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ABSTRACT

Visual reprogramming (VR) leverages well-developed pre-trained models (e.g., a
pre-trained classifier on ImageNet) to tackle target tasks (e.g., a traffic sign recog-
nition task), without the need for training from scratch. Despite the effectiveness
of previous VR methods, all of them did not consider the adversarial robustness
of reprogrammed models against adversarial attacks, which could lead to unpre-
dictable problems in safety-crucial target tasks. In this paper, we empirically find
that reprogramming pre-trained models with adversarial robustness and incorpo-
rating adversarial samples from the target task during reprogramming can both
improve the adversarial robustness of reprogrammed models. Furthermore, we
propose a theoretically guaranteed adversarial robustness risk upper bound for
VR, which validates our empirical findings and could provide a theoretical foun-
dation for future research. Extensive experiments demonstrate that by adopting
the strategies revealed in our empirical findings, the adversarial robustness of re-
programmed models can be enhanced.

1 INTRODUCTION

Visual pre-trained models (Krizhevsky et al., 2012; Russakovsky et al., 2015; Huang et al., 2017;
Radford et al., 2021) obtained from the (usually large) source domain serve as a powerful foundation
for a variety of visual target tasks. When faced with the relevant downstream tasks, the pre-trained
models can be adapted to solve the tasks through fine-tuning. However, a significant limitation of
fine-tuning methods (Pan et al., 2011; Ghifary et al., 2014; Kumar et al., 2022) is their requirement
for partial or complete modification of model parameters, resulting in high training and storage costs,
particularly when using with large models. In contrast, visual reprogramming (VR) (Lee et al., 2020;
Kloberdanz et al., 2021; Chen et al., 2021; Neekhara et al., 2022; Wang et al., 2022; Chen, 2022)
provides an alternative and efficient way to re-purposing the well-developed pre-trained models from
source domains. Specifically, VR does not require modifications to the parameters of the pre-trained
model. Instead, as illustrated in Figure 1, it fixes the pre-trained model and incorporates an input
transformation (Yang et al., 2021; Bahng et al., 2022; Cai et al., 2024; Tsao et al., 2024) and an
output label mapping (Elsayed et al., 2018; Tsai et al., 2020; Chen et al., 2023) at the input and
output stages, respectively, to adapt to the requirements of the target domain. Moreover, compared
with general prompting methods (Jia et al., 2022; Cheng et al., 2023) in visual tasks, VR offers a
model-agnostic approach that preserves the visual essence of the input images (Cai et al., 2024).
Previous research has proposed numerous VR methods, which have achieved satisfactory results
across a wide range of tasks, demonstrating the considerable potential of VR.

Despite many previous studies on VR, they have not considered the adversarial robustness (Szegedy,
2013; Ashmore et al., 2021) of the reprogrammed models in target domains, which is an important
standard for measuring the quality of learned models, especially in safety-crucial domains like med-
ical diagnosis (Hamid et al., 2017; Kadampur & Al Riyaee, 2020), autonomous driving (Grigorescu
et al., 2020; Feng et al., 2021), and criminal justice (Zhong et al., 2018; Chalkidis et al., 2019).
Adversarial robustness refers to the ability of a model to maintain its performance under adver-
sarial attacks (Goodfellow et al., 2014; Carlini & Wagner, 2017; Yao et al., 2019) which aim to
add small perturbations that cause incorrect predictions. Numerous studies (Szegedy, 2013; Biggio
et al., 2013) have demonstrated that naturally trained models exhibit significant vulnerabilities when
confronted with adversarial attacks. However, it remains unclear whether the same phenomenon
occurs in VR. Unfortunately, as shown in Figure 2, we empirically find that the reprogramming of
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Figure 1: Overview and key highlights of VR with adversarial robustness. The main components
are: Training Data, which comes from supervised data of the target domain task, including the
cleaned data and generated adversarial data; Visual Input Transformation, transforming data from
the target domain to fit the inputs of the pre-trained model, including both Padding and Resizing
methods; Pre-trained Models, which are well-developed classifiers in the source domain, includ-
ing both naturally trained models (N.T.) that lack adversarial robustness and adversarially trained
models (A.T.) that possess adversarial robustness; and Output Label Mapping, which maps la-
bels from the source domain to the target domain, including one-to-one mapping (e.g., RandLM,
FreqLM and IterLM) and fully mapping (FullyLM). We indicate that selecting adversarial data for
reprogramming and choosing adversarially pre-trained models can both improve the adversarial ro-
bustness of the reprogrammed model.

naturally pre-trained models under various VR results in virtually no adversarial robustness on GT-
SRB. For instance, the adversarial robustness of reprogramming a naturally pre-trained ResNet-50
with natural training is 0.00%, which means that such a model produces uncontrollable predictions
when exposed to adversarial attacks. Therefore, ensuring adversarial robustness is essential for the
effective development of VR.

In this work, we for the first time investigate the issue of adversarial robustness within the context
of VR. Our empirical findings reveal that while reprogramming a naturally pre-trained model can
achieve high accuracy, its performance on adversarial examples is nearly zero. In contrast, repro-
gramming an adversarially pre-trained model yields a certain degree of adversarial robustness in the
target domain, indicating that current reprogramming methods can partially leverage the adversarial
robustness of the adversarially pre-trained models. Inspired by adversarial training (e.g., PGD-AT
(Madry et al., 2018) and TRADES (Zhang et al., 2019a)), we incorporate adversarial examples from
the target domain during the reprogramming process, which enhances the adversarial robustness of
reprogrammed models, particularly yielding significant improvements when using an adversarially
pre-trained model. For example, in Figure 2 , the adversarial robustness of either reprogramming an
adversarially pre-trained ResNet-50 with natural reprogramming or reprogramming a naturally pre-
trained ResNet-50 with adversarial reprogramming is higher than the original, and the adversarial
robustness of reprogramming an adversarially pre-trained ResNet-50 with adversarial reprogram-
ming is even better. These strategies are illustrated in Figure 1.

Furthermore, in order to theoretically understand the adversarial robustness of VR, we present a the-
oretically guaranteed adversarial robustness risk upper bound for VR. Specifically, our theoretical
analysis establishes a connection between the target domain and the source domain, demonstrat-
ing that the adversarial robustness of VR is primarily influenced by these factors: 1) the adversarial
robustness of the pre-trained model in the source domain; 2) the adversarial margin disparity discrep-
ancy between the source and target domains; 3) the adversarial marginal risk in the target domain
for the optimal model with adversarial robustness of source domain. This indicates that replacing a
pre-trained model lacking adversarial robustness with one that possesses adversarial robustness, as
well as incorporating adversarial examples from target domain during reprogramming, can result in
a reduced upper bound of adversarial risk, thereby validating our findings. Our main contributions
can be summarized as follows:

Our main contributions can be summarized as follows:
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• This study is the first to explore adversarial robustness within the context of VR, demonstrating
the vulnerability of existing VR methods in the face of adversarial attacks.

• Our empirical results indicate that reprogramming pre-trained models with adversarial robustness
and incorporating adversarial examples from the target task during the reprogramming can both
improve the adversarial robustness of VR.

• We provide an adversarial risk upper bound for VR, which validates our empirical findings and
provides a theoretical foundation for future research.

2 PRELIMINARIES

In this section, we introduce preliminary knowledge of the adversarial training and the visual repro-
gramming, as well as the notations we used throughout this paper.

2.1 ADVERSARIAL TRAINING

Natural Training (N.T.). Let us consider a k-class classification task with the input data (x, y) ∈
Rd× [k] sampled from an unknown data distribution with probability density p(x, y). Most existing
learning algorithms for such classification tasks optimize the natural objective loss ℓNT (e.g., cross-
entropy loss) on clean examples to derive a well performing classifier f : Rd → Rk with parameters
θ. The goal of N.T. can be expressed as:

min
θ

Ep(x,y) [ℓNT (f(x | θ), y)] . (1)

However, previous studies (Szegedy, 2013; Biggio et al., 2013) have demonstrated that despite the
high clean accuracy of naturally trained models on unperturbed examples, their accuracy signifi-
cantly deteriorates when exposed to examples that have been subtly perturbed by adversaries (i.e.,
adversarial examples). These perturbations are so small that they are invisible to the human eye.
We refer to the performance on adversarial examples as adversarial robustness. For simplicity, we
denote adversarial robustness by robustness in the following.

