
[Re] Generative causal explanations of black-box classifiers

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Explainability of black-box classifiers is an important aspect of neural models that often is non-existent. Classifiers2

made for tasks such as object recognition and decision making often lack transparency which causes vulnerability3

being overlooked [1]. Without insight into the reasons behind a decision made by a neural model, potential security4

risks or classification mistakes can be missed [1]. Multiple solutions have been posed to solve this problem. An5

example is the method designed by O’Shaugnessy et al. [2]. The authors design a learning framework that leverages a6

generative model and information-theoretic measures of causal influence. The objective function encourages both the7

generative model to faithfully represent the data distribution and the latent factors to have a large causal influence on8

the classifier output. In this study, the reproducibility of the method developed by O’Shaugnessy et al. is tested. Several9

claims are challenged to ensure the validity of the method. Furthermore, the method is extended to test generalizability.10

It was found that the claims are not as strong as the authors suggested and the method is not as easily generalizable11

as expected. However, for the task described in the original study, the method is completely reproducible, and thus a12

valid contribution to machine learning innovation.13

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Scope of reproducibility14

In "Generative causal explanations of black-box classifiers" the authors propose an explanatory model that can explain15

any black-box classifier post-hoc based on a learned low-dimensional representation of the data [2]. They call this16

explanatory model a generative causal explainer (GCE). The authors have designed a framework that leverages a17

generative model combined with an information-theoretic measure of causal influence. They use these by creating18

an objective function that encourages latent factors in the generative model to represent the data distribution and to19

have a large causal influence on the classifier output. The main claim of the paper is that their method can generate20

explanations for any classifier that admits class probabilities and a gradient.21

To review this paper and its central claim we will attempt to reproduce parts of the paper, and go beyond the original22

results by carrying out extra experiments. Reproducing the figures presented in the original paper was quite easily done23

using the authors provided code. Because of this the main focus of our research will be based on extra experiments24

where we more thorougly investigated the method that is proposed in the paper. The reproduction of the figures can25

be found in Appendix D.2.26

The extra experiments are grouped in three main parts. (1) The central claim will be tested by assessing the method27

with different classifiers with architectures based on competitors of the ImageNet challenge [3]. (2) We investigate28

more thoroughly the parameter selection of the paper. In the paper the authors propose 3 parameters that dictate29

the number of causal and non-causal variables, and their influence on the objective function. These parameters are30

denoted by K, L and λ. In the original method the authors provide and use a heuristic algorithm to determine the31

optimal configuration of these model parameters. Although this heuristic algorithm is described, the authors do not32

state these results, and therefore do not show the sensitivity of the model to parameter choice. Therefore, varying the33

parameters will shed light on this sensitivity. (3) The generalizability of the model will be investigated by testing the34

method with more complex datasets than the one used in the original paper.35

In summary, the following will be tested.36

• The claim that the method works with any gradient-based black-box classifier.37

• The influence of the parameters K, L and λ on the explanation performance.38

• The generalizability of the method to a more complex dataset.39

2 Methodology40

2.1 Causal Model Description41

In the paper the authors attempt to causally explain black-box classifiers. Explanations, in this case, take the form of42

a low-dimensional and independent set of "causal factors" α ∈ RK . Therefore, manually changing these parameter43

values should produce a corresponding change in the classifier output statistics. The method also allows for additional44

independent non-causal factors β ∈ RL. These factors do not change the corresponding output of the model. Together,45

these factors (α, β) form a low-dimensional representation of the real data distribution of a given dataset X . In the46

paper it is described that a key feature of these latent factors (α, β) is their independence. This independence allowed47

for their chosen metric for causal influence to simplify to the mutual information metric.48

The generative model that is used to form the low-dimensional explanatory factors is mainly a variational auto-encoder49

(VAE). But the authors also propose analysis using a linear-Gaussian generative map, this map is mainly used to show-50

case geometric intuition that illuminates the function of their proposed training objective (described in Section 2.1.2).51

