \in \mathcal{X} \mid \exists t \geq 0, \text{ s.t. } P(x_t = x' | x, \pi) > 0\}, \quad (2)$$

119 where $P(x_t = x' | x, \pi)$ is the probability of reaching x' at time t starting from x and following π .
 120

121 The reachable set includes all states that will possibly be visited by π given an initial state. Feasibility
 122 is defined based on whether all states in the reachable set is constraint-satisfying.
 123

124 **Definition 2** (Feasible region). *The feasible region of a policy π , denoted X^π , is the set of states
 125 from which every reachable set under π satisfies the safety constraint:*

$$126 \quad X^\pi = \{x \in \mathcal{X} \mid \forall x' \in \mathcal{R}^\pi(x), h(x') \leq 0\}. \quad (3)$$

127 In safe RL, we need to find a policy whose feasible region includes all possible initial states. This
 128 requirement can be expressed as a single constraint by the feasibility function.
 129

130 **Definition 3** (Feasibility function). *Function $F^\pi : \mathcal{X} \rightarrow \mathbb{R}$ is a feasibility function of π if its zero-
 131 sublevel set equals the feasible region of π , i.e., $\{x \in \mathcal{X} \mid F^\pi(x) \leq 0\} = X^\pi$.*

132 An example of a feasibility function is the CDF (Yang et al., 2023b).

133 **Definition 4** (Constraint decay function). *The CDF of a policy π is defined as*

$$135 \quad F^\pi(x) = \mathbb{E}_{\tau \sim \pi} \left[\gamma^{N(\tau)} \mid x_0 = x \right], \quad (4)$$

136 where $\gamma \in (0, 1)$ is the discount factor, $\tau = \{x_0, u_1, x_1, u_1, \dots\}$ is a trajectory sampled by π , and
 137 $N(\tau) \in \mathbb{N} \cup \{+\infty\}$ is the time step of the first constraint violation in τ .
 138

139 In the rest of this paper, we use CDF as a concrete example of a feasibility function. However,
 140 our analysis also applies to other feasibility functions with similar properties such as CVF. The
 141 feasibility function is also called a constraint aggregation function (Yang et al., 2024) because we
 142 can replace the original infinitely many constraints (1) with a single one expressed by the feasibility
 143 function, leading to the following safe RL problem:
 144

$$145 \quad \max_{\pi} \mathbb{E}_{x \sim p_{\text{init}}} [V^\pi(x)] \quad \text{s.t. } \mathbb{E}_{x \sim p_{\text{init}}} [F^\pi(x)] \leq 0. \quad (5)$$

147 4 SAFETY PARADOX
 148

149 A core problem in safe RL is to estimate the feasibility function. We discover that as the policy
 150 becomes safer, the estimation error of the feasibility function tends to increase. This makes the
 151 identified feasible region less accurate, which, in turn, harms policy update and deteriorates policy
 152 safety. This phenomenon is called the safety paradox.
 153

154 4.1 ESTIMATION ERROR BOUND OF CDF
 155

156 In safe RL, the CDF is computed by solving its risky self-consistency condition with fixed-point
 157 iteration (Yang et al., 2023b):
 158

$$159 \quad F^\pi(x) = \mathbb{E}_{x' \sim P(\cdot | x, u), u \sim \pi(\cdot | x)} [c(x) + (1 - c(x))\gamma F^\pi(x')], \quad (6)$$

160 where $c(x) = \mathbb{I}[h(x) > 0]$ is an indicator function for constraint violation. In practice, the expectation
 161 above is estimated by sample average. Equation (6) can be viewed as a one-step TD estimate
 of the CDF. Since TD involves bootstrapping of the estimated CDF itself, the analysis of estimation

162 error becomes complicated. Here, we consider a Monte Carlo (MC) estimate instead for theoretical
 163 simplicity: $\hat{F}^\pi(x) = 1/K \sum_{i=1}^K \gamma^{N(\tau_i)}$, where $\tau_1, \tau_2, \dots, \tau_K$ are K independent trajectories
 164 starting from x sampled by π . We discuss extension to TD estimate at the end of Section 4.2.
 165

166 An inaccurate CDF leads to incorrect identification of the feasible region, i.e., feasible states
 167 misidentified as infeasible and vice versa. To minimize misidentification, we must bound the es-
 168 timation error. We show that the bound of the relative estimation error of CDF is related to the
 169 expectation and variance of the number of steps to the first violation. Before that, we assume that
 170 these two quantities are finite.

171 **Assumption 1.** For any infeasible state $x \in \mathcal{X}$ under policy π , let $\mu_N^\pi(x) = \mathbb{E}_{\tau \sim \pi}[N(\tau)|x_0 = x]$
 172 and $\sigma_N^{2,\pi}(x) = \text{Var}_{\tau \sim \pi}[N(\tau)|x_0 = x]$. We have $\mu_N^\pi(x) < +\infty$ and $\sigma_N^{2,\pi}(x) < +\infty$.

173 **Theorem 1.** For any infeasible state $x \in \mathcal{X}$ under policy π , let $\hat{F}^\pi(x)$ be the MC estimate of the
 174 CDF. Under Assumption 1, the expected relative estimation error is bounded by:
 175

$$\mathbb{E}_{\tau_1, \tau_2, \dots, \tau_K} \left[\left| \frac{\hat{F}^\pi(x) - F^\pi(x)}{F^\pi(x)} \right| \right] \leq \frac{1}{\sqrt{K}} |\ln \gamma| \sigma_N^{2,\pi}(x) + (\ln \gamma)^2 \frac{\sigma_N^{2,\pi}(x)}{\gamma^{\mu_N^\pi(x)}}. \quad (7)$$

179 *Proof Sketch.* Construct two auxiliary functions $H^\pi(x) = \gamma^{\mu_N^\pi(x)}$ and $\hat{H}^\pi(x) = \gamma^{\hat{\mu}_N^\pi(x)}$, where
 180 $\hat{\mu}_N^\pi(x) = 1/K \sum_{i=1}^K N(\tau_i)$. Use Taylor expansion to obtain the bounds of $|F^\pi(x) - H^\pi(x)|$,
 181 $|\hat{F}^\pi(x) - \hat{H}^\pi(x)|$, and $|H^\pi(x) - \hat{H}^\pi(x)|$. The result follows by the triangle inequality. See Appendix
 182 A.1 for the complete proof. \square
 183

184 The number of samples K in the error bound (7) is related to the batch size and is a constant through-
 185 out training. The only two variables relevant to the error bound is the expectation and variance of
 186 steps to violation. While it is obvious that the expectation increases as the policy becomes safer,
 187 how the variance changes is not easily observed and requires further analysis.
 188

189 4.2 RELATIONSHIP BETWEEN POLICY SAFETY AND ESTIMATION ERROR BOUND

191 In this section, we show that under mild assumptions, the variance of steps to violation increases
 192 as the policy becomes safer. To begin with, we introduce a function to measure the “distance” to
 193 constraint violation.

194 **Assumption 2.** There exists a continuous function $\mathcal{D} : \mathcal{X} \rightarrow \mathbb{R}$, such that $\forall x \in \mathcal{X}$, $\mathcal{D}(x) \geq 0$ and
 195 $\mathcal{D}(x) = 0 \iff h(x) > 0$.

197 Examples of \mathcal{D} include the Euclidean distance to obstacles in collision avoidance tasks, and the
 198 margin to speed limit in velocity-constrained tasks. With a distance function, we can define what a
 199 “safer” policy is.

200 **Definition 5.** A policy π' is safer than a policy π in a state x if $P(\mathcal{D}(x'_{\pi'}) < \mathcal{D}(x)) \leq P(\mathcal{D}(x'_{\pi}) <
 201 \mathcal{D}(x))$, where $x'_{\pi} \sim p_{\pi}(\cdot|x)$ is the next state under π .

202 A safer policy has a lower probability of decreasing the distance to violation. This definition natu-
 203 rally connects to the proportion of violating samples: if the distance to violation decreases slower,
 204 the number of steps to violation will be larger, resulting in fewer violating samples. The following
 205 assumption requires the continuity of \mathcal{D} and the system dynamics. This holds in most systems,
 206 where the changing rate of states and the control inputs are bounded.

207 **Assumption 3.** The difference of \mathcal{D} between any two adjacent states is bounded by $\delta > 0$, i.e., for
 208 any x, u, x' such that $p(x'|x, u) > 0$, it holds that $|\mathcal{D}(x) - \mathcal{D}(x')| \leq \delta$.

210 We split $\mathcal{D}(x)$ into a sequence of consecutive intervals: $[\mathcal{D}(x) - i\delta, \mathcal{D}(x) - (i-1)\delta], i = 1, 2, \dots, m(x) - 1$, where $m(x) = \lceil \mathcal{D}(x)/\delta \rceil$. With Assumption 3, the agent must visit the $(i-1)$ th
 211 interval before visiting the i th interval. We denote $N_i^\pi(x)$ as the first-visiting time from the $(i-1)$ th
 212 interval to the i th interval. Note that $\mathcal{D}(x)$ is not necessarily monotonic, i.e., the agent may revisit a
 213 stage where it has visited before. $N_i^\pi(x)$ is counted until the first time the next stage is visited. The
 214 following assumption requires that for states far from violation, $N_1^\pi(x)$ is weakly correlated with
 215 the sum of the rest first-visiting times.

216 **Assumption 4.** *There exists $M > 0$, such that for all x with $m(x) \geq M$, it holds that*
 217
$$\left| \text{Cov} \left(N_1^\pi(x), \sum_{i=2}^{m(x)} N_i^\pi(x) \right) \right| \leq \text{Var}(N_1^\pi(x))/2.$$

 218

219 The intuition behind this assumption is that for a state far from violation, the initial step $N_1^\pi(x)$
 220 is primarily influenced by local dynamics. In contrast, the subsequent trajectory $\sum_{i=2}^{m(x)} N_i^\pi(x)$ is
 221 governed by future stochastic events. Their correlation is weak relative to the variability of the initial
 222 step itself. With the above assumptions, we have the following theorem.
 223

224 **Theorem 2.** *Let π, π' be two policies. Consider a set of states $X_M \subseteq \mathcal{X}$ such that for all $x \in X_M$,
 225 (1) x is infeasible under both π and π' , (2) $m(x) \geq M$, (3) $\min\{P(\mathbf{D}(x'_\pi) < \mathbf{D}(x)), P(\mathbf{D}(x'_{\pi'}) <$
 226 $\mathbf{D}(x))\} \geq 0.5$. Under Assumptions 2–4, if π' is safer than π in all states in X_M , we have $\sigma_N^{2, \pi'}(x) \geq$
 227 $\sigma_N^{2, \pi}(x), \forall x \in X_M$.*
 228

229 *Proof Sketch.* First prove that for a given policy, a state further to violation has a larger variance by
 230 stage decomposition. Then, prove that in a given state, a safer policy has a larger variance by law of
 231 total variance. Finally, extending this result to all states in X_M proves the theorem. See Appendix
 232 A.2 for the complete proof. \square
 233

234 **Remark** The condition (3) in Theorem 2 follows from the requirement of finite mean and variance.
 235 To ensure the violation happens in finite steps, the probability of approaching the violation, i.e.,
 236 $d(x') < d(x)$, must be larger than that of moving away from it in each step. Theorem 2 tells us that
 237 a safer policy (in the sense of lower probability of approaching violation) has larger variance of steps
 238 to violation in infeasible states far from violation under mild assumptions. Combined with Theorem
 239 1, we conclude that a safer policy leads to a larger CDF estimation error bound. To help better
 240 understand this result, we give an intuitive example of a one-dimensional random walk in Appendix
 241 A.3. It is worth mentioning that although the above analysis is based on MC estimate, it can be
 242 extended to TD estimate. The core reason is that the increased variance identified in Theorem 2
 243 propagates to the TD target. The analysis can also be extended to the CVF widely used in the
 244 constrained MDP. A detailed explanation of the extensions can be found in Appendices D.2.