Adversarial Training (A.T.). In contrast to N.T., A.T. aims to improve the robustness of model
by incorporating adversarial examples during the training. The goal of A.T. can be expressed as a
min-max optimization process:

min
θ

Ep(x,y)

[
max
∥γ∥≤ϵ

ℓNT (f(x+ γ | θ), y)
]
, (2)

where γ is the adversarial perturbation, ϵ is the adversarial perturbation radius and ∥·∥ represents the
norm operation (i.e., L∞-norm). Here, the inner layer attempts to find the adversarial examples that
causes the classifier to misclassify, while the outer layer focuses on optimizing the model parameters
to accurately classify these adversarial examples.

2.2 VISUAL REPROGRAMMING

Let XS ⊆ RdS be the dS -dimensional source domain space and YS = {1, . . . , kS} be the source
domain label space where kS denotes the number of source domain classes. Assume we have a
pre-trained model fS : XS → RkS with parameters θS trained on the source domain dataset DS =
{(xS

i , y
S
i )}

NS
i=1, where each source domain example (xS

i , y
S
i ) ∈ XS ×YS is assumed to be sampled

from an unknown source data distribution with probability density p(xS , yS). It is noteworthy
that fS is frozen (i.e., θS is non-trainable) in VR, so we will omit θS in following parts. For the
target domain of VR, we denote the dT -dimensional target domain space as XT ⊆ RdT , and the
target label space as YT = {1, . . . , kT } where kT denotes the number of target domain classes.
Let DT = {(xT

i , y
T
i )}NT

i=1 be the target domain training set, where each target domain example
(xT

i , y
T
i ) ⊆ XT ×YT is assumed to be sampled from an unknown data distribution with probability

density p(xT , yT ). Then, the training objective of natural visual reprogramming is:

min
θin,θout

Ep(xT ,yT )

[
ℓTNT ((fout ◦ fS ◦ fin)(xT | θin,θout), yT )

]
, (3)
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where fin : XT → XS with parameters θin is the visual input transformation, fout : RkS → RkT

with parameters θout is the output label mapping, and ℓTNT : RkT × YT → R is the natural loss
function of the target domain. It is worth noting that VR is to reprogram a pre-trained model fS
from a complex source domain to a simpler target domain, so VR assumes (1) the dimension of the
target data is not greater than that of the source data (i.e., dT ≤ dS ); (2) the number of target class
labels is not greater than that of the source class labels (i.e., kT ≤ kS ) (Chen, 2022; Cai et al., 2024).

Visual Input Transformation. Due to the discrepancies between the input spaces of the target
domain and the source domain, data from the target domain cannot be directly used as input for the
source domain model. Consequently, it is necessary to transform the data from the target domain.
This approach primarily includes Padding-based and Resizing-based methods. The Padding-based
method (Pad) (Tsai et al., 2020; Chen et al., 2023) adds a learnable parameter δ around the image
from the target domain to ensure the resulting image conforms to the input shape required by the
source model. The Resizing-based method, which includes fully-watermarking (Full) (Bahng et al.,
2022) and sample-specific multi-channel masks (SMM) (Cai et al., 2024), first resizes the target
domain image to the input shape of the source model using interpolation algorithms. Then, the
learnable parameter δ is multiplied by a mask M and added to the resized image. The difference
between the two lies in that the mask M in watermarking is a manually set, fixed matrix containing
only 0s and 1s, while in SMM, M is generated by a learnable lightweight network that takes the
resized image as input and produces an input-dependent mask. Based on the above, we can formalize
visual input transformation as:

fin(x | θin = (δ,M)) = g(x) + δ ⊙M , (4)

where g(·) represents the transformation applied to the target input (e.g., padding or resizing).

Output Label Mapping. The output label mapping can be categorized into non-iterative and it-
erative methods. Non-iterative methods include one-to-one Random Label Mapping (RandLM)
(Elsayed et al., 2018) and one-to-one Frequency-based Label Mapping (FreqLM) (Tsai et al., 2020).
RandLM establishes a random mapping between the output space of the source domain and that
of the target domain at the beginning of training. FreqLM matches the labels of the source and
target domains based on the prediction frequency of the source model on g(x) at the beginning of
training. Iterative methods include one-to-one Iterative Label Mapping (IterLM) (Chen et al., 2023)
and Fully Label Mapping (FullyLM). IterLM iis an iterative version of the FreqLM method. Specif-
ically, IterLM recalculates the mapping relationship using FreqLM during each round of training.
FullyLM employs a fully connected layer and updates its parameters using gradient descent. These
output label mapping methods can be uniformly represented as:

fout(x | fin, fS ,θout = W ) = W (fS ◦ fin)(x | θin) + b. (5)

For the one-to-one mapping methods, W ∈ {0, 1}kT ×kS is a matrix with at most one element equal
to 1 in each row (i.e.,

∑kS
j=1 W·,j = 1), and b is an all-zero vector (i.e., b = {0}kT ). For FullyLM,

W and b are learnable parameters (i.e., W ∈ RkT ×kS and b ∈ RkT ).

3 VISUAL REPROGRAMMING WITH ADVERSARIAL ROBUSTNESS

We define the label function as hf : x → argmaxy[f(x)]y , where f is a multi-class score model
(e.g., fS and fout ◦ fS ◦ fin) and [f(x)]i denotes the i-th score output by the model. Then, for a
given hf , the expected adversarial risk with respect to the distribution U is defined as:

Radv
U (hf , ϵ) ≜ E(x,y)∼U max

∥γ∥≤ϵ
I[hf (x+ γ) ̸= y], (6)

where I[·] denotes the indicator function. The adversarial aims for VR is to learn a visual input
transformation fin and output label mapping fout that tries to minimize adversarial riskRadv

T (fout ◦
fS ◦ fin, ϵ) in target domain T .

Inspired by the effective reuse of well-developed pre-trained models in VR, one may apply Eq.
(3) to reprogram an adversarially pre-trained model of the source domain that possesses satisfac-
tory robustness, such as an adversarially trained (A.T.) model, in order to repurpose its robustness.
Furthermore, since adversarial training is known to effectively enhance robustness for model, in-
corporating adversarial examples of target domain into the reprogramming process is anticipated
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Figure 2: The test performance of three different pre-trained models (e.g., ResNet18, ResNet50,
and XCIT-S12, all pre-trained on ImageNet-1K) for reprogramming on the GTSRB dataset. There
are two versions for each pre-trained model, including naturally trained models (N.T.) that lack
adversarial robustness and adversarially trained models (A.T.) that possess robustness. The visual
input transformation is fixed as Pad and the output label mapping is fixed as FullyLM.

to improve robustness on the target domain, even if the pre-trained model is not inherently robust,
such as a naturally trained (N.T.) model. Moreover, simultaneously using a pre-trained model with
robustness and incorporating adversarial examples during reprogramming could potentially yield
further robustness of the reprogrammed model in the target domain.

To implement adversarial training, we integrate adversarial examples directly into the VR training
objective as follows:

min
θ

Ep(xT ,yT )

[
max
∥γ∥≤ϵ

ℓTNT ((fout ◦ fS ◦ fin)(xT + γ | θin,θout), yT )

]
, (7)

where {θin,θout} are the trainable parameters (i.e., visual input transformation and output label
mapping) of VR. Furthermore, inspired by TRADES Zhang et al. (2019a), we add a robustness
regularization term to the VR training objective, which measures the magnitude of the output differ-
ences between the original examples (xT , y) and the adversarial examples (xT + γ, y). Thus, this
robust training objective can be expressed as follows:

min
θ

Ep(xT ,yT )[ℓ
T
NT ((fout ◦ fS ◦ fin)(xT | θin,θout), yT ) (8)

+ λ · max
∥γ∥≤ϵ

ℓKL((fout ◦ fS ◦ fin)(xT | θin,θout)||(fout ◦ fS ◦ fin)(xT + γ | θin,θout))]

where λ ≥ 0 is a hyperparameter controlling the trade-off between natural loss and robust regular-
ization, and ℓKL(P ||Q) =

∑
i P (i) log

(
P (i)
Q(i)

)
denotes the KL divergence which is used to measure

the distance between the two probability distributions. In Figure 2, we show the results of repro-
gramming using adversarial examples generated from the target domain and the results obtained
from reprogramming using adversarially pre-trained models.

4 THEORETICAL UPPER BOUND

As previously discussed, leveraging adversarially pre-trained models for reprogramming and incor-
porating adversarial examples from the target domain may both enhance the robustness of repro-
grammed models. In this section, we provide the first adversarial risk upper bound for VR, which
validates our findings and provides a theoretical guarantee for future research.

