
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A GRADUAL COARSE-TO-FINE FRAMEWORK FOR IR-
REGULARLY SAMPLED MULTIVARIATE TIME SERIES
ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Irregularly sampled multivariate time series (ISMTS) are prevalent in reality. Most
existing methods treat ISMTS as synchronized regularly sampled time series with
missing values, neglecting that the irregularities are primarily attributed to vari-
ations in sampling rates. In this paper, we introduce a novel perspective that
irregularity is essentially relative in some senses. With sampling rates artificially
determined from low to high, an irregularly sampled time series can be transformed
into a hierarchical set of relatively regular time series from coarse to fine. We
observe that additional coarse-grained relatively regular series not only mitigate
the irregularly sampled challenges but also incorporate broad-view temporal infor-
mation, thereby serving as a valuable asset for representation learning. Therefore,
following the philosophy of learning that Seeing the big picture first, then delv-
ing into the details, we present the Multi-Scale and Multi-Correlation Attention
Network (MuSiCNet) combining multiple scales to iteratively refine the ISMTS
representation. Specifically, within each scale, we explore time attention and
frequency correlation matrices to aggregate intra- and inter-series information,
naturally enhancing the representation quality with richer and more intrinsic details.
While across adjacent scales, we employ a representation rectification method
containing contrastive learning and reconstruction results adjustment to further
improve representation consistency. MuSiCNet is an ISMTS analysis framework
that competitive with SOTA in three mainstream tasks consistently, including
classification, interpolation, and forecasting.

1 INTRODUCTION

Irregularly sampled multivariate time series (ISMTS) are ubiquitous in realistic scenarios, ranging
from scientific explorations to societal interactions (Che et al., 2018; Shukla & Marlin, 2021; Sun
et al., 2021; Agarwal et al., 2023; Yalavarthi et al., 2024). The causes of irregularities in time
series collection are diverse, including sensor malfunctions, transmission distortions, cost-reduction
strategies, and various external forces or interventions, etc. Such ISMTS data exhibit distinctive
features including intra-series irregularity, characterized by inconsistent intervals between consecutive
data points, and inter-series irregularity, marked by a lack of synchronization across multiple variables.
The above characteristics typically result in the lack of alignment and uneven count of observations
(Shukla & Marlin, 2020), invalidating the assumption of coherent fixed-dimensional feature space for
most traditional time series analysis models.

Recent studies have attempted to address these challenges by treating ISMTS as synchronized,
regularly sampled Normal Multivariate Time Series (NMTS) data with missing values, focusing on
imputation strategies (Che et al., 2018; Yoon et al., 2018; Camino et al., 2019; Tashiro et al., 2021;
Zhang et al., 2021c; Chen et al., 2022; Fan, 2022; Du et al., 2023). However, direct imputation is
difficult, especially when sampling is sparse. Inaccurate imputation results can distort underlying
relationships and introduce significant noise, which can greatly reduce the accuracy of analysis tasks
(Zhang et al., 2021b; Wu et al., 2021; Agarwal et al., 2023; Sun et al., 2024). Latest developments
circumvent imputation and aim to address these challenges by embracing the inherent continuity
of time, thus preserving the continuous temporal dynamics dependencies within the ISMTS data.
Despite these innovations, most methods above are merely solutions for intra-series irregularities,
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such as Recurrent Neural Networks (RNNs) (De Brouwer et al., 2019; Schirmer et al., 2022; Agarwal
et al., 2023)- and Neural Ordinary Differential Equations (Neural ODEs)-based methods (Kidger
et al., 2020; Rubanova et al., 2019; Jhin et al., 2022; Jin et al., 2022) and the unaligned challenges
presented by inter-series irregularities in multivariate time series remain unsolved.

Figure 1: Comparative visualization of multi-
scale time series data with various sampling rates.
Scale L depicts the original selected representa-
tive time series in the P12 Dataset to show the
inter- and intra-series irregularities. Scale 1 to
Scale L− 1 illustrates the effect of applying dif-
ferent sampling rates from low to high.

Delving into the nature of irregularly sampled
time series, we discover that the intra- and inter-
series irregularities in ISMTS primarily arise
from inconsistency in sampling rates within and
across variables. We argue that irregularities are
essentially relative in some senses and by arti-
ficially determined sampling rates from low to
high, ISMTS can be transformed into a hierarchi-
cal set of relatively regular time series from coarse
to fine. Taking a broader perspective, setting a
lower and consistent sampling rate within an in-
stance can synchronize sampling times across se-
ries and establish uniform time intervals within
series. This approach can mitigate both types
of irregularity and emphasize long-term depen-
dencies. As shown in Fig.1, the coarse-grained
scales 1 and 2 exhibit balanced placements for
all variables in the instance and provide clearer
overall trends. However, lower sampling rates
may lead to information loss and sacrifice de-
tailed temporal variations. Conversely, with a
higher sampling rate as in scale L, more real ob-
servations contain rich information and prevent
artificially introduced dependencies beyond orig-
inal relations during training. Nonetheless, the
significant irregularity in fine-grained scales poses a greater challenge for representation learning.

To bridge this gap, we propose MuSiCNet—a Multi-Scale and Multi-Correlation Attention Net-
work—to iteratively optimize ISMTS representations from coarse to fine. Our approach begins by
establishing a hierarchical set of coarse- to fine-grained series with sampling rates from low to high.
At each scale, we employ a custom-designed encoder-decoder framework called multi-correlation
attention network (CorrNet), for representation learning. Different from most existing methods that
focus mainly on intra-series relationships, our CorrNet encoder (CorrE) captures embeddings of
continuous time values by using an attention mechanism containing correlation matrices to aggregate
both intra- and inter-series information. This approach is crucial not only because every observation
in ISMTS, given the sparse sampling, is valuable for representation learning, but also due to the fact
that correlated variables provide deeper insights for a given query. Therefore, we designed frequency
correlation matrices using Lomb–Scargle Periodogram-based Dynamic Time Warping (LSP-DTW).
This approach addresses the challenges of calculating correlations in ISMTS and re-weights the
inter-series attention scores to better capture cross-series information. Across scales, we employ a
representation rectification operation from coarse to fine to iteratively refine the learned representa-
tions with contrastive learning and reconstruction results adjustment methods. This ensures accurate
and consistent representation and minimizes error propagation throughout the model.

