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ABSTRACT

The fast growing capabilities of large-scale deep learning models, such as Bert,
GPT and ViT, are revolutionizing the landscape of NLP, CV and many other do-
mains. Training such models, however, poses an unprecedented demand for com-
puting power, which incurs exponentially increasing energy cost and carbon diox-
ide emissions. It is thus critical to develop efficient training solutions to reduce
the training costs. Motivated by a set of key observations of inter- and intra-
layer similarities among feature maps and attentions that can be identified from
typical training processes, we propose a multi-level framework for training accel-
eration. Specifically, the framework is based on three basic operators, Coalescing,
De-coalescing and Interpolation, which can be orchestrated to build a multi-level
training framework. The framework consists of a V-cycle training process, which
progressively down- and up-scales the model size and projects the parameters be-
tween adjacent levels of models via coalescing and de-coalescing. The key idea
is that a smaller model that can be trained for fast convergence and the trained
parameters provides high-qualities intermediate solutions for the next level larger
network. The interpolation operator is designed to break the symmetry of neurons
incurred by de-coalescing for better convergence performance. Our experiments
on transformer-based language models (e.g. Bert, GPT) as well as a vision model
(e.g. DeiT) prove that the proposed framework reduces the computational cost by
about 20% on training BERT/GPT-Base models and up to 51.6% on training the
BERT-Large model while preserving the performance. 1

1 INTRODUCTION

Recent years have witnessed an unprecedented success of large scale deep learning models in areas
such as natural language processing (NLP), computer vision (CV) and graph analysis. BERT (De-
vlin et al., 2019), GPT (Radford et al., 2018; 2019; Brown et al., 2020; OpenAI, 2023) and other
large language models have revolutionized the landscape of NLP, while the transformer based CV
models (e.g. ViT model (Dosovitskiy et al., 2021)) and more conventional convolutional neural net-
works are demonstrating remarkable performance in vision processing applications. The excellent
performance of these large models, however, demands an ever rising amount of computing power
increasing exponentially with the model size and thus escalating energy cost and carbon emissions.
For example, LLaMA-65B was trained with 2048 A100 GPUs in a period of 21 days(Touvron et al.,
2023) and took an estimated cost of $4 million 2. Moreover, it has become a growing concern of
the increasing monopoly of large models by a few giant companies who can afford the excessive
developing cost. It is thus pressing to seek efficient solutions to accelerating the training process for
large models so as to democratize the large AI models to a wider audience.

Increasing the number of parameters in deep learning models proves to be the most effective way to
improve the expressiveness of deep neural networks and incur emergent capabilities. However, the
training complexity is also largely determined by the number of parameters in the pervasively used
gradient-based descent formulation in which the parameters are incrementally adjusted to minimize

1Code is available at https://github.com/Photooon/Multi-Level-Training-Framework
2The estimation is based on an average cost of $3.93 per A100 GPU per hour on Google Cloud Platform:

https://cloud.google.com/.
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Figure 1: Visualization of attention patterns in BERT-Base of a randomly chosen sample sentence.
The darker the color, the more attention a token pays to another one. The first row shows the
attention patterns of various heads on layer 4 and represents the similarity within a layer. The
second row shows the attention patterns for adjacent layers of layer 4, i.e., layer 3 and layer 5, and
demonstrates the similarity between layers. The similarities inter and intra-layers offer the potential
for accelerating training with multi-level framework.

the difference between the model output and the ground truth result. Therefore, it is appealing to
develop a training framework that works on a reduced set of parameters but at the same time re-
serve expressiveness of the underlying model. We realized that the well-known multigrid algorithm
(Trottenberg et al., 2000), which is an efficient numerical procedure to solve linear equations and
partial differential equations, actually offers such a potential. The central idea is to re-structure the
underlying problem into a hierarchy of interrelated grids. Solving the problem on the coarse grid is
equivalent to removing low frequency errors. The resultant solution process can be more efficient
as only a reduced number of variables have to be tackled. The solution is then mapped back to the
fine grid as an initialization for the removal of high frequency errors. In comparison with traditional
solvers, multigrid enables remarkable performance in terms of convergence speed and robustness
(Stuben, 2001). Inspired by the central computing pattern of the multigrid algorithm, we perform a
systematic investigation on accelerating the training of large models with a multi-level framework.

The feasibility of a multi-level training framework is justified by the following three observations.
First, in a given family of models, the smaller ones (e.g. BERT-Base and GPT-Base) always con-
verge faster than the bigger ones (e.g. BERT-Large and GPT-Large) but deliver a lower level of
expressiveness. Second, our experimental results on BERT demonstrates that there are many similar
patterns in each layer. Figure 1 visualizes the attention patterns of a randomly selected sentence on
BERT-Base. The attention patterns of various attention heads extracted from layer 4 are shown in
the first row. It can be seen that many heads, e.g. the 7th head (L4 H7) and 9th head (L4 H9), have
almost identical patterns. The similarity within a layer has also been discovered in Convolutional
Neural Networks (Zeiler & Fergus, 2014). Third, previous works show that a given model tends to
exhibit significant similarities among adjacent layers. In (Gong et al., 2019), the authors indicate
that neighboring layers in a transformer model have similar attention patterns. We illustrates some
attention patterns from layer 3 and layer 5 at the second row in Figure 1. The results confirm the
observation of (Gong et al., 2019). In addition to the above observations, a few recent works (Gong
et al., 2019; Yang et al., 2020; Chen et al., 2016; 2022) exploit the fast convergence of a smaller
model to train a large scale model by progressively increasing the model size. Such works can be
regarded as special cases of our multi-level framework with a single de-coalescing operation that
maps the parameters of a small network to a larger one.

In this work, we propose the first overall framework for multi-level training of deep learning models.
The framework is built upon three key operators, Coalescing, De-coalescing, and Interpolation.
Consisting a V-cycle working flow, our multi-level framework progressively down- and up-scales the
model size and project the parameters between a models in adjacent levels. The fast convergence of
smaller models provides high-quality intermediate solutions for the next level larger network, which
saves computational cost. Figure 2 demonstrates the V-cycle training process with 2 levels.