2.1.1 Causal Influence Metric52

The authors decide on a causal influence metric called information flow. Information flow quantifies the causal in-53

fluence of observational distributions in the standard definition of conditional mutual information with interventional54

distributions. Due to the independence of α and β the information flow from α to Y coincides with the mutual55

information between α and Y .56

I(α;Y ) = Eα,Y
[
log

p(α, Y )

p(α), p(Y )

]
(1)

2



2.1.2 Optimization Objective57

To learn the generative mapping that explains a given black-box classifier the authors construct an objective function58

that enables the mapping to reconstruct the original data distribution, ensures independence between α and β, and59

dictates a large causal influence of α on Y . The objective function is defined as:60

arg maxg∈G C(α, Y ) + λ · D(p(g(α, β)), p(X)) (2)

where g is a generative function (in our case a VAE), C(α, Y ) is the metric for causal influence from Eq. 1, and D is61

a measure of similarity between the generative function and the actual dataset. The λ parameter controls how strongly62

the model should represent the actual underlying dataset. Careful selection of this parameter is required to ensure that63

the distribution p(X|α, β) lies in the data distribution p(X), but this similarity term (λ · D(p(g(α, β)))) should not64

overwhelm the causal influence term.65

2.1.3 Training Procedure66

The objective described in Eq. 2 is maximized using Adam. The causal influence term is computed using a sample-67

based estimate. The generative model uses a latent vector of length K + L to generate new images that lie in the68

original data distribution. To estimate the causal influence term the first K terms are sampled Nα times and the last69

L terms are sampled Nβ times. An intuition behind this sample-based approach can be found in the original paper in70

Appendix D.71

To train the causal explanatory model the parameters K,L, and λ must be selected. Respectively they denote the72

number of causal terms, the number of noncausal terms, and the trade-off between causal influence and data fidelity73

in our objective. In the paper these parameters are tuned using a heuristic method shown in Figure 1. The authors do74

not expand on this selection method, nor do they investigate the effect of different selections of these parameters.75

Figure 1: Procedure for selection K, L and λ [2].

3 Implementation76

All implementation was done in Python 3.8 using Pytorch 1.7.1, and the models were trained on local machines [4].77

The original code provided by the authors was written in pytorch 1. All our code is avaliable from GitHub 2. Further78

instructions on how to run our provided code can be found on the repository.79

3.1 Datasets80

The original datasets used were the well known MNIST and fashion MNIST (fMNIST) datasets [5, 6]. These datasets81

were supplied alongside the rest of the code provided by the authors. MNIST is a collection of written digits and82

fMNIST is a collection of clothing articles traditionally used for benchmarking machine learning algorithms. Both83

MNIST and fMNIST consist of 70.000 grayscale images with a resolution of 28 x 28 pixels. The paper did not apply84

any transforms on the dataset. For part of our experiments we used the CIFAR-10 dataset. CIFAR-10 consists of85

60.000 labeled images that are subdivided into 10 classes, much like the MNIST dataset. The images have a resolution86

of 32 x 32 pixels, which is slightly larger than the images in the MNIST dataset. However, considering the complexity87

of the objects in the CIFAR-10 images, the resolution is relatively low. A resolution of 28 x 28 is sufficient for clearly88

displaying a written number, but displaying a truck with a resolution of 32 x 32 means that quite some detail is lost.89

Furthermore, the images are coloured. Resulting in two more channels that convey extra information about the object.90

CIFAR-10 is used without applying any transforms, with 50,000 training images and 10,000 testing images. For91

1https://github.com/siplab-gt/generative-causal-explanations
2https://github.com/DanielPerezJensen/FACT-anonymous