245 5 FEASIBLE DUAL POLICY ITERATION

246 The only way to break the safety paradox is to increase constraint-violating samples. We achieve
 247 this by training an additional policy, called the dual policy, that intentionally violates the constraint.
 248

249 5.1 COLLECTING MORE VIOLATING SAMPLES WITH A DUAL POLICY

250 We denote the dual policy as π_d , and for distinguishing purposes, we call the original policy the
 251 primal policy and denote it as π_p . We train a dual feasibility function $G_d(x, u) = \mathbb{E}_{\tau \sim \pi_d} [\gamma^{\bar{N}(\tau)} | x_0 =$
 252 $x, u_0 = u]$ to help optimize the dual policy. Compared with F_d , G_d further fixes the current action
 253 u_0 and computes the feasibility value starting from the state-action pair (x, u) . The dual policy is
 254 updated by maximizing the dual feasibility function:
 255

$$256 \max_{\pi_d} \mathbb{E}_{x, u \sim \pi_d} [G_d(x, u)].$$

257 Both the primal policy and the dual policy are used to sample data. In practice, the sampling ratio is
 258 controlled by a hyperparameter called the dual threshold d , which is fixed at 0.95 in our experiments.
 259 If the running averaged proportion of feasible states is greater than d , the dual policy will be activated
 260 and collect half of the samples. We ensure that the total number of samples used by our algorithm,
 261 i.e., collected by both the primal and dual policies, equals that of other algorithms.
 262

263 5.2 CORRECTING SAMPLE DISTRIBUTION VIA IMPORTANCE SAMPLING

264 The problem of directly using data collected by the dual policy is that the data distribution for
 265 computing the expectation in loss functions is shifted. Take the loss function of the primal feasibility
 266 function as an example:
 267

$$268 L_{G_p} = \mathbb{E}_{x \sim \pi_p, u \sim \pi_p(\cdot|x), x' \sim P(\cdot|x, u), u' \sim \pi_p(\cdot|x')} \left[(G_p(x, u) - (c(x) + (1 - c(x))\gamma G_p(x', u')))^2 \right].$$

270 Among the four random variables involved in the expectation, x and u have shifted distributions
 271 because some of their samples are collected by the dual policy. To solve this problem, we use IS
 272 to correct their distribution. The IS ratio for u can be readily computed by the ratio of probabilities
 273 under two policies. The IS ratio for x involves the marginal state distribution under a policy, which
 274 can be computed as: $p^{\pi_d}(x) = \sum_{t=0}^{\infty} P(x_t = x | \pi) = \sum_{t=0}^{\infty} \sum_{\tau} \mathbb{I}[x_t = x] p^{\pi_d}(\tau)$, where $p^{\pi_d}(\tau)$ is
 275 the probability of trajectory τ under π_d :

$$277 \quad p^{\pi_d}(\tau) = p_{\text{init}}(x_0) \pi_d(u_0 | x_0) P(x_1 | x_0, u_0) \pi_d(u_1 | x_1) \cdots = p_{\text{init}}(x_0) \prod_{t=0}^{\infty} \pi_d(u_t | x_t) P(x_{t+1} | x_t, u_t).$$

279 To correct the distribution of x from p^{π_d} to p^{π_p} , we need to insert an IS ratio $r_{pd}(x) = p^{\pi_p}(x) / p^{\pi_d}(x)$
 280 into the loss function. However, directly computing the ratio is intractable because we cannot sum
 281 over all possible trajectories. Instead, we approximate the ratio with a single trajectory τ that con-
 282 tains x :

$$283 \quad r_{pd}(x) \approx \frac{p^{\pi_p}(\tau)}{p^{\pi_d}(\tau)} = \prod_{t=0}^{\infty} \frac{\pi_p(u_t | x_t)}{\pi_d(u_t | x_t)} \approx \prod_{s=0}^{t(x)} \frac{\pi_p(u_s | x_s)}{\pi_d(u_s | x_s)} := \hat{r}_{pd}(x), \quad (8)$$

286 where the second approximation operation truncates the product up to $t(x)$, which is the appearing
 287 step of x . This is because future actions beyond $t(x)$ do not affect the probability of reaching x , and
 288 truncating them reduces the variance of IS. To additionally account for the distribution shift of u ,
 289 we define the approximated IS ratio for a state-action pair as $\hat{r}_{pd}(x, u) = \hat{r}_{pd}(x) \pi_p(u | x) / \pi_d(u | x)$.
 290 The approximated IS ratios from the primal policy to the dual policy, $\hat{r}_{dp}(x)$ and $\hat{r}_{dp}(x, u)$, can be
 291 defined similarly.

292 The sequential multiplication in the IS ratio can easily cause numerical underflow since the proba-
 293 bility of an action under another policy is usually lower than that under the behavior policy. We find
 294 that this problem can be effectively alleviated by constraining the KL divergence between the two
 295 policies. Observe that

$$296 \quad D_{\text{KL}}(\pi_d \| \pi_p)[x] = \mathbb{E}_{u \sim \pi_d(\cdot | x)} \left[\log \frac{\pi_d(u | x)}{\pi_p(u | x)} \right] \leq \delta \iff \mathbb{E}_{u \sim \pi_d(\cdot | x)} \left[\log \frac{\pi_p(u | x)}{\pi_d(u | x)} \right] \geq -\delta.$$

298 The KL divergence constraint ensures that the expected logarithm of each term in the product (8) is
 299 not too small, thus preventing the IS ratio from collapsing to zero.

301 5.3 OVERALL ALGORITHM

303 Our algorithm, called feasible dual policy iteration (FDPI), follows the framework of feasible policy
 304 iteration (FPI) proposed by Yang et al. (2023c). On the basis of FPI, we combine the maximum
 305 entropy RL method from soft actor-critic (SAC) (Haarnoja et al., 2018) and name the resulting al-
 306 gorithm as SAC-FDPI. Our algorithm learns two action-feasibility networks G_{p, ϕ_p} , G_{d, ϕ_d} , an action-
 307 value network Q_{ω} , and two policy networks π_{p, θ_p} , π_{d, θ_d} , where ϕ , ω , and θ denote their parameters.
 308 We additionally introduce a hyperparameter $\epsilon > 0$ and approximate feasibility by $G_{\phi}(x, u) \leq \epsilon$.
 309 This is because, in practice, approximation error causes the CDF to be positive almost everywhere
 310 since its learning target is non-negative. This approximation is valid under the assumption that the
 311 steps to violation is uniformly bounded (Thomas et al., 2021). In our experiments, we find that a
 312 fixed value of $\epsilon = 0.1$ works well for all environments.

313 The loss functions for the action-feasibility networks are

$$314 \quad L_{G_{\#}}(\phi_{\#}) = \mathbb{E} \left[\hat{r}_{\#}(x, u) (G_{\#, \phi_{\#}}(x, u) - y_{G_{\#}}(x, x', u'))^2 \right], \quad (9)$$

316 where “#” stands for “p” or “d”, $\hat{r}_p(x, u) = \hat{r}_{pd}(x, u)$ for (x, u) sampled by π_d , and equals 1 for
 317 (x, u) sampled by π_p , $\hat{r}_d(x, u)$ is defined similarly, and

$$319 \quad y_{G_{\#}}(x, x', u') = c(x) + (1 - c(x)) \gamma G_{\#, \bar{\phi}_{\#}}(x', u'),$$

320 where $\bar{\phi}$ denote the parameters of the target networks. The loss functions for the action-value net-
 321 works are

$$322 \quad L_Q(\omega) = \mathbb{E} \left[\hat{r}_p(x, u) (Q_{\omega}(x, u) - y_Q(x, x', u'))^2 \right], \quad (10)$$

$$323 \quad y_Q(x, x', u') = r(x, u) + \gamma (Q_{\bar{\omega}}(x', u') - \alpha \log \pi_p(u' | x')),$$

324 where α is a learnable parameter for entropy temperature. The primal policy network is updated by
 325 maximizing the action-value network inside the feasible region and minimizing the primal action-
 326 feasibility network outside the feasible region. The loss function is as follows:
 327

$$328 L_{\pi_p}(\theta_p) = \mathbb{E} [\hat{r}_p(x) (\mathbb{I}_f[x, u] (\alpha \log \pi_{p, \theta_p}(u|x) - Q_\omega(x, u)) + (1 - \mathbb{I}_f[x, u]) G_{p, \phi_p}(x, u))], \quad (11)$$

329 where $\mathbb{I}_f[x, u] = 1$ if $G_{p, \phi_p}(x, u) \leq \epsilon$ and 0 otherwise. The dual policy is updated by maximizing
 330 the dual action-feasibility network under the constraints of KL divergence. The constraints are
 331 addressed by the Lagrange multiplier method. The loss function for the dual policy is as follows:
 332

$$333 L_{\pi_d}(\theta_d) = -\mathbb{E} [\hat{r}_d(x) G_{d, \phi_d}(x, u)] + \lambda_{dp} D_{KL}(\pi_{d, \theta_d} \| \pi_{p, \theta_p}) + \lambda_{pd} D_{KL}(\pi_{p, \theta_p} \| \pi_{d, \theta_d}). \quad (12)$$

334 The Lagrange multipliers λ_{dp} and λ_{pd} are updated by:
 335

$$336 \lambda_{dp} \leftarrow (\lambda_{dp} + \eta (D_{KL}(\pi_{d, \theta_d} \| \pi_{p, \theta_p}) - \delta))_+, \quad \lambda_{pd} \leftarrow (\lambda_{pd} + \eta (D_{KL}(\pi_{p, \theta_p} \| \pi_{d, \theta_d}) - \delta))_+, \quad (13)$$

337 where η is the learning rate and $(\cdot)_+$ denotes the projection to $\mathbb{R}_{\geq 0}$. The pseudocode of our algorithm
 338 is in Appendix B.
 339

340 6 EXPERIMENTS

342 We aim to answer the following questions through our experiments:
 343

344 **Q1** How does SAC-FDPI perform in terms of safety and return compared to existing algorithms?
 345

346 **Q2** Does learning an additional dual policy help increase violating samples?
 347

348 **Q3** Does the estimation error of the feasibility function decrease with more violating samples?
 349