4.1 ADVERSARIAL MARGIN LOSS

Due to the significant role of margin theory in ensuring generalizability, inspired by (Zhang et al.,
2019b), we employ margin loss as a substitute for the 0-1 loss. The margin of model f on the
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example (x, y) is defined as:

ρf (x, y) ≜
1

2
([f(x)]y −max

y′ ̸=y
[f(x)]y′). (9)

Then, the corresponding adversarial margin risk can be represented as follows:

Radv,(ρ)
U (f) ≜ E(x,y)∼U

[
max
∥γ∥≤ϵ

Φρ (ρf (x+ γ, y))

]
, (10)

where Φρ(·) is a piecewise function defined as follows:

Φρ(z) ≜

{
0 ρ ≤ z

1− z/ρ 0 ≤ z ≤ ρ
1 z ≤ 0

. (11)

Lemma 1. Given a distribution U and a socre model f , for any ρ ≥ 0, adversarial risk Radv
U (hf )

and adversarial margin riskRadv,(ρ)
U (f) have the following lemma:

Radv,(ρ)
U (f) ≥ Radv

U (hf ).

The proof of Lemma 1 is provided in Appendix A.1. Lemma 1 indicates that the adversarial margin
risk can serve as an upper bound for the adversarial risk. Based on this relationship, we can derive
the adversarial risk upper bound for VR through the margin loss.

4.2 ADVERSARIAL MARGIN DISPARITY DISCREPANCY

Margin Disparity Discrepancy (MDD) aims to quantify the inconsistency between domains by com-
paring the marginal performance differences of a classifier across two distinct domains. However,
MDD does not effectively quantifies the differences in adversarial marginal performance of the
classifier across the domains. Therefore, we propose the definition of Adversarial Margin Dispar-
ity Discrepancy of Visual Reprogramming with Adversarial Robustness (AMDD-VRA) within the
framework of robustness. Before that, we first define the adversarial margin disparity (AMD) be-
tween f ′ and f on domain U as:

dispadv,(ρ)
U (f ′, f) ≜ Ex∼p(x)

[
max
∥γ∥≤ϵ

(Φρ(ρf ′)(x+ γ, hf (x+ γ)))

]
. (12)

AMD quantifies the maximum margin disparity between models f ′ and f within the ϵ-perturbation
range around the instance x, meaning the expectation of inconsistent classification between f ′ and f
under ϵ-perturbation in the domain U . Based on AMD, we introduce the definition of AMDD-VRA.
Definition 1 (AMDD-VRA). Suppose that FS is the hypothesis spaces of the source domain model.
For a given pre-trained fS from source domain, visual input transformation fin and output label
mapping fout, the AMDD-VRA between source domain S and target domain T is defined as :

d
adv,(ρ)
fout◦fS◦fin,FS

(S, T ) = sup
f ′
S∈FS

∣∣∣dispadv,(ρ)T ( fout ◦ f ′
S ◦ fin, fout ◦ fS ◦ fin) −disp

adv,(ρ)
S (f ′

S , fS)
∣∣∣ .

From Definition 1, AMDD-VRA measures the adversarial distribution distances between the source
domain S and the target domain T . It can be observed that fin and fout influence the value of AMDD-
VRA. For instance, when the source domain and target domain are completely identical, if both fin
and fout are identity mappings, the AMDD-VRA value is 0. However, in the context of VR settings,
where the source and target domains are not identical, fin and fout can play a role in either narrowing
or widening the adversarial discrepancy between the two different domains. Furthermore, based on
the definition of AMD, it can be inferred that whether adversarial training is employed for fin and
fout may impact the first term of AMDD-VRA, thereby affecting the overall value of AMDD-VRA.
From the definition of AMDD-VRA and Lemma 1, we can induce the following adversarial risk
upper bound for VR:

Theorem 1. Suppose that the f∗
S = argmin

fS∈FS

{Radv,(ρ)
S (fS)} is the optimal classifier with robustness

in source domain. For a given output label mapping fout, pre-trained source domain model fS , and
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visual input transformation fin, the following adversarial risk upper bound for VR from source
domain S to target domain T holds:

Radv
T (hfout◦fS◦fin) ≤ R

adv,(ρ)
S (fS) + d

adv,(ρ)
fout◦fS◦fin,FS

(S, T ) +Radv,(ρ)
T (fout ◦ f∗

S ◦ fin) + λ,

where λ = Radv,(ρ)
S (f∗

S) is a constant associated with the source domain.

The proof of Theorem 1 is provided in Appendix A.2. Theorem 1 reveals that the adversarial risk
of VR is influenced by the following factors: 1) the adversarial margin risk of the selected pre-
rained model fS in the source domain; 2) the AMDD-VRA between the source domain and the
target domain; 3) the adversarial marginal risk in the target domain for the optimal adversarial
trained source domain model f∗

S after reprogramming; 4) the adversarial margin risk of the optimal
adversarial trained source domain model f∗

S in the source domain, which can be considered as a
constant value λ. This theory validates our previous findings. In the next section, we will provide
more experiments to demonstrate the effectiveness of our strategy.

5 EXPERIMENTS

In this section, we empirically demonstrate that by adopting the strategies revealed in our findings,
the robustness of reprogrammed models can be enhanced.

5.1 EXPERIMENTAL SETUPS

Pre-trained Source Models and Target Tasks. We select ImageNet-1K (Russakovsky et al., 2015)
(the most commonly used subset of the well-known ImageNet image classification dataset) dataset as
the source task. This dataset encompasses 1,000 object classes and contains 1,281,167 training im-
ages. The source domain pre-trained models fS include ResNet-18 (RN18), ResNet-50 (RN50) (He
et al., 2016) and XCIT-S12 (El-Nouby et al., 2021), all of which have an input shape of 224× 224.
The weights of the naturally pre-trained models (ResNet-18 (N.T.) and ResNet-50 (N.T.)) are ob-
tained from the official PyTorch model repository, while the weights of the adversarially pre-trained
models (ResNet-18 (A.T.), ResNet-50 (A.T.) (Salman et al., 2020) and XCIT-S12 (Debenedetti et al.,
2023)) are obtained from Robustbench (Croce et al., 2021). For the target datasets, we selected
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and GTSRB (Stallkamp et al., 2012), where the
target classes are 10, 100, and 43. Detailed information about all datasets can be found in Appendix
B. Our goal is to obtain a robust classifier via VR.

Implementation. In the implementation of VR, we fix the pre-trained model fS and select the visual
input transformation model fin from Pad, Full, and SMM, while the output label mapping fout is
chosen from RandLM, IterLM, and FullyLM. Additionally, during the implementation of adversarial
training and testing, we generate adversarial examples using 10-step Projected Gradient Descent
(Madry et al., 2018) (PGD-10) for training, setting the perturbation radius to ϵ = 4/255 under L∞-
norm, consistent with the settings of adversarially pre-trained models. When using TRADES for
adversarial training of VR, we set λ = 6, which is a commonly used setting in previous adversarial
training research. Moreover, we use the AdamW optimizer to train all methods for 60 epochs, and
repeat the sampling-and-training process 3 times. The learning rate of the optimizer is searched from
set {1×10−3, 5×10−4}, while the weight decay of the optimizer is searched from set {10−2, 10−3}.
Details of the experiment, complete results, and some visual results can be found in Appendix B.

5.2 EXPERIMENTAL RESULTS

The experiments are conducted on the combinations of pre-trained models and training methods,
encompassing four distinct cases: Strategy 1: VR with a naturally pre-trained ResNet-18 and us-
ing natural training; Strategy 2: VR with a naturally pre-trained ResNet-18 and using adversarial
training; Strategy 3: VR with an adversarially pre-trained ResNet-18 and using natural training;
Strategy 4: VR with an adversarially pre-trained ResNet-18 and using adversarial training. Table 1,
Table 2, and Table 3 present the performance comparison results of VR with pre-trained ResNet-18
on CIFAR-10, CIFAR-100, and GTSRB, respectively.
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Table 1: The performance (mean (%) ± std (%)) comparison of VR with ResNet-18 on CIFAR10,
where PGD-10 is used for adversarial training, and PGD-20 is used for adversarial testing. The
results are presented in the format of robustness (clean accuracy), where the std of clean accuracy is
omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / RandLM 0.12±0.02 (56.72) 8.24±0.71 (25.86) 17.37±1.17 (26.59) 17.66±1.27 (24.98)
Pad / FreqLM 0.12±0.04 (58.41) 6.62±1.66 (26.22) 18.69±0.83 (29.69) 20.92±0.51 (29.18)
Pad / IterLM 0.14±0.05 (58.69) 4.70±2.43 (26.62) 20.01±0.88 (32.49) 20.85±0.58 (30.83)