3

https://github.com/siplab-gt/generative-causal-explanations
https://github.com/DanielPerezJensen/FACT-anonymous


training the classifier, the training set is split up in 40,000 training images and 10,000 validation images, allowing us92

to closely monitor the model performance.93

3.2 Models94

To reproduce the figures as shown in the original paper we retrained all models with the provided code and recreated95

the figures using the provided scripts.96

As described in Section 1 we wanted to test the method more extensively by testing the method with more classifiers97

than the one provided in the authors’ code. Furthermore we also wanted to test how the K and L scale with the98

complexity of the dataset and evaluate how the method performs on relatively more complex datasets. To test these99

points we created more classifier models described below and we needed more complex generative models that are100

able to represent the underlying data distribution.101

3.2.1 Classifiers102

To test the generalisability of the method we tested the method using different classifiers. The authors used a rel-103

atively simple shallow network to work with. For our own experiments we created and tested three architectures104

based on ResNet, DenseNet and InceptionNet [7, 8, 9]. All these models were state-of-the-art when proposed. All105

implementation details about these classifiers can be found on our code repository and the models are described in106

Appendix A.1.107

3.2.2 Generative Models108

CVAE The authors provided two architecures in their code handed in alongside their work. They defined a Convo-109

lutional Variational Autoencoder (CVAE), a VAE consists of an encoder and a decoder. The encoder maps input to110

a lower-dimensional latent space, the decoder then takes this mapping and reproduces the output. The latent space111

follows properties that allow us to generate new samples [10]. Both the encoder and the decoder consist of three112

convolutional layers followed by three ReLU activation layers in the encoder and two ReLU activations and a final113

sigmoid layer in the decoder. The encoder ends with two separate linear layers for the mean and log-variance, the114

parameters of the latent distribution.115

Using CIFAR-10 increases dimensionality compared to MNIST/fMNIST. CIFAR-10 consists of RGB images with116

each color channel having a range of 0-255. While MNIST is grayscale and uses one binary channel. Using such a117

dense dataset suggests the need of models with higher complexity. Hence we introduce the following variant of the118

CVAE:119

CVAEImageNet The CVAEImageNet is almost entirely the same as the original CVAE described above. The120

CVAEImageNet architecture was also defined by the authors in their provided code. The only difference is that each121

convolutional layer is followed by a batch normalisation layer. A batch normalisation layer standardises the inputs to122

its consecutive layer, which stabilises the learning process along with reducing the amount of epochs needed to obtain123

convergence. Batch normalisation is an approach to eliminate the phenomenon called internal covariate shift. The124

internal covariate shift is the effect of the input distribution shifting while the input is fed through each layer which125

causes the algorithm to chase a moving target. This is a common problem for advanced deep neural networks.126

3.3 Hyperparameter Selection127

To reproduce the figures in the original paper we used the same hyperparameters as provided in the authors’ code and128

paper. In general the authors used a batch size of 64 and a learning rate of 0.0005. All models were trained using the129

Adam optimizer.130

Furthermore the optimal values of K,L and λ depend on what dataset the experiment was run. For the MNIST dataset131

the authors used values of respectively 1, 7 and 0.05. For the fMNIST dataset respectively 2, 4 and 0.05 were given132

as optimal hyperparameters. As described in Section 2.1.3, the authors used a sample-based method to estimate the133

causal influence metric. For all models trained to create the figures in the original report they used 25 samples for α134

and 100 samples for β (Nα = 25, Nβ = 100). The α and β vakyes were found by the authors using the heuristic135

method described in Figure 1. The Nα and Nβ values were not elaborated on in the paper.136

However, the parameters used in this heuristic method and the results leading to the optimal parameter configuration137

are not discussed by the authors. Therefore, for reproduction purposes, we attempt to implement Algorithm 1 (as138

shown in Figure 1) in Python. First, step 1 optimises only the data similarity part, denoted by D, of the objective139

4



function (2), while increasing L on every iteration. Note that this term D measures the similarity between the learned140

data distribution and the real dataset. We use 3000 training steps to train the explainer in each iteration. The optimal141