Benefiting from the aforementioned designs, MuSiCNet explicitly learns multi-scale information,
enabling good performance on widely used ISMTS datasets, thereby demonstrating its ability to
capture relevant features for ISMTS analysis. Our main contributions can be summarized as follows:

• We find that irregularities in ISMTS are essentially relative in some senses and multi-scale learning
helps balance coarse- and fine-grained information in ISMTS representation learning.

• We introduce CorrNet, an encoder-decoder framework designed to learn fixed-length representations
for ISMTS. Notably, our proposed LSP-DTW can mitigate spurious correlations induced by
irregularities in the frequency domain and effectively re-weight attention across sequences.

• We are not limited to a specific analysis task and attempt to propose a task-general model for
ISMTS analysis, including classification, interpolation, and forecasting.
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Figure 2: Overview of MuSiCNet framework, shown in (a), containing three main components for
better representation learning, including hierarchical structure {X(l)

mask}Ll=1, representation learning
using CorrNet within scale ℓ(l)cons, and rectification operation across adjacent scales ℓ(l)recon. (b) visualizes
the encoding process in CorrNet for Scale l, which relies on τ

(l)
n to aggregates intra-series information,

and then relies on cdi,(·) to fuse inter-series information from other variables for di-th dimension. (c)
visualizes the calculation process of the correlation matrix, which transfers the time domain into the
frequency domain with LSP, and then utilizes DTW to calculate the similarity weight.

2 RELATED WORK

Irregularly Sampled Multivariate Time Series Analysis. An effective approach for analyzing
ISMTS hinges on the understanding of their unique properties. Most existing methods treat ISMTS
as NMTS with missing values, such as Che et al. (2018); Yoon et al. (2018); Camino et al. (2019);
Tashiro et al. (2021); Chen et al. (2022); Fan (2022); Du et al. (2023); Wang et al. (2024). However,
most imputation-based methods may distort the underlying relationships, introducing unsuitable
inductive biases and substantial noise due to incorrect imputation (Zhang et al., 2021b; Wu et al.,
2021; Agarwal et al., 2023), ultimately compromising the accuracy of downstream tasks. Some
other methods treat ISMTS as time series with discrete timestamps, aggregating all sample points
of a single variable to extract a unified feature for each variable (Zhang et al., 2021b; Horn et al.,
2020; Li et al., 2023). These methods can directly accept raw ISMTS data as input but often struggle
to handle the underlying relationships within the time series. Recent progress seeks to overcome
these challenges by recognizing and utilizing the inherent continuity of time, thereby maintaining the
ongoing temporal dynamics present in ISMTS data (De Brouwer et al., 2019; Rubanova et al., 2019;
Kidger et al., 2020; Schirmer et al., 2022; Jhin et al., 2022; Chowdhury et al., 2023).

Despite these advancements, existing methods mainly suffer from two main drawbacks, they primarily
address intra-series irregularity while overlooking the alignment issues stemming from inter-series
irregularity, and 2) they rely on assumptions tailored to specific downstream tasks (Yalavarthi et al.,
2024; Wang et al., 2024), hindering their ability to consistently perform well across various ISMTS
tasks.
Multi-scale Modeling. Multi-scale and hierarchical approaches have demonstrated their utility
across various fields, including computer vision (CV) (Fan et al., 2021; Zhang et al., 2021a), natural
language processing (NLP) (Nawrot et al., 2021; Zhao et al., 2021), and time series analysis (Chen
et al., 2021; Shabani et al., 2022; Cai et al., 2024). Most recent innovations in the time series
analysis domain have seen the integration of multi-scale modules into the Transformer architecture
to enhance analysis capabilities Shabani et al. (2022); Liu et al. (2021) and are designed for NMTS.
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Nevertheless, the application of multi-scale modeling specifically designed for ISMTS data, and
the exploitation of information across scales, remain less unexplored. As far as we know, Singh
et al. (2019) and Zhang et al. (2023) are among the earlier works on multi-level ISMTS learning.
Singh et al. (2019) addresses multi-resolution signal issues by distributing signals across specialized
branches with different resolutions, where each branch employs a Flexible Irregular Time Series
Network (FIT) to process high- and low-frequency data separately. Zhang et al. (2023), on the other
hand, is a transformer-based model that stacks multiple Warpformer layers to produce multi-scale
representations, combining them via residual connections to support downstream tasks. These works
typically focus on either specific tasks or particular model architectures. In contrast, our design
philosophy originates from ISMTS characteristics rather than being tied to a specific feature extraction
network structure. Warpformer emphasizes designing a specific network architecture but involves
high computational costs and requires manually balancing the trade-off between the number of scales
and the dataset. These are challenges that our MuSiCNet avoids entirely.

3 PROPOSED MUSICNET FRAMEWORK

As previously mentioned, our work aims to learn ISMTS representation for further analysis tasks by
introducing MuSiCNet, a novel framework designed to balance coarse- and fine-grained information
across different scales. The overall model architecture illustrated in Fig.2(a) indicates the effectiveness
of MuSiCNet can be guaranteed to a great extent by 1) Hierarchical Structure. 2) Representation
Learning Using CorrNet Within Scale. 3) Rectification Across Adjacent Scales. We will
first introduce problem formulation and notations of MuSiCNet and then discuss key points in the
following subsections.

3.1 PROBLEM FORMULATION

Our goal is to learn a nonlinear embedding function fθ, such that the set of ISMTS data X =
{X1, · · · ,XN} can map to the best-described representations for further ISMTS analysis including
both supervised and unsupervised tasks. We denote Xn ∈ RTn×D as a D-dimensional instance with
the length of observation Tn. Specifically, the d-th dimension in instance n can be treated as a tuple
Xdn = (xdn, tdn) where the length of observations is Tdn. xdn = [x1dn, · · ·xTdndn] is the list of
observations and the list of corresponding observed timestamps is tdn = [t1dn, · · · tTdndn]. We drop
the data case index n for brevity when the context is clear.

3.2 CORRNET ARCHITECTURE WITHIN SCALE

Multi-Correlation Attention Module. In this subsection, we elaborate on the Multi-Correlation
Attention module. Time attention has proven effective for ISMTS learning (Shukla & Marlin, 2021;
Horn et al., 2020; Chowdhury et al., 2023; Yu et al., 2024). Many existing methods mainly focus on
capturing interactions between observation values and their corresponding sampling times within
a single variable. However, due to the potential sparse sampling in ISMTS, observations from all
variables are valuable and need to be considered.