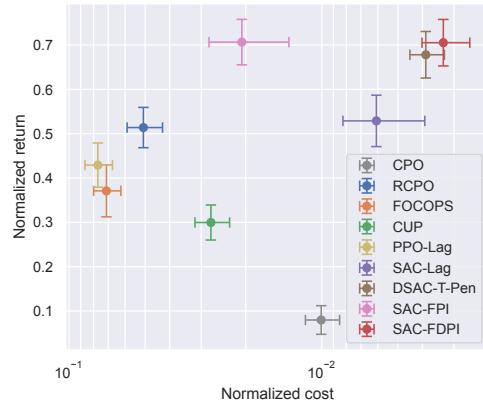
350 6.1 EXPERIMENT SETUPS

351 **Environments** Our experiments cover 14 environments in the Safety-Gymnasium benchmark (Ji
 352 et al., 2023a), including navigation and locomotion. The navigation environments include two
 353 robots, i.e., Point and Car, and four tasks, i.e., Goal, Push, Button, and Circle, with all difficulty
 354 levels set as 1 and constraints set as default. The locomotion environments include six classic robots
 355 from Gymnasium’s MuJoCo environments, i.e., HalfCheetah, Hopper, Swimmer, Walker2d, Ant,
 356 and Humanoid, with maximum velocity constraints.
 357

358 **Baselines** We compare our algorithm with a wide
 359 variety of mainstream safe RL algorithms im-
 360 plemented in the Omnisafe toolbox (Ji et al.,
 361 2023b), including iterative unconstrained RL al-
 362 gorithms RCPO (Tessler et al., 2018), PPO-Lag (Ray
 363 et al., 2019), and SAC-Lag (Ha et al., 2021),
 364 and constrained policy optimization algorithms
 365 CPO (Achiam et al., 2017), FOCOPS (Zhang et al.,
 366 2020), and CUP (Yang et al., 2022). In addition, we
 367 combine the state-of-the-art unconstrained RL al-
 368 gorithm DSAC-T (Duan et al., 2023) with the penalty
 369 method and name the resulting algorithm DSAC-T-
 370 Pen. We also include a version of our algorithm
 371 without the dual policy, named SAC-FPI. Hyper-
 372 parameters for all algorithms are detailed in Appendix
 373 C.1.
 374

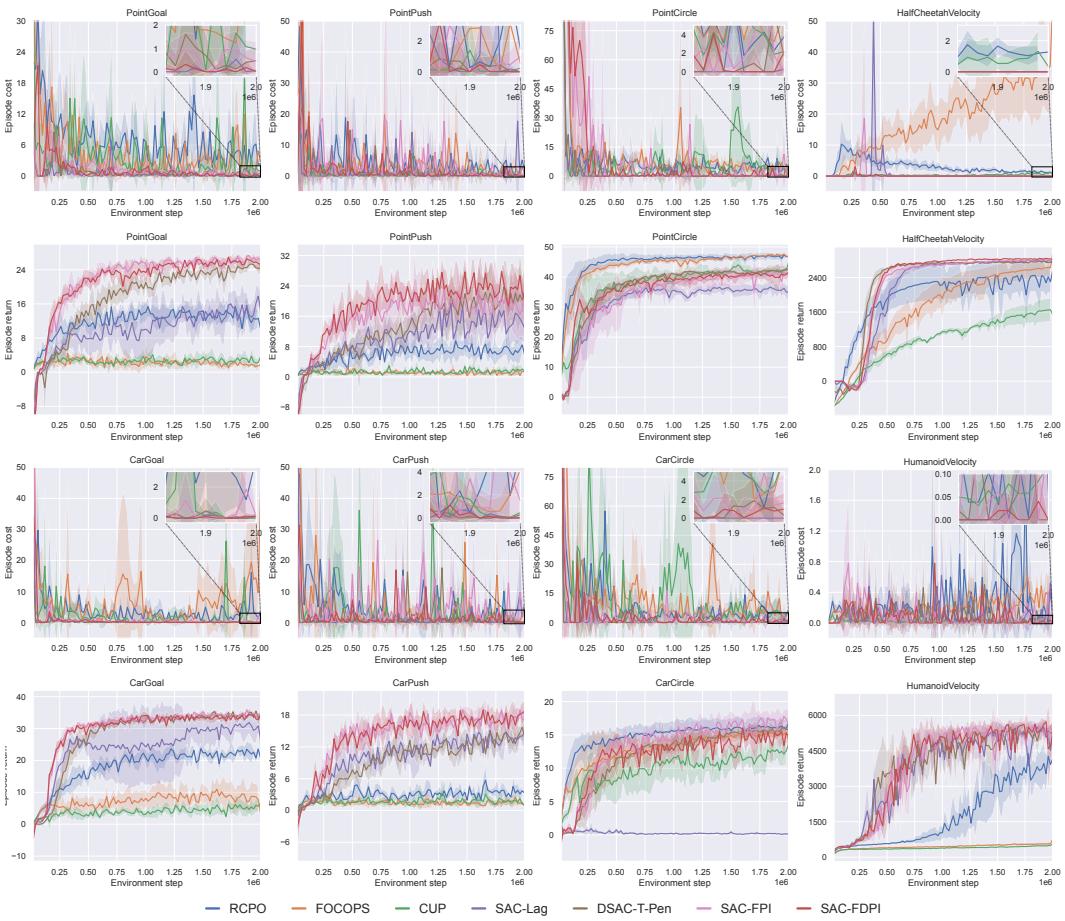
375 6.2 EXPERIMENT RESULTS

376 **Cost-return performance** In safe RL, we evaluate algorithms by two metrics: (1) episode cost,
 377 representing the average number of constraint-violating steps per episode, and (2) episode return,
 378 representing the average cumulative rewards per episode. To perform a comprehensive evaluation,
 379 we place the scores of all algorithms in a cost-return plot in Figure 1. The scores are first normalized

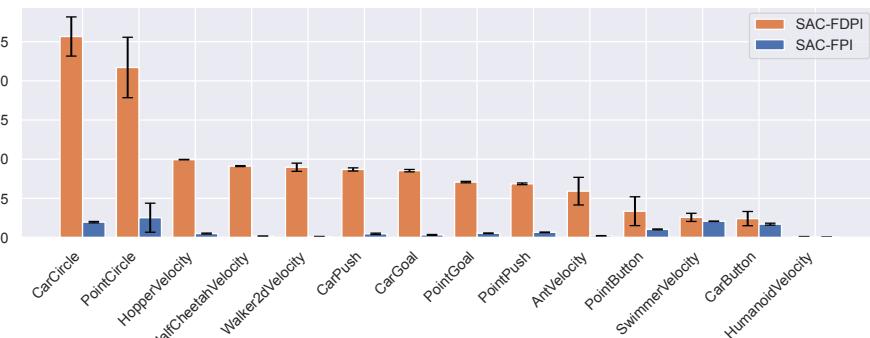


380 Figure 1: Normalized cost-return plot. Error
 381 bars represent 95% confidence intervals.
 382

378 by those of PPO and then averaged on all 14 environments. SAC-FDPI simultaneously achieves the
 379 lowest cost and an almost tied highest return (with SAC-FPI) among all algorithms, demonstrating
 380 its superior performance. We further plot the training curves of SAC-FDPI and six baselines across
 381 eight environments in Figure 2, with remaining results in Appendix C.2. SAC-FDPI achieves near-
 382 zero constraint violations on all environments while maintaining comparable or higher returns than
 383 the baselines. Notably, SAC-FPI exhibits persistent cost spikes even at final training stages, while
 384 SAC-FDPI maintains near-zero violations by continually feeding a controlled trickle of unsafe trans-
 385 sitions through its dual policy. These results answer **Q1**.



416 Figure 2: Training curves on eight environments in Safety-Gymnasium benchmark. The shaded
 417 areas represent 95% confidence intervals over 5 seeds.



431 Figure 3: Average proportion of violating samples in the replay buffer. The error bars represent 95%
 432 confidence intervals over 5 seeds.

Proportion of violating samples Figure 3 compares the average proportion of violating samples in the replay buffer during the final 10% of training iterations for SAC-FPI and SAC-FDPI. It shows that SAC-FDPI maintains a significantly higher proportion of violating samples than SAC-FPI—an order of magnitude greater in most environments. SAC-FPI’s violation ratio falls below 1% in nearly all environments, undermining the accuracy of its feasibility function and leading to the cost spikes observed in its training curves. In contrast, SAC-FDPI’s dual policy mechanism ensures persistent availability of a proper number of violating samples, which answers **Q2**. It is worth mentioning that our method is designed for training in a simulator instead of the real world, and thus additional violation does not cause real damage. A detailed discussion can be found in Appendix D.3.

Figure 4: Distribution of feasibility function estimation error after convergence.

Accuracy of feasibility function Figure 4 compares the estimation error of the feasibility function learned by SAC-FPI (blue) and SAC-FDPI (orange) in four environments. The errors are computed on 100k states collected by the two policies after convergence. The true values of the feasibility function are computed by definition on collected trajectories. It shows that SAC-FDPI produces a sharp, symmetric peak tightly centered at zero, which is an evidence of low bias and estimation error. In contrast, SAC-FPI exhibits flatter, more dispersed errors, reflecting the inflated estimation error bound caused by vanishing violating samples under the safety paradox. An empirical evidence of the relationship between violating samples and estimation error can be seen by combining Figures 3 and 4. Figure 3 shows that SAC-FDPI maintains about 10x more violating samples compared to SAC-FPI in most environments. This richer violation data directly leads to significantly lower estimation errors shown in Figure 4. These results support our theoretical analysis that richer violation data leads to better feasibility estimation, answering **Q3**.

Exploration patterns To understand how the dual policy specifically helps collect violating samples, we visualize the trajectories of the primal policy and dual policy in Figure 5. The primal policy conservatively steers around the hazards so that no violation is incurred. In contrast, the dual policy augments the samples collected by the primal policy by deliberately cutting through the hazards, injecting constraint-violating samples while staying close to the primal policy. This richer mixture of safe and unsafe data keeps the feasibility function well-estimated, allowing the primal policy to converge to higher performance and with lower constraint violations.

7 CONCLUSION

This paper discovers a fundamental obstacle in safe RL called the safety paradox, where improved policy safety leads to increased estimation error bound of the feasibility function, and ultimately harms policy safety. To address this paradox, we propose FDPI, which introduces a dual policy to maximize constraint violations while staying close to the primal policy through KL divergence constraints. We incorporate IS to correct distribution shifts between two policies. Extensive experiments on Safety-Gymnasium show that FDPI significantly increases violating samples, reduces feasibility function estimation error, and achieves state-of-the-art performance.

486 REFERENCES
487

488 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
489 *International conference on machine learning*, pp. 22–31. PMLR, 2017.

490 Eitan Altman. *Constrained Markov decision processes*. Routledge, 2021.

491

492 Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
493 McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
494 play. *Advances in neural information processing systems*, 30, 2017.

495 Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
496 overview and recent advances. In *2017 IEEE 56th Annual Conference on Decision and Control
(CDC)*, pp. 2242–2253. IEEE, 2017.

497

498 Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
499 reinforcement learning with stability guarantees. *Advances in neural information processing sys-
500 tems*, 30, 2017.

