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ABSTRACT

We study the problem of efficiently generating high-quality and diverse content
in games. Previous work on automated deckbuilding in Hearthstone shows that
the quality diversity algorithm MAP-Elites can generate a collection of high-
performing decks with diverse strategic gameplay. However, MAP-Elites requires
a large number of expensive evaluations to discover a diverse collection of decks.
We propose assisting MAP-Elites with a deep surrogate model trained online to
predict game outcomes with respect to candidate decks. MAP-Elites discovers
a diverse dataset to improve the surrogate model accuracy, while the surrogate
model helps guide MAP-Elites towards promising new content. In a Hearth-
stone deckbuilding case study, we show that our approach improves the sample
efficiency of MAP-Elites and outperforms a model trained offline with random
decks, as well as a linear surrogate model baseline, setting a new state-of-the-
art for quality diversity approaches in automated Hearthstone deckbuilding. We
include the source code for all the experiments at: https://github.com/
icaros-usc/EvoStone2.

1 INTRODUCTION

In this work, we study the problem of efficiently generating high-quality and diverse content in
games. We believe automated deckbuilding in collectable card games (i.e., Magic the Gather-
ing (Mag, 1993), Legends of Runeterra (Leg, 2020), or Hearthstone (hea, 2014)) forms an ideal
case study for this problem. In collectable card games, designers want to automatically generate
high performing decks with diverse strategies for both player experience (Heijne & Bakkes, 2017)
and playtesting (Garcı́a-Sánchez et al., 2018). Example strategies include aggro decks that focus on
reducing the opponent hero’s health to zero as quick as possible, and control decks that only deal
damage to the opponent once the board is under control (Fontaine et al., 2019).

In the Hearthstone deckbuilding problem, generating high-quality and diverse decks is challenging.
To evaluate a candidate deck requires at least 200 games even against restricted opponents (Hoover
et al., 2019; Bhatt et al., 2018), because of the large number of initial game states and stochastic
player actions. In other words, the outcome of a single Hearthstone game has high variance even
with deterministic strategies.

To generate high-quality decks with diverse strategic gameplay, we build upon previous
work (Fontaine et al., 2019) that formulates the problem of automated deckbuilding as a quality
diversity (QD) problem and generates collections of decks via the QD algorithm MAP-Elites. A
QD formulation requires an objective function to maximize and measure functions to span. In the
context of Hearthstone, we specify the objective as winning games and the measure functions as the
average game length and average cards in hand. MAP-Elites will then generate a diverse collection
of decks that vary according to these measures. For example, the algorithm will produce decks that
end games quickly as well as decks that extend the game as long as possible. It will also attempt
to find the best-performing decks for each measure output combination, e.g., for different game
lengths.

However, searching for game content with MAP-Elites requires a large number of expensive eval-
uations, where each evaluation requires many runs in a game engine. We propose assisting the
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Figure 1: An overview of the Deep Surrogate Assisted MAP-Elites (DSA-ME) algorithm applied
to Hearthstone Deckbuilding: Our approach consists of an inner loop (in blue) and an outer loop
(in red). In the inner loop, we exploit a deep surrogate model of the SabberStone simulator by
searching for a diverse collection of high performing decks with the MAP-Elites algorithm. Each
iteration of the inner loop is a full run of the MAP-Elites algorithm on an input surrogate model. The
elites of the MAP-Elites archive form candidate decks to be evaluated on the Hearthstone simulator
SabberStone in the outer loop. We perform an expensive evaluation of each deck by playing 200
games and extract ground-truth data about performance and playstyle. These candidate decks are
both added to a data buffer as labeled data to train the surrogate model and to a ground-truth archive.
After training the surrogate model on this new data, we initialize a new MAP-Elites to run in the
inner loop on the updated surrogate model, completing one iteration of our algorithm. The result of
DSA-ME is the ground-truth archive after several iterations of the outer loop.

search with trained surrogate models that predict game outcomes for specific content. Previous
work (Karavolos et al., 2021) from procedural content generation showed how to train surrogate
models offline from labeled gameplay data in a supervised fashion. Any search algorithm can then
exploit the surrogate model directly on the game itself. However, a supervised surrogate model ap-
proach requires a large diverse labeled dataset and is vulnerable to the search discovering adversarial
examples (Trabucco et al., 2021), low-quality solutions that are predicted by the surrogate model to
have high-quality.

As an alternative to offline surrogate models, we can acquire online labeled data by evaluation of
game content with simulated agents. The Surrogate-Assisted Illumination (SAIL) (Gaier et al.,
2018) algorithm trains on online surrogate model to improve the sample efficiency of MAP-Elites
on generative design tasks. SAIL combines a surrogate model, modeled as a Gaussian process, that
predicts the utility of solutions with an acquisition function that predicts where to sample. However,
Gaussian processes can only be applied on low dimensional continuous data, whereas procedurally
generated data is often high dimensional and discrete. For example, a Hearthstone cardset used to
create decks may contain several hundred cards.