The major contributions of this work are as follows. (1) We propose an efficient multi-level training
framework for transformer based deep learning models. (2) We develop a formal formulation for
the three basic operators and introduce guidelines to design these operators for numerical robustness
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Figure 2: A 2-level V-cycle training process. M1 with parameters of [W 1
1 , ...,W

1
L1
] is the original

model to train. M2 with parameters of [W 2
1 , ...,W

2
L2
] is a smaller model which is coalesced from

M1 by coalescing intra- and inter-layer neighboring nodes. F l
in and F l

out are used to decrease the
input and output dimension of parameter W 1

l in layer l. The depth coalescing matrix is decomposed
into an L1×L2 matrix and an identity matrix via Kronecker product. We first train the M1 model for
Ea epochs to initialize model parameters. Then we train the coalesced M2 model, which converges
faster. After that, we de-coalesce the parameters of M2 to the original size and interpolate them with
the parameters of M1 before coalescing. Finally, we continue to train the interpolated M1 model.

and training performance. (3) We conduct extensive experiments on two transformer-based language
model, BERT and GPT, as well as a vision model, DeiT. The results show that the proposed frame-
work enables considerable speed-up in training large scale models. Compared with the traditional
training methods, our multi-level framework reduces the training cost by 20% on BERT-Base and
GPT-Base, 51.6% on Bert-Large, and 27.1% on DeiT-B.

2 RELATED WORK

2.1 EFFICIENT PRE-TRAINING

Various efficient pre-training techniques have been developed. Most of these, e.g., ELECTRA (Clark
et al., 2020), large batch optimization (You et al., 2020), layer dropping (Zhang & He, 2020), token
dropping (Hou et al., 2022), and weight sharing (Yang et al., 2021), are orthogonal to our work.
KI (Qin et al., 2022) distills knowledge from small models into larger models for efficient pre-
training. A few recent works (Wen et al., 2020; Haber et al., 2018; Chang et al., 2018; Gaedke-
Merzhäuser et al., 2020; Cyr et al., 2019; Gong et al., 2019; Yang et al., 2020) pre-train a large
scale model by progressively stacking layers. Meanwhile, Net2Net (Chen et al., 2016) increases
network complexity in the width direction by copying neurons and also expands depth by adding
identity layers to preserve the learned features. bert2BERT (Chen et al., 2022) extends Net2Net
to the transformer architecture. In Network Expansion (Ding et al., 2023), the authors propose to
impose the orthogonality across the expanded filters in CNN and utilize the exponential moving
averaged model to expand the ViT along the depth direction. In CompoundGrow (Gu et al., 2021),
the authors prove it is beneficial to expand the network in width, depth, and tokens together. In the
staged training approach (Shen et al., 2022), Shen et al. focus on growth operators scheduling to
keep the training dynamics. LiGO (Wang et al., 2023) learns a linear mapping matrix between the
small and the large model through stochastic gradient descent (SGD). Similar approaches (Wu et al.,
2020; Wang et al., 2021) are also proposed to accelerate the training of other architectures. Most of
the above approaches start from a small model and progressively increase the model size by reusing
parameters. Therefore, they should be regarded as special cases of the multi-level framework with
only de-coalescing operation.

2.2 MULTIGRID

Our work is inspired by the multigrid method (Trottenberg et al., 2000), which is an efficient nu-
merical procedure to solve linear equations and partial differential equations with multiple levels.
The method has received successful applications in many application domains such as finite element
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method (Zhu & Cangellaris, 2006), eigenvalue computation (Knyazev & Neymeyr, 2003), and graph
partitioning (Abou-Rjeili & Karypis, 2006). Of course, a direct porting of the multigrid method to
neural network training, which is under a different set of constraints, is not feasible. Borrowing the
spirit of the multigrid solvers, we propose a systematic investigation on accelerating the training of
large models with a multi-level framework.

3 METHODOLOGY

We aim to accelerate the training of large transformer models by leveraging the fast convergence be-
haviors of a smaller model derived from the larger ones through a coarsening operation. We propose
three operators, Coalescing, De-coalescing, and Interpolation to develop a complete working flow.
These operators merge parameters, transform the parameters back to the original model, and correct
the parameters of the original model with de-coalescing parameters, respectively. The design of the
operators enable the framework to reduce most errors in a small model at a less total training cost. In
the following sections, we first introduce the Coalescing, De-coalescing and Interpolation operators
and then elaborate the V-cycle training process built upon them.

For simplicity, we assume that all layers are feed forward layers without bias and have the same
input and output dimensions. We give the generalization for other components of transformer in
Appendix A. We use Mk, k = 1, 2, ..K to refer to the model at level k. M1 is the original model
and the level number k increases by one when we coarsen the model to a smaller one. We use
W k

l ∈ Rdk
in,d

k
out to represent the parameter of layer l in model Mk. dkin and dkout refer to the input

and output dimensions. sumrow/col(A) denotes the summation of each row or column of matrix A,
resulting a sum vector. We adopt diag(a) to convert a vector a into a diagonal matrix.

3.1 COALESCING

As the first step, we coalesce the model in the width direction, while keeping the layered structure
untouched. Then we coalesce the model in the depth direction to get a smaller model coarsened in
both width and depth directions.

Width Coalescing W k
l ∈ Rdk

in,d
k
out is the parameter of layer l in the model Mk. We transform

it into Uk+1
l ∈ Rdk+1

in ,dk+1
out with width coalescing matrices F k+1,l

in ∈ Rdk+1
in ,dk

in and F k+1,l
out ∈

Rdk
out,d

k+1
out for in and out dimensions as follows.

Uk+1
l = F k+1,l

in W k
l F

k+1,l
out (1)

To ensure the output of layer l is properly received by layer l + 1 and stabilize the output of each
layer, we define F k+1,l+1

in as:

F k+1,l+1
in = F k+1,l

out

T
diag(1/sumcol(F

k+1,l
out F k+1,l

out

T
)) (2)

where diag(1/sumcol(F
k+1,l
out F k+1,l

out

T
)) is used to normalize the product of F k+1,l

out and F k+1,l
out

T
.