Pad / FullyLM 0.11±0.01 (71.62) 17.59±0.25 (40.16) 32.15±0.16 (56.70) 37.72±0.12 (53.61)
Full / RandLM 0.00±0.00 (61.78) 3.04±0.99 (29.68) 4.51±1.21 (41.13) 11.38±0.67 (28.16)
Full / FreqLM 0.00±0.00 (70.15) 3.58±0.91 (32.25) 13.85±0.40 (56.05) 18.64±0.07 (45.69)
Full / IterLM 0.00±0.00 (69.22) 4.45±0.85 (30.25) 17.77±4.22 (58.01) 13.78±2.37 (39.91)

Full / FullyLM 0.40±0.03 (86.18) 24.17±0.70 (44.10) 35.20±0.21 (87.15) 54.15±0.03 (82.92)

Table 2: The performance (mean (%) + std (%)) comparison of VR with ResNet-18 on CIFAR100,
where PGD-10 is used for adversarial training, and PGD-20 is used for adversarial testing. The
results are presented in the format of robustness accuracy (clean accuracy), where the std of clean
accuracy is omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / RandLM 0.06±0.04 (8.42) 0.46±0.50 (1.05) 0.79±0.24 (1.42) 0.78±0.43 (1.16)

Pad / FreqLM 0.06±0.01 (13.46) 0.28±0.21 (1.35) 2.11±0.12 (3.69) 1.92±0.15 (2.74)

Pad / IterLM 0.09±0.02 (20.41) 0.64±0.28 (1.45) 5.42±0.28 (8.96) 5.04±0.27 (7.58)

Pad / FullyLM 0.29±0.04 (46.81) 6.36±0.09 (23.87) 18.37±0.19 (34.24) 21.17±0.02 (32.61)
Full / RandLM 0.00±0.00 (12.19) 0.18±0.29 (0.89) 0.82±0.07 (4.40) 0.64±0.26 (1.27)

Full / FreqLM 0.00±0.00 (29.79) 0.07±0.03 (2.06) 7.91±0.16 (25.50) 8.50±0.04 (23.42)
Full / IterLM 0.00±0.00 (36.87) 0.50±0.15 (3.54) 10.25±0.18 (31.77) 10.88±0.12 (28.84)

Full / FullyLM 0.07±0.02 (68.33) 11.87±0.07 (30.31) 21.91±0.12 (67.75) 36.57±0.12 (65.55)

Performance of VR with Naturally and Adversarially Pre-trained ResNet-18. The results in-
dicate that in Strategy 1, despite achieving very high clean accuracy, the robustness of various VR
methods is nearly zero. For instance, when using naturally pre-trained ResNet-18 in Strategy 1,
“Pad / FreqLM” achieves a clean accuracy of 58.41% on CIFAR-10 (Table 1), yet its robustness is
0.12%; similarly, “Full / IterLM” achieves a clean accuracy of 36.87% on CIFAR-100 (Table 2),
but also exhibits an adversarial robustness of 0.00%. Although in Strategy 1, “Full / FullyLM”
achieves a clean accuracy of 89.31% and robustness of 8.48% on GTSRB (Table 3), the rest of the
VR methods all achieve almost zero robustness. This demonstrates the extreme vulnerability of VR
with naturally pre-trained models to adversarial attacks. Furthermore, when using adversarilly pre-
trained ResNet-18 in Strategy 3, although there is a general decrease in clean accuracy compared
with Strategy 1, most VR methods displayed some level of robustness. For example, on CIFAR-10,
“Pad / FreqLM” achieves a clean accuracy of 29.69% with an adversarial robustness of 18.69%;
“Full / IterLM” shows a clean accuracy of 58.01% with an adversarial robustness of 17.77%. This
suggests that existing VR methods can leverage the robustness of pre-trained models to some extent.

Similarly, comparing the experimental results of Strategy 2 and Strategy 4, it is evident that the
robustness of using an adversarially pre-trained ResNet-18 is higher than using a naturally pre-
trained ResNet-18. For instance, the robustness of “Pad / RandLM” on CIFAR-10 is 8.24% in
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Strategy 2, which is lower than 17.66% in Strategy 4. Consistent findings are also evident across
other datasets and various VR methods.

These phenomenon is consistent with our theoretical analysis: the adversarial risk of VR in tar-
get domain is upper-bounded by the adversarial margin risk of the pre-rained model in the source
domain. Specifically, compared with naturally pre-trained models, adversarially pre-trained mod-
els generally exhibit better robustness (see Appendix B), resulting in lower adversarial margin risk,
which may help reduce the upper bound of adversarial risk in the target domain. Therefore, models
reprogrammed using adversarially pre-trained models will have higher robustness compared whit
those reprogrammed using naturally pre-trained models.

Performance of VR with Naturally and Adversarially Training. When using adversarial training
in Strategy 2, there is also a decrease in clean accuracy compared with Strategy 1 (using natural
training). Similarly, the robustness of VR in Strategy 2 show an improvement compared with Strat-
egy 1. In fact, when we incorporate adversarial samples from target domain into the reprogramming
process by adversarial training, we are directly optimizing the adversarial risk of VR, so the observed
empirical phenomena are consistent with previous adversarial training research. For example, in the
“Pad / FullyLM” on Table 1, the Strategy 2 achieved a robustness improvement of 17.48% com-
pared with Strategy 1; in the “Full / FullyLM”, the Strategy 2 achieved a robustness improvement of
23.77% compared with Strategy 1. Similar results can be observed in all experiments. This is consis-
tent with the theoretical analysis that incorporating adversarial samples from the target domain task
into the reprogramming process of VR through adversarial training may reduce the ADMM-VAR,
which can enhance the robustness of the reprogrammed models.

Similarly, by comparing the experimental results of Strategy 3 and Strategy 4, it is evident that the
robustness achieved through adversarial training during the reprogramming process is higher than
that achieved through natural training. For instance, in Table 3, the robustness of “Pad / IterLM” on
GTSRB is 7.71% in Strategy 3, which is lower than 8.44% in Strategy 4; the robustness of “Full /
FullyLM” on GTSRB is 16.32% in Strategy 3, which is lower than 39.49% in Strategy 4. Although
these strategies can enhance the robustness of VR, their outcomes still require improvement. This
may be attributable to the fact that, in previous studies, compared with methods such as full param-
eter fine-tuning, the clean accuracy of VR typically decreases (Chen et al., 2023). Consequently, the
robustness of VR may remain relatively low. However, the advantages of VR in terms of parame-
ter efficiency cannot be overlooked. Therefore, it necessitates further research into more effective
methods to enhance the robustness of VR.

Performance of VR under Different Adversarial Attack Intensities. We also evaluate the robust-
ness of the VR under different adversarial attack intensities. Specifically, on the CIFAR-10 and GT-
SRB, we employ various VR methods using adversarially pre-trained ResNet-18 with TRADES as
adversarial training. During the testing phase, we modify two key parameters of the PGD during the
testing phase: setting the adversarial perturbation radius from {1/255, 2/255, 4/255, 6/255, 8/255}
while fixing the iteration number at 20, and setting the number of iterations from {1, 10, 20, 50, 100}
while fixing the adversarial perturbation radius at 4/255. The results are displayed in Figure 3. As
illustrated in Figure 3, although increasing either the adversarial perturbation radius or the number
of PGD iterations leads to a reduction in the adversarial accuracy of the various VR methods, their
relative robustness rankings largely remain unchanged. These results indicate that VR with an ad-
versarially pre-trained model and using adversarial training remains robust when facing adversarial
attacks of varying intensity.

Additionally, from Figure 3, it can be clearly observed that, when fout is fixed, the robustness gap
caused by different fout is significantly smaller on CIFAR-10 compared with GTSRB. This may
be because both ImageNet and CIFAR-10 involve natural image classification, whereas GTSRB
focuses on traffic signs, which are more domain-specific and differ in style and context from Ima-
geNet. Moreover, AMDD-VRA is influenced not only by the domain gap but also by the choice of
fin and fout. Consequently, when the domain gap is large, a better fin can more effectively reduce
these differences.