We propose training a deep neural network as a surrogate model that allows us to scale to high-
dimensional search spaces. The deep neural network predicts both the objective and measures, thus
we can run many iterations of MAP-Elites on a given surrogate model. Our method yields a two-fold
benefit: by exploiting the surrogate model with MAP-Elites, we obtain diverse data to train a better
surrogate model in future iterations and a better surrogate model helps guide MAP-Elites towards
high-quality and diverse content.
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Overall, we introduce a novel model-based QD algorithm that maintains an online deep surrogate
model predicting the objective and measures of generated game content. Our experiments in auto-
mated Hearthstone deckbuilding show that our approach improves the sample efficiency of MAP-
Elites and outperforms a model trained offline, as well as an alternative linear model, setting a new
state-of-the-art for quality diversity approaches to automated Hearthstone deckbuilding.

2 BACKGROUND

Hearthstone and Automated Deckbuilding. Hearthstone (hea, 2014) is a two-player turn-based
virtual collectable card game published by Blizzard in 2014. Players need to form their own decks
by choosing cards from a provided cardset. Each deck contains exactly 30 cards and allows just two
copies of each card with the exception of legendary cards, which are restricted to one copy per deck.
The two players’ objective of the game is to reduce the opponent’s health point to zero by playing
cards on a virtual board.

Due to the large cardinality of the Hearthstone deckspace, automated deckbuilding is considered as
one of the two main AI challenges of Hearthstone (Hoover et al., 2019). At the time of this writing,
Blizzard has published over 2500 collectible cards, which form a large search space of possible decks
that players can design. We focus on the basic and classic card sets of the game, which are the first
two sets of cards published by Blizzard in Hearthstone. Each of them contains 171 playable cards
and each card can be added to a deck at most twice, which would create approximately 1.42× 1035

possible decks (Fontaine et al., 2019). Although we only focus on these two initial sets, the size
of the search space defined by them is large enough for us to demonstrate the effectiveness of our
method.

Both evolutionary and non-evolutionary approaches have been applied to the automated deckbuild-
ing problem. Evolutionary approaches include genetic algorithms (Garcı́a-Sánchez et al., 2016;
2018) and evolutionary strategies (Bhatt et al., 2018) that find a single high-performing deck. Later
work (Fontaine et al., 2019) applied the MAP-Elites (Mouret & Clune, 2015) algorithm to gener-
ate a collection of high-performing decks with diverse strategic gameplay. Non-evolutionary ap-
proaches include a utility based system that automatically constructs decks based on predefined
metrics (Stiegler et al., 2016), and a deckbuilding recommendation system (Chen et al., 2018).

Quality Diversity Algorithms. Quality diversity (QD) optimization (Pugh et al., 2016; Chatzilyger-
oudis et al., 2021) is a class of stochastic optimization algorithms. We define the QD problem over
a search space with an objective function to maximize – known as a fitness function in evolution-
ary computation – and measure functions to span. Quality diversity algorithms have been proposed
based on genetic algorithms (Lehman & Stanley, 2011a; Cully et al., 2015; Lehman & Stanley,
2011b), evolution strategies (Fontaine et al., 2020; Colas et al., 2020; Conti et al., 2017; Nord-
moen et al., 2018), Bayesian optimization (Kent & Branke, 2020), and gradient ascent (Fontaine
& Nikolaidis, 2021b). The MAP-Elites (Cully et al., 2015; Mouret & Clune, 2015) QD algorithm
pre-tessellates the space of measure function outputs. MAP-Elites then searches for a solution for
each cell in the tessellation that maximizes the given objective. MAP-Elites returns an archive of
solutions; each cell of the archive contains at most one solution, i.e., an elite, which is the highest
performing solution in that cell. QD algorithms have been applied to different domains such as
procedural content generation (Gravina et al., 2019), robotics (Cully et al., 2015; Mouret & Clune,
2015), aerodynamic shape design (Gaier et al., 2018), and scenario generation in human-robot in-
teraction (Fontaine & Nikolaidis, 2021a; Fontaine et al., 2021).

Model-based Quality Diversity Optimization. Several works in quality diversity optimization
have combined insights from model-based optimization (MBO) (Bartz-Beielstein, 2016) or model-
based reinforcement learning (MBRL) (Moerland et al., 2020). These approaches broadly fit under
the category of model-based quality diversity (MBQD). In MBO there are two main categories of
methods: surrogate methods and generative methods.