L is found when D plateaus. Intuitively, this finds the total number of latent factors needed to adequately represent142

p(X). We defined the plateau criteria as met when the relative improvement of D in successive runs is smaller than143

1%. However, measuring this relative improvement turned out to be difficult because of high variance in the results of144

D (detailed results can be found in figure 14 in appendix B). To accommodate to this situation, we measure the relative145

improvement of the last 500 training steps. Second, step 2 optimises the causal influence term C of objective 2 while146

keeping D as optimal as possible. In each iteration L is decremented by 1 and K is incremented by 1, keeping the147

total number of latent factors equal. Per configuration of K and L, the optimal λ term is determined, which functions148

as a trade-off term between causal influence and data fidelity. The optimal value is derived by step-wise incrementing149

λ by 0.1 until D ’approaches’ the optimal value from step 1, as described in figure 1. These two steps are repeated150

until C plateaus. In the implementation, the criteria for C plateauing is set to a relative improvement smaller than 1%.151

However, the criteria for D ’approaching’ the optimal value from step 1 was more difficult as it has a large influence152

on the optimal λ parameter will be chosen. Results of varying this criteria are discussed in the results section 4.2.153

4 Results154

4.1 Classifiers155

The figures as they were originally presented in the paper can be found in Appendix 5.3. Furthermore we reproduced156

these figures by retraining the models, these figures can also be found in Appendix 5.3 in Figure 10. The loss and157

accuracy curves for all classifiers during training can be found in Appendix A.2.158

4.1.1 Inception-Net159

As can be seen from the results presented in Figure 2 the created sweeps do not seem to indicate that only α influences160

the classifier output, in the β sweeps we also see that changes in the classifier output are introduced. Furthermore it161

seems that the classifier is "tricking" itself and seems to not be able to classify correctly anymore. Before training162

the generative causal explainer, the classifier achieved a 99% accuracy as indicated in Appendix A.2. In the Figure 2163

however, the classifier does not seem to be able to classify correctly.164

The sweeps range from [α−3, α+3] and [βi−3, βi+3] with the middle column being examples drawn from MNIST.165

This holds for all figures that denote explanations of a certain classifier.166

(a) α sweep (b) β2 sweep

Figure 2: Visualisations of learned latent factors for model using Inception-Net classifier. The colours indicate different
outputs of the classifier. In this case yellow refers to a classification of 8 and blue refers to a classification of 3.

The generated examples, when visually examined, do not truly look like they are drawn from the underlying MNIST167

dataset. On the right hand side of the left plot of Figure 2 some of the generated images look more like random noise168

than actual digits.169

4.1.2 Res-Net170

The results from the generative causal explainer using the Res-Net classifier seem more inline with the results obtained171

by the authors from the original paper. These results are presented in Figure 3. Visually we notice that the left plot,172

5



which indicates the causal factor being changed, does indeed induce a change in classifications. Furthermore the right173

plot, which indicates noncausal factors, does not induce a change in classifier output. It does have one misclassification174

however in the 3rd row.175

(a) α sweep (b) β2 sweep

Figure 3: Visualisations of learned latent factors for model using Res-Net classifier.

4.2 Hyperparameters176

In this section we go over results that show the difficulties of the hyperparameter selection procedure described in177

section 3.3. The main three hyperparameters of the explanation model are K, L and λ, determining respectively the178

number of causal factors, the number of non-causal factors and the trade-off between causal influence and data fidelity179

terms of the objective function (2). All tests are performed on the fMNIST dataset, using the t-shirt, dress, and coat180

images. Classification is done with the pre-trained base network, as used by the authors. In the original paper, the181

authors give the optimal set of parameters with K=2, L=4 and λ=0.05. In our tests, training the explainer in each182

iteration of the parameter selection procedure is done with 3000 training steps.183