To address this, we use irregularly sampled time points and corresponding observations from all
variables within a sample as keys and values to produce fixed-dimensional representations at the query
time points. The importance of each variable cannot be uniform for a given query and variables that
provide more valuable information should receive more attention. Therefore, we designed frequency
correlation matrices to re-weight the inter-series attention scores, enhancing the representation
learning process.

In general, as illustrated in Fig.2(b), taking ISMTS X as input, the CorrNet Encoder CorrE (·)
generates multi-time attention embedding as follows:

CorrE(QT ,KT ,X) = ATXCT

AT = softmax(QTKT /dr)
(1)

where the calculation of AT ∈ RK×T is based on a time attention mechanism with query QT ∈
RK×K and key KT ∈ RK×T (Vaswani et al., 2017). Since more attention should be paid to
correlated variables for a given query which can provide more valuable knowledge. Therefore,
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different input dimensions should utilize various weights of time embeddings through the correlation
matrix CT ∈ RD×D, and we will introduce it in the following Correlation Extraction paragraph.

Since the continuous function defined by the CorrE module is incompatible with neural network
architectures designed for fixed-dimensional vectors or discrete sequences, following the method in
Shukla & Marlin (2021), we generate an output representation by materializing its output at a pre-
defined set of reference time points τ = [τ1, · · · , τK ]. This process transforms the continuous output
into a fixed-dimensional vector or a discrete sequence, thereby making it suitable for subsequent
neural network processing.

Correlation Extraction. The correlation matrix is essential for deriving reliable and consistent
correlations within ISMTS, which must be robust to the inherent challenges of variable sampling
rates and inconsistent observation counts at each timestamp in ISMTS. Most existing distance
measures, such as Euclidean distance, Dynamic Time Warping (DTW) (Berndt & Clifford, 1994), and
Optimal Transport / Wasserstein Distance (Villani et al., 2009), risk generating spurious correlations
in the context of irregularly sampled time series. This is due to their dependence on the presence
of both data points for the similarity measurement, and the potential for imputation to introduce
unreliable information before calculating similarity which will be explored further in Section 4.4 of
our experiments.

At an impasse, the Lomb-Scargle Periodogram (LSP) (Lomb, 1976; Scargle, 1982) provides en-
lightenment to address this issue. LSP is a well-known algorithm for generating a power spectrum
and detecting the periodic component in irregularly sampled time series. It extends the Fourier
periodogram approach to accommodate irregularly sampled scenarios (VanderPlas, 2018) eliminat-
ing the need for interpolation or imputation. This makes LSP a great tool for simplifying ISMTS
analysis. Compared to existing methods, measuring the similarity between discrete raw observations,
LSP-DTW, an implicit continuous method, utilizes inherent periodic characteristics and provides
global information to measure the similarity.

As demonstrated in Fig.2(c), we first convert ISMTS into the frequency domain using LSP and then
apply DTW to evaluate the distance between variables. The correlation between Xdi

and Xdj
is:

cdidj = DTW
(
LSP(Xdi),LSP(Xdj )

)
= min

π

∑
(m,n)∈π

(
LSP(Xdi)[m]− LSP(Xdj )[n]

)2
(2)

where π is the search path of DTW. We calculate the correlation matrix CT by iteratively performing
the aforementioned step for an instance.

Notably, we compute the correlation matrix using LSP-DTW only once per instance, without
iteratively applying it, and it is not calculated in model training or inference.

Encoder-Decoder Framework. Drawing inspiration from notable advances in NLP and CV, our
core network, CorrNet employs time series masked modeling, which learns effective time series
representations to facilitate various downstream analysis tasks. It is a framework consisting of
an encoder-decoder architecture based on continuous-time interpolation. At each scale l, CorrE
learns a set of latent representations r(l) = [r1, · · · , rK ] defined at K reference time points on the
randomly masked ISMTS. We further employ CorrNet Decoder (CorrD), a simplified CorrE (without
correlation matrix), to produce the reconstructed output X̂(l)

reco, using the input time point sequence
t(l) as reference points. We iteratively apply the same CorrNet at each scale. Here, we emphasize that
all scales share a single encoder that can reduce the model complexity and keep feature extraction
consistency for various scales.

We measure the reconstruction accuracy using the Mean Squared Error (MSE) between the recon-
structed values and the original ones at each timestamp and calculate the MSE loss specifically for
the masked timestamps, as expressed in the following equation

ℓ
(l)
recon =

∑N

n=1

∥∥∥M (l) ⊙
((

X̂
(l)
reco

)
n
−X(l)

n

)∥∥∥2

2
(3)

where M (l) is the mask for the l-th scale, ⊙ is the Hadamard product.
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3.3 RECTIFICATION STRATEGY ACROSS SCALES

Following the principle that adjacent scales exhibit similar representations and coarse-grained scales
contain more long-term information, the rectification strategy is a key component of our MuSiCNet
framework. We implement a dual rectification strategy across adjacent scales to enhance representa-
tion learning. We start by generating a hierarchical set of relatively regular time series from coarse to
fine by

Xmulti = M (l) ⊙ (AvgPoolingL (X)) = {X(1)

mask, · · · ,X
(L)

mask} (4)

While the coarse-grained series ignores detailed variations for high-frequency signals and focuses on
much clearer broad-view temporal information, the fine-grained series retains detailed variations for
frequently sampled series. As a result, iteratively using coarse-grained information for fine-grained
series as a strong structural prior can benefit ISMTS learning.

Firstly, the reconstruction results at scale l is designed to align closely with the results at the (l−1)-th
scale, that is to say, the reconstruction results at scale (l − 1) can be used to adjust the results at scale
l using MSE,

ℓ
(l)

adj =
∑N

n=1

∥∥∥(AvgPoolingl(X̂
(l)
reco)

)
n
−

(
X̂

(l−1)
reco

)
n

∥∥∥2

2
(5)

Secondly, contrastive learning is leveraged to ensure coherence between adjacent scales. Pulling
these two representations between adjacent scales together and pushing other representations within
the batch B apart, not only facilitates the learning of within-scale representations but also enhances
the consistency of cross-scale representations. Taking into consideration that the dimensions of r(l)

and r(l−1) are different, we employ a GRU Network as a decoder to uniform dimension as h(l) and
h(l−1) before contrastive learning.