501

502 Zhepeng Cen, Yihang Yao, Zuxin Liu, and Ding Zhao. Feasibility consistent representation learning
503 for safe reinforcement learning. In *Proceedings of the 41st International Conference on Machine
504 Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 6002–6019. PMLR,
505 21–27 Jul 2024.

506

507 Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained rein-
508 forcement learning with percentile risk criteria. *Journal of Machine Learning Research*, 18(167):
509 1–51, 2018.

510 Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, and Shengbo Eben Li. Dsac-t: Distribu-
511 tional soft actor-critic with three refinements. *arXiv preprint arXiv:2310.05858*, 2023.

512

513 Shuo Feng, Haowei Sun, Xintao Yan, Haojie Zhu, Zhengxia Zou, Shengyin Shen, and Henry X Liu.
514 Dense reinforcement learning for safety validation of autonomous vehicles. *Nature*, 615(7953):
515 620–627, 2023.

516 Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real world
517 with minimal human effort. In *Conference on Robot Learning*, pp. 1110–1120. PMLR, 2021.

518

519 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
520 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-
521 ence on machine learning*, pp. 1861–1870. Pmlr, 2018.

522 Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
523 Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. *arXiv
524 preprint arXiv:1611.05397*, 2016.

525

526 Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yi-
527 fan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement learn-
528 ing benchmark. *Advances in Neural Information Processing Systems*, 36:18964–18993, 2023a.

529

530 Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
531 Yiran Geng, Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe
532 reinforcement learning research. *arXiv preprint arXiv:2305.09304*, 2023b.

533

534 Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
535 Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. *Nature*,
620(7976):982–987, 2023.

536

537 Shengbo Eben Li. *Reinforcement learning for sequential decision and optimal control*. Springer
538 Verlag, Singapore, 2023.

539 Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints.
In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 4940–4947, 2020.

540 Guido Novati and Petros Koumoutsakos. Remember and forget for experience replay. In *International Conference on Machine Learning*, pp. 4851–4860. PMLR, 2019.

541

542

543 Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained re-
544 enforcement learning has zero duality gap. *Advances in Neural Information Processing Systems*,
545 32, 2019.

546 Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
547 by self-supervised prediction. In *International conference on machine learning*, pp. 2778–2787.
548 PMLR, 2017.

549

550 Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
551 ment learning. In *International conference on machine learning*, pp. 2817–2826. PMLR, 2017.

552

553 Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
554 learning. *arXiv preprint arXiv:1910.01708*, 7(1):2, 2019.

555

556 Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. *arXiv
557 preprint arXiv:1511.05952*, 2015.

558

559 Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
560 Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
561 chess and shogi by planning with a learned model. *Nature*, 588(7839):604–609, 2020.

562

563 Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. *arXiv
564 preprint arXiv:1805.11074*, 2018.

565

566 Garrett Thomas, Yuping Luo, and Tengyu Ma. Safe reinforcement learning by imagining the near
567 future. *Advances in Neural Information Processing Systems*, 34:13859–13869, 2021.

568

569 Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
570 oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
571 level in starcraft ii using multi-agent reinforcement learning. *Nature*, 575(7782):350–354, 2019.

572

573 Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
574 Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
575 racing champion gran turismo drivers with deep reinforcement learning. *Nature*, 602(7896):223–
576 228, 2022.

577

578 Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement
579 learning with convergence guarantee. In *International Conference on Machine Learning*, pp.
580 11480–11491. PMLR, 2021.

581

582 Long Yang, Jiaming Ji, Juntao Dai, Linrui Zhang, Binbin Zhou, Pengfei Li, Yaodong Yang, and
583 Gang Pan. Constrained update projection approach to safe policy optimization. *Advances in
584 Neural Information Processing Systems*, 35:9111–9124, 2022.

585

586 Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
587 constrained policy optimization. *arXiv preprint arXiv:2010.03152*, 2020.

588

589 Yujie Yang, Yuxuan Jiang, Yichen Liu, Jianyu Chen, and Shengbo Eben Li. Model-free safe rein-
590 forcement learning through neural barrier certificate. *IEEE Robotics and Automation Letters*, 8
591 (3):1295–1302, 2023a.

592

593 Yujie Yang, Yuhang Zhang, Wenjun Zou, Jianyu Chen, Yuming Yin, and Shengbo Eben Li. Syn-
594 thesizing control barrier functions with feasible region iteration for safe reinforcement learning.
595 *IEEE Transactions on Automatic Control*, 69(4):2713–2720, 2023b.

596

597 Yujie Yang, Zhilong Zheng, Shengbo Eben Li, Jingliang Duan, Jingjing Liu, Xianyuan Zhan, and
598 Ya-Qin Zhang. Feasible policy iteration. *arXiv preprint arXiv:2304.08845*, 2023c.

599

600 Yujie Yang, Zhilong Zheng, Shengbo Eben Li, Masayoshi Tomizuka, and Changliu Liu. The
601 feasibility of constrained reinforcement learning algorithms: A tutorial study. *arXiv preprint
602 arXiv:2404.10064*, 2024.

594 Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
595 learning. In *International conference on machine learning*, pp. 25636–25655. PMLR, 2022.
596

597 Dongjie Yu, Wenjun Zou, Yujie Yang, Haitong Ma, Shengbo Eben Li, Yuming Yin, Jianyu Chen, and
598 Jingliang Duan. Safe model-based reinforcement learning with an uncertainty-aware reachability
599 certificate. *IEEE Transactions on Automation Science and Engineering*, 21(3):4129–4142, 2023.

600 Linrui Zhang, Li Shen, Long Yang, Shixiang Chen, Bo Yuan, Xueqian Wang, and Dacheng
601 Tao. Penalized proximal policy optimization for safe reinforcement learning. *arXiv preprint*
602 *arXiv:2205.11814*, 2022.

603 Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.
604 *Advances in Neural Information Processing Systems*, 33:15338–15349, 2020.
605

606 Weiye Zhao, Rui Chen, Yifan Sun, Tianhao Wei, and Changliu Liu. State-wise constrained policy
607 optimization. *arXiv preprint arXiv:2306.12594*, 2023.

608 Weiye Zhao, Feihan Li, Yifan Sun, Yujie Wang, Rui Chen, Tianhao Wei, and Changliu Liu. Absolute
609 state-wise constrained policy optimization: High-probability state-wise constraints satisfaction.
610 *arXiv preprint arXiv:2410.01212*, 2024.

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A PROOFS

649 A.1 PROOF OF CDF ERROR BOUND

650 **Theorem 1.** For any infeasible state $x \in \mathcal{X}$ under policy π , let $\hat{F}^\pi(x)$ be the MC estimate of the
651 CDF. Under Assumption 1, the expected relative estimation error is bounded by:

$$652 \mathbb{E}_{\tau_1, \tau_2, \dots, \tau_K} \left[\left| \frac{\hat{F}^\pi(x) - F^\pi(x)}{F^\pi(x)} \right| \right] \leq \frac{1}{\sqrt{K}} |\ln \gamma| \sigma_N^\pi(x) + (\ln \gamma)^2 \frac{\sigma_N^{2,\pi}(x)}{\gamma^{\mu_N^\pi(x)}}. \quad (7)$$

653 *Proof.* Construct two auxiliary functions

$$654 H^\pi(x) = \gamma^{\mu_N^\pi(x)},$$

$$655 \hat{H}^\pi(x) = \gamma^{\hat{\mu}_N^\pi(x)},$$

656 where

$$657 \hat{\mu}_N^\pi(x) = \frac{1}{K} \sum_{i=1}^K N(\tau_i).$$

658 Perform a second-order Taylor expansion with the Lagrange remainder to $\hat{H}^\pi(x)$:

$$659 \hat{H}^\pi(x) = \gamma^{\mu_N^\pi(x)} + \gamma^{\mu_N^\pi(x)} \ln \gamma \cdot (\hat{\mu}_N^\pi(x) - \mu_N^\pi(x)) + \frac{1}{2} \gamma^M (\ln \gamma)^2 (\hat{\mu}_N^\pi(x) - \mu_N^\pi(x))^2,$$

660 where M is a point between $\hat{\mu}_N^\pi(x)$ and $\mu_N^\pi(x)$. Thus,

$$661 |\hat{H}^\pi(x) - H^\pi(x)| = \left| \gamma^{\mu_N^\pi(x)} \ln \gamma \cdot (\hat{\mu}_N^\pi(x) - \mu_N^\pi(x)) + \frac{1}{2} \gamma^M (\ln \gamma)^2 (\hat{\mu}_N^\pi(x) - \mu_N^\pi(x))^2 \right|$$

$$662 \leq |\gamma^{\mu_N^\pi(x)} \ln \gamma \cdot (\hat{\mu}_N^\pi(x) - \mu_N^\pi(x))| + \frac{1}{2} |\gamma^M (\ln \gamma)^2 (\hat{\mu}_N^\pi(x) - \mu_N^\pi(x))^2|$$

$$663 \leq \gamma^{\mu_N^\pi(x)} |\ln \gamma| |\hat{\mu}_N^\pi(x) - \mu_N^\pi(x)| + \frac{1}{2} (\ln \gamma)^2 (\hat{\mu}_N^\pi(x) - \mu_N^\pi(x))^2,$$

664 where the last inequality holds because $\gamma^M < 1$. Since the squared function $(\cdot)^2$ is a convex
665 function, by Jensen's inequality, we have

$$666 \mathbb{E}[|\hat{\mu}_N^\pi(x) - \mu_N^\pi(x)|] \leq \sqrt{\mathbb{E}[(\hat{\mu}_N^\pi(x) - \mu_N^\pi(x))^2]} = \frac{\sigma_N^\pi(x)}{\sqrt{K}}.$$

667 Thus,

$$668 \mathbb{E}[|\hat{H}^\pi(x) - H^\pi(x)|] \leq \gamma^{\mu_N^\pi(x)} |\ln \gamma| \mathbb{E}[|\hat{\mu}_N^\pi(x) - \mu_N^\pi(x)|] + \frac{1}{2} (\ln \gamma)^2 \mathbb{E}[(\hat{\mu}_N^\pi(x) - \mu_N^\pi(x))^2]$$

$$669 \leq \frac{1}{\sqrt{K}} |\ln \gamma| \gamma^{\mu_N^\pi(x)} \sigma_N^\pi(x) + \frac{1}{2K} (\ln \gamma)^2 \sigma_N^{2,\pi}(x). \quad (14)$$

670 For any trajectory τ_i , perform a Taylor expansion to $\gamma^{N(\tau_i)}$:

$$671 \gamma^{N(\tau_i)} = \gamma^{\hat{\mu}_N^\pi(x)} + \gamma^{\hat{\mu}_N^\pi(x)} \ln \gamma \cdot (N(\tau_i) - \hat{\mu}_N^\pi(x)) + \frac{1}{2} \gamma^{M_i} (\ln \gamma)^2 (N(\tau_i) - \hat{\mu}_N^\pi(x))^2,$$