As explained in section 3.3 the biggest difficulty of reproducing the parameter selection procedure is setting the correct184

criteria for selecting the optimal λ value in step 2. Table 1 shows the results of selecting the optimal λ when K=2 and185

L=4, the same latent parameters as the optimal set given by the authors. From this table it becomes clear that setting186

the criteria on a relative difference of 6% results in the optimal set K=2, L=4, λ=0.04, while setting the criteria on187

5% result in the set K=2, L=5 and λ=0.07. Both these parameter sets are different than the optimal set given by the188

authors. Figure 4 and 5 show the visualised latent factors of both our obtained sets. For both sets we see the same189

phenomenon. The α sweep is correct, as it should change the output of the classifier. However, the β sweeps in both190

figures seem to also change the output of the classifier, which is incorrect. This shows us two things, (1) the parameter191

selection procedure is difficult to operate. (2) the explanations by the latent factors are very sensitive to the selected192

hyperparameters.193

(a) α1 sweep (b) β4 sweep

Figure 5: Visualisations of learned latent factors for parameter set K=2, L4 and λ=0.07

6



Configuration Relative distance
{K,L,λ} to optimal D
{2, 4, 0.01} 17.60%
{2, 4, 0.02} 10.18%
{2, 4, 0.03} 6.71%
{2, 4, 0.04} 5.93%
{2, 4, 0.05} 5.54%
{2, 4, 0.06} 5.12%
{2, 4, 0.07} 4.88%

Table 1: Results of optimising
the λ term for K=2 and L=4 in
step 2 of the parameter selec-
tion procedure on the fMNIST
dataset.

(a) α1 sweep (b) β4 sweep

Figure 4: Visualisations of learned latent factors for parameter set K=2, L4 and λ=0.04

4.3 CIFAR-10 Dataset194

Three sets of classes were used in order to test the generalizability of the authors GCE. First we started with the two195

classes birds and planes.196

The model provided by the author was not functioning correctly prior to adjustments. This is a result of the CIFAR-10197

dataset introducing two additional color channels. Likewise we see that the plotting mechanism provided by the author198

was not able to process the three added color channels. This is why the visualisations (Fig. 15) were showing as binary199

images. Nevertheless, the classifier seems to work and the VAE is producing shapes but they are not really human200

interpretable yet.201

(a) α sweep (b) β2 sweep

Figure 6: Visualisations of learned latent factors for base model using CIFAR-10 (horses and trucks).

After redesigning the VAE and plotting mechanism to assure it accepts coloured (and grayscale) images the model202

was trained using the two classes horses and trucks. The results show (Fig. 6) that both the VAE and classifier took203

advantage of the extra information hidden in the colour channels.204

Zooming into a single row of the α sweep (Fig. 7) shows that the VAE generates more human interpretable samples.205

Especially for the rows that contain horses. From left to right we see the change from a truck to a horse. Nevertheless206

we still notice that the classifier is not functioning perfectly. Adjusting the β parameter should not influence the207

decisions made by the classifier. Still we see (Fig. 6b) that the classifications change when actually doing so.208

7



Figure 7: α sweep

Subsequently we wanted to challenge the classifier and VAE a bit further. Using the classes cats and dogs we propose209

images of animals with relatively similar structure.210

The results show (Figure 16, in Appendix C) decreased performance for both the classifier and VAE. The reproduced211

samples do not show any human interpretable images. The classifier does function, but its accuracy is lower compared212

to using the horse and truck classes.213

5 Discussion214

The results of the reproducibility study show several things. Most importantly, with the original code written by the215

authors, it was possible to reproduce all results that the authors got during their research as shown in Appendix D.2.216

However, while challenging their claims, a number of problems arised. Firstly, the claim that the method works with217

all black-box classifiers that are gradient-based and allow probabilities was not possible to validate with this research.218

Testing with more complex convolutional classifiers showed a deterioration of the explanations generated by the GCE.219