Interesting Phenomenon about Clean Accuracy. Moreover, we observed an interesting phe-
nomenon: when performing adversarial training on a naturally pre-trained model by incorporating
adversarial samples during reprogramming (i.e., Strategy 2), it achieves a certain level of robustness
but suffers a significant drop in clean accuracy. In contrast, when performing adversarial training
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Table 3: The performance (mean (%) + std (%)) comparison of reprogrammed ResNet-18 on GT-
SRB, where PGD-10 is used for adversarial training, and PGD-20 is used for adversarial testing.
The results are presented in the format of robustness accuracy (clean accuracy), where the std of
clean accuracy is omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / RandLM 0.94±0.30 (30.49) 0.82±0.62 (11.19) 5.12±0.20 (7.01) 4.09±1.88 (5.87)

Pad / FreqLM 0.22±0.13 (35.02) 1.96±0.24 (15.07) 6.23±0.53 (10.48) 5.91±0.20 (9.04)

Pad / IterLM 0.31±0.21 (37.70) 4.95±0.31 (6.15) 7.17±0.40 (10.30) 8.44±0.71 (11.33)
Pad / FullyLM 1.47±0.26 (58.84) 11.37±0.30 (37.80) 12.70±0.04 (29.01) 17.27±0.11 (28.55)
Full / RandLM 0.00±0.00 (66.37) 0.31±0.46 (8.13) 2.24±1.28 (25.06) 4.54±2.83 (14.57)
Full / FreqLM 0.00±0.00 (68.90) 3.36±2.79 (11.45) 7.79±0.96 (31.50) 8.77±0.64 (23.66)
Full / IterLM 0.00±0.00 (70.37) 2.22±1.63 (21.65) 7.90±1.15 (35.46) 10.69±1.34 (27.98)

Full / FullyLM 8.48±0.13 (89.31) 37.16±0.29 (76.92) 16.32±0.08 (78.33) 39.49±0.28 (69.00)
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Figure 3: The performance (robustness accuracy) of using TRADES for adversarial reprogramming
an adversarially pre-trained ResNet-18 model on the CIFAR-10 and GTSRB datasets as the intensity
of adversarial attacks increases.

on an adversarially pre-trained model by incorporating adversarial samples during reprogramming
(i.e., Strategy 4), it maintains a good level of robustness while also preserving a certain clean accu-
racy. For example, in Table 2, the clean accuracy of “Pad / FullyLM” in Strategy 2 drops to 23.87%,
which is lower than 32.61% of “Pad / FullyLM” in Strategy 4; the clean accuracy of “Full / Ful-
lyLM” in Strategy 4 is 35.24% higher than that of “Full / FullyLM” in Strategy 2. This phenomenon
is nearly observed across all experimental results, indicating that the effectiveness (in terms of ro-
bustness and clean accuracy) of adversarial training on naturally pre-trained models is inferior to
that of adversarial training on adversarially pre-trained models.

6 CONCLUSION

In this paper, we for the first time investigate the adversarial robustness of VR, which is unexplored
in previously visual reprogramming (VR) methods. Our empirical results reveal that employing
naturally pre-trained models and natural training are particularly vulnerable to adversarial attacks,
while using pre-trained models with adversarial robustness and adversarial training can both signif-
icantly enhance the robustness of reprogrammed models. Additionally, we present a theoretically
guaranteed adversarial risk upper bound for VR, validating our empirical findings and laying a the-
oretical foundation for future research. Extensive experiments demonstrate the effectiveness of the
strategies revealed in our empirical findings in enhancing the robustness of VR. However, the ro-
bustness endowed by these strategies remains to be enhanced. In future research, we will explore
improved methods for VR based on our results.
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Reproducibility Statement. For the datasets used in our paper, the detailed descriptions can be
found in Appendix B. For the experimental process in our paper, the complete implementation de-
tails can be found in Appendix B. For the lemmas and theorems in our paper, the complete proofs
can be found in Appendix A. The code for the experiments can be found in supplementary material.
These can help reproduce the theoretical and experimental results.
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A PROOFS OF THEADVERSARIAL RISK UPPER BOUND

A.1 PROOF OF LEMMA 1

Proof. We can discuss the following two scenarios based on whether the classification is correct:

1) If hf (x) ̸= y: since the goal of adversarial attack is to induce incorrect predictions by the model,
we are able to identify a γ (∥γ∥ ≤ ϵ) such that I[hf (x + γ) ̸= y] = 1 and ρf (x + γ, y) ≤ 0.
Therefore, we have max∥γ∥≤ϵ I[hf (x+ γ) ̸= y] = max∥γ∥≤ϵ(Φρ ◦ ρf )(x+ γ, y) = 1.

2) If hf (x) = y: if for any γ (∥γ∥ ≤ ϵ) such that I[hf (x + γ) ̸= y] = 0, then for any ρ ≥ 0 we
have max∥γ∥≤ϵ I[hf (x + γ) ̸= y] = 0 ≤ max∥γ∥≤ϵ(Φρ ◦ ρf ) ≤ 1; if there is a γ (∥γ∥ ≤ ϵ) such
that I[hf (x+ γ) ̸= y] = 1, the result is equal to scenario 1).

Combining 1) and 2), we haveRadv,(ρ)
U (f) ≥ Radv

U (hf ) for any ρ ≥ 0.

A.2 PROOF OF THEOREM 1

Lemma 2. For any distribution U = p(x, y) and any sorce function f , we have:

disp
adv,(ρ)
U (f ′, f) ≤ Radv,(ρ)

U (f ′) +Radv,(ρ)
U (f) (13)

Proof. For any (x, y) ∼ U , if there is a γ (∥γ∥ ≤ ϵ) such that hf ′(x + γ) ̸= y or hf (x + γ) ̸= y,
then we have max∥γ∥≤ϵ(Φρ ◦ ρf ′)(x + γ, y) = 1 or max∥γ∥≤ϵ(Φρ ◦ ρf )(x + γ, y) = 1, while
max∥γ∥≤ϵ(Φρ ◦ ρf ′)(x + γ, hf (x + γ)) ≤ 1. If for any γ (∥γ∥ ≤ ϵ) such that hf ′(x + γ) =
hf (x+ γ) = y, we have:

max
∥γ∥≤ϵ

(Φρ ◦ ρf ′)(x+ γ, hf (x+ γ))

= max
∥γ∥≤ϵ

(Φρ ◦ ρf ′)(x+ γ, y)

≤ max
∥γ∥≤ϵ

(Φρ ◦ ρf ′)(x+ γ, y) + max
∥γ∥≤ϵ

(Φρ ◦ ρf )(x+ γ, y).

Combining the aforementioned two scenarios and taking expectations, we can obtain the result.

By combining Lemma 1, we can proof Theorem 1:

Proof.

Radv
T (hfout◦fS◦fin) = ET max

∥γ∥≤ϵ
I[hfout◦fS◦fin(x+ γ) ̸= y]

(a)

≤ ET max
∥γ∥≤ϵ

{
I[hfout◦fS◦fin(x+ γ) ̸= hfout◦f∗

S◦fin(x+ γ)] + I[hfout◦f∗
S◦fin(x+ γ) ̸= y]

}
(b)

≤ ET

{
max
∥γ∥≤ϵ

I[hfout◦fS◦fin(x+ γ) ̸= hfout◦f∗
S◦fin(x+ γ)] + max

∥γ∥≤ϵ
I[hfout◦f∗

S◦fin(x+ γ) ̸= y]

}
= ET max

∥γ∥≤ϵ
I[hfout◦fS◦fin(x+ γ) ̸= hfout◦f∗

S◦fin(x+ γ)] + ET max
∥γ∥≤ϵ

I[hfout◦f∗
S◦fin(x+ γ) ̸= y]

(c)

≤ disp
adv,(ρ)
T (fout ◦ f∗

S ◦ fin, fout ◦ fS ◦ fin) +R
adv,(ρ)
T (fout ◦ f∗

S ◦ fin)

= disp
adv,(ρ)
fout◦T (fout ◦ f∗

S ◦ fin, fout ◦ fS ◦ fin)

+Radv,(ρ)
T (fout ◦ f∗

S ◦ fin) +R
adv,(ρ)
S (fS)−Radv,(ρ)

S (fS)

(d)

≤ disp
adv,(ρ)
T (fout ◦ f∗

S ◦ fin, fout ◦ fS ◦ fin) +R
adv,(ρ)
T (fout ◦ f∗

S ◦ fin)

+Radv,(ρ)
S (fS) +Radv,(ρ)

S (f∗
S)− disp

adv,(ρ)
S (f∗

S , fS) (Lemma 2)
(e)

≤ Radv,(ρ)
S (fS) + d

adv,(ρ)
fout◦fS◦fin,FS

(S, T ) +Radv,(ρ)
T (fout ◦ f∗

S ◦ fin) + λ
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where f∗
S = argmin

fS∈FS

{Radv,(ρ)
S (fS)} and λ = Radv,(ρ)

S (f∗
S) is a constant associated with the source

domain. The proof is completed.