The width coalescing matrix F k+1,l
out is arbitrary as long as the matrix has full column rank. The

matrix we used is detailed in Section 4.1.

Depth Coalescing After width coalescing, we have Uk+1
l , l = 1, 2, ..., Lk, and need to trans-

pose them into W k+1
l , l = 1, 2, ..., Lk+1. Lk and Lk+1 are layer numbers of the model Mk

and Mk+1. Lk+1 < Lk always holds. To reduce the depth, we use a depth coalescing matrix
Rk+1 ∈ RLk,Lk+1,d

k+1
in ,dk+1

out to map those parameters as follows.

[W k+1
1 ,W k+1

2 , . . . ,W k+1
Lk+1

] = [Uk+1
1 ,Uk+1

2 , . . . ,Uk+1
Lk

]Rk+1 (3)
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As we can see, the dimension of Rk+1 can be large. Therefore, we decompose it into an Lk×Lk+1

matrix with elements of ℓk+1
i,j , i = 1, ..., Lk, j = 1..., Lk+1 and an identity matrix via Kronecker

product as in LiGO(Wang et al., 2023):

Rk+1 =

ℓk+1
1,1 · · · ℓk+1

1,Lk+1

...
. . .

...
ℓk+1
Lk,1

· · · ℓk+1
Lk,Lk+1

⊗ I (4)

where the ⊗ is the Kronecker product that multiplies ℓk+1
i,j with the identity matrix respectively.

In general, we coalesce the parameters of Mk to those of a smaller model Mk+1 as follows.

W k+1
1
...

W k+1
Lk+1


T

=

 F k+1,1
in W k

1 F
k+1,1
out

...
F k+1,Lk

in W k
Lk

F k+1,Lk
out


T ℓk+1

1,1 · · · ℓk+1
1,Lk+1

...
. . .

...
ℓk+1
Lk,1

· · · ℓk+1
Lk,Lk+1

⊗ I (5)

3.2 DE-COALESCING

De-coalescing is the inverse operator of Coalescing. To map the parameters back to the original
model, we first do depth de-coalescing on model Mk+1 to increase the depth, and then perform
width de-coalescing to increase the width based on the result of depth de-coalescing.

Depth De-coalescing Given a model Mk+1, which has parameters W k+1
l ∈ Rdk+1

in ,dk+1
out , l =

1, 2, ..., Lk+1. We could use the depth de-coalescing matrix Gk+1 ∈ RLk+1,Lk,d
k
in,d

k
in to transform

them into Uk+1
l ∈ Rdk+1

in ,dk+1
out , l = 1, 2, ..., Lk.

[Uk+1
1 ,Uk+1

2 , . . . ,Uk+1
Lk

] = [W k+1
1 ,W k+1

2 , . . . ,W k+1
Lk+1

]Gk+1 (6)

As in the previous section, we decompose the depth de-coalescing matrix G into an Lk+1 × Lk

matrix with elements of ζi,j , i = 1, ..., Lk+1, j = 1, ..., Lk and an identity matrix I .

Gk+1 =

 ζk+1
1,1 · · · ζk+1

1,Lk

...
. . .

...
ζk+1
Lk+1,1

· · · ζk+1
Lk+1,Lk

⊗ I (7)

Consider that we are doing the depth de-coalescing on the result of depth coalescing as follows.

[Uk+1
1 ,Uk+1

2 , . . . ,Uk+1
Lk

] = [Uk+1
1 ,Uk+1

2 , . . . ,Uk+1
Lk

]Rk+1Gk+1 (8)

To keep the value of parameters in each layer stable after coalescing and de-coalescing i.e., the
column sum of Rk+1Gk+1 equals to I , we have the Gk+1 as:

Gk+1 = Rk+1Tdiag(1/sumcol(R
k+1Rk+1T )) (9)

where the diag(1/sumcol(R
k+1Rk+1T )) performs a normalization of the parameters.

Width De-coalescing After depth de-coalescing, we have Uk+1
l ∈ Rdk+1

in ,dk+1
out . We use width

de-coalescing matrices T k+1,l
in and T k+1,l

out to transform them into W k
l ∈ Rdk

in,d
k
out for in and out

dimensions, respectively.

Recalling the width coalescing, we have the following equation after coalescing and de-coalescing.
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W k
l = T k+1,l

in Uk+1
l T k+1,l

out

= T k+1,l
in F k+1,l

in W k
l F

k+1,l
out T k+1,l

out

(10)

Similar to the definition of depth de-coalescing, we define T k+1,l
in and T k+1,l

out as follows.

T k+1,l
in = diag(1/sumrow(F

k+1,l
in

T
F k+1,l
in ))F k+1,l

in

T

T k+1,l
out = F k+1,l

out

T
diag(1/sumcol(F

k+1,l
out F k+1,l

out

T
))

(11)

In summary, we de-coalesce the model Mk+1 to a larger model Mk as follows.

W k
1

...
W k

Lk


T

=

 T k+1,1
in W k+1

1 T k+1,1
out

...
T

k+1,Lk+1

in W k+1
Lk+1

T
k+1,Lk+1

out


T  ζk+1

1,1 · · · ζk+1
1,Lk

...
. . .

...
ζk+1
Lk+1,1

· · · ζk+1
Lk+1,Lk

⊗ I (12)

3.3 INTERPOLATION

Since we define the de-coalescing matrix as the normalized transposition of the coalescing matrix,
it’s easy to find that the parameter W k

l obtained after de-coalescing is far from full rank. In the
worst case, half of the elements of W k

l will be identical to the respective ones in the other part
(Chen et al., 2016). Such a value distribution significantly limits the capability of the model. We
call it the symmetry of neurons.