672 where M_i is a point between $N(\tau_i)$ and $\hat{\mu}_N^\pi(x)$. Then,

$$673 |\hat{F}^\pi(x) - \hat{H}^\pi(x)| = \left| \frac{1}{K} \sum_{i=1}^K \gamma^{N(\tau_i)} - \gamma^{\hat{\mu}_N^\pi(x)} \right|$$

$$674 = \left| \gamma^{\hat{\mu}_N^\pi(x)} \ln \gamma \cdot \frac{1}{K} \sum_{i=1}^K (N(\tau_i) - \hat{\mu}_N^\pi(x)) + \frac{1}{2} (\ln \gamma)^2 \frac{1}{K} \sum_{i=1}^K \gamma^{M_i} (N(\tau_i) - \hat{\mu}_N^\pi(x))^2 \right|$$

$$675 = \frac{1}{2} (\ln \gamma)^2 \frac{1}{K} \sum_{i=1}^K \gamma^{M_i} (N(\tau_i) - \hat{\mu}_N^\pi(x))^2$$

$$676 \leq \frac{1}{2} (\ln \gamma)^2 \frac{1}{K} \sum_{i=1}^K (N(\tau_i) - \hat{\mu}_N^\pi(x))^2.$$

702 Using the relationship between sample variance and variance:
 703

$$704 \mathbb{E} \left[\frac{1}{K-1} \sum_{i=1}^K (N(\tau_i) - \hat{\mu}_N^\pi(x))^2 \right] = \sigma_N^{2,\pi}(x),$$

705 we have
 706

$$707 \mathbb{E}[|\hat{F}^\pi(x) - \hat{H}^\pi(x)|] \leq \frac{1}{2} (\ln \gamma)^2 \mathbb{E} \left[\frac{1}{K} \sum_{i=1}^K (N(\tau_i) - \hat{\mu}_N^\pi(x))^2 \right] \\ 708 = \frac{K-1}{2K} (\ln \gamma)^2 \sigma_N^{2,\pi}(x). \quad (15)$$

713 For any trajectory τ , perform another Taylor expansion to $\gamma^{N(\tau_i)}$:

$$714 \gamma^{N(\tau_i)} = \gamma^{\mu_N^\pi(x)} + \gamma^{\mu_N^\pi(x)} \ln \gamma \cdot (N(\tau_i) - \mu_N^\pi(x)) + \frac{1}{2} \gamma^{M_i} (\ln \gamma)^2 (N(\tau_i) - \mu_N^\pi(x))^2,$$

715 where M_i is a point between $N(\tau_i)$ and $\mu_N^\pi(x)$. Then,
 716

$$717 |F^\pi(x) - H^\pi(x)| = \left| \mathbb{E}[\gamma^{N(\tau_i)}] - \gamma^{\mu_N^\pi(x)} \right| \\ 718 = \left| \gamma^{\mu_N^\pi(x)} \ln \gamma \cdot \mathbb{E}[N(\tau_i) - \mu_N^\pi(x)] + \frac{1}{2} (\ln \gamma)^2 \mathbb{E}[\gamma^{M_i} (N(\tau_i) - \mu_N^\pi(x))^2] \right| \\ 719 = \frac{1}{2} (\ln \gamma)^2 \mathbb{E}[\gamma^{M_i} (N(\tau_i) - \mu_N^\pi(x))^2] \\ 720 \leq \frac{1}{2} (\ln \gamma)^2 \mathbb{E}[(N(\tau_i) - \mu_N^\pi(x))^2] \\ 721 = \frac{1}{2} (\ln \gamma)^2 \sigma_N^{2,\pi}(x).$$

722 Thus,
 723

$$724 \mathbb{E}[|F^\pi(x) - H^\pi(x)|] \leq \frac{1}{2} (\ln \gamma)^2 \sigma_N^{2,\pi}(x). \quad (16)$$

725 Combining (14), (15), and (16), we have
 726

$$727 \mathbb{E}[|\hat{F}^\pi(x) - F^\pi(x)|] = \mathbb{E}[|\hat{F}^\pi(x) - \hat{H}^\pi(x) + \hat{H}^\pi(x) - H^\pi(x) + H^\pi(x) - F^\pi(x)|] \\ 728 \leq \mathbb{E}[|\hat{F}^\pi(x) - \hat{H}^\pi(x)|] + \mathbb{E}[|\hat{H}^\pi(x) - H^\pi(x)|] + \mathbb{E}[|H^\pi(x) - F^\pi(x)|] \\ 729 \leq \frac{1}{\sqrt{K}} |\ln \gamma| \gamma^{\mu_N^\pi(x)} \sigma_N^\pi(x) + \frac{1}{2K} (\ln \gamma)^2 \sigma_N^{2,\pi}(x) \\ 730 + \frac{K-1}{2K} (\ln \gamma)^2 \sigma_N^{2,\pi}(x) + \frac{1}{2} (\ln \gamma)^2 \sigma_N^{2,\pi}(x) \\ 731 = \frac{1}{\sqrt{K}} |\ln \gamma| \gamma^{\mu_N^\pi(x)} \sigma_N^\pi(x) + (\ln \gamma)^2 \sigma_N^{2,\pi}(x)$$

732 Since γ^N is a convex function for $\gamma \in (0, 1)$, by Jensen's inequality, we have
 733

$$734 F^\pi(x) = \mathbb{E}[\gamma^{N(\tau)}] \geq \gamma^{\mathbb{E}[N(\tau)]} = H^\pi(x).$$

735 Thus,
 736

$$737 \mathbb{E} \left[\left| \frac{\hat{F}^\pi(x) - F^\pi(x)}{F^\pi(x)} \right| \right] \leq \mathbb{E} \left[\left| \frac{\hat{F}^\pi(x) - F^\pi(x)}{H^\pi(x)} \right| \right] \leq \frac{1}{\sqrt{K}} |\ln \gamma| \sigma_N^\pi(x) + (\ln \gamma)^2 \frac{\sigma_N^{2,\pi}(x)}{\gamma^{\mu_N^\pi(x)}},$$

738 which proves the theorem. \square
 739

740 A.2 PROOF OF VARIANCE RELATIONSHIP

741 **Theorem 2.** Let π, π' be two policies. Consider a set of states $X_M \subseteq \mathcal{X}$ such that for all $x \in X_M$,
 742 (1) x is infeasible under both π and π' , (2) $m(x) \geq M$, (3) $\min\{P(\mathbf{D}(x'_\pi) < \mathbf{D}(x)), P(\mathbf{D}(x'_{\pi'}) < \mathbf{D}(x))\} \geq 0.5$. Under Assumptions 2–4, if π' is safer than π in all states in X_M , we have $\sigma_N^{2,\pi'}(x) \geq \sigma_N^{2,\pi}(x), \forall x \in X_M$.
 743

756 *Proof.* We prove the theorem in three steps.
 757

758 **Step 1:** For a given policy, a state further to violation has a larger variance.
 759

760 Let x_+ be a state with $D(x_+) \in [D(x), D(x) + \delta]$. To violate the constraint starting from x_+ , the
 761 agent first needs move to some state x_- with $D(x_-) \in [D(x) - \delta, D(x)]$. Thus, we have
 762

$$763 N^\pi(x_+) = N_1^\pi(x_+) + \sum_{i=2}^{m(x_+)} N_i^\pi(x_+) = N_1^\pi(x_+) + N^\pi(x_-). \\ 764$$

765 Take the variance on both sides:
 766

$$767 \sigma_N^{2,\pi}(x_+) = \text{Var}(N_1^\pi(x_+) + N^\pi(x_-)) \\ 768 \\ 769 = \text{Var}(N_1^\pi(x_+)) + \sigma_N^{2,\pi}(x_-) + 2\text{Cov}(N_1^\pi(x_+), N^\pi(x_-)) \\ 770 \\ 771 = \text{Var}(N_1^\pi(x_+)) + \sigma_N^{2,\pi}(x_-) + 2\text{Cov}\left(N_1^\pi(x_+), \sum_{i=2}^{m(x_+)} N_i^\pi(x_+)\right) \geq \sigma_N^{2,\pi}(x_-). \\ 772 \\ 773$$

774 The last inequality follows from Assumption 4.
 775

776 **Step 2:** In a given state, a safer policy has a larger variance.
 777

778 Starting from x and taking one step under π , the agent will arrive at a state x_- with $D(x_-) \in$
 779 $[D(x) - \delta, D(x)]$ with probability $P(D(x'_\pi) < D(x))$ and arrive at a state x_+ with $D(x_+) \in$
 780 $[(D(x), D(x) + \delta)]$ with probability $1 - P(D(x'_\pi) < D(x))$. Let $p_\pi = P(D(x'_\pi) < D(x))$, we have
 781

$$782 N^\pi(x) = \begin{cases} 1 + N^\pi(x_-) & \text{w.p. } p_\pi \\ 1 + N^\pi(x_+) & \text{w.p. } 1 - p_\pi \end{cases} \\ 783$$

784 According to the law of total variance,
 785

$$\sigma_N^{2,\pi}(x) = p_\pi \sigma_N^{2,\pi}(x_-) + (1 - p_\pi) \sigma_N^{2,\pi}(x_+) + p_\pi(1 - p_\pi)(\mu_N^\pi(x_-) - \mu_N^\pi(x_+))^2.$$

786 Consider a policy $\tilde{\pi}$ that is safer than π in x and identical to π in all other states, i.e., $\tilde{\pi}$ only modifies
 787 the action in x and follows π thereafter. We have
 788

$$789 p_{\tilde{\pi}} \leq p_\pi, \\ 790 N^{\tilde{\pi}}(x_-) = N^\pi(x_-), \\ 791 N^{\tilde{\pi}}(x_+) = N^\pi(x_+).$$

792 Since $\sigma_N^{2,\pi}(x_-) \leq \sigma_N^{2,\pi}(x_+)$, we have
 793

$$794 p_{\tilde{\pi}} \sigma_N^{2,\tilde{\pi}}(x_-) + (1 - p_{\tilde{\pi}}) \sigma_N^{2,\tilde{\pi}}(x_+) \geq p_\pi \sigma_N^{2,\pi}(x_-) + (1 - p_\pi) \sigma_N^{2,\pi}(x_+).$$

795 Since $p_\pi \geq p_{\tilde{\pi}} \geq 0.5$, we have
 796

$$797 p_{\tilde{\pi}}(1 - p_{\tilde{\pi}})(\mu_N^{\tilde{\pi}}(x_-) - \mu_N^{\tilde{\pi}}(x_+))^2 \geq p_\pi(1 - p_\pi)(\mu_N^\pi(x_-) - \mu_N^\pi(x_+))^2.$$

798 Summing the above two inequalities, we have,
 799

$$800 \sigma_N^{2,\tilde{\pi}}(x) \geq \sigma_N^{2,\pi}(x).$$

801 **Step 3:** For all states in X_M , a safer policy has a larger variance.
 802

803 A safer policy can be obtained by modifying the actions state by state. Each time we modify the
 804 action in a single state, we obtain a safer policy in that state. The variance in that state increases,
 805 and the variance in other states remain unchanged. After modifying the actions in all states in X_M ,
 806 we obtain the safer policy π' with $\sigma_N^{2,\pi'}(x) \geq \sigma_N^{2,\pi}(x), \forall x \in X_M$, which proves the theorem.
 807