B ADDITIONAL INFORMATION OF EXPERIMENTS

B.1 ADVERSARIAL EXAMPLE GENERATION

In adversarial training (e.g., PGD-10 or TRADES) and validating model robustness, we employ the
iterative projected gradient descent method to generate adversarial examples. Assuming the total
number of iterations is N , the adversarial example at step t+ 1 ≤ N is represented as follows:

xt+1
adv = Π

(
xt

adv + α · sign(∇xt
adv
ℓNT

(
f(xt

adv | θ), y
))

, (14)

where the Π denotes the porjection, α denotes the step size, and sign(·) evaluates to−1, 0, or +1 for
each component of the gradient, depending on whether the component is negative, zero, or positive,
respectively. Assuming that x represents an image, the projection of the value in i-th row and j-th
column of c-th channel is as follows:

xt+1
adv [i, j, c] = clip(xt

adv[i, j, c],x[i, j, c]− ϵ,x[i, j, c] + ϵ), (15)

where ϵ denotes the perturbation radius and clip denotes the operation that restricts the value within
a specified range. Similarly, in TRADES, adversarial examples are obtained by maximizing the KL
divergence as follows:

xt+1
adv = Π

(
xt

adv + α · sign(∇xt
adv
ℓKL

(
f(xt

adv | θ), f(x | θ)
))

. (16)

The detailed process is presented in Algorithm 1.

Algorithm 1 Adversarial Example Generation using Iterative Projected Gradient Descent
Input: Original input x, True label y, Model parameters θ, Loss function ℓNT, Step size α, Pertur-
bation radius ϵ, Total iterations N
Output: Adversarial example xadv

1: Initialize x0
adv ← x

2: for t = 0 to N − 1 do
3: Compute gradient: ∇xℓNT

(
f(xt

adv | θ), y
)

4: Update adversarial example:
5: xt+1

adv ← xt
adv + α · sign

(
∇xt

adv
ℓNT

(
f(xt

adv | θ), y
))

6: Project onto ϵ-ball around x:
7: for each pixel (i, j, c) do
8: xt+1

adv [i, j, c]← clip
(
xt+1

adv [i, j, c], x[i, j, c]− ϵ, x[i, j, c] + ϵ
)

9: end for
10: xadv ← xt+1

adv
11: end for
12: Return xadv

Table 4: Performance of different pre-trained models on source domain (ImageNet-1K). Robustness
represents the accuracy of PGD-20 with ϵ = 4/255 and ϵ = 8/255 under L∞-norm.

Performance
Adversarially Pre-trained Model

RN18 (✘) RN50 (✘) XCIT-S12 (✘) RN18 (✔) RN50 (✔) XCIT-S12 (✔)

Clean Acc. 69.75 76.13 82.00 48.42 60.49 70.60
Robustness (ϵ = 4/255) 0.00 0.00 0.00 26.07 35.45 39.86
Robustness (ϵ = 8/255) 0.00 0.00 0.00 9.88 14.26 14.30
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Table 5: The performance (mean (%) ± std (%)) comparison of VR with ResNet-18 on CIFAR10,
and PGD-20 is used for adversarial testing. Using TRADES (λ = 6) as adversarial training. The
results are presented in the format of robustness (clean accuracy), where the std of clean accuracy is
omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / IterLM 0.14±0.05 (58.69) 2.93±0.23 (39.56) 20.01±0.88 (32.49) 20.60±0.95 (32.22)

Pad / FullyLM 0.11±0.01 (71.62) 9.50±0.20 (54.76) 32.15±0.16 (56.70) 37.18±0.14 (54.01)

Full / IterLM 0.00±0.00 (69.22) 0.09±0.04 (25.40) 17.77±4.22 (58.01) 10.41±2.22 (34.61)

Full / FullyLM 0.40±0.03 (86.18) 11.54±0.98 (55.93) 35.20±0.21 (87.15) 53.68±0.29 (77.94)

Table 6: The performance (mean (%) ± std (%)) comparison of VR with ResNet-18 on CIFAR100,
and PGD-20 is used for adversarial testing. Using TRADES (λ = 6) as adversarial training. The
results are presented in the format of robustness (clean accuracy), where the std of clean accuracy is
omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / IterLM 0.09±0.02 (20.41) 0.44±0.26 (9.18) 5.42±0.28 (8.96) 5.26±0.34 (8.15)

Pad / FullyLM 0.29±0.04 (46.81) 3.49±0.15 (36.76) 18.37±0.19 (34.24) 21.02±0.12 (33.15)

Full / IterLM 0.00±0.00 (36.87) 0.01±0.01 (3.64) 10.25±0.18 (31.77) 8.20±0.14 (22.83)

Full / FullyLM 0.07±0.02 (68.33) 7.00±0.16 (39.36) 21.91±0.12 (67.75) 36.88±0.04 (61.32)

Table 7: The performance (mean (%) ± std (%)) comparison of VR with ResNet-18 on GTSRB,
and PGD-20 is used for adversarial testing. Using TRADES (λ = 6) as adversarial training. The
results are presented in the format of robustness (clean accuracy), where the std of clean accuracy is
omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / IterLM 0.31±0.21 (37.70) 3.17±0.85 (13.50) 7.17±0.40 (10.30) 7.18±0.87 (9.94)

Pad / FullyLM 1.47±0.26 (58.84) 6.99±0.27 (38.42) 12.70±0.04 (29.01) 16.87±0.09 (27.76)

Full / IterLM 0.00±0.00 (70.37) 0.00±0.00 (11.98) 7.90±1.15 (35.46) 7.67±1.15 (26.89)

Full / FullyLM 8.48±0.13 (89.31) 25.36±1.41 (64.62) 16.32±0.08 (78.33) 41.45±0.00 (64.62)

B.2 EVALUATION METRICS

In the testing phase, we employ the classification accuracy on adversarial test examples as the ro-
bustness, where the adversarial test examples are generated from clean examples in the test dataset
using 20-step Projected Gradient Descent (PGD-20) with a perturbation radius of ϵ = 4/255 un-
der the L∞-norm. Let the classification accuracy of the clean test examples be the clean accuracy.
In addition, we provide the results for different perturbation radii and different iteration steps in
Figure 3.

B.3 IMAGENET-1K

This is the most commonly used subset of the famous image classification dataset ImageNet (Rus-
sakovsky et al., 2015). The dataset covers 1,000 object classes and includes 1,281,167 training
images, 50,000 validation images, and 100,000 test images. We set this task as our source domain
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Table 8: The performance (mean (%) ± std (%)) comparison of VR with ResNet-18 on CIFAR10,
where PGD-10 is used for adversarial training, and PGD-20 is used for adversarial testing. The
results are presented in the format of robustness (clean accuracy), where the std of clean accuracy is
omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / RandLM 0.00±0.00 (56.72) 3.96±1.31 (22.05) 10.51±1.64 (26.59) 13.61±0.86 (24.96)
Pad / FreqLM 0.00±0.01 (58.41) 2.33±0.87 (22.52) 10.68±0.69 (29.69) 14.97±1.49 (27.20)
Pad / IterLM 0.00±0.00 (58.69) 0.50±0.76 (22.30) 10.73±0.69 (32.49) 16.53±0.54 (30.69)

Pad / FullyLM 0.00±0.00 (71.62) 15.86±0.32 (20.49) 13.62±0.11 (56.70) 28.39±0.06 (49.52)
Full / RandLM 0.00±0.00 (61.78) 1.36±0.22 (25.23) 0.22±0.14 (41.13) 8.02±3.35 (21.44)
Full / FreqLM 0.00±0.00 (70.15) 1.57±1.35 (23.44) 1.39±0.11 (56.05) 6.44±0.15 (29.92)
Full / IterLM 0.00±0.00 (69.22) 2.56±1.91 (24.23) 2.42±0.86 (58.01) 7.62±1.11 (30.64)

Full / FullyLM 0.25±0.02 (86.18) 18.35±0.23 (32.54) 5.37±0.13 (87.15) 31.34±0.18 (73.43)

Table 9: The performance (mean (%) + std (%)) comparison of VR with ResNet-18 on CIFAR100,
where PGD-10 is used for adversarial training, and PGD-20 is used for adversarial testing. The
results are presented in the format of robustness accuracy (clean accuracy), where the std of clean
accuracy is omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / RandLM 0.00±0.00 (8.42) 0.01±0.02 (1.20) 0.41±0.11 (1.42) 0.77±0.09 (1.29)
Pad / FreqLM 0.00±0.00 (13.46) 0.37±0.54 (1.02) 1.21±0.19 (3.69) 1.07±0.31 (2.08)
Pad / IterLM 0.01±0.01 (20.41) 0.51±0.38 (1.33) 3.28±0.25 (8.96) 3.74±0.28 (5.79)