Instead of injecting noise (Chen et al., 2016) or parameters from higher layers (Chen et al., 2022) to
alleviate this problem, we propose a more general operator, interpolation, which (1) transfers knowl-
edge back to the larger model Mk from the de-coalesced smaller model, (2) avoids similar adjacent
parameters incurred by de-coalescing, and (3) improves the convergence rate further. We find that
the interpolation operation allows the acceleration scales with the times of model enlargement. On
the contrary, a higher number of mapping in the previous literature leads to a worsened convergence
speed. This empirical observation is elaborated in Appendix B.

Specifically, after training the smaller model Mk+1 coalesced from Mk, we first de-coalesce Mk+1

to the size of Mk and get model Mk,de−coalesced. Then we merge the Mk and Mk,de−coalesced under
the control of a hyperparameter α ∈ (0, 1).

Mk ⇐ (1− α)Mk + αMk,de−coalesced (13)

In addition to alleviate the problem of symmetric neurons, α also determines how much updated
knowledge is incorporated into a larger model from a smaller one. The effect of α is discussed in
Appendix D. In most cases, α = 0.25 suffices to give satisfying results.

3.4 V-CYCLE TRAINING PROCESS

With the Coalescing, De-coalescing, and Interpolation operators, we can build a V-cycle training
process as inpired by the V-cycle in multigrid method (Trottenberg et al., 2000). We leave other
training processes like W-cycle and FMG in multigrid method for future work.

Algorithm 1 expounds the V-cycle training process. At first, it progressively coalesces the model
to reduce the model complexity and then trains the smallest model for Esmall epochs. The hyper-
parameter Esmall is used to allow early stop of training smaller models at the end of the fast con-
vergence phase. Next, the smaller model is de-coalesced and interpolated to set the parameters of
a larger model. Finally, the model size reaches its original size and M1 will be further trained until
convergence. In addition, we train the models at each level for Ea epochs before coalescing for
parameters initialization. Ea is set to the number of warm-up steps. We always stop the training
of smaller models for one half of the number of steps for the large model. We further discuss the
robustness of hyper-parameters in Appendix D
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Algorithm 1: V-cycle Training Process
Input : untrained model M1, dataset D, number of levels K, interpolation factor α, epochs

Esmall for training smaller models, epochs Ea for initializing.
Output: the pre-trained model M1

1 for l = 1→ K − 1 do
2 update Ml on D for Ea epochs
3 Ml+1 = Coalescing(Ml) // decrease model size, more details in Algorithm 2
4 end
5 for l = K → 2 do
6 update Ml for Esmall epochs
7 Ml−1,de−coalesced = De-coalescing(Ml) // recover size, more details in Algorithm 3
8 Ml−1 = Interpolation(Ml−1, Ml−1,de−coalesced, α) // more details in Algorithm 4
9 end

10 update M1 on D until convergence

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Architectures and Datasets We exercise our multi-level framework on two language models,
BERT (Devlin et al., 2019) and GPT (Radford et al., 2018), as well as a vision model, DeiT (Touvron
et al., 2021). We use English Wikipedia and BooksCorpus (Zhu et al., 2015) as pre-training data for
BERT and GPT, while DeiT is trained with ImageNet (Deng et al., 2009). For evaluation, we test the
pre-trained BERT on the GLUE benchmark (Wang et al., 2019). We evaluate the pre-trained GPT
on LAMBADA (Paperno et al., 2016), PTB, WikiText-2 and WikiText103 under a zero-shot setting
without fine-tuning on the training set. CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky
et al., 2009), Flowers102 (Nilsback & Zisserman, 2008), and Stanford-Cars (Krause et al., 2013) are
adopted to test the downstream performance of DeiT.

Baselines We evaluate our framework by comparing it with five baselines. The first baseline is a
the model trained from scratch. The second is StackBERT (Gong et al., 2019), in which the depth
is increased by progressively stacking layers. 3 The third baseline is bert2BERT (Chen et al., 2022)
that extends the width with advanced knowledge initialization. The fourth one is LiGO (Wang et al.,
2023) that learns to expand the network both in depth and width. The fifth method is Network Ex-
pansionDing et al. (2023) that expands the model with the exponential moving averaged parameters.
We choose KI (Qin et al., 2022) that distills knowledge from a small model into a larger model as the
fifth baseline. Specifically, bert2BERT, LiGO, and KI all assume that there are well-trained small
models and do not consider the training cost of smaller models. To be fair, we take into account the
training cost of smaller models for bert2BERT, LiGO and KI when comparing with them.

Implementation Details During pre-training, we train the BERT-Base with the following settings,
40 training epochs, 10K warm-up steps, a peak learning rate of 1e-4, and a batch size of 512. We
remove the next sentence prediction task (Liu et al., 2019) and use a fixed sequence length of 128.
We use the same settings for BERT-Large. In the case of GPT-Base, we use 20 training epochs, 10K
warm-up steps, a peak learning rate of 1e-4, and a batch size of 256. We train the DeiT-B with a
peak learning rate of 1e-3, 300 training epochs and a batch size of 1024.

For the evaluation of BERT-Base and BERT-Large, we take the tasks from the GLUE benchmark.
We choose a batch size of 32, a learning rate from {5e-6, 1e-5, 2e-5, 3e-5, 5e-5}, and train the
model with 5 epochs on all GLUE fine-tuning tasks. We run each training process for three times
with random seeds for GLUE. We evaluate the GPT-Base on LAMBADA (Paperno et al., 2016),
PTB, WikiText-2, and WikiText103 under zero-shot setting, i.e., without fine-tuning. For DeiT-B,
we fine-tune the pre-trained model for 1000 epochs with a batch size of 768 and a learning rate of
0.01 under SGD optimizer and the same data augmentation in the training.

3We implemented a MSLT(Yang et al., 2020) based training procedure, which is similar to StackBERT.
We find that it’s hard for MSLT to reach sufficient performance when trained from scratch as observed by
bert2BERT (Chen et al., 2022). So we only include the results of StackBERT.
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Figure 3: Results on BERT-Base, GPT-Base and BERT-Large. (a-c) show loss curves of BERT-Base,
GPT-Base and BERT-Large pre-training. The dashed lines are the final results of models training
from scratch. For BERT-Base and GPT-Base, our approach saving about 20% computational costs.
For BERT-Large, we save 37.4% training cost with 2-level training process and 51.6% with 3-level.