Surrogate model methods learn a predictive model of the optimization objective and then exploit that
model through an acquisition function or direct optimization. In MBQD, the Surrogate-Assisted Illu-
mination (SAIL) (Gaier et al., 2018) algorithm and the Bayesian Optimization of Elites (BOP-Elites)
algorithm (Kent & Branke, 2020) both can be considered surrogate model methods as they learn a
Gaussian process that is exploited via an acquisition function. While SAIL learns a surrogate model
only of the objective, Surrogate-Assisted Phenotypic Niching (SPHEN) (Hagg et al., 2020) uses
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Algorithm 1: DSA-ME

Input: evaluate: function that returns objective f ,
measures m, and ancillary data α
random solution: function that generates a
random solution x
perturb elite: function that generates a new
solution x given an input archive
N: Number of evaluations on evaluate
function
n: Number of inner loop iterations
G: Initial population size

Output: Ground-truth Archive M
1 Function InnerLoop (G, Ms, sm):
2 for j ← 0 to n do
3 if j < G then
4 x← random solution()
5 else
6 x← perturb elite(Ms)
7 end
8 f̂ , m̂, α̂← sm.predict(x)

9 Add (x, f̂ , m̂, α̂) to Ms

10 end

11 Initialize a ground-truth archive M , an surrogate
model sm, a data buffer D

12 i← 0
13 while i < N do
14 if i < G then
15 x← random solution()
16 f,m, α← evaluate(x)
17 Add (x, f , m, α) to D
18 Add (x, f , m, α) to M
19 i← i+ 1
20 else
21 sm.train(D)
22 Initialize a surrogate archive Ms

23 InnerLoop (G, Ms, sm)
24 for x ∈Ms do
25 f,m, α← evaluate(x)
26 Add (x, f , m, α) to D
27 Add (x, f , m, α) to M
28 i← i+ 1
29 end
30 end
31 end

Gaussian processes to predict both the objective and the measures. Previous work (Cazenille et al.,
2019) has shown that MAP-Elites with surrogate models of micro-robots physics and chemical re-
action dynamics resulted in performance comparable to a complete physical model. Our proposed
DSA-ME algorithm falls under this category of MBQD.

Generative model methods learn a generative model of solutions as a learned representation of the
search space. By creating a generative model of a design space, an optimization method can more
efficiently search for complex solutions indirectly. From an evolutionary computation perspective,
these methods can also be viewed as a type of indirect encoding of their search space (D’Ambrosio
et al., 2014). In model-based quality diversity, the Data-Driven Encoding MAP-Elites (DDE-Elites)
algorithm (Gaier et al., 2020) and the Policy Manifold Search (PoMS) algorithm (Rakicevic et al.,
2021) both construct an online learned representation of their search space from elites in the MAP-
Elites archive.

Several works in MBQD have drawn inspiration from MBRL. Previous work (Keller et al., 2020)
proposes a model-based method for the Novelty Search via Local Competition (NSLC) (Lehman &
Stanley, 2011b) algorithm that predicts both the agent reward and a skill descriptor of a reinforce-
ment learning-based robotics controller. Another approach (Lim et al., 2021) trained a model to
predict the environment dynamics of a robot. The dynamics model can then be leveraged to learn
robotic skills for downstream tasks. Given that the model predicts the dynamics, rather than reward
or skill descriptors, new models can be trained to solve different downstream tasks by defining a
reward function for the dynamics model. These approaches specialize for skill learning in reinforce-
ment learning domains. Our approach differs as it can be applied to any optimization problem that
can be modeled as a quality diversity problem, assuming that a suitable surrogate model exists for
the search space.

3 APPROACH: DEEP SURROGATE ASSISTED MAP-ELITES

We introduce the Deep Surrogate Assisted MAP-Elites (DSA-ME) algorithm, a model-based quality
diversity algorithm derived from MAP-Elites. Fig 1 gives an overview of the DSA-ME framework
and Algorithm 1 provides a pseudocode implementation of DSA-ME.

4



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

3.1 DEEP SURROGATE MODEL

In our Hearthstone example domain, a deep surrogate model predicts gameplay outcomes for an
input Hearthstone deck. The model acts as an efficient surrogate for the game engine, predicting
the objective f and measures m needed to run MAP-Elites. By evaluating game content on the
surrogate model instead of the game engine, we aim to improve the efficiency of generating high
quality and diverse decks. Additionally, we explore a surrogate model that predicts ancillary data α
extracted from gameplay, hypothesizing that this helps form better internal representations and thus
generalizes better to new decks.

3.2 INNER AND OUTER LOOPS

The DSA-ME algorithm consists of an inner and outer loop visualized in Fig 1. The inner loop
exploits the surrogate model to discover a diverse archive of high-quality solutions, according to
the surrogate model. The outer loop evaluates candidate archives produced by the inner loop on the
Hearthstone game engine as a way to (1) generate labeled data to improve the surrogate model and
(2) update a running ground-truth archive of high-quality decks with diverse strategic gameplay.

We initialize the outer loop in the same manner as MAP-Elites, by generating G random decks and
evaluating them on the Hearthstone game engine. These initial decks as well as their gameplay data
form the initial training data D for the surrogate model and the initial solutions for the outer archive
M .