Pad / FullyLM 0.00±0.00 (46.81) 2.98±0.07 (8.40) 8.75±0.03 (34.24) 14.77±0.13 (30.58)
Full / RandLM 0.00±0.00 (12.19) 0.27±0.41 (1.02) 0.09±0.02 (4.40) 0.51±0.36 (1.26)
Full / FreqLM 0.00±0.00 (29.79) 0.00±0.01 (1.37) 1.76±0.06 (25.50) 1.83±0.13 (18.36)
Full / IterLM 0.00±0.00 (36.87) 0.15±0.14 (2.78) 2.48±0.11 (31.77) 1.89±0.21 (19.85)

Full / FullyLM 0.06±0.01 (68.33) 6.62±0.09 (15.51) 4.34±0.05 (67.75) 20.30±0.12 (57.80)

because the dataset has a large amount of training examples and a wide variety of classification cat-
egories, which enables the pre-training of excellent models. Based on this, we use three pre-trained
models on this dataset for reprogramming: ResNet-18 (RN18), ResNet-50 (RN50) (He et al., 2016)
and XCIT-S12 (El-Nouby et al., 2021). Their input layers are all 224 × 224. The weights of the
naturally pre-trained models (ResNet-18 (N.T.) and ResNet-50 (N.T.)) are obtained from the official
PyTorch model repository, while the weights of the adversarially pre-trained models (ResNet-18
(A.T.), ResNet-50 (A.T.) (Salman et al., 2020) and XCIT-S12 (Debenedetti et al., 2023)) are ob-
tained from Robustbench (Croce et al., 2021). The performance of these pre-trained models on the
source domain can be found in Table 4.

B.4 CIFAR100

We conduct experiments using the well-known image classification dataset CIFAR-100 (Krizhevsky
et al., 2009) as target domain task, which consists 100 categories. The dataset consists of 60,000
32 × 32 pixel color images (50,000 images for training and 10000 images for testing). We followed
the same setup, taking the original training data as the training data and using the method in Ap-
pendix B.1 to generate the adversarial training data. The optimizer is AdamW. The learning rate of
the optimizer is searched from set {1× 10−3, 5× 10−4}, while the weight decay of the optimizer is
searched from set {10−2, 10−3}. Moreover, we use this optimizer to train pre-trained model for 60
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Table 10: The performance (mean (%) + std (%)) comparison of reprogrammed ResNet-18 on GT-
SRB, where PGD-10 is used for adversarial training, and PGD-20 is used for adversarial testing.
The results are presented in the format of robustness accuracy (clean accuracy), where the std of
clean accuracy is omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / RandLM 0.03±0.04 (30.49) 0.04±0.07 (9.20) 3.76±0.53 (7.01) 4.01±1.07 (7.21)
Pad / FreqLM 0.00±0.00 (35.02) 0.20±0.12 (10.35) 3.68±0.67 (10.48) 4.29±0.95 (9.13)
Pad / IterLM 0.00±0.00 (37.70) 3.11±2.75 (6.66) 5.02±0.36 (10.30) 6.74±0.51 (9.74)

Pad / FullyLM 1.05±0.18 (58.84) 6.05±0.28 (14.84) 5.40±0.06 (29.01) 12.04±0.09 (25.58)
Full / RandLM 0.00±0.00 (66.37) 0.01±0.01 (6.38) 0.13±0.12 (25.06) 1.70±0.98 (10.06)
Full / FreqLM 0.00±0.00 (68.90) 0.68±0.30 (6.10) 1.26±0.23 (31.50) 3.24±0.38 (16.18)
Full / IterLM 0.00±0.00 (70.37) 1.15±0.67 (8.99) 1.77±0.32 (35.46) 3.99±0.44 (20.54)

Full / FullyLM 6.66±0.44 (89.31) 24.81±0.05 (60.31) 6.26±0.17 (78.33) 26.90±0.02 (59.07)

Table 11: The performance (mean (%) ± std (%)) comparison of VR with ResNet-18 on CIFAR10,
and PGD-20 is used for adversarial testing. Using TRADES (λ = 6) as adversarial training. The
results are presented in the format of robustness (clean accuracy), where the std of clean accuracy is
omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / IterLM 0.00±0.00 (58.69) 0.61±0.03 (36.79) 10.73±0.69 (32.49) 14.42±0.96 (33.30)
Pad / FullyLM 0.00±0.00 (71.62) 2.28±0.20 (50.26) 13.62±0.11 (56.70) 25.44±0.06 (50.62)
Full / IterLM 0.00±0.00 (69.22) 0.02±0.04 (24.69) 2.42±0.86 (58.01) 4.33±0.67 (30.02)

Full / FullyLM 0.25±0.02 (86.18) 5.37±0.80 (46.68) 5.37±0.13 (87.15) 30.43±0.04 (71.11)

epochs, with the learning rate decreased at 30 epochs and 50 epochs, respectively. Furthermore, in
Table 2, we report the results of reprogramming a pre-trianed ResNet-18, where PGD-10 is used for
adversarial training, and PGD-20 is used for adversarial testing. In Table 6, we report the results of
reprogramming a pre-trianed ResNet-18, where TRADES (λ = 6) is used for adversarial training,
and PGD-20 is used for adversarial testing. These results also demonstrate the effectiveness of our
strategy for enhancing the robustness of the reprogrammed model.

B.5 CIFAR10

CIFAR-10 (Krizhevsky et al., 2009) is also a renowned image classification dataset, similar to
CIFAR-100. Its data configuration is nearly the same as that of CIFAR-100 (consisting of 60,000
32 × 32 pixel color images, with 50,000 images for training and 10,000 images for testing), except
that CIFAR-10 has only 10 classification categories. We use the same optimizer as for CIFAR-100
for reprogramming. In Table 1, we report the results of reprogramming a pre-trianed ResNet-18,
where PGD-10 is used for adversarial training, and PGD-20 is used for adversarial testing. In Table
5, we report the results of reprogramming a pre-trianed ResNet-18, where TRADES (λ = 6) is used
for adversarial training, and PGD-20 is used for adversarial testing. These results also indicate that
incorporating adversarial samples from the target domain and using adversarially pre-trained models
can both enhance the robustness of the reprogrammed model. In addition, we present some visual
results of the reprogramming in Figures 4 and 5.
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Table 12: The performance (mean (%)± std (%)) comparison of VR with ResNet-18 on CIFAR100,
and PGD-20 is used for adversarial testing. Using TRADES (λ = 6) as adversarial training. The
results are presented in the format of robustness (clean accuracy), where the std of clean accuracy is
omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / IterLM 0.01±0.01 (20.41) 0.05±0.03 (7.95) 3.28±0.25 (8.96) 3.66±0.09 (8.09)
Pad / FullyLM 0.00±0.00 (46.81) 0.49±0.09 (34.64) 8.75±0.03 (34.24) 13.36±0.04 (31.97)
Full / IterLM 0.00±0.00 (36.87) 0.00±0.00 (3.38) 2.48±0.11 (31.77) 0.55±0.07 (4.57)

Full / FullyLM 0.06±0.01 (68.33) 2.17±0.03 (31.97) 4.34±0.05 (67.75) 19.02±0.07 (56.02)

Table 13: The performance (mean (%) ± std (%)) comparison of VR with ResNet-18 on GTSRB,
and PGD-20 is used for adversarial testing. Using TRADES (λ = 6) as adversarial training. The
results are presented in the format of robustness (clean accuracy), where the std of clean accuracy is
omitted. The best robustness is highlighted in bold.

In / Out
Adversarially Pre-trained Model / VR using Adversarial Training

Strategy 1 (✘ / ✘) Strategy 2 (✘ / ✔) Strategy 3 (✔ / ✘) Strategy 4 (✔ / ✔)

Pad / IterLM 0.00±0.00 (37.70) 0.47±0.06 (11.64) 5.02±0.36 (10.30) 6.02±0.91 (10.52)
Pad / FullyLM 1.05±0.18 (58.84) 0.93±0.07 (34.88) 5.40±0.06 (29.01) 10.46±0.04 (25.70)
Full / IterLM 0.00±0.00 (70.37) 3.80±3.29 (6.33) 1.77±0.32 (35.46) 2.03±1.12 (17.37)

Full / FullyLM 6.66±0.44 (89.31) 12.85±0.64 (57.77) 6.26±0.17 (78.33) 28.74±0.16 (55.32)

B.6 GTSRB

The German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp et al., 2012) contains 43
classes of traffic signs, split into 39,209 training images and 12,630 test images. Due to the smaller
image size and fewer classification categories compared with IMAGENET-1K, we use this dataset
as our target domain task for reprogramming. The images have varying light conditions and rich
backgrounds. We continue to use their data partitioning for training and testing. We use the same
optimizer as for CIFAR-100 for reprogramming. In Table 3, we report the results of reprogramming
a pre-trianed ResNet-18, where PGD-10 is used for adversarial training, and PGD-20 is used for
adversarial testing. In Table 7, we report the results of reprogramming a pre-trianed ResNet-18,
where TRADES (λ = 6) is used for adversarial training, and PGD-20 is used for adversarial testing.
These results also validate our strategy.