In the multi-level training, we coalesce the model to reduce width and depth by half. We define
the width coalescing matrix as F k+1,l

w,out = [I/2, I/2]T and elements of depth coalescing matrix as
ℓk+1
2i−1,i = ℓk+1

2i,i = 0.5, i = 1, ..., Lk+1. Intuitively, they coalesce two neighboring neurons and
merge two adjacent layers. The de-coalescing matrices can be derived from Eq. 9 and Eq. 11. We
use α = 0.25 for GPT and DeiT, α = 0.5 for BERT. Unless otherwise noted, we train the model
with a two-level mapping. The length of initializing stages for BERT/GPT and DeiT are 10K steps
and five epochs. We always stop the training of the smaller model halfway through the training. For
example, the BERT training steps are 300K and thus Esmall will be 150K steps.

Our experiments are conducted on NVIDIA A100 GPUs. As the mixed precision training (Mi-
cikevicius et al., 2018) and DeepSpeed framework (Rajbhandari et al., 2020) are orthogonal to our
method, we use both for the pre-training of BERT and GPT.

4.2 EXPERIMENTAL RESULTS

Table 1: GLUE benchmark results between our approach and baselines. BERT-Base means the
model is trained from scratch. All results on GLUE benchmark are run in three times with different
seeds and numbers in parentheses are the standard deviation across the runs.

Method Saving Saving SST-2 MNLI MRPC CoLA QNLI QQP STS-B Avg(FLOPs) (Walltime) (Acc) (Acc) (Acc) (Mcc) (Acc) (Acc) (Acc)
BERT-Base 0% 0% 89.6(0.5) 77.8(0.2) 78.7(0.5) 52.9(0.3) 85.1(0.5) 89.4(0.1) 83.5(0.4) 79.7(0.2)
StackBERT 15.2% 8.2% 89.6(0.4) 77.5(0.2) 71.7(0.4) 52.1(0.5) 85.8(0.3) 89.3(0.1) 82.3(0.4) 79.3(0.1)
bert2BERT 8.9% -2.4% 89.5(0.5) 77.7(0.1) 76.5(0.9) 49.5(0.4) 84.8(0.4) 88.3(0.1) 81.0(0.4) 78.2(0.3)
LiGO 17.4% 7.9% 89.2(0.3) 79.1(0.2) 77.4(2.1) 53.7(0.3) 85.9(0.1) 89.0(0.1) 83.6(0.3) 79.7(0.3)
Network Expansion 14.8% 8.1% 89.6(0.3) 77.6(0.2) 76.1(0.6) 53.4(0.4) 85.5(0.3) 89.6(0.1) 82.7(0.4) 79.4(0.1)
KI -6.9% -25.9% 89.9(0.2) 78.3(0.2) 76.7(0.4) 55.1(0.6) 85.6(0.3) 89.6(0.1) 84.7(0.3) 79.9(0.1)
Ours 19.0% 10.8% 90.1(0.1) 78.1(0.2) 79.9(0.7) 52.2(0.3) 85.1(0.1) 89.2(0.1) 84.2(0.4) 79.8(0.1)

Table 2: Zero-shot results of GPT-Base. ”w/o FT” means that we evaluate the pre-trained model
without fine-tuning. Our approach achieve similar and even better perplexities than the GPT-Base.

Method Saving Saving LAMBADA PTB WikiText-2 WikiText103
(FLOPs) (Walltime) (w/o FT) (w/o FT) (w/o FT) (w/o FT)

GPT-Base 0% 0% 54.5 146.3 49.8 50.2
StackBERT 9.5% 8.4% 53.3 140.6 46.5 46.9
bert2BERT 11.5% 8.3% 53.9 147.1 48.8 49.4
LiGO 14.1% 6.9% 54.0 139.7 50.1 50.5
Network Expansion 15.2% 12.2% 54.7 143.7 50.7 51.2
Ours 24.1% 16.5% 53.2 142.5 47.2 47.5

BERT-Base We compare the results of our method and baselines in Figure 3a and Table 1. The
comparison shows that our multi-level framework can save 19.0% FLOPs and 10.8% walltime for
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BERT-Base pre-training, while achieving similar down-stream tasks performance as training from
scratch. In addition, we find that bert2BERT and KI cannot deliver reduced walltime in our settings.

GPT-Base Figure 3b and Table 2 show the results of GPT-Base model. The results demonstrate
that our multi-level framework saves 24.1% FLOPs and 16.5% walltime on GPT-Base pre-training.
We observe that our zero-shot results are slightly better than training from scratch.

Table 3: The transfer learning of DeiT-B. DeiT-B pre-trained
with multi-level approach shows a similar level of perfor-
mance as DeiT-B pre-trained from scratch.

Method Saving Saving ImageNet CIFAR10 CIFAR100 Flowers Cars
(FLOPs) (Walltime) (Top 1 Acc) (Acc) (Acc) (Acc) (Acc)

DeiT-B 0% 0% 81.1% 99.1% 90.8% 97.8% 92.1%
StackBERT 23.8% 15.1% 81.2% 99.1% 90.8% 97.6% 92.1%
bert2BERT -0.1% -0.13% 81.6% 99.1% 90.7% 97.7% 92.2%
LiGO 25.4% 12.0% 81.7% 99.1% 90.7% 97.8% 92.1%
Network Expansion 25.0% 22.5% 81.5% 99.1% 90.7% 97.8% 92.1%
Ours 27.1% 24.3% 81.5% 99.1% 90.8% 97.6% 92.1%

DeiT-B The results of pre-training
DeiT-B are illustrated in Table 3.
The multi-level framework saves
27.1% FLOPs and 24.3% walltime
in pre-training DeiT-B on ImageNet.
Results on downstream tasks prove
that our multi-level framework does
not impair the model’s generaliza-
tion capability.