After generating the initial G decks and training the initial surrogate model (line 21), we initialize
a new archive Ms (line 22) containing decks with gameplay outcomes predicted by the surrogate
model sm. The algorithm then starts running the inner loop (lines 1-10). As in MAP-Elites, the inner
loop generates the first G decks by randomly sampling decks (line 4) and later decks by perturbing
existing elites (line 6). Within the inner loop, we evaluate new candidate decks directly on the
surrogate model (line 8). After evaluation, each candidate deck x and surrogate predictions f̂ , m̂,
and α̂ get added to the surrogate archive Ms (line 9).

After the inner-loop runs n iterations, we return to the outer loop. We extract all elites from the
surrogate archive Ms and evaluate them on the Hearthstone to obtain ground-truth predictions f ,
m, and α (lines 24-29). These decks and their ground-truth data get added to both the training
data buffer for the surrogate model (line 26) and the outer loop’s ground truth archive (line 27). The
algorithm results in a ground-truth archive M with decks that have been evaluated on the Hearthstone
game engine.

3.3 ON THE BENEFITS OF ONLINE TRAINING

In this section, we provide our intuition on why we expect online training of the surrogate model to
improve search performance over surrogate models trained from offline data.

The initial surrogate model will struggle to predict gameplay outcomes as the model is trained only
on a few randomly chosen initial decks. When we run MAP-Elites to exploit the surrogate model
in the inner loop, we will discover areas of the search space where the surrogate model incorrectly
predicts the objective or measure functions of a given deck. Moreover, the data extracted from
the surrogate model is diverse according to the surrogate model. By training the surrogate model
on these adversarial, with respect to the objective, yet diverse solutions, the model will update its
predictions on what constitutes a good Hearthstone deck.

As the outer loop progresses, the surrogate model will become more accurate. When the inner loop
starts generating more accurate solutions, the surrogate archive will provide better estimates for high
quality decks that vary according to the measure functions. Gradually, the role of the inner loop
MAP-Elites shifts from generating adversarial decks that exploit the surrogate model to generating
high quality decks that populate the ground-truth archive.

We contrast the online approach with surrogate models trained only with offline data. In the offline
case, MAP-Elites will exploit the surrogate model for decks that the surrogate model predicts will
perform well, but that perform poorly when evaluated on Hearthstone. Without including these
adversarial decks in the training set, the model cannot correct its erroneous predictions.
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4 EXPERIMENTS

Our experiments show that combining the QD algorithm MAP-Elites with a deep surrogate model
trained online improves the quality and diversity of automatically generated Hearthstone decks.

4.1 EXPERIMENT SETUP

Search Space. We search for decks for the Rogue class in the basic and classic card sets. We are
interested in Rogue because decks in this class require long-term planning due to the class’s combo
mechanic; some cards played in the early states of the game might be useful in the later states when
played with other cards (Fontaine et al., 2020). Each deck contains 30 cards, selected from 180
candidate cards. Each card can be selected at most twice.

To input a deck into the surrogate model, we encode the deck as an integer vector that represents the
frequency of each card chosen. We call this encoding method Bag-of-Cards and provide detailed
information in Appendix A.1

SabberStone Simulator. To simulate games of Hearthstone, we run our experiments on Sabber-
Stone (darkfriend77, 2021), a community developed simulator of Hearthstone games.

Objective and Measures. We adopt the same objective and measures proposed by previous
work (Fontaine et al., 2020) for both strategy training and deck search. To evaluate a deck or strat-
egy, we play 200 games of Hearthstone distributed evenly among our opponent suite. To provide
a smooth approximation of winning percentage, we specify an objective of the average health dif-
ference between the two player at the end of each game. For measures, we calculate the average
number of cards in hand at the start of each turn and the average number of turns across the 200
games. The average number of turns measure defines the spectrum between aggro, which ends the
game quickly, and control, which tries to prolong the game, playstyles.

Player Strategy. We use CMA-ME (Fontaine et al., 2020) to train a neural network to play a
human-designed Miracle Rogue deck (Stonekeep, 2021) with the objective and measures defined in
section 4.1. We provide more details on the player strategy in Appendix A.2.

Opponents. We selected six high-performing decks discovered by previous work (Fontaine et al.,
2019) in the Hunter, Paladin, and Warlock classes as our opponents. For each class, we include both
an aggro and control opponent. We choose these opponents to provide our deck search with high
quality and strategically diverse opponents.