ℓ(l)cons = −
∑N

i=1
log

exp
(
h
(l)
i · h

(l−1)
i

)
∑B

j=1

(
exp

(
h
(l)
i · h

(l−1)
j

)
+ I[i ̸=j] exp

(
h
(l)
i · h

(l)
j

)) (6)

where the I is the indicator function.

The advantage of the two operations lies in their ability to ensure a consistent and accurate represen-
tation of the data at different scales. This strategy significantly improves the model’s ability to learn
representations from ISMTS data, which is essential for tasks requiring detailed and accurate time
series analysis. Last but not least, this method ensures that the model remains robust and effective
even when dealing with data at varying scales, making it versatile for diverse applications.

4 EXPERIMENT

In this section, we demonstrate the effectiveness of the MuSiCNet framework for time series classifi-
cation, interpolation and forecasting. Notably, for each dataset, the window size is initially set to 1/4
of the time series length and then halved iteratively until the majority of the windows contain at least
one observation. Our results are based on the mean and standard deviation values computed over 5
independent runs. Bold indicates the best performer, while underline represents the second best. Due
to the page limitation, we provide more detailed setup for experiments in the Appendix.

4.1 TIME SERIES CLASSIFICATION

Datasets and experimental settings. We use real-world datasets including healthcare and human
activity for classification. (1) P19 (Reyna et al., 2020) with missing ratio up to 94.9%, includes
38, 803 patients that are monitored by 34 sensors. (2) P12 (Goldberger et al., 2000) records temporal
measurements of 36 sensors of 11, 988 patients in the first 48-hour stay in ICU, with a missing ratio
of 88.4%. (3) PAM (Reiss & Stricker, 2012) contains 5, 333 segments from 8 activities of daily
living that are measured by 17 sensors and the missing ratio is 60.0%. Importantly, P19 and P12 are
imbalanced binary label datasets.

Here, we follow the common setup by randomly splitting the dataset into training (80%), validation
(10%), and test (10%) sets and the indices of these splits are fixed across all methods. Consistent with
prior researches, we evaluate the performance of our framework on classification tasks using the area
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Table 1: Comparison with the baseline methods on ISMTS classification task.

P19 P12 PAM
Methods AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

Transformer 80.7± 3.8 42.7± 7.7 83.3± 0.7 47.9± 3.6 83.5± 1.5 84.8± 1.5 86.0± 1.2 85.0± 1.3

Trans-mean 83.7± 1.8 45.8± 3.2 82.6± 2.0 46.3± 4.0 83.7± 2.3 84.9± 2.6 86.4± 2.1 85.1± 2.4

GRU-D 83.9± 1.7 46.9± 2.1 81.9± 2.1 46.1± 4.7 83.3± 1.6 84.6± 1.2 85.2± 1.6 84.8± 1.2

SeFT 81.2± 2.3 41.9± 3.1 73.9± 2.5 31.1± 4.1 67.1± 2.2 70.0± 2.4 68.2± 1.5 68.5± 1.8

mTAND 84.4± 1.3 50.6± 2.0 84.2± 0.8 48.2± 3.4 74.6± 4.3 74.3± 4.0 79.5± 2.8 76.8± 3.4

IP-Net 84.6± 1.3 38.1± 3.7 82.6± 1.4 47.6± 3.1 74.3± 3.8 75.6± 2.1 77.9± 2.2 76.6± 2.8

DGM2-O 86.7± 3.4 44.7± 11.7 84.4± 1.6 47.3± 3.6 82.4± 2.3 85.2± 1.2 83.9± 2.3 84.3± 1.8

MTGNN 81.9± 6.2 39.9± 8.9 74.4± 6.7 35.5± 6.0 83.4± 1.9 85.2± 1.7 86.1± 1.9 85.9± 2.4

Raindrop 87.0± 2.3 51.8± 5.5 82.8± 1.7 44.0± 3.0 88.5± 1.5 89.9± 1.5 89.9± 0.6 89.8± 1.0

Warpformer 88.8± 1.7 55.2± 3.9 83.4± 0.9 47.2± 3.7 94.3± 0.6 95.8± 0.8 94.8± 1.0 95.2± 0.6

ViTST 89.2± 2.0 53.1± 3.4 85.1± 0.8 51.1± 4.1 95.8± 1.3 96.2± 1.3 96.1± 1.1 96.5± 1.2

MuSiCNet 86.8± 1.4 45.4± 2.7 86.1± 0.4 54.1± 2.2 96.3± 0.7 96.9± 0.6 96.9± 0.5 96.8± 0.5

Table 2: Comparison with the baseline methods on ISMTS interpolation task on PhysioNet.

Model Mean Squared Error (×10−3)

Observed % 50% 60% 70% 80% 90%

RNN-VAE 13.418± 0.008 12.594± 0.004 11.887± 0.005 11.133± 0.007 11.470± 0.006

L-ODE-RNN 8.132± 0.020 8.140± 0.018 8.171± 0.030 8.143± 0.025 8.402± 0.022

L-ODE-ODE 6.721± 0.109 6.816± 0.045 6.798± 0.143 6.850± 0.066 7.142± 0.066

mTAND-Full 4.139± 0.029 4.018± 0.048 4.157± 0.053 4.410± 0.149 4.798± 0.036

MuSiCNet 0.918± 0.025 0.919± 0.064 0.938± 0.014 0.992± 0.008 0.965± 0.008

under the receiver operating characteristic curve (AUROC) and the area under the precision-recall
curve (AUPRC) for the P12 and P19 datasets, given their imbalanced nature. For the nearly balanced
PAM dataset, we employ Accuracy, Precision, Recall, and F1 Score. For all of the above metrics,
higher results indicate better performance.