More Levels on BERT-Large In our current setting, the number of parameters is reduced by
eight-fold in one coalescing operation. Although our framework supports an arbitrary number of
levels, we observe that there is little gain on three or more levels in pre-training BERT-Base because
the level 3 model has only 1.72M parameters, which is too small to learn from the large dataset.
Therefore, we pre-train BERT-Large with two and three levels to evaluate the effectiveness of the
number of levels. Figure 3c and Table 4 show the results of the multi-level framework with two
and three levels on BERT-Large. When compared with BERT-Base, our approach achieves a higher
reduction in FLOPs and walltime on BERT-Large with 2 levels. On the other hand, an increased
number of levels results in greater computational savings, indicating our method’s potential.

Table 4: Downstream tasks performence of BERT-Large with more levels. Results of BERT-Large
indicate that more levels does not lead to performance deterioration while saving more training cost.

Level Saving Saving SST-2 MNLI MRPC CoLA QNLI QQP STS-B Avg(FLOPs) (Walltime) (Acc) (Acc) (Acc) (Mcc) (Acc) (Acc) (Acc)
1 0% 0% 89.6 (0.2) 79.2 (0.2) 80.3 (0.8) 53.0 (1.4) 86.7 (0.4) 89.8 (0.1) 85.0 (0.4) 80.6 (0.2)
2 37.4% 32.9% 90.9 (0.3) 79.8 (0.3) 78.1 (0.4) 54.8 (0.1) 86.9 (0.2) 89.7 (0.2) 85.2 (0.4) 80.8 (0.1)
3 51.6% 41.9% 90.5 (0.3) 79.8 (0.4) 82.6 (0.7) 56.3 (0.4) 86.9 (0.1) 89.9 (0.1) 84.5 (0.3) 81.5 (0.1)

5 DISCUSSION

The proposed approach does not need to re-compile the setup of parallel computing of LLMs when
transiting from a small model to a larger one as the model architecture and the underlying training
environment do not change. Compared with the traditional single level training, the only overhead is
incurred by resuming training of the larger model. Here we need to load parameters from storage. In
our experiment on BERT-Large, resuming can be done within one minute. This overhead has been
taken into account in our results of the walltime saving. For LLaMA-65B, the loading process can
be finished in less than 5 minutes on SSD. The estimation is detailed in Appendix C. In summary,
the overhead of our proposed V-cycle training is negligible.

6 CONCLUSION

This paper proposes an efficient multi-level framework for reducing the training time of transformer-
based models. Our framework is built on three basic operators, Coalescing, De-coalescing, and
Interpolation, which can be combined to build up a V-cycle training process. The multi-level training
offers great potential to deliver a reduced computation time by balancing the fast convergence of
smaller models and the high expressiveness of large models. Our experimental results justify the
effectiveness of the multi-level training on BERT, GPT, and DeiT models. In addition, our extensive
experiments show that our methodology has the potential for saving the computational cost of larger
models with more levels. In the future work, we will apply the multi-level framework to the pre-
training of large scale models with over 100B parameters.
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A COALESCING AND DE-COALESCING FOR TRANSFORMER

In the Transformer architecture, certain constraints are required to ensure alignment between the
input and output across the residual connection, normalization layers, and attention layers. Specifi-
cally, embeddings and feed-forward networks (FFNs) only need to adhere to Eq. 2.

Residual Connection Consider layer j follows layer i and has a residual connection, denoted as
hj = f(aj) + hi, where aj and hj represent the outputs of layer j before and after applying the
activation function f , respectively. It is requisite that F j

out = F i
out, ensuring the output alignment

of layer j with layer i.

Normalization Layer Given that the normalization layer following layer i performs an affine
transformation on the normalized result, it is essential that the width coalescing matrix F norm

out for
parameter Wnorm is equivalent to F i

out.

Attention Layer The attention layer employs matrices WQ, WK and W V to derive the queries
Q, keys K and values V , respectively. The output of attention layer can be formalized as follows:

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V (14)

where the dk is the dimension of queries and keys. Given that matrices Q and K are subject to
matrix multiplication, we need to limit FQ

out = FK
out. Furthermore, as required by Eq. 2, it follows

that FQ
out = FK

out = F V
in . In the case of multi-head attention layer, these requirements must be

satisfied for each head.

B WHY NOT INCREASE MODEL SIZE MONOTONICALLY
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Figure 4: Pre-training GPT-Large mapped once and twice
with LiGO. Results show that GPT-Large mapped twice
converges significantly slower than GPT-Large mapped
once. It confirms that it is not beneficial to monotonically
increase the model size as proposed in previous literature.

In this work, we do not increase
the model size monotonically as pro-
posed in the previous literature, e.g.
LiGOWang et al. (2023). The rea-
son is that the model enlarged from a
smaller one in the existing works will
have low-rank weight matrices and
thus limit the model’s capability. The
more times the model is mapped, the
more severe the limitation becomes.
Figure 4 show the training curves of
two GPT-Large models. They are
trained by following 1) GPT-Small→
GPT-Base→GPT-Large and 2) GPT-
Base → GPT-Large. The smaller
model is mapped to the larger one us-
ing LiGO. For fairness, we enlarge
GPT-Bases with a close level of per-
formance in 1) and 2) and use the
same training settings for the train-
ing of GPT-Large. As shown in the
figure, the model mapped twice con-
verges significantly slower than the
model mapped only once. It confirms
that it is not beneficial to repeatedly enlarge the model in a monotonic fashion as suggested in the
literature. The V-cycle training proposed in this work proves to be advantageous. In Figure 3c, we
show that the V-cycle training process with a three-level mapping converges faster than the model
with two-level mapping. Therefore, we interpolate the de-coalesced model into the original one
instead of directly training the enlarged model.
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C DEPLOYMENT OVERHEAD

After interpolating the de-coalesced model into the original one, we need to resume training of
the larger model with updated parameters. Since the model architecture and underlying training
environment does not change, there is no need to recompile the model, i.e., the setup of parallel
computing do not need to be configured again from scratch. The time spent on this step mainly
comes from retrieving parameters from storage. Since we re-init the optimizer’s parameters when
training the interpolated model, we only need to load model parameters from the storage. When
pre-training LLMs with fp16, 2Φ bytes are required to save a model with Φ parameters. For the
LLaMA-65B, the amount is around 130GB. A typical HDD will deliver a read speed of 80-160MB/s,
and a standard SSD can read data at a rate of 500 to 550MB/s. Therefore, we can load the model
parameters within half an hour from HDD and five minutes from SSD. As the training of LLaMA-
65B takes approximately 21 days, the resuming cost is negligible.