Surrogate Models and Baselines. We use a multilayer perceptron (MLP) as a deep surrogate
model. To show the benefit of deep surrogate models, we include a linear surrogate model baseline.
We refer to these models as Linear Surrogate Assisted MAP-Elites (LSA-ME) and Deep Surrogate
Assisted MAP-Elites (DSA-ME), respectively. To demonstrate the importance of training the sur-
rogate model online, we add a baseline that exploits a fixed MLP trained in a supervised fashion.
We collect the training data for the offline MLP by sampling 10000 randomly generated decks and
evaluating them on SabberStone. The fixed model is not updated online after training. We de-
note this baseline as Offline DSA-ME. Finally, we include MAP-Elites without a surrogate model
as a model-free baseline. We run 5 trials for each algorithm. We describe the hyperparameters in
Appendix A.3.

Perturbation Operator. All implemented QD algorithms require a perturbation operator. To per-
turb elites, we replace k cards from a parent elite with k cards chosen uniformly from the cardset.
We vary k geometrically, similarly to previous work (Fontaine et al., 2019).

Ancillary Data. Drawing upon insights from self-supervised learning (Ren & Lee, 2018), we ex-
plore whether adding ancillary data to the prediction of the surrogate models helps form better inter-
nal representations and thus generalize better to new decks. We provide a full list of ancillary data in
Appendix A.4. We denote surrogate model algorithms trained with ancillary data as DSA-ME (ad)
and Offline DSA-ME (ad).
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Table 1: Hearthstone numerical results
Algorithm Max Avg Health Diff Max Win Percentage Cells Filled Percentage QD-Score
MAP-Elites 15.72 ± 0.62 90.6 ± 0.91 % 14.36 ± 0.32 % 136.89 ± 1.95
Offline DSA-ME 18.69 ± 0.17 97.1 ± 0.19 % 21.64 ± 0.12 % 194.94 ± 1.65
LSA-ME 20.07 ± 0.18 96.2 ± 0.12 % 27.89 ± 0.64 % 276.23 ± 6.10
DSA-ME 22.30 ± 0.16 98.4 ± 0.10 % 31.86 ± 0.71 % 338.52 ± 5.86
Offline DSA-ME (ad) 20.23 ± 0.20 97.7 ± 0.30 % 15.65 ± 0.13 % 168.67 ± 0.99
DSA-ME (ad) 21.15 ± 0.35 97.4 ± 0.43 % 30.78 ± 1.35 % 312.66 ± 11.72

4.2 EXPERIMENT DESIGN

Independent Variables. We follow a between-groups design with two independent variables: (1)
The type of surrogate model: DSA-ME, LSA-ME, Offline DSA-ME, and MAP-Elites without any
surrogate model. (2) The presence of ancillary data: none or ancillary data (ad) if the model predicts
the additional metrics described in section 4.1.

Dependent Variables. The dependent variables measure the quality and diversity of the decks
found by the algorithms. Specifically, the dependent variables are the maximum average health
difference, the maximum win percentage, the percentage of cells filled in the ground-truth archive,
and the QD-score (Pugh et al., 2015). The maximum average health difference and maximum win
percentage measure the capability of the algorithm to search for globally optimal solutions. The
percentage of cells filled in the ground-truth archive measures the diversity of the solutions. The
QD-score measures the quality and diversity of the solutions altogether and is defined as the sum of
the objective values of all solutions in the ground-truth archive.

Hypotheses.
H1: The DSA-ME, LSA-ME, and Offline DSA-ME algorithms will have better performance than
MAP-Elites. We hypothesize that the surrogate models will result in MAP-Elites finding more di-
verse and high-performing solutions than without the models.

H2: DSA-ME will have better performance than Offline DSA-ME and LSA-ME. We choose as
baseline the linear model to demonstrate the benefit of a deep model. We also compare against
Offline DSA-ME to demonstrate the benefit of training the model online with data generated from
MAP-Elites.

H3: Adding the ancillary data to DSA-ME and Offline DSA-ME will improve performance. We
expect the ancillary data to give an additional training signal to the surrogate models so that the
models can learn a better internal representation and more accurately predict the objective and mea-
sures. We only include ancillary data in DSA-ME and Offline DSA-ME, since linear models do not
have internal representations.

5 RESULTS

Table 1 shows the average maximum objective value, average maximum win percentage, average
percentage of cells filled, and average QD-score over 5 trials.

To test hypotheses 1 and 2, we performed a one-way ANOVA test for each of the metrics. There were
statistically significant differences in all four metrics: QD-score (F(3, 16) = 403.49, p < 0.001),
maximum win percentage (F(3, 16) = 52.81, p < 0.001), maximum average health difference
(F(3, 16) = 64.65, p < 0.001), and percentage of cells filled (F(3, 16) = 228.30, p < 0.001). Post-
hoc pairwise comparisons with Bonferroni corrections showed that all three variations of DSA-ME
performed significantly better than MAP-Elites in all four metrics. This supports H1.

In addition, DSA-ME outperforms LSA-ME and Offline DSA-ME in QD-score, percentage of cells
filled, and maximum average health difference. There is no statistically significant difference in the
maximum win percentage among the three algorithms. We attribute this to the fact that the maximum
win percentage is high for all algorithms. Overall, we observe that DSA-ME finds more diverse and
high-performing solutions, supporting H2.