The more complex the classifier, the more the explanations of the GCE worsened. The most probable explanation for220

this decline in result quality is that with the growing complexity of the models, the decision boundary for the classes221

also grows more complex. The base generative model is not complex enough to approach this decision boundary and222

generate valid explanations.223

Secondly, during testing of the hyperparameter selection method, it was found that the GCE is heavily influenced by224

other factors, e.g. classifier choice or different datasets, showing that the method is not robust and needs extensive225

parameter tuning to be usable.226

Finally, the generalizability of the explanation method was tested and shown to be lacking. The complexity of the227

CIFAR-10 dataset resulted in poor loss values and an inadequate representation of the latent space. The explanations228

that were generated were supposedly correct but not human-interpretable, as the classifier often changed its output229

even though no changes in sweep could be detected by the human eye.230

Putting this all together we can conclude that the authors work is reproducible to some extent. The figures provided231

in the original paper are able to be reproduced. The difficulty in applying the method however may indicate that the232

work is not easily generalizable or usable in real-world scenarios. Time constraints during the research for this paper233

may also have had an effect on our results, as we were not able to extensively test more complex VAE architectures to234

use as a generative causal explainer.235

5.1 What was difficult236

The initial code provided by the author was of chaotic structure and did not function as intended. When following237

the included instructions the code did not reproduce the results as listed in the original paper. Reorganising the code238

and fixing the underlying bugs took more time than anticipated. Subsequently to the author responding to our changes239

these complications were less problematic.240

5.2 What was easy241

After a rigorous update of the base code provided to us by the authors, reproducing the original authors’ results was242

trouble-free. We only needed to specify what result we wanted to show and the code worked as intended.243

5.3 Communication with original authors244

The authors established contact with our group after seeing our fork of their code. The authors cleaned up their code245

for us to work with and kept in contact with us during the entire project. For instance, when problems arised during246

testing with other classifiers, one of the authors helped us figure out one of the possible reason for these problems.247

Moreover, every question we had could be posed to the authors without issues.248

8



References249

[1] Ronan Hamon, Henkrik Junklewitz, and Ignacio Sanchez. Robustness and explainability of artificial intelligence250

- from technical to policy solutions. Publications Office of the European Union, 01 2020.251

[2] Matthew O’Shaughnessy, Gregory Canal, Marissa Connor, Mark Davenport, and Christopher Rozell. Generative252

causal explanations of black-box classifiers, 2020.253

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image254

Database. In CVPR09, 2009.255

[4] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,256

Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-257

Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith258

Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,259

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing260

Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.261

[5] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. CoRR, 2010.262

[6] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine263

learning algorithms. CoRR, abs/1708.07747, 2017.264

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. CoRR,265

abs/1512.03385, 2015.266

[8] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. CoRR,267

abs/1608.06993, 2016.268

[9] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan,269

Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.270

[10] Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. CoRR, abs/1906.02691,271

2019.272

9



Appendix273

A Classifiers274

A.1 Classifier Descriptions275

A.1.1 Base network276

This network, created by the authors of the original paper, used two convolutional layers which scaled the input image277

up to 64 channels, both of these layers were followed by a rectified linear unit (ReLU) activation layer. After the278

scaling up of the image a maximum pooling layer using a kernel of 2x2 was used. Following the pooling layer a279

dropout layer with a dropout percentage of 0.25 was applied, followed by 2 fully connected layers which downscales280

the input down to the amount of classes the data contains. In between the two fully connected linear layers another281

dropout layer with a dropout percentage of 0.5 was used. After the first linear layer a ReLU activation layer was used,282

after the second linear layer a softmax activation layer was used to transform the data to a probability distribution for283

inference.284

A.1.2 ResNet285

ResNet is a deep neural network based on the idea of residual connections. Residual connections allow for stable286

gradient propagation through a network. Residual connections model xl+1 = xl+F (xl) instead of the more traditional287

xl+1 = Fxl. The addition of xl-term guarantees stabler gradient propagations [7].288