D EFFECT OF HYPER-PARAMETERS

Table 5: Effect of Hyper-parameters in our algorithm. Unlisted values are taken to be identical to
those of the BERT-Base. Ea is the training steps before coalescing. Esmall is the training steps for
smaller models. The de-coalesced model would be interpolated into the original model with ratio α.
A full training cycle of BERT-Base is 300K steps. L6-H6 indicates that the model has 6 layers and
6 attention heads, and the same applies to the others.

Ea Esmall α
Coalesced Saving Saving

(Steps) (Steps) Model Size (FLOPs) (Walltime)
BERT-Base 10K 150K 0.5 L6-H6 19.0% 10.8%

(A) 50K 9.2% 1.0%
100K 0.8% -7.4%

(B)

50K 14.5% 11.8%
100K 17.7% 6.6%
200K 17.8% 4.4%
300K 12.1% 0.1%

(C)

0.05 -2.3% -10.4%
0.25 18.1% 9.8%
0.75 13.0% 4.7%
1.0 -15.8% -18.5%

(D)
L4-H4 12.1% 5.7%
L8-H8 13.4% 7.1%

L10-H10 7.4% -2.6%

Effect of Ea We demonstrate the effect of hyper-parameter Ea in Table 5 rows (A). Results show
that a small Ea is enough. An excessively large Ea would reduce the effect of acceleration because
at this time the large model has passed the stage of coarse-grained learning, and the small model no
longer plays a role in fast convergence.

Effect of Esmall To study the robustness of the proposed framework, we change the value of
the hyper-parameter Esmall from 50K to 300K. The results in Table 5 rows (B) demonstrate that
Esmall is robust over one half the full cycle. There is no need for a large Esmall because the smaller
models have already passed the fast convergence stage and do not facilitate further acceleration of
the training of larger models.

Effect of α To investigate the effect of the interpolation operator, we tune the hyper-parameter α
from 0.05 to 1.0 for BERT-Base pre-training. Results in Table 5 rows (C) indicate that there is no
saving when interpolation operation is removed i.e., α = 1.0. The importance of the Interpolation
operator for the framework is thus justified. In addition, too small an α cannot efficiently transfer the
knowledge from a small model to the large model and thus gives a negative saving ratio. It is also
observed that a higher α saves less computational cost because the capability of network is limited.
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Effect of Coalesced Model Size We demonstrate the effect of the coalesced model size in Table 5
rows (D). Generally, the performance of the pre-trained coalesced model improves as its parameter
size increases, but this comes with a corresponding rise in computational cost. The results in Table
5 show that the BERT model with 6 layers and 6 heads offers an optimal balance between the
performance and the computational cost, and thus result in the best FLOPs saving.

E DETAILS OF COALESCING MATRICES

In Section 4, under the assumption of dk+1
in = dkin/2, d

k+1
out = dkout/2, we define the width coalescing

matrix F k+1,l
w,out and the depth coalescing matrix Rk+1 as follows:

F k+1,l
w,out = H ⊗ I =



0.5 · · · 0
...

. . .
...

0 · · · 0.5
0.5 · · · 0

...
. . .

...
0 · · · 0.5


⊗ I (15)

Rk+1 =


0.5 · · · 0
0.5 · · · 0

...
. . .

...
0 · · · 0.5
0 · · · 0.5

 (16)

To demonstrate how the width coalescing matrix coalesces parameters in a transformer model, we
decompose the matrix F into matrix H and identity matrix I in Eq. 15. The dimension of the
identity matrix I is 64, i.e. the size of attention head in transformer. Thus the matrix H ∈ R12,6

reveal the way we merge the attention heads. For example, The H we used in Eq. 15 will merge the
i and i+ 6 (i = 1, 2, ..., 6) attention heads pair by pair.

For simplicity, we denote the width coalescing matrix in Eq. 15 as F k+1,l
out,stack, and shown the depth

coalescing matrix in Eq. 16 with Rk+1
adj . There are different choices for coalescing matrices. For

example, we could define the width coalescing matrix F k+1,l
out,adj as Eq. 17. And we could define

Rk+1
stack as the inverse operator of stacking layers (Gong et al., 2019).

F k+1,l
out,adj =


0.5 · · · 0
0.5 · · · 0

...
. . .

...
0 · · · 0.5
0 · · · 0.5

⊗ I (17)

Rk+1
stack =



0.5 · · · 0
...

. . .
...

0 · · · 0.5
0.5 · · · 0

...
. . .

...
0 · · · 0.5


⊗ I (18)

We conduct experiments to verify the effect of coalescing matrices. The comparison reveals minimal
differences in FLOPs savings (< 0.3%) among various matrices, which means that the choice of
coalescing matrices may not be particularly crucial in our framework.
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F EFFECT OF COALESCING OPERATION

The coalescing operation establishes a crucial link between the large and small models. To evaluate
the effect of the coalescing operation, we remove the coalescing operation in our algorithm, i.e.
randomly initialize the small model within the v-cycle. The comparative result, presented in Figure
5a, suffers from an 8.3% drop in FLOPs saving when the small model is randomly initialized. The
dramatic drop demonstrates the necessity of the coalescing operation.
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(b) Interpolation Loss Curve

Figure 5: Effect of the Coalescing Operation. In Figure (b), the model corresponds to the GPT-Base
before coalescing when the interpolation ratio is set to zero. Conversely, when this ratio is at one,
the model becomes equivalent to the de-coalesced model, with or without the application of the
coalescing operation.