To test the third hypothesis, we first performed a two-way ANOVA test for each metric, with the
type of the surrogate model (DSA-ME, Offline DSA-ME) and the presence of ancillary data as
independent variables. There was no statistically significant interaction between the surrogate model
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Figure 2: Quantitative analysis of the elites in the archive with the surrogate model predicting objec-
tive and measures (without ancillary data). In the rightmost plots, the y-axis shows the percentage
of filled cells in the archive that had average health difference larger than the corresponding value in
the x-axis. Larger area under each curve indicates better performance

5 7.5 10 12.5 15

Num Turns

7

4

1

H
an

d
 S

iz
e

MAP-Elites

-30

-20

-10

0

10

20

30

5 7.5 10 12.5 15

Num Turns

7

4

1

H
an

d
 S

iz
e

MAP-Elites

-30

-20

-10

0

10

20

30

5 7.5 10 12.5 15

Num Turns

7

4

1

H
an

d
 S

iz
e

MAP-Elites

-30

-20

-10

0

10

20

30

5 7.5 10 12.5 15

Num Turns

7

4

1

H
an

d
 S

iz
e

MAP-Elites

-30

-20

-10

0

10

20

30

Figure 3: Example archives from single runs of vanilla MAP-Elites and variants of DSA-ME. The
color indicates the objective value (average health difference) of each solution. Qualitatively DSA-
ME finds more diverse and high performing solutions than MAP-Elites.

type and the presence of ancillary data for QD-score. Main effect analysis showed that surrogate
models with ancillary data had significantly smaller QD-score than the models without the ancillary
data (p = 0.001).

We found a statistically significant interaction between the two independent variables for maximum
win percentage (F(1, 16) = 8.00, p = 0.012), maximum average health difference (F(1, 16) =
33.277, p < 0.001), and percentage of cells filled (F(1, 16) = 10.148, p = 0.006). Simple main
effect analysis showed that ancillary data helped only in one case: maximum average health differ-
ence was significantly higher for Offline DSA-ME (ad) compared to Offline DSA-ME (p < 0.001).
For DSA-ME (ad), maximum win percentage and maximum average health difference are both sig-
nificantly worse than DSA-ME (p = 0.024, p = 0.003) and we found no significance in percentage
of cells filled. For Offline DSA-ME (ad), percentage of cells filled is significantly worse than Of-
fline DSA-ME (p < 0.001) and we found no significance for maximum win percentage. These
results show that adding ancillary data did not improve performance and they do not support H3.
We discuss this finding in section 7.

Figure 2 shows the QD-score and the percentage of cells filled. We note that the QD-score metric
combines both the number of cells filled in the archive (diversity) and the objective value of each
occupant (quality). To disambiguate the two, we also show in Fig. 2 the Complementary Cumula-
tive Distribution Function (CCDF) plot of the solutions in the archive. The CCDF plot shows the
percentage of cells (y-axis) that have objective value greater than the threshold specified in the x-
axis. Fig. 3 shows example heatmaps of the ground-truth archives of the four algorithms (without
the ancillary data).

The heatmaps and plots support the results from the statistical analysis, showing that DSA-ME finds
more diverse and higher quality solutions than the baselines. They also show that Offline DSA-ME,
although using a deep surrogate model, performs worse than LSA-ME in both QD-score and number
of elites. In addition, as shown in the CCDF plots, DSA-ME consistently finds more solutions in the
archive over all average health differences.
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6 ON THE PERFORMANCE OF DSA-ME

We perform a post-hoc experimental analysis to shed more light on what makes DSA-ME achieve
high performance. We are interested in the quality of the surrogate model and the labelled elite data
as well as the effect of resetting MAP-Elites in the inner loop. We describe the experiments and
results in Appendix B. The results suggests that (1) although the surrogate model does not always
predict the exact cell, the generated candidate solutions are diverse enough to illuminate the measure
space; (2) DSA-ME generates a diverse, high-quality dataset of decks and training on the dataset
enables the surrogate model to make accurate predictions; (3) resetting MAP-Elites in the inner loop
enables DSA-ME to generate more diverse candidate solutions.

7 DISCUSSION

Our work presents a method to efficiently generate diverse and high-quality game content for col-
lectable card games. We introduce the Deep Surrogate Assisted MAP-Elites (DSA-ME) algorithm,
a novel model-based quality diversity algorithm.

In our experiments, we observe that DSA-ME outperforms surrogate models trained on offline, ran-
domly generated data and a model-free MAP-Elites approach, setting a new state-of-the-art for QD
approaches in automated Hearthstone deckbuilding. By dynamically forming a surrogate model of
Hearthstone gameplay, DSA-ME explores more complex decks, whose performance is hypothesized
by surrogate model predictions. This reduces the number of simulated games required to find high-
performing decks with differing strategic gameplay. We anticipate that our results will benefit game
designers looking to balance collectable card games through automated deckbuilding (de Mesen-
tier Silva et al., 2019).