The ResNet architecture contains multiple residual blocks (visually indicated in Figure 8a) stacked on top of each289

other to create deep networks. This block is visually shown in Figure 8a.290

We used a smaller version of the original ResNet proposed in [7]. For our model we stacked 3 of these residual blocks.291

Our residual blocks used convolutional layers with a kernel of 3x3 and a padding of 1. Before feeding the input images292

into these blocks first the images were scaled up to have 16 colour channels using a convolutional layer and a batch293

normalization layer followed by an activation function layer. The output of these blocks are then fed into an output294

network which uses an average pooling layer and a linear layer to convert the output to the correct number of possible295

classifications. We used the ReLU activation function as our non-linearity, and used a softmax function on our output296

to convert it to a probability distribution.297

A.1.3 DenseNet298

DenseNet is an architecture that enables very deep neural networks by using residual connection. But instead of299

modeling the difference between layers using the residual connections the model considers residual connections as300

a way to reuse features across layers. This allows the model to remove redundant features. A general DenseNet301

architecture is shown in Figure 8c.302

In our case we implemented the DenseNet by defining three modules, a DenseLayer, a DenseBlock, and a Transition-303

Layer. A DenseLayer is one of the smaller squares in the figure, while a DenseBlock is multiple DenseLayer stacked304

on top of each other. A TransitionLayer is the last layer and transforms the dimensionality of the features as they flow305

through the model. In our implementation one DenseLayer contains a 1x1 convolution followed by a subsequential306

3x3 convolution. The output channels of these convolutions are concatenate to the original input. Furthermore we307

apply a batch normalizations throughout the layer to stabilize training. The non-linearity we use is the ReLU acti-308

vation function. A DenseBlock in our implementation consists of 3 DenseLayers followed by a TransitionLayer. In309

our model we stacked one of these DenseBlocks due to the relative simplicity of the task. After the data was pulled310

through the block the output was transformed using an average pooling layer and a linear layer [8].311

A.1.4 Inception312

The GoogleNet, code named Inception, stacked multiple so-called convolutional blocks on top of each other. These313

blocks are called Inception blocks. An Inception block applies four convolution layers on the same input: a 1x1, 3x3,314

5x5, and a max pool layer. The outputs of these layers are then concatenated and passed on to the next block. In315

Figure 8b an overview of a general Inception block is shown [9].316

Since the original network was proposed to work with images of size 224x224, and the MNIST dataset only contains317

images of size 28x28, we use a smaller down-scaled version of the network. First the input image was scaled up to 64318

channels using a convolutional layer followed by a batch normalization layer for stability. After the transformation,319

our network used only one Inception block, followed by a maximum pooling layer, an average pooling layer, and320

10



a linear layer to transform the output to the number of classes needed for classification. The non-linear activation321

function we used after each convolutional layer was the ReLU activation layer. Only the output layer used a softmax322

layer to transform the output into a probability distribution.323

(a) Residual block (b) Inception block

(c) Dense block

Figure 8: Classifier blocks [7, 9, 8]

A.2 Loss/accuracy curves during training324

Curves gathered during training of the classifiers, the x-axis denotes the epoch and the y-axis the loss or accuracy325

during training. All models reach 100% accuracy fairly quickly, this has to do with the fact that the data fed to the326

models are only consisting of 2 classes. The 2 classes being 3 and 8 from the MNIST dataset. Our 3 classifiers,327

DenseNet, ResNet, and InceptionNet all achieve a very high performance of 100% while the base network achieved a328

relatively lower accuracy of 96%.329

11



(a) Acc. curve (b) Loss curve

Figure 9: Loss/Accuracy curves during training of classifiers

A.3 Explanations330

A.3.1 Base331

(a) α sweep (b) β1 sweep (c) β3 sweep

(d) β5 sweep (e) β7 sweep

Figure 10: Visualisations of learned latent factors for model using the base classifier provided by the authors.