808 Note that modifying the actions state by state is just a technique to facilitate the proof. It is not
 809 required in the actual policy update. The policy can be updated “globally” at once, which is a
 common practice for function approximated policies. The intermediate “virtual” policies, with each
 one safer in one state, are constructed only for the proof and do not need to be found in practice. \square

810 A.3 CASE STUDY: ONE-DIMENSIONAL RANDOM WALK
811

812 Consider a one-dimensional random walk where the state space $\mathcal{X} = \mathbb{Z}$ and the action space $\mathcal{U} =$
813 $\{-1, 1\}$. The initial state is fixed at $x = 0$, and the transition dynamics follows $x' = x + u$. In
814 each step, the policy chooses $u = 1$ with probability p , and $u = -1$ with probability $1 - p$. We
815 require $p > 0.5$ to ensure finite expectation and variance of steps to violation. The state $x = L > 0$
816 is constraint-violating, and every time the agent reaches this state, it is reset to $x = 0$. Let N be
817 the number of steps to the first violation, with its expectation and variance denoted as μ_N and σ_N^2 .
818 To measure policy safety, let r be the expected proportion of violating samples under continuous
819 sampling. It is easily observed that $r = 1/\mu_N$. Our aim is to find the relationship between r and
820 σ_N^2 .
821

822 Observe that N can be decomposed as the sum of L random variables: $N = LM$, where M is
823 the number of steps to the first time the agent visits the step on its right. This is because going
824 from $x = 0$ to $x = L$ can be decomposed as going to the step on the right L times. We derive the
825 expectation and variance of M , denoted as μ_M and σ_M^2 , respectively. Consider the following two
826 cases:

- 827 1. With probability p , the agent moves right and reaches $x + 1$ in one step.
- 828 2. With probability $1 - p$, the agent moves left to $x - 1$. Now, the agent must first return to x and
829 then proceed to $x + 1$. The expected number of steps of returning to x from $x - 1$ is the same as
830 that of moving from x to $x + 1$, which equals μ_M . Thus, the total expected number of steps in
831 the case is $1 + 2\mu_M$.

832 Thus, the expectation μ_M satisfies

$$833 \mu_M = p \cdot 1 + (1 - p) \cdot (1 + 2\mu_M),$$

835 which gives

$$836 \mu_M = \frac{1}{2p - 1}.$$

839 To derive the variance of M , first consider the second-order moment $\mathbb{E}[M^2]$. Following the above
840 analysis, we have

$$841 \mathbb{E}[M^2] = p \cdot 1^2 + (1 - p) \cdot \mathbb{E}[(1 + M' + M)^2],$$

842 where M' is the number of steps to move from $x - 1$ to x for the first time. Since M' and M are
843 i.i.d., we have

$$\begin{aligned} 844 \mathbb{E}[(1 + M' + M)^2] &= \mathbb{E}[1 + 2(M' + M) + (M' + M)^2] \\ 845 &= 1 + 4\mu_M + \mathbb{E}[(M' + M)^2] \\ 846 &= 1 + 4\mu_M + \mathbb{E}[M'^2 + 2M'M + M^2] \\ 847 &= 1 + 4\mu_M + 2\mathbb{E}[M^2] + 2\mu_M^2. \end{aligned}$$

849 Thus,

$$850 \mathbb{E}[M^2] = p + (1 - p) \cdot (1 + 4\mu_M + 2\mathbb{E}[M^2] + 2\mu_M^2).$$

852 Solving for $\mathbb{E}[M^2]$:

$$853 \mathbb{E}[M^2] = \frac{1 + 4(1 - p)\mu_M + 2(1 - p)\mu_M^2}{2p - 1}.$$

855 Thus, the variance is

$$856 \sigma_M^2 = \mathbb{E}[M^2] - \mu_M^2 = \frac{4p(1 - p)}{(2p - 1)^3}.$$

859 Since $N = LM$, by the property of the summation of random variables, we have

$$860 \mu_N = L\mu_M = \frac{1}{2p - 1} \cdot L,$$

$$863 \sigma_N^2 = L^2\sigma_M^2 = \frac{4p(1 - p)}{(2p - 1)^3} \cdot L^2.$$

864 With $r = 1/\mu_N$, we have

$$865 \quad 866 \quad 867 \quad L = (2p - 1)\mu_N = \frac{2p - 1}{r}.$$

868 Thus,

$$869 \quad 870 \quad \sigma_N^2 = \frac{4p(1-p)}{(2p-1)^3} \cdot \frac{(2p-1)^2}{r^2} = \frac{4p(1-p)}{2p-1} \cdot \frac{1}{r^2}$$

871 The above equation reveals that as the policy becomes safer, the variance of steps to violation in-
872 creases. Combining with the error bound in Equation (7), we conclude that a safer policy leads to a
873 higher relative estimation error bound.

874 B PSEUDOCODE

875 **Algorithm 1:** Soft actor-critic with feasible dual policy iteration (SAC-FDPI)

876 **Initialize:** Network parameters $\phi_p, \phi_d, \omega, \theta_p, \theta_d$. IS ratios $\hat{r}_{dp} = \hat{r}_{pd} = 1$. Replay buffer $\mathcal{D} = \emptyset$.
877 Feasibility threshold $d = 0.95$.

```

878 1 for each iteration do
879   // Sample with primal policy
880   Sample action  $u_p \sim \pi_{\theta_p}$ ;
881   Get next state  $x'$ , reward  $r$ , and cost  $c$  from environment;
882   Store transition in replay buffer  $\mathcal{D} \leftarrow \mathcal{D} \cup \{(x, u, x', r, c, \hat{r}_{dp})\}$ ;
883   Update IS ratio  $\hat{r}_{dp} \leftarrow \hat{r}_{dp} \cdot \pi_d(u|x)/\pi_p(u|x)$  or  $\hat{r}_{dp} \leftarrow 1$  if episode ends;
884   if Running averaged proportion of  $G_p(x, u) \leq \epsilon$  greater than  $d$  then
885     // Sample with dual policy
886     Sample action  $\tau_d \sim \pi_{\theta_d}$ ;
887     Get next state  $x'$ , reward  $r$ , and cost  $c$  from environment;
888     Store transition in replay buffer  $\mathcal{D} \leftarrow \mathcal{D} \cup \{(x, u, x', r, c, \hat{r}_{pd})\}$ ;
889     Update IS ratio  $\hat{r}_{pd} \leftarrow \hat{r}_{pd} \cdot \pi_p(u|x)/\pi_d(u|x)$  or  $\hat{r}_{pd} \leftarrow 1$  if episode ends;
890   else
891     // Sample with primal policy
892     Repeat Lines 2–5;
893   end
894   // Update network parameters
895   Update primal action-feasibility network  $\phi_p \leftarrow \phi_p - \eta \nabla_{\phi_p} L_{G_p}(\phi_p)$ ; // Equation (9)
896   Update dual action-feasibility network  $\phi_d \leftarrow \phi_d - \eta \nabla_{\phi_d} L_{G_d}(\phi_d)$ ; // Equation (9)
897   Update action-value network  $\omega \leftarrow \omega - \eta \nabla_{\omega} L_Q(\omega)$ ; // Equation (10)
898   Update primal policy network  $\theta_p \leftarrow \theta_p - \eta \nabla_{\theta_p} L_{\pi_p}(\theta_p)$ ; // Equation (11)
899   Update dual policy network  $\theta_d \leftarrow \theta_d - \eta \nabla_{\theta_d} L_{\pi_d}(\theta_d)$ ; // Equation (12)
900   Update Lagrange multipliers by Equation (13);
901
902 end

```

904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 C EXPERIMENTS
919920 The Safety-Gymnasium benchmark (Ji et al., 2023a) and the Omnisafe toolbox (Ji et al., 2023b) are
921 both released under the Apache License 2.0.
922923 All experiments are conducted on a workstation equipped with Intel(R) Xeon(R) Gold 6246R CPUs
924 (32 cores, 64 threads), an NVIDIA GeForce RTX 3090 GPU, and 256GB of RAM. A single ex-
925 perimental trial—comprising one environment, one algorithm, and one random seed—takes about 2
926 hours to execute. Executing all experiments with a properly configured concurrent running scheme
927 requires approximately 400 hours.
928929 C.1 HYPERPARAMETERS
930

931 Table 1: Hyperparameters

932 Category	933 Hyperparameter	934 Value
935 Shared	936 Number of vector environments	937 2
	938 Number of samples per iteration	939 2
	940 Number of updates per iteration	941 1
	942 Replay buffer size	943 2e6
	944 Batch size	945 256
	946 Reward discount factor	947 0.99
	948 Cost discount factor	949 0.97
	950 Cost limit	951 0
	952 Actor learning rate	953 1e-4
	954 Actor network hidden sizes	955 (256, 256)
	956 Actor activation function	957 ReLU
	958 Critic learning rate	959 1e-4
	960 Critic network hidden sizes	961 (256, 256)
	962 Critic activation function	963 ReLU
964 SAC	965 Network weight initialization method	966 Truncated normal
	967 Optimizer	968 Adam
	969 Target network soft update weight	970 0.005
	971 Maximum gradient norm	972 40
	973	974
975 Penalty	976 Initial entropy temperature	977 1.0
	978 Target entropy	979 $-\dim(\mathcal{U})$
	980 Entropy temperature learning rate	981 1e-4
982 Lagrangian	983 Penalty coefficient	984 1.0
	985 Initial multiplier	986 0.0
	987 Multiplier learning rate	988 1e-4
	989 Multiplier update delay	990 10
991 FDPI	992 Primal policy step per iteration	993 1
	994 Dual policy step per iteration	995 1
	996 Feasibility threshold ϵ	997 0.1
	998 Maximum KL divergence δ	999 5.0