B.7 ADVERSARIAL TRAINING WITH LARGER PERTURBATION RADIUS

We keep other settings unchanged and set the perturbation radius for adversarial training and test-
ing to ϵ = 8/255 to further validate our analytical results. Tables 8 to 13 present the results of
ResNet-18 on different datasets. We observe that these results exhibit slightly lower robustness,
which may be attributed to the relatively high attack intensity at ϵ = 8/255. Furthermore, although
the adversarially pre-trained model demonstrates higher robustness under ϵ = 8/255, as shown in
Table 4, its robustness significantly degrades when facing attacks at ϵ = 8/255. This leads to ex-
cessively high adversarial risk for the pre-trained model in the source domain. According to our
theoretical analysis, this elevated risk may result in increased adversarial risk in the target domain
after reprogramming. Nevertheless, these results align well with our analysis.
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Table 14: The performance comparison of VR with XCIT-S12 (A.T.) on different datasets, and
PGD-20 is used for adversarial testing. Using PGD-10 (ϵ = 4/255) as adversarial training. The
results are presented in the format of robustness (clean accuracy). The best robustness is highlighted
in bold.

In / Out
Dataset

Flowers102 OxfordPets SUN397 Food101

Pad / FullyLM 37.99 (68.21) 36.61 (77.85) 21.67 (51.03) 21.47 (45.79)
Full / FullyLM 40.88 (74.77) 46.81 (86.44) 23.99 (58.09) 23.25 (52.77)

Table 15: The performance of VR with XCIT-S12 (A.T.) under natural training (N.T.) on different
datasets, and PGD-20 is used for adversarial testing. The results are presented in the format of
robustness (clean accuracy). The best robustness is highlighted in bold.

In / Out Dataset

Flowers102 OxfordPets SUN397 Food101

Pad / FullyLM 29.47 (65.66) 28.35 (77.29) 7.80 (48.89) 9.81 (50.10)
Full / FullyLM 28.89 (77.31) 38.03 (85.88) 7.23 (54.96) 9.32 (57.74)

Table 16: The performance comparison of VR with XCIT-S12 (N.T.) on different datasets, and
PGD-20 is used for adversarial testing. Using PGD-10 (ϵ = 4/255) as adversarial training. The
results are presented in the format of robustness (clean accuracy). The best robustness is highlighted
in bold.

In / Out Dataset

Flowers102 OxfordPets SUN397 Food101

Pad / FullyLM 0.00 (15.77) 2.48 (5.55) 2.15 (3.01) 0.99 (1.00)
Full / FullyLM 0.00 (13.11) 2.04 (20.76) 6.76 (22.17) 3.84 (8.85)

C EXPERIMENTS ON COMPLEX MODELS AND LARGE DATASETS

To further validate the effectiveness of utilizing adversarially pre-trained models and employing ad-
versarial training during the reprogramming process, we conducte experiments using adversarially
pre-trained models on ImageNet, including XCiT-S12 and ViT-S+ConvStem (Singh et al., 2023),
which feature more complex architectures compared with ResNet-18 and ResNet-50. Additionally,
we perform experiments on larger datasets, including Flowers102 (Nilsback & Zisserman, 2008),
OxfordPets (Parkhi et al., 2012), SUN397 (Xiao et al., 2010), and Food101 (Bossard et al., 2014),
which offer higher image resolutions compared with CIFAR-10, CIFAR-100, and GTSRB. More-
over, SUN397 and Food101 provide more extensive training and validation data. Following the
setup in (Chen et al., 2023), we resize the images to a resolution of 128 × 128, while keeping all
other experimental settings consistent with those described above.

C.1 DESCRIPTION OF DATASETS

Flower102 comprises 102 flower species commonly found in the United Kingdom, with each cat-
egory containing between 40 and 258 images. The dataset exhibits significant variations in scale,
pose, and lighting conditions, as well as intra-class diversity and inter-class similarity. It is divided
into training, validation, and test sets, with the training and validation sets each containing 10 im-
ages per class (1,020 images in total), while the test set includes the remaining 6,149 images (at
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Table 17: The performance comparison of VR with ViT-S+ConvStem (A.T.) on different datasets,
and PGD-20 is used for adversarial testing. Using PGD-10 (ϵ = 4/255) as adversarial training. The
results are presented in the format of robustness (clean accuracy). The best robustness is highlighted
in bold.

In / Out Dataset

Flowers102 OxfordPets SUN397 Food101

Pad / FullyLM 39.47 (63.48) 39.82 (76.45) 24.84 (53.83) 21.09 (45.30)
Full / FullyLM 44.28 (71.68) 49.41 (82.95) 25.84 (57.57) 23.36 (50.38)

Table 18: The performance of VR with ViT-S+ConvStem (A.T.) under natural training (N.T.) on
different datasets, and PGD-20 is used for adversarial testing. The results are presented in the format
of robustness (clean accuracy). The best robustness is highlighted in bold.

In / Out Dataset

Flowers102 OxfordPets SUN397 Food101

Pad / FullyLM 34.64 (62.84) 35.54 (77.01) 11.41 (50.88) 11.89 (48.40)
Full / FullyLM 39.57 (72.85) 43.08 (82.61) 10.84 (54.38) 11.10 (53.36)

least 20 images per class). OxfordPets consists of 37 pet categories, each represented by approx-
imately 200 images, and is split into 3,680 training and 3,669 test images. SUN397, designed for
scene understanding research, contains 108,753 images spanning 397 categories, with each category
including a minimum of 100 images. A random 75% of the data is allocated for training, with the
remaining 25% reserved for testing. Finally, Food101 includes 101 food categories with a total of
101,000 images. Each category comprises 750 uncleaned training images and 250 manually curated
test images. The training images contain a degree of noise, including intense colors and occasional
mislabeling, while all images are rescaled to a maximum side length of 512 pixels.

C.2 EXPERIMENTAL RESULTS

We present these experimental results in Tables 14 to 18, which demonstrate the effectiveness of our
strategy on more complex models as well as on larger datasets.

C.3 EXPERIMENTS UNDER DIFFERENT ADVERSARIAL ATTACKS

To further verify the effectiveness of our strategy in a more comprehensive way, we verify the robust-
ness under more adversarial attacks, including CW , Square and AutoAttack . The experimental
results are shown in Table 19. These results show that different adversarial attack methods will
bring different adversarial robustness results, and our strategy can achieve satisfactory adversarial
robustness on all these methods.

Table 19: The performance comparison of VR (Full / FullyLM) with ViT-S+ConvStem (A.T.) on
different datasets under different adversarial attacks. Using PGD-10 (ϵ = 4/255) as adversarial
training. The results are presented in the format of robustness (clean accuracy).

Dataset Clean Acc. PGD-20 CW Square AutoAttack

Flowers102 71.68 44.28 43.98 60.45 40.90
OxfordPets 82.95 49.41 52.57 70.98 48.49

SUN397 57.57 25.84 29.53 44.69 23.12
Food101 50.38 23.36 29.57 35.29 19.45
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  Strategy 1 Clean Adv.

  Strategy 2 Clean Adv.

  Strategy 3 Clean Adv.

  Strategy 4 Clean Adv.

Figure 4: Visual results of reprogramming a ResNet-18 on the CIFAR-10 dataset, where the visual
input transformation used for reprogramming is Full and the output label mapping is FullyLM. For
each group of images, the leftmost image is the original image from the target domain, the middle
image shows the noise added by the visual input transformation, and the rightmost image is the
output after applying the visual input transformation.

  Strategy 1 Clean Adv.

  Strategy 2 Clean Adv.

  Strategy 3 Clean Adv.

  Strategy 4 Clean Adv.

Figure 5: Visual results of reprogramming a ResNet-18 on the CIFAR-10 dataset, where the visual
input transformation used for reprogramming is Pad and the output label mapping is FullyLM. For
each group of images, the leftmost image is the original image from the target domain, the middle
image shows the noise added by the visual input transformation, and the rightmost image is the
output after applying the visual input transformation.

D
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