12



A.3.2 DenseNet332

(a) α sweep (b) β1 sweep (c) β3 sweep

(d) β5 sweep (e) β7 sweep

Figure 11: Visualisations of learned latent factors for model using DenseNet classifier.

A.3.3 ResNet333

(a) α sweep (b) β1 sweep (c) β3 sweep

(d) β5 sweep (e) β7 sweep

Figure 12: Visualisations of learned latent factors for model using ResNet classifier.

13



A.3.4 InceptionNet334

(a) α sweep (b) β1 sweep (c) β3 sweep

(d) β5 sweep (e) β7 sweep

Figure 13: Visualisations of learned latent factors for model using InceptionNet classifier.

B Hyperparameter selection335

B.1 High volatility of data similarity score336

In this section we show the complementary results of implementing the hyperparameter selection procedure. As337

mentioned in section 3.3, step 1 of the procedure optimises data similarity between the learned data distribution and338

the original data distribution measure byD(p(α, β), p(X)) in the objective function. As described by the authors, step339

1 is finished when the data similarity plateaus. However, we found that the data similarity that is measured was too340

volatile to easily compare across runs. This is shown in figure 14 in which the value for D is plotted per training step.341

Figure 14: Complementary results of parameter selection step 1. Showing the high variance ofD results while training.
The x-axis shows the training steps, the y-axis shows the similarity score D. These are measurements of two runs on
the fmnist dataset, (orange) K=0, L=5, λ=0.01 and (blue) K=0, L=6, λ=0.01.

14



C Datasets342

(a) α sweep (b) β2 sweep

Figure 15: Visualisations of learned latent factors for base model using CIFAR-10 (birds and planes).

(a) α sweep (b) β2 sweep

Figure 16: Visualisations of learned latent factors for base model using CIFAR-10 (horses and trucks).

D Reproductions343

We reproduced the figures presented in the original paper by using the author’s provided code. We used the instructions344

provided on their repository to generate these images. We re-trained all the networks that we could when generating345

these images, and found the figures generated by the scripts to be identical to the ones provided in the paper.346

15



D.1 Figure 3347

(a) α sweep (b) β1 sweep

(c) β2 sweep (d) β3 sweep

Figure 17: Reproduction of visualisation of learned latent factors provided in Figure 3 of the original paper.

D.2 Figure 4348

(a) α sweep (b) β7 sweep

Figure 18: Reproduction of visualisation of learned latent factors provided in Figure 4 of the original paper. Showing
how the explanations are only causally influenced by α

16



D.3 Figure 5349

Figure 19: Reproduction of visualisation of the Figures 5(a) and 5(b)

(a) α sweep (b) β1 sweep

Figure 20: Reproduction of visualisation of the Figures 5(c) and 5(d)

17



(a) α sweep (b) β1 sweep

(c) β2 sweep (d) β3 sweep

Figure 21: Reproduction of visualisation of learned latent factors provided in Figure 5 of the original paper. Here we
show more β parameters and how they don’t affect the output of the classifier.

18


	Scope of reproducibility
	Methodology
	Causal Model Description
	Causal Influence Metric
	Optimization Objective
	Training Procedure


	Implementation
	Datasets
	Models
	Classifiers
	Generative Models

	Hyperparameter Selection

	Results
	Classifiers
	Inception-Net
	Res-Net

	Hyperparameters
	CIFAR-10 Dataset

	Discussion
	What was difficult
	What was easy
	Communication with original authors

	Classifiers
	Classifier Descriptions
	Base network
	ResNet
	DenseNet
	Inception

	Loss/accuracy curves during training
	Explanations
	Base
	DenseNet
	ResNet
	InceptionNet


	Hyperparameter selection
	High volatility of data similarity score

	Datasets
	Reproductions
	Figure 3
	Figure 4
	Figure 5