While our DSA-ME approach improves upon existing methods for automated deckbuilding, we
found that adding ancillary data to the surrogate model predictions did not improve performance.
This result conflicts with our intuitions from recent advancements in self-supervised learning (Ren
& Lee, 2018); we hypothesized that ancillary data would help the deep surrogate model learn a
better internal representation of the Hearthstone cardset.

A potential reason for this result is the simplicity of the Hearthstone deck representation. We encode
decks as a Bag-of-Cards input feature vector, which marks if a card is included in the deck. This
encoding does not capture a card’s mana cost, attack, health, or card text that would be available to
a human player when building a deck. We conjecture that encoding these card attributes could help
the surrogate model form a better assessment of individual cards and generalize better to new cards.

An alternative reason could be the low fidelity of our surrogate model. A low fidelity model would
predict only game outcomes, while a high fidelity model would replicate the entire game engine.
Low-fidelity models allow for game content to be evaluated efficiently as a single forward pass in a
feed-forward neural network. However, the low fidelity model may not be able to represent the level
of context necessary to take advantage of ancillary data.

An alternative approach would be to use a high-fidelity model that predicts the game dynamics
directly, similarly to model-based reinforcement learning (Lim et al., 2021). A high-fidelity neural
simulation of Hearthstone games could help improve the prediction accuracy of the surrogate model.
However, such a model could be less efficient than the Hearthstone simulator itself. Future work will
explore this trade-off across the fidelity spectrum of model-based quality diversity for procedural
content generation.
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A IMPLEMENTATION DETAILS

A.1 BAG-OF-CARDS ENCODING

we encode the deck as an integer vector that represents the frequency of each card chosen. Formally,
each input vector x ∈ Rc represents a deck where c is the cardinality of the cardset. Each element
xi represents the number of copies of card i included in the deck. The range of xi is bounded
to {0, 1, 2} because each card can be added to a deck at most twice in Hearthstone. We call this
encoding method Bag-of-Cards as it is similar to the Bag-of-Words (Zhang et al., 2010) embedding
used in natural language processing and information retrieval problems.

A.2 PLAYER STRATEGY

SabberStone includes a library containing simple AI agents that play the game via a tree search.
At each turn, the tree search explores possible moves and discovers the best action sequence that
maximizes the heuristic game state score at the end of the turn. Included heuristics emulate ag-
gro strategies, which end the game quickly, and control strategies, which try to prolong the game,
for arbitrary decks. The library allows for custom scoring functions that result in more advanced
strategies (Fontaine et al., 2020).

In our preliminary experiments, we found that the heuristic strategies included in SabberStone strug-
gle to play decks of the Rogue class. To create a stronger agent, we train a custom neural network
heuristic function with CMA-ME following previous work (Fontaine et al., 2020). The neural net-
work maps 15 game related features defined by SabberStone (darkfriend77, 2021) to a single value
representing the preference for an end-of-turn state. The neural network is a multilayer perceptron
with layer sizes [15, 5, 4, 1] and 109 parameters.

We train the neural network to play a human designed Miracle Rogue deck (Stonekeep, 2021) as
the player’s deck with the objective and measures defined in section ??. The Classic Miracle Rogue
deck requires the player to have long-term planning to play well, thus we expect a high-performing
strategy using this deck to generalize to other advanced Rogue decks as well.

While CMA-ES (Hansen, 2016) is usually preferred while optimizing a single objective black-box
function, previous work (Fontaine et al., 2020) showed that CMA-ME is able to find a globally better
neural network strategy than CMA-ES because CMA-ME finds more diverse solutions and is less
likely to converge to a local minimum. Therefore, the neural network is trained using CMA-ME in
50000 evaluations. The highest performing solution was chosen as the final strategy.

A.3 HYPERPARAMETERS

The MLP of the surrogate model has three hidden layers with sizes [128, 32, 16] with an Exponential
Linear Unit (ELU) activation functions. All surrogate models are trained using the mean squared
error loss function and Adam optimizer (Kingma & Ba, 2014) with learning rate η = 0.01 and batch
size 64. In each outer loop, all models are trained for 20 epochs.

We set the number of inner loop iterations n = 106 with a batch size of 10. We set the number of
evaluations on the SabberStone game simulator N = 10, 000, each with 200 simulated Hearthstone
games. The initial population size G for both inner and outer loop is 100. We run all algorithms for
5 trials on a high-performing cluster, utilizing 200 Xeon CPUs. Each trial lasted 10 to 12 hours.