Main Results of classification. We compare MuSiCNet with ten state-of-the-art irregularly sampled
time series classification methods, including Transformer (Vaswani et al., 2017), Trans-mean, GRU-D
(Che et al., 2018), SeFT (Horn et al., 2020), and mTAND (Shukla & Marlin, 2021), IP-Net (Shukla &
Marlin, 2018), DGM2-O(Wu et al., 2021), MTGNN (Wu et al., 2020), Raindrop (Zhang et al., 2021b),
ViTST (Li et al., 2023) and Warpformer (Zhang et al., 2023). Since mTAND is proven superior
over various recurrent models, such as RNNImpute (Che et al., 2018), Phased-LSTM (Neil et al.,
2016) and ODE-based models like LATENT-ODE and ODE-RNN (Chen et al., 2018), we focus our
comparisons on mTAND and do not include results for the latter model.

As indicated in Table 1, MuSiCNet demonstrates good performance across three benchmark datasets,
underscoring its effectiveness in typical time series classification tasks. Notably, in binary classifica-
tion scenarios, MuSiCNet surpasses the best-performing baselines on the P12 dataset by an average
of 1.0% in AUROC and 3.0% in AUPRC. For the P19 dataset, while our performance is competitive,
MuSiCNet stands out due to its lower time and space complexity compared to ViTST. ViTST converts
1D time series into 2D images, potentially leading to significant space inefficiencies due to the
introduction of extensive blank areas, especially problematic in ISMTS. In the more complex task of
8-class classification on the PAM dataset, MuSiCNet surpasses current methodologies, achieving a
0.5% improvement in accuracy and a 0.7% increase in precision.

Notably, the consistently low standard deviation in our results indicates that MuSiCNet is a reliable
model. Its performance remains steady across varying data samples and initial conditions, suggesting
a strong potential for generalizing well to new, unseen data. This stability and predictability in
performance enhance the confidence in the model’s predictions, which is particularly crucial in
sensitive areas such as medical diagnosis in clinical settings.
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Table 3: Experimental results for forecasting next three time steps. − indicates no published results.

Methods USHCN MIMIC-III Physionet12

DLinear+ 0.347± 0.065 0.691± 0.016 0.380± 0.001

NLinear+ 0.452± 0.101 0.726± 0.019 0.382± 0.001

Informer+ 0.320± 0.047 0.512± 0.064 0.347± 0.001

FedFormer+ 2.990± 0.476 1.100± 0.059 0.455± 0.004

NeuralODE-VAE 0.960± 0.110 0.890± 0.010 −
GRU-Simple 0.750± 0.120 0.820± 0.050 −

GRU-D 0.530± 0.060 0.790± 0.060 −
T-LSTM 0.590± 0.110 0.620± 0.050 −
mTAND 0.300± 0.038 0.540± 0.036 0.315± 0.002

GRU-ODE-Bayes 0.430± 0.070 0.480± 0.480 0.329± 0.004

Neural Flow 0.414± 0.102 0.490± 0.004 0.326± 0.004

CRU 0.290± 0.060 0.592± 0.049 0.379± 0.003

GraFITi 0.272± 0.047 0.396± 0.030 0.286± 0.001

MuSiCNet 0.268± 0.038 0.475± 0.031 0.312± 0.000

4.2 TIME SERIES INTERPOLATION

Datasets and experimental settings. PhysioNet (Silva et al., 2012) consists of 37 variables ex-
tracted from the first 48 hours after admission to the ICU. We use all 8, 000 instances for interpolation
experiments whose missing ratio is 78.0%.

We randomly split the dataset into a training set, encompassing 80% of the instances, and a test
set, comprising the remaining 20% of instances. Additionally, 20% of the training data is reserved
for validation purposes. The performance evaluation is conducted using MSE, where lower values
indicate better performance.

Main Results of Interpolation. For the interpolation task, we compare it with RNN-VAE, L-ODE-
RNN (Chen et al., 2018), L-ODE-ODE (Rubanova et al., 2019), mTAND-full.

For the interpolation task, models are trained to predict or reconstruct values for the entire dataset
based on a selected subset of available points. Experiments are conducted with varying observation
levels, ranging from 50% to 90% of observed points. During test time, models utilize the observed
points to infer values at all time points in each test instance.

As illustrated in Table 2, MuSiCNet demonstrates superior performance, highlighting its effectiveness
in time series interpolation. This can be attributed to its ability to interpolate progressively from
coarse to fine, aligning with the intuition of multi-resolution signal approximation (Mallat, 1989).

4.3 TIME SERIES FORECASTING

Datasets and Experimental Settings. (1) USHCN (Menne et al., 2015) is an artificially prepro-
cessing dataset containing measurements of 5 variables from 1280 weather stations in the USA. The
missing ratio is 78.0%. (2) MIMIC-III (Johnson et al., 2016) are dataset that rounded the recorded
observations into 96 variables, 30-minute intervals and only use observations from the 48 hours
after admission. The missing ratio is 94.2%. (3) Physionet12 (Silva et al., 2012) comprises medical
records from 12, 000 ICU patients. It includes measurements of 37 vital signs recorded during the
first 48 hours of admission and the missing ratio is 80.4%. We use MSE to measure forecasting
performance, with lower values indicating better performance.

Main Results of Forecasting. We compare the performance with the ISMTS forecasting models:
Graph-based method Grafiti (Yalavarthi et al., 2024), ODE- and RNN-based models including GRU-
ODE-Bayes (De Brouwer et al., 2019), Neural Flows (Biloš et al., 2021), CRU (Schirmer et al.,
2022), NeuralODE-VAE(Chen et al., 2018), GRUSimple, GRU-D and TLSTM(Baytas et al., 2017).
Additionally, attention-based models like mTAND, also an interpolation model, together with variants
of Informer (Zhou et al., 2021), Fedformer (Zhou et al., 2022), DLinear, and NLinear (Zeng et al.,
2023), denoted as Informer+, Fedformer+, DLinear+, and NLinear+, respectively.
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Figure 3: Visualization of various methods to extract the correlation matrix from P12 dataset. The
darker the color, the more similar the relationship. (a) denotes the average pairwise observation rate
(i.e., 1 minus missing rate), and (b) - (d) denotes different correlation matrices.

Table 4: Classification performance of MuSiCNetr to verify the necessity of correlation matrix.