963 C.2 ADDITIONAL RESULTS
964

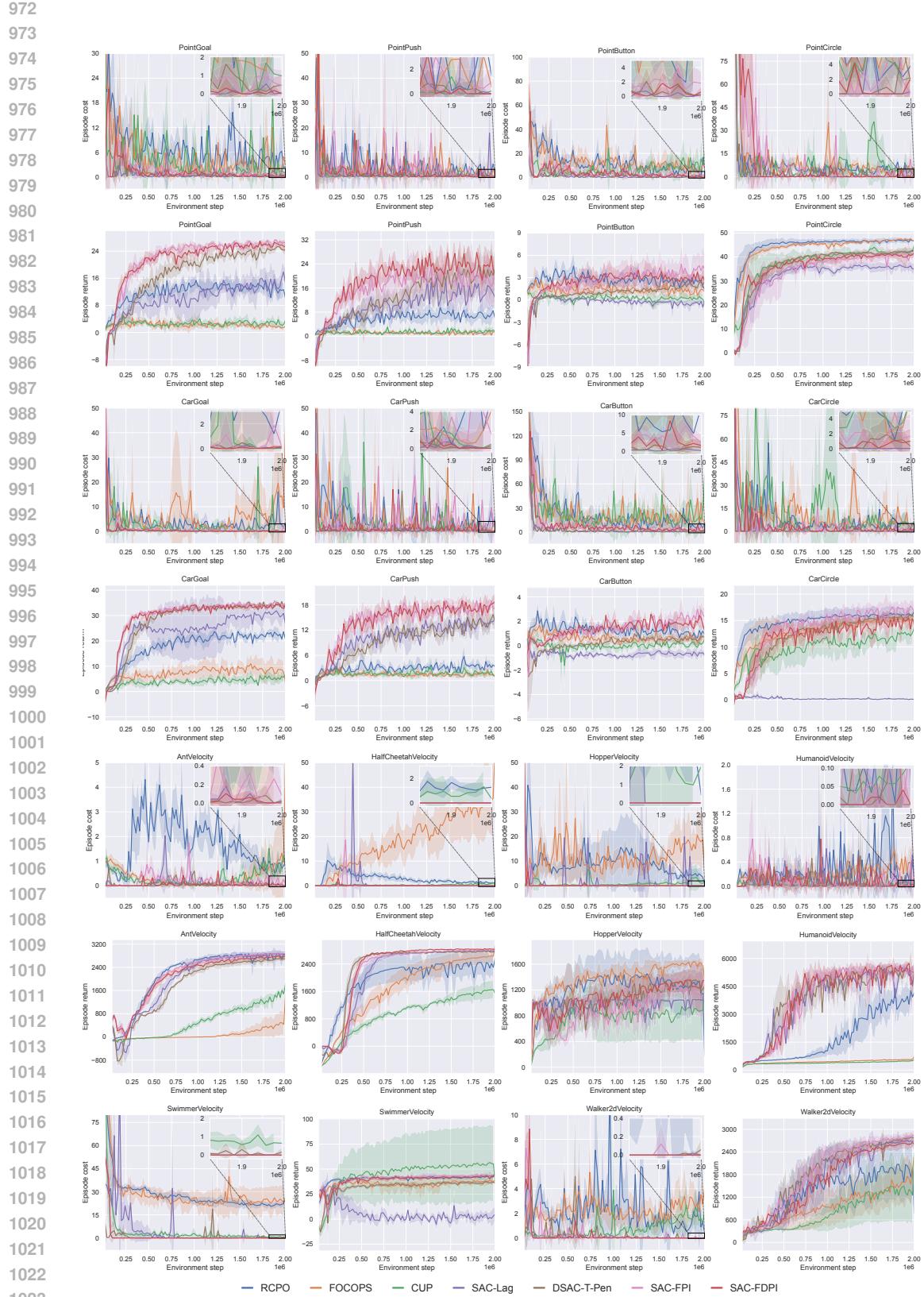


Figure 6: Training curves on all 14 environments in Safety-Gymnasium benchmark. The shaded areas represent 95% confidence intervals over 5 seeds.

1026

1027

1028

1029

1030

1031

Table 2: Average cost and return in the last 10% iterations

Algorithm	AntVelocity		CarButton		CarCircle	
	Cost	Return	Cost	Return	Cost	Return
CPO	0.03 ± 0.01	-3227.47 ± 1314.35	4.48 ± 1.06	-1.57 ± 0.83	2.20 ± 2.19	5.15 ± 3.28
RCPO	0.87 ± 0.29	2745.86 ± 208.04	11.27 ± 2.83	1.06 ± 0.17	5.31 ± 3.00	16.10 ± 1.46
FOCOPS	1.00 ± 1.34	429.32 ± 389.58	19.45 ± 4.80	0.58 ± 0.14	6.49 ± 2.84	15.12 ± 0.88
CUP	0.84 ± 0.24	1415.50 ± 127.41	18.59 ± 19.44	0.14 ± 0.21	4.46 ± 2.68	12.29 ± 1.59
PPO-Lag	2.32 ± 0.31	2507.59 ± 79.48	38.50 ± 10.90	0.94 ± 0.23	14.38 ± 15.54	13.63 ± 0.85
SAC-Lag	0.04 ± 0.05	2859.28 ± 122.94	0.31 ± 0.16	-0.66 ± 0.30	0.00 ± 0.00	0.14 ± 0.08
FCSRL	2.13 ± 0.86	2747.50 ± 445.29	1.28 ± 1.08	-1.10 ± 0.94	8.73 ± 10.62	3.18 ± 5.16
DSAC-T-Pen	0.02 ± 0.02	2680.46 ± 97.58	0.80 ± 0.39	0.59 ± 0.34	0.71 ± 0.37	15.73 ± 0.65
SAC-FPI	0.16 ± 0.19	2863.46 ± 85.96	3.71 ± 0.57	2.40 ± 0.50	1.74 ± 0.81	17.02 ± 1.39
SAC-FDPI	0.03 ± 0.02	2764.44 ± 136.64	2.68 ± 1.39	1.83 ± 0.23	0.60 ± 0.65	14.72 ± 1.36
Algorithm	CarGoal		CarPush		HalfCheetahVelocity	
	Cost	Return	Cost	Return	Cost	Return
CPO	1.27 ± 1.09	3.12 ± 0.99	0.59 ± 0.53	1.60 ± 0.47	0.03 ± 0.02	855.39 ± 239.61
RCPO	3.54 ± 1.31	22.06 ± 0.26	3.70 ± 2.75	3.42 ± 0.56	1.29 ± 0.38	2389.86 ± 341.21
FOCOPS	11.57 ± 17.86	8.68 ± 3.87	2.63 ± 1.99	1.32 ± 0.34	34.15 ± 14.09	2606.12 ± 214.08
CUP	1.23 ± 1.07	5.35 ± 1.82	0.96 ± 0.61	1.68 ± 0.71	0.91 ± 0.90	1619.77 ± 259.74
PPO-Lag	6.50 ± 8.06	11.03 ± 4.51	3.04 ± 2.35	2.31 ± 0.63	2.67 ± 1.54	2234.27 ± 499.64
SAC-Lag	0.07 ± 0.03	30.33 ± 3.40	0.24 ± 0.16	13.95 ± 1.22	0.00 ± 0.00	2783.54 ± 26.26
FCSRL	0.27 ± 0.52	29.86 ± 1.48	13.15 ± 25.43	13.13 ± 1.31	0.59 ± 0.63	2791.22 ± 75.79
DSAC-T-Pen	0.12 ± 0.16	34.19 ± 0.29	0.21 ± 0.17	14.02 ± 1.16	0.00 ± 0.00	2760.54 ± 14.76
SAC-FPI	0.40 ± 0.32	34.44 ± 0.34	3.62 ± 2.51	17.21 ± 1.18	0.00 ± 0.00	2809.33 ± 23.42
SAC-FDPI	0.04 ± 0.03	33.73 ± 0.53	0.29 ± 0.14	17.55 ± 1.73	0.00 ± 0.00	2831.97 ± 9.13
Algorithm	HopperVelocity		HumanoidVelocity		PointButton	
	Cost	Return	Cost	Return	Cost	Return
CPO	0.00 ± 0.00	304.43 ± 243.06	0.00 ± 0.00	250.84 ± 18.05	2.16 ± 0.70	-1.08 ± 0.64
RCPO	4.41 ± 2.34	1236.59 ± 471.32	0.28 ± 0.10	3862.34 ± 405.31	7.54 ± 2.71	2.51 ± 0.40
FOCOPS	17.50 ± 10.19	1587.08 ± 48.20	0.35 ± 0.13	562.29 ± 74.98	8.80 ± 3.58	1.19 ± 0.63
CUP	2.09 ± 3.24	873.75 ± 445.49	0.06 ± 0.03	482.02 ± 34.07	9.72 ± 7.64	0.15 ± 0.50
PPO-Lag	3.29 ± 1.87	1508.78 ± 90.96	0.22 ± 0.07	1300.45 ± 425.44	11.60 ± 5.85	1.19 ± 0.36
SAC-Lag	1.19 ± 2.34	1032.86 ± 35.68	0.10 ± 0.09	5212.90 ± 110.20	0.23 ± 0.26	-0.50 ± 0.35
FCSRL	0.29 ± 0.29	1163.18 ± 133.00	6.63 ± 3.40	895.86 ± 134.69	1.07 ± 1.71	-0.09 ± 0.52
DSAC-T-Pen	0.00 ± 0.00	1271.16 ± 229.74	0.05 ± 0.05	5229.07 ± 176.58	0.69 ± 0.34	2.06 ± 0.63
SAC-FPI	0.00 ± 0.00	1131.13 ± 316.65	0.09 ± 0.08	5351.34 ± 183.96	1.76 ± 0.54	3.92 ± 1.86
SAC-FDPI	0.00 ± 0.00	1285.17 ± 289.89	0.01 ± 0.01	5269.77 ± 201.84	0.72 ± 0.43	2.89 ± 0.89
Algorithm	PointCircle		PointGoal		PointPush	
	Cost	Return	Cost	Return	Cost	Return
CPO	0.40 ± 0.30	20.14 ± 5.63	0.90 ± 0.45	1.45 ± 0.99	0.60 ± 0.66	0.49 ± 0.75
RCPO	4.59 ± 1.77	46.77 ± 1.11	4.08 ± 1.18	13.14 ± 1.92	1.96 ± 0.81	7.24 ± 1.10
FOCOPS	5.28 ± 2.15	47.17 ± 0.44	3.16 ± 0.83	1.85 ± 0.56	2.21 ± 1.18	1.14 ± 0.28
CUP	4.21 ± 2.55	42.11 ± 1.74	3.01 ± 3.24	2.91 ± 0.98	0.91 ± 0.51	1.37 ± 0.52
PPO-Lag	5.47 ± 1.72	45.84 ± 1.31	5.55 ± 3.37	3.83 ± 2.13	5.17 ± 3.86	1.89 ± 1.23
SAC-Lag	0.81 ± 1.52	35.80 ± 1.65	0.09 ± 0.10	14.66 ± 3.01	2.27 ± 3.29	14.48 ± 3.38
FCSRL	2.17 ± 4.25	27.95 ± 14.47	0.57 ± 0.65	14.36 ± 0.87	0.47 ± 0.91	13.76 ± 14.13
DSAC-T-Pen	1.33 ± 1.10	42.10 ± 0.39	0.58 ± 0.28	24.65 ± 0.62	0.38 ± 0.27	21.13 ± 6.82
SAC-FPI	2.58 ± 2.68	40.84 ± 2.63	0.61 ± 0.24	26.45 ± 0.41	0.78 ± 0.52	19.05 ± 6.63
SAC-FDPI	0.84 ± 0.70	40.54 ± 2.59	0.09 ± 0.06	25.77 ± 0.49	0.44 ± 0.67	22.71 ± 1.21
Algorithm	SwimmerVelocity		Walker2dVelocity		SafetyHopper	
	Cost	Return	Cost	Return	Cost	Return
CPO	0.09 ± 0.06	22.94 ± 23.57	0.02 ± 0.01	188.35 ± 96.17	519.61 ± 509.11	-4599.10 ± 6207.66
RCPO	21.40 ± 1.93	42.29 ± 3.88	1.11 ± 0.54	1913.68 ± 765.27	577.12 ± 413.10	1481.77 ± 639.77
FOCOPS	24.31 ± 9.58	37.56 ± 4.24	2.72 ± 0.99	1629.19 ± 516.49	763.58 ± 19.10	1332.04 ± 297.91
CUP	0.87 ± 0.28	54.75 ± 38.58	1.60 ± 0.59	1360.46 ± 814.21	206.51 ± 213.09	-1266.47 ± 1504.74
PPO-Lag	24.83 ± 3.45	73.51 ± 20.49	2.00 ± 0.61	2166.22 ± 595.72	507.99 ± 209.61	1337.05 ± 204.90
SAC-Lag	0.00 ± 0.00	2.52 ± 3.43	0.00 ± 0.00	2681.36 ± 126.54	84.39 ± 20.99	1585.24 ± 1252.75
FCSRL	1.10 ± 0.85	41.01 ± 3.47	2.14 ± 1.22	2577.23 ± 199.16		
DSAC-T-Pen	0.10 ± 0.09	36.45 ± 2.17	0.01 ± 0.02	2752.25 ± 106.80	6.70 ± 4.83	3122.00 ± 179.75
SAC-FPI	0.00 ± 0.00	43.69 ± 1.42	0.01 ± 0.02	2787.28 ± 126.27	2.23 ± 3.15	2947.83 ± 227.69
SAC-FDPI	0.00 ± 0.00	42.71 ± 1.39	0.00 ± 0.00	2619.63 ± 148.14	0.33 ± 0.39	3118.77 ± 75.85

Note: The bold values indicate top 2 algorithms in a column. The colored cells indicate top 2 in both cost and return in an environment.