A.4 ANCILLARY DATA

As ancillary data, we include the win percentage, the total damage done, the number of cards drawn,
the total mana spent, the total mana wasted, the sum of mana cost for all cards in the deck, the
variance of mana costs in the deck, the number of minion cards in the deck, and the number of spell
cards in the deck. We chose data that relates to either deck composition or how the player strategy
utilized the given deck.
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B ON THE PERFORMANCE OF DSA-ME

We perform a post-hoc experimental analysis to shed more light on what makes DSA-ME achieve
high performance.

B.1 ON THE QUALITY OF THE SURROGATE MODEL

First, we analyze the quality of the surrogate model to determine if high quality predictions of the
objective and measure functions result in the improved performance. Consider instead an alterna-
tive hypothesis that the surrogate model drifts in prediction error and the fact the surrogate model
changes throughout DSA-ME is responsible for good performance rather than prediction accuracy.

First, we confirm that the final trained surrogate model from DSA-ME achieves high accuracy by
evaluating it on a different test data created from a separate run of DSA-ME. The average mean
squared error over 5 runs is 0.44 for the predicted number of turns whose range is [5, 15], 0.07 for
the hand size with range [1, 7], and 14.70 for the average health difference with range [-30, 30]. We
observe that the model predicts the measure function outputs with high accuracy, while it has higher
error for the objective.

While the above measure function predictions are accurate, they are not accurate enough to ensure
the candidate solutions from the surrogate archive will remain in the same MAP-Elites bin when
evaluated on the game engine. To evaluate this, we run MAP-Elites on the final DSA-ME surrogate
model for 5 trials. We then take elites from the surrogate archive, evaluate each deck on the game
engine, and populate a new archive with the ground truth objective and measures (see Fig. 5). We
observe that 44% of the elites from the surrogate archive are retained in the new archive. While only
3% of decks are placed in the same cell as the surrogate archive, the average Manhattan distance
between the cell in the surrogate and ground-truth archives is 2.45 cells. This result shows that
although the surrogate model does not frequently predict the exact cell, candidate solutions remain
in the same region of the archive.

To show that the quality predictions of the surrogate model are the reason for the high performance
of DSA-ME, we add as baseline Offline DSA-ME (Surrogate Model), which uses a “frozen” surro-
gate model that is fully trained from a previous run of DSA-ME. Fig. 4 shows that Offline DSA-ME
(Surrogate Model) outperforms DSA-ME. This indicates that using a fully-trained model for eval-
uation results in better performance than training the model online. We note that this holds only
when the surrogate model has been trained with data generated from a complete DSA-ME run; if it
is trained with randomly generated data, Offline DSA-ME performs significantly worse, as shown
in section 5.

B.2 ON THE QUALITY OF THE LABELED ELITE DATA

We note the similarity of training the surrogate archive to the online training of the discriminator
network in generative adversarial networks (Goodfellow et al., 2014). We test whether we can only
train the surrogate model incrementally in a closed-loop manner, or we can train it from scratch using
the entire dataset generated from a DSA-ME run. We compare the final surrogate model of a DSA-
ME run, Offline DSA-ME (Surrogate Model), with a surrogate model trained from scratch on the
data of the DSA-ME run, Offline DSA-ME (Elite Data). In both conditions we train the surrogate
models and then run DSA-ME with the frozen models. Fig. 4 shows that there is no significant
difference in performance between the two models, indicating that we can use the training data from
a DSA-ME run to train an accurate surrogate model from scratch.

Overall, results in sections B.1 and B.2 show that running MAP-Elites in the inner-loop of Algorithm
1 results in a diverse, high-quality dataset of decks for the surrogate model. Training on the dataset
enables the surrogate model to make accurate predictions.

B.3 ON THE IMPORTANCE OF RESETTING MAP-ELITES

We visualize the archive generated by running MAP-Elites using the surrogate model predictions
(Fig. 5-left). We then evaluate each elite on the Sabberstone game engine and use the Sabberstone
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Figure 4: Post-hoc experiments to evaluate the quality of the surrogate model and the effect of
resetting MAP-Elites in the inner loop of DSA-ME.
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Figure 5: (Left) Archive from running MAP-Elites on the surrogate model. (Right) Archive by
evaluating the elites on the left with the game engine.

evaluations to place the elites on a new archive (Fig. 5-right). We observe that the new archive covers
the space reasonably well but has holes in different areas.

Thus, we hypothesize that resetting MAP-Elites in the inner-loop (line 22) with random initialization
produces archives with different missing cells and that the union of these archives covers the space
well. We test this hypothesis by running DSA-ME and keeping the same archive in the inner-loop,
instead of initializing a new archive (lines 22-23 in Algorithm 1). We call this baseline DSA-ME
(without resetting). Fig. 4 shows that this baseline has lower QD-score and coverage. We find this
result consistent with previous work (Lehman & Miikkulainen, 2015; Veenstra et al., 2020) on the
benefits of mortality on evolvability in divergent search algorithms.
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