P12 P19 PAM
Methods AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

MuSiCNet 86.1± 0.4 54.1± 2.2 86.8± 0.4 54.1± 2.2 96.3± 0.7 96.9± 0.6 96.9± 0.5 96.8± 0.5

w/o Corr 85.5± 0.3 53.0± 2.1 82.9± 0.8 32.7± 2.1 95.7± 0.9 96.2± 0.51 96.5± 0.2 96.3± 0.3

Learnable Corr 85.7± 0.4 53.0± 2.0 83.4± 0.7 31.8± 2.7 96.1± 0.5 96.7± 0.38 96.5± 0.7 96.6± 0.5

This experiment is conducted following the setting of GraFITi where for the USHCN dataset, the
model observes for the first 3 years and forecasts the next 3 time steps and for other datasets, the
model observes the first 36 hours in the series and predicts the next 3 time steps.

As shown in Table 3, MuSiCNet consistently achieves competitive performance across all datasets,
maintaining accuracy within the top two among baseline models. While GraFITi excels by explicitly
modeling the relationship between observation and prediction points, making it superior in certain
scenarios, MuSiCNet remains competitive without imposing priors for any specific task.

4.4 CORRELATION RESULTS

In this section, we focus on validating the necessity, effectiveness, and efficiency of the correlation
matrix in the classification task as an example.

First, we verify the necessity of the correlation matrix using results from all classification datasets in
Table 4. Removing the correlation matrix (line 4) led to performance drops across all datasets, with
P19 showing the largest decline due to its 94.9% missing rate. This highlights the importance of
capturing inter-series relationships in irregularly sampled time series, making the correlation matrix
essential. Replacing the designed correlation matrix with a learnable one (line 5) also worsened
performance, indicating that learning inter-series relationships purely from the network remains
highly challenging and specialized correlation designs are needed.

Second, we evaluate LSP-DTW against other correlation calculation methods (I-GAK (Cuturi, 2011),
I-DTW (Berndt & Clifford, 1994)) on the P12 dataset to verify the effectiveness. Interpolation-based
methods (I-GAK, I-DTW) distort correlations, leading to unreliable results as seen in Fig.3. I-GAK
shows fictitious correlations based on observation rates, while I-DTW presents uniformly positive
correlations, neither of which captures true data characteristics. In contrast, LSP-DTW accurately
identifies correlations, verified by Table 5, where it outperforms all baselines, demonstrating the
importance of appropriate correlation modeling.

Lastly, we report the computation time for the correlation matrix. LSP-DTW based correlation matrix
is computed per instance in parallel, with acceptable runtimes (0.137s for P12, 0.127s for P19, 0.049s
for PAM). It is calculated once, making it efficient for the entire learning process.
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Table 5: Classification performance of MuSiC-
Net with different correlation matrices on P12
to verify the effectiveness.

Corr Matrix AUCROC AUPRC

Ones 66.7± 2.2 25.2± 0.3

Rand 84.7± 0.8 52.2± 3.2

Diag 84.2± 0.8 48.2± 3.4

I-GAK 85.1± 0.6 52.8± 3.0

I-DTW 81.9± 0.6 46.9± 3.0

LSP-DTW 86.1± 0.4 54.1± 2.2

Table 6: Ablation studies on different strategies
of MuSiCNet in classification. ✓(×) indicates the
component has (not) been applied.

Component P12

Corr Matrix Adjustment Contrastive AUROC AUPRC

✓ ✓ ✓ 86.1± 0.4 54.1± 2.2

× ✓ ✓ 85.5± 0.3 53.0± 2.1

✓ × × 85.2± 0.6 52.6± 2.5

✓ × ✓ 85.4± 0.4 53.0± 2.5

✓ ✓ × 85.4± 0.6 52.9± 2.8

× × × 84.2± 0.8 48.2± 3.4

4.5 ABLATION ANALYSIS AND EFFICIENCY EVALUATION

Taking P12 in the classification task with a batch size of 50 as an example, we conduct the ablation
study to assess the necessity of two fundamental components of MuSiCNet: correlation matrix and
multi-scale learning reflected in reconstruction results adjustment and contrastive learning. As shown
in Table 6, the complete MuSiCNet framework, incorporating all components, achieves the best
performance. The absence of any component leads to varying degrees of performance degradation, as
evidenced in layers two to five. The second layer, which retains the multi-scale learning, exhibits
the second-best performance, underscoring the critical role of multi-scale learning in capturing
varied temporal dependencies and enhancing feature extraction. Conversely, the version lacking all
components shows a significant performance drop of 1.9%, indicating that each component is crucial
to the overall effectiveness of the framework.

Under the same setting, our model MuSiCNet achieves a time cost of 0.240s per batch with 4.2GB of
memory usage. In comparison, ViTST requires 2.196s and 40.2GB, Raindrop uses 0.124s and 4.8GB,
MTGNN takes 0.1967s and 4.2GB, and DGM2-O needs 0.313s and 9.1GB. MuSiCNet demonstrates
lower time complexity than most other methods and significantly lower memory usage, particularly
compared to ViTST, which also performs well on classification tasks.

5 CONCLUSION

In this study, we introduce MuSiCNet, an innovative framework designed for analyzing ISMTS
datasets. MuSiCNet addresses the challenges arising from data irregularities and shows superior
performance in both supervised and unsupervised tasks. We recognize that irregularities in ISMTS are
inherently relative and accordingly implement multi-scale learning, a vital element of our framework.
In this multi-scale approach, the contribution of extra coarse-grained relatively regular series is
important, providing comprehensive temporal insights that facilitate the analysis of finer-grained
series. As another key component of MuSiCNet, CorrNet is engineered to aggregate temporal
information effectively, employing time embeddings and correlation matrix calculating from both
intra- and inter-series perspectives, in which we employ LSP-DTW to develop frequency correlation
matrices that not only reduce the burden for similarity calculation for ISMT, but also significantly
enhance inter-series information extraction.

Nevertheless, our MuSiCNet still has some limitations. Firstly, the interaction between scales could
potentially be further simplified. Secondly, the exploration of ISMTS for anomaly detection tasks is
currently insufficient. As a task-agnostic model, our MuSiCNet should be further investigated for its
potential in anomaly detection.
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A APPENDIX

B PSEUDO CODE FOR MUSICNET

The Pseudo Code is provided using classification as an example. The interpolation task can be
obtained by removing the projection head fcls and the classification loss term Lcls from the total loss
in line #17. While in the case of forecasting tasks, the projection head will be replaced with ffore and
task loss will be changed to Lfore as in Eq.11.