1075

1076

1077

1078

1079

1080
 1081 We evaluated the feasibility threshold $\epsilon \in \{0.05, 0.1, 0.2\}$ across 8 environments. The results indicate that a smaller ϵ leads to more conservative behavior, i.e., lower cost and lower return.
 1082
 1083
 1084

Table 3: Normalized cost and return under different feasibility threshold ϵ

Environment	$\epsilon = 0.05$		$\epsilon = 0.1$		$\epsilon = 0.2$	
	Cost	Return	Cost	Return	Cost	Return
PointGoal	0.001	0.998	0.002	1.073	0.017	1.080
PointPush	0.000	0.822	0.002	0.770	0.001	0.816
PointCircle	0.000	0.703	0.004	0.797	0.040	0.862
CarGoal	0.000	1.087	0.001	1.115	0.000	1.085
CarPush	0.001	0.862	0.016	0.934	0.008	0.888
CarCircle	0.001	0.681	0.003	0.619	0.016	0.824
HalfCheetahVelocity	0.000	1.386	0.000	1.385	0.000	1.418
HumanoidVelocity	0.001	0.487	0.000	0.810	0.000	0.736
Average	0.000	0.878	0.003	0.938	0.010	0.964

1097
 1098 We evaluated the dual threshold $d \in \{0.5, 0.9, 0.95, 0.98\}$. The results show that within a reasonable
 1099 range (i.e., for $d \geq 0.9$), a smaller d , which corresponds to more frequent activation of the dual
 1100 policy, leads to lower costs without sacrificing return. However, an excessively small d results in
 1101 higher costs, possibly because of severe distributional shift.
 1102

Table 4: Normalized cost and return under different dual threshold d

Environment	$d = 0.50$		$d = 0.90$		$d = 0.95$		$d = 0.98$	
	Cost	Return	Cost	Return	Cost	Return	Cost	Return
PointGoal	0.001	0.988	0.000	1.091	0.002	1.073	0.008	1.076
PointPush	0.003	0.747	0.000	0.746	0.002	0.770	0.005	0.798
PointCircle	0.004	0.773	0.000	0.787	0.004	0.797	0.019	0.861
CarGoal	0.003	1.107	0.000	1.142	0.001	1.115	0.000	1.110
CarPush	0.150	0.943	0.005	1.028	0.016	0.934	0.021	0.789
CarCircle	0.000	0.625	0.001	0.739	0.003	0.619	0.001	0.703
HalfCheetahVelocity	0.000	1.374	0.000	1.382	0.000	1.385	0.000	1.374
HumanoidVelocity	0.000	0.825	0.000	0.682	0.000	0.810	0.000	0.763
Average	0.020	0.923	0.001	0.949	0.003	0.938	0.007	0.934

1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 We evaluated the KL divergence threshold $\delta \in \{2, 5, 10\}$. The results show that the overall per-
 1135 formance is stable within a reasonable range ($\delta \leq 5$), with a smaller δ slightly decreases both cost
 1136 and return. However, an excessively large δ significantly increases cost due to excessive policy
 1137 divergence.

1138

1139

1140

Table 5: Normalized cost and return under different KL divergence threshold δ

Environment	$\delta = 2$		$\delta = 5$		$\delta = 10$	
	Cost	Return	Cost	Return	Cost	Return
PointGoal	0.002	1.000	0.002	1.073	0.015	1.036
PointPush	0.000	0.335	0.002	0.770	0.061	0.647
PointCircle	0.005	0.775	0.004	0.797	0.012	0.861
CarGoal	0.000	1.108	0.001	1.115	0.002	1.144
CarPush	0.010	0.857	0.016	0.934	0.387	0.021
CarCircle	0.002	0.766	0.003	0.619	0.005	0.824
HalfCheetahVelocity	0.000	1.433	0.000	1.385	0.000	1.425
HumanoidVelocity	0.000	0.843	0.000	0.810	0.000	0.709
Average	0.002	0.890	0.003	0.938	0.060	0.833

1151

1152

We compared SAC-FDPI with IPO (Liu et al., 2020) and CRPO (Xu et al., 2021) on 8 environments.
 The results show that SAC-FDPI achieves a lower cost and higher return than these two algorithms.

1153

1154

1155

1156

Table 6: Normalized cost and return comparison with IPO and CRPO.

Environment	IPO		CRPO		SAC-FDPI	
	Cost	Return	Cost	Return	Cost	Return
PointGoal	0.060	0.086	0.142	0.607	0.002	1.073
PointPush	0.188	0.063	0.057	0.193	0.002	0.770
PointCircle	0.052	0.816	0.013	0.918	0.004	0.797
CarGoal	0.122	0.555	0.123	0.546	0.001	1.115
CarPush	0.551	0.131	0.831	0.175	0.016	0.934
CarCircle	0.045	0.624	0.025	0.677	0.003	0.619
HalfCheetahVelocity	0.073	1.435	0.004	1.146	0.000	1.385
HumanoidVelocity	0.001	0.162	0.002	0.635	0.000	0.810
Average	0.136	0.484	0.149	0.612	0.003	0.938

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188 **D DISCUSSION**1189 **D.1 RELATED WORK ON REPRESENTATION LEARNING**

1190 Another class of methods address the challenge of sparse violation signals in feasibility function
 1191 estimation through representation learning. Cen et al. (2024) propose Feasibility Consistent Safe
 1192 Reinforcement Learning (FCSRL), which extracts safety-related information from the observation
 1193 to improve feasibility function learning. This is achieved by learning a encoder that maps the obser-
 1194 vation to a latent states, which serves as a better input for the feasibility function. FCSRL focuses
 1195 on representation learning, which tries to better exploit safety-related information from given data.
 1196 In contrast, our method addresses the safety paradox, where violation signals become increasingly
 1197 sparse as the policy becomes safer. Our solution is to actively collect more violating data using a dual
 1198 policy, targeting the root cause of the sparsity. Therefore, FCSRL and our method are orthogonal:
 1199 one improves data utilization, while the other improves data collection.
 1200

1202 **D.2 EXTENSION TO TD ESTIMATE AND CVF**

1203 Our theoretical analysis can be extended to TD estimate. Specifically, Section 4.2 proves that the
 1204 variance of steps to violation, $N(\tau)$, increases with safer policies. Consider an initial state x , its
 1205 subsequent state x' , and the sub-trajectory τ' starting from x' . Since $N(\tau') = N(\tau) - 1$, the
 1206 variance of $N(\tau')$ also increases with policy safety. This implies a higher variance in the true
 1207 feasibility value $F^\pi(x')$. Consequently, the TD target, which is computed by $F^\pi(x')$, inherits this
 1208 increased variance, leading to a larger estimation error in $\hat{F}^\pi(x)$.
 1209

1210 Our analysis can also be extended to the CVF widely used in the CMDP, defined as
 1211

$$1212 F^\pi(x) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t c(x_t) | x_0 = x \right].$$

1213 The key insight is that the CVF can be decomposed into a discounted sum of CDF-like terms.
 1214 Specifically, we can break down any infinite-horizon trajectory into segments that end immediately
 1215 after a constraint violation. The total CVF is the discounted sum of costs along the entire trajectory.
 1216 We can now group the costs by the segment in which they occur. The cost incurred in each segment
 1217 is, by construction, a discounted sum that starts from an initial state and ends with a violation.
 1218 Crucially, the value of the CVF in each segment is precisely a CDF. The total CVF can be expressed
 1219 as:
 1220

$$1221 F^\pi(x) = \underbrace{\mathbb{E}[\text{discounted cost of Segment 1}]}_{\text{CDF term}} + \underbrace{\gamma^{T_1} \mathbb{E}[\text{discounted cost of Segment 2}]}_{\text{CDF term}} + \dots$$

1222 where T_i is the time step of the i th violation. Our main theoretical result establishes that the esti-
 1223 mation error bound of a single CDF term increases as the policy becomes safer (i.e., as violations
 1224 become rarer, making each segment longer). This directly implies that the error bound for the total
 1225 CVF must also increase.
 1226

1228 **D.3 ADDITIONAL VIOLATION DURING TRAINING**

1229 In the broader safe RL community, there are two training and implementation modes: (1) offline
 1230 training and online deployment (OTOD), which first trains a policy in simulator and then deploys
 1231 it in the real world, and (2) simultaneous online training and deployment (SOTD), which directly
 1232 interacts with the real world to collect data for training. The OTOD mode only requires the final
 1233 policy to be safe because intermediate policies will not be deployed in the real world. The SOTD
 1234 model requires both the final policy and all intermediate policies to be safe.
 1235

1236 FDPI, along with the baselines we compare in the paper, belongs to the OTOD mode. We focus
 1237 primarily on learning a safe policy at convergence, rather than guaranteeing safety during training.
 1238 Therefore, FDPI does not involve unsafe exploration in the real world during training.
 1239

1240 For the SOTD mode, one must ensure safety throughout training. Achieving this goal would require
 1241 integrating additional safe exploration techniques like those proposed by Berkenkamp et al. (2017)
 1242 and Yu et al. (2022). These methods typically employ a model of the environment, either known or

1242 learned. Constraint violations are allowed in the model but not allowed in the environment. They
1243 alternate between learning a safe policy within the current model and refining the model with newly
1244 collected data. These approaches are complementary to our contribution, which focuses on solving
1245 the safe policy within a fixed model/environment.
1246

1247 **E LARGE LANGUAGE MODEL USAGE DISCLOSURE**
1248

1249 We used Large Language Model (LLM) solely for the purpose of improving grammar and polishing
1250 writing. The LLM was not used for any core research tasks such as retrieval, discovery, ideation, or
1251 analysis.
1252

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295