C TIME EMBEDDING IN CORRNET

Time Embedding method embeds continuous time points of ISMTS into a vector space Kazemi et al.
(2019); Shukla & Marlin (2021). It leverages H embedding functions ϕh(t) simultaneously and each
outputting a representation of size dr. Dimension i of embedding h is defined as follows:

ϕh(t)[i] =

{
ω0h · t+ α0h, if i = 0
sin (ωih · t+ αih) , if 0 < i < dr

(7)

where the ωih’s and αih’s are learnable parameters that represent the frequency and phase of the sine
function. This time embedding method can capture both non-periodic and periodic patterns with
linear and periodic terms, respectively. c

D ISMTS ANALYSIS TASKS

The overall loss is defined as Eq.8, incorporating an optional task-specific loss component.

L =

L∑
l=1

ℓ(l)recon + λ1ℓ
(l)
adj + λ2ℓ

(l)
cons (8)
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Algorithm 1 MuSiCNet Algorithm for Classification
Input: Training set X , the number of scale layers L, random masking ratio r, max reference point
number |τ (L)|, hyper-parameters λ1, λ2, λ3.
Parameters: Encoder model fCorrE, decoder model fCorrD, GRU model fGRU, projection head fcls
Output: Encoder model fCorrE, GRU model fGRU, projection head fcls

1: CT ← Eq.2 with X
2: for X in X do
3:

{
X(1), · · · ,X(L)

}
← Maskr (AvgPoolingL (X))

4: ℓrecon ← 0
5: for l← 1 to L do
6: r(l) ← fCorrE

(
X(L), CT , |τ (L)|/2(L−l)

)
7: h(l) ← fGRU

(
r(l)

)
8: X̂

(l)
recon ← fCorrD

(
r(l), |X(l)|

)
9: ℓrecon ← ℓrecon+ Eq.3 with X(l) and X̂(l)

10: end for
11: ℓadj, ℓcons ← 0, 0
12: for l← 2 to L do
13: ℓadj ← ℓadj+ Eq.5 with X̂(l−1) and X̂(l)

14: ℓcons ← ℓcons+ Eq.6 with h(l−1) and h(l)

15: end for
16: Lcls ← Eq.9 with h(L)

17: Loverall ← 1
Lℓrecon +

λ1

L−1ℓadj +
λ2

L−1ℓcons + λ3Lcls

18: Update overall network parameters
19: end for

Supervised Learning. We augment the encoder-decoder CorrNet by integrating a supervised
learning component that utilizes the latent representations for feature extraction. In this work, we
specifically concentrate on classification tasks as a representative example of supervised learning.
The loss function is

Lcls =
1

C

C∑
c=1

1

nc

nc∑
i=1

ℓCE

(
CLS

(
h
(L)
i

)
, yi

)
(9)

where C denotes the number of classes, nc denotes the number of samples in c-th class, CLS (·)
denotes the projection head for classification, and ℓCE (·) denotes the cross-entropy loss.

Unsupervised Learning. For our unsupervised learning example, we choose interpolation and
forecasting. The loss function for interpolation is defined as

Lint =

N∑
n=1

∥∥∥M (L) ⊙
(
(X̂(L)

reco)n −X(L)
n

)∥∥∥2
2

(10)

This equation essentially represents the reconstruction outcome at the finest scale as ℓ(L)
adj in Eq.4

making the interpolation task fit seamlessly into our model with minimal modifications. Therefore, it
is unnecessary to incorporate an additional loss function into our overall loss function Eq.8.

While the loss function for forecasting is defined as

Lfore =

N∑
n=1

∥∥∥(Mfore)n ⊙
(
(X̂

(L)
fore )n − (Xfore)n

)∥∥∥2
2

(11)

As observations might be missing also in the groundtruth data, to measure forecasting accuracy we
average an element-wise loss function Lfore over only valid values using (Mfore)n.
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Table 7: Statistics of the ISMTS datasets used in our experiments. “#Avg. obs.” denotes the average
number of observations for each sample.

Tasks Datasets #Samples #Variables #Avg. obs. #Classes Imbalanced Missing ratio

P19 38,803 34 401 2 True 94.9%
P12 11,988 36 233 2 True 88.4%Classification

PAM 5,333 17 4,048 8 False 60.0%

Interpolation PhysioNet 4,000 37 2,880 - - 78.0%

USHCN 1,100 5 263 - - 77.9%
MIMIC-III 21,000 96 274 - - 94.2%Forecasting
Physionet12 5,333 37 130 - - 85.7%

E FURTHER DETAILS ON DATASETS

We adopt the data processing approach used in RAINDROP Zhang et al. (2021b) for the classification
task, mTANs Shukla & Marlin (2021) for the interpolation task, and GraFITi Yalavarthi et al. (2024)
for the forecasting task. The aforementioned processing methods serve as the usual setup, which our
method also follows for fair comparison. However, it’s important to note that we do not incorporate
static attribute vectors (such as age, gender, time from hospital to ICU admission, ICU type, and
length of stay in ICU) in our processing. This decision is based on the fact that our model, MuSiCNet,
is not specifically designed for clinical datasets. Instead, it is designed as a versatile, general model
capable of handling various types of datasets, which may not always include such static vectors. The
detailed information of baselines is in Table 7.

E.1 DATASETS FOR CLASSIFICATION

P19: PhysioNet Sepsis Early Prediction Challenge 2019. P19 dataset Reyna et al. (2020) com-
prises data from 38, 803 patients, each monitored by 34 irregularly sampled sensors, including 8 vital
signs and 26 laboratory values. The original dataset contained 40, 336 patients, but we excluded those
with excessively short or long time series, resulting in a range of 1 to 60 observations per patient as
in RAINDROP. Each patient has a binary label representing the occurrence of sepsis within the next
6 hours. The dataset has a high imbalance with approximately ∼ 4% positive samples.

P12: PhysioNet Mortality Prediction Challenge 2012. P12 Goldberger et al. (2000) includes data
from 11, 988 patients after removing inappropriate 12 samples as explained in Horn et al. (2020).
This dataset features multivariate time series from 36 sensors collected during the first 48 hours of
ICU stay. Each patient has a binary label indicating the length of stay in the ICU, in which a negative
label for stays under 3 days and a positive label for longer stays. P12 is imbalanced with ∼ 93%
positive samples.

PAM: PAMAP2 Physical Activity Monitoring. PAM Reiss & Stricker (2012) records the daily
activities of 9 subjects using 3 inertial measurement units. RAINDROP has adapted it for irregularly
sampled time series classification by excluding the ninth subject for short sensor data length. The
continuous signals were segmented into samples with the window size 600 and 50% overlapping
rate. Originally with 18 activities, we retain 8 with over 500 samples each, while others are dropped.
After modification, PAM includes 5, 333 sensory signal segments, each with 600 observations from
17 sensors at 100 Hz. To simulate irregularity, 60% of observations are randomly removed by
RAINDROP, uniformly across all experimental setups for fair comparison. The 8 classes of PAM
represent different daily activities, with no static attributes and roughly balanced distribution.

E.2 DATASET FOR INTERPOLATION

Physionet: PhysioNet Challenge 2012 dataset Physionet Reiss & Stricker (2012) comprises 37
variables from ICU patient records, with each record containing data from the first 48 hours after
admission to ICU. Aligning with the methodology of Neural ODE Rubanova et al. (2019), we round
observation times to the nearest minute, resulting in up to 2, 880 potential measurement times for
each time series. The dataset encompasses 4, 000 labeled instances and an equal number of unlabeled
instances. For our study, we utilize all 8, 000 instances in interpolation experiments. Our primary
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objective is to predict in-hospital mortality, with 13.8% of the instances belonging to the positive
class.

E.3 DATASET FOR FORECASTING

USHCN: U.S. Historical Climatology Network. USHCN Menne et al. (2015) data are used to
quantify national and regional-scale temperature changes in the contiguous United States. It contains
measurements of 5 variables from 1280 weather stations. Following the preprocessing proposed by
De Brouwer et al. (2019), the majority of the over 150 years of observations are excluded, and only
data from the years 1996 to 2000 are used in the experiments. Furthermore, to create a sparse dataset,
only a randomly sampled 5% of the measurements are retained.

Physionet12. This dataset consists of medical records from 12, 000 ICU patients. During the first
48 hours of admission, measurements of 37 vital signs were recorded. Following the forecasting
approach used in recent work, such as Yalavarthi et al. (2024); Biloš et al. (2021); De Brouwer
et al. (2019), we pre-process the dataset to create hourly observations, resulting in a maximum of 48
observations per series.

MIMIC-III: Medical Information Mart for Intensive Care. MIMIC-III Johnson et al. (2016)
is a widely utilized medical dataset offering valuable insights into ICU patient care. To capture
a diverse range of patient characteristics and medical conditions, 96 variables are meticulously
observed and documented. For consistency, we followed the preprocessing steps outlined in previous
studiesYalavarthi et al. (2024); Schirmer et al. (2022); Biloš et al. (2021); De Brouwer et al. (2019).
Specifically, we rounded the recorded observations to 30-minute intervals and used only the data from
the first 48 hours post-admission. Patients who spent less than 48 hours in the ICU were excluded
from the analysis.

F EXPERIMENTAL DETAILS

F.1 MUSICNET PARAMETERS

We present the training hyperparameters and model parameters here. The maximum epoch is set
to 300, and AdamW optimizer is selected as our optimizer without weight decay. By default, the
learning rate is set to 1e-3, and the learning rate schedule is cosine decay for each epoch. Batch size
for all datasets is set to 50, the dimension of the encoder output is set to 256, and the dimension of
the hidden representations in GRU is typically set to 50. The random masking ratio r for each scale
is set to 0.1.

Due to inconsistent series lengths, we set the maximum reference point number, K, to 128 for long
series, such as P12, PAM, PhysioNet and USHCN, to 96 for Physionet12, and to 48 for short series,
such as PAM and MIMIC-III.

Initially, the window size is set to 1/4 of the time series length and then halved iteratively until the
majority of the windows contain at least one observation.

According to the observed timestamps on each dataset, the number of scale layers L is set to 6, 5, 7,
6, 8, 4, and 5 for P12, P19, PAM, Physionet, USHCN, MIMIC-III, and Physionet12, respectively. For
example, in classification, for P12, the scales are 4, 8, 16, 32, 64 and raw length. For P19, the scales
are 4, 8, 16, 32 and raw length. And for PAM, the scales are 4, 8, 16, 32, 64, 128 and raw length. In
all mainstream tasks involved, the hyperparametes λ1, λ2, λ3 are selected in [1e -3, 1e-2, . . . , 1e2].
All the models were experimented using the PyTorch library on a GeForce RTX-2080 Ti GPU.

F.2 BASELINE PARAMETERS

The implementation of baseline models adheres closely to the methodologies outlined in their
respective papers, including SeFT Horn et al. (2020), GRU-D Che et al. (2018), mTAND Shukla &
Marlin (2021) and ViTST Li et al. (2023). We follow the settings of the attention embedding module
baseline in mTAND and implement the Multi-Correlation Attention module in our work.
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Figure 4: AUCROC performance with varying
combinations of hyper-parameter of the adjust-
ment term λ1 and hyper-parameter of the con-
trastive learning term λ2 in the logarithmic form
on P12

Figure 5: AUCROC performance with varying
hyper-parameter of the downstream task λ3 in the
logarithmic form on P12

F.3 PARAMETER ANALYSIS

To analyze the hyper-parameters sensitivity, we conducted the experiments for λ1, λ2, and λ3 with
grid search. Due to the closer relationship between the hyper-parameters of the adjustment term
and the contrastive learning term, i.e., λ1 and λ2, we jointly analyzed λ1 and λ2 while separately
analyzing the hyper-parameter of the downstream task λ3, as illustrated in Fig.4 and Fig.5.

From Fig.4, we can find that the adjustment term plays a greater role compared to the contrastive
learning term. This phenomenon matches our motivation, where the coarse-to-fine strategy can
effectively alleviate the difficulty of representation learning on ISMTS caused by inconsistent
sampling rates. In addition, when lg λ1 and lg λ2 take values around 2 and -2, respectively, our
MuSiCNet can perform well.

From Fig.5, we can find that our MuSiCNet becomes effective with large λ3. This indicates that more
effective representations will be captured when utilizing downstream tasks, matching the general
insight. We also noticed that it becomes less sensitive when lg λ3 ≥ −1. Its suitable range may be
located at [1e1, 1e2].
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