We examined the interpolation loss curve between the large model prior to coalescing and the de-
coalesced model (with or without coalescing). By interpolating models across various alpha values
and assessing their validation loss, we could chart a linear path in the optimization spaceGoodfellow
& Vinyals (2015). The results, displayed in Figure 5b, reveal lower losses along the interpolation
path for the de-coalesced model with coalescing operation. This finding underscores the tighter
correlation between the de-coalesced and original models when coalescing is applied.

G CONTINUE TRAINING THE DE-COALESCED MODEL
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Figure 6: Training Curves of the GPT-Base training from scratch and the De-Coalesced GPT-Base.

To delve deeper into the importance of the interpolation operation, let’s consider a straightforward
example highlighting the issue of symmetric neurons following width de-coalescing. Consider a two
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layers feedforward neural network with an activation function f , represented as f(XW1+b1)W2+
b2. After de-coalescing the network with Tout = [I, I],Tin = [I/2, I/2]T in width dimension, the
de-coalesced network can be formulated as Eq. 19. For simplicity, let’s refer to the de-coalesced
model as f(XW ′

1+b′1)W
′
2+b′2. In this model, the number of first layer’s neurons/columns doubles,

and the count of second layer’s rows increases correspondingly to accommodate the doubled output
from the first layer. However, the column count in the second layer remains constant to preserve the
output quantity, for example, the number of classes.

f(X [W1,W1] + [b1, b1])

[
W2/2
W2/2

]
+ b2 (19)

The output of the de-coalesced network is identical to the original. Assuming n neu-
rons/columns in W1. it’s straightforward to deduce that ∂L

∂W ′
1[:,1:n]

= ∂L
∂W ′

1[:,n+1:2n] ,
∂L

∂b′1[1:n]
=

∂L
∂b′1[n+1:2n] ,

∂L
∂W ′

2[1:n,:]
= ∂L

∂W ′
2[n+1:2n,:] . With identical gradients, in the layer 1, the first n neurons

will always mirror the subsequent n neurons, implying that the network’s learning capability doesn’t
proportionally increase with the number of parameters.

To illustrate this issue and underscore the interpolation operation’s necessity, we continued training
the de-coalesced GPT-Base model and have depicted the training curve in Figure 6. The empirical
results reveal that due to the limited learning ability caused by symmetric neurons, the convergence
performance of the de-coalesced model is significantly inferior to that of the model training from
scratch.

H RESULTS ON DEIT-S

Table 6: Transfer learning performance of DeiT-S. DeiT-S pre-trained with multi-level approach
shows similar performance as DeiT-S pre-trained from scratch. The complexity and redundancy in
DeiT-S is less than DeiT-B. Therefore, the FLOPs and walltime saving is less on DeiT-S.

Method Saving Saving ImageNet CIFAR10 CIFAR100 Flowers Cars
(FLOPs) (Walltime) (Top 1 Acc) (Acc) (Acc) (Acc) (Acc)

DeiT-S 0% 0% 80.1% 98.9% 89.8% 95.4% 92.2%
Ours 12.2% 6.5% 80.1% 98.9% 89.3% 95.4% 92.3%

I IMPLEMENTATION DETAILS OF OPERATORS
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Algorithm 2: Coalescing Operation
Input : A large transformer with L1 layers, hidden dimension of E1, vocabulary size T .

Denote the embedding weight as W (emb) ∈ RT×E1 , parameters of attention layers
as WQ

l ,WK
l ,W V

l ,WO
l ∈ RE1×E1 , bQl , b

K
l , bVl , b

O
l ∈ RE1 , parameters of FFN

layers as W (fc1)
l ∈ RE1×4E1 ,W

(fc2)
l ∈ R4E1×E1 , b(fc1)l ∈ R4E1 , b

(fc2)
l ∈ RE1 ,

parameters of layernorm layer as W (ln1)
l ,W

(ln2)
l ∈ RE1 , b(ln1)l , b

(ln2)
l ∈ RE1 .

Width coalescing matrix F
(emb)
out ,F

(QK)
out ,F

(V )
out ,F

(fc1)
out ∈ RE1×E2 . Depth

coalescing matrix R ∈ RL1×L2 .
Output: A small transformer with L2 layers, hidden dimension of E2. Utilize an upper right

stroke to denote the parameters of the small transformer.
1 // Preparation

2 F
(emb)
in = F

(emb)
out

T
diag(1/sumcol(F

(emb)
out F

(emb)
out

T
))

3 F
(QK)
in = F

(QK)
out

T
diag(1/sumcol(F

(QK)
out F

(QK)
out

T
))

4 F
(V )
in = F

(V )
out

T
diag(1/sumcol(F

(V )
out F

(V )
out

T
))

5 F
(fc1)
in = F

(fc1)
out

T
diag(1/sumcol(F

(fc1)
out F

(fc1)
out

T
))

6 // Width Coalescing
7 W (emb) ←W (emb)F

(emb)
out

8 for l = 1→ L1 do
9 WQ

l ← F
(emb)
in WQ

l F
(QK)
out

10 WK
l ← F

(emb)
in WK

l F
(QK)
out

11 W V
l ← F

(QK)
in W V

l F
(V )
out

12 WO
l ← F

(V )
in WO

l F
(emb)
out

13 bQl ← bQl F
(QK)
out

14 // The bias vector consistently multiplies with the width coalescing matrix.
15 // For the sake of brevity, we will omit the bias vector in following codes.
16 W

(ln1)
l ←W

(ln1)
l F

(emb)
out

17 W
(fc1)
l ← F

(emb)
in W

(fc1)
l F

(fc1)
out

18 W
(fc2)
l ← F

(fc1)
in W

(fc2)
l F

(emb)
out

19 W
(ln2)
l ←W

(ln2)
l F

(emb)
out

20 end
21 // Depth Coalescing
22 for l = 1→ L2 do
23 W ′Q

l ←
∑L1

i=1 W
Q
i Ri,l

24 W ′K
l ←

∑L1

i=1 W
K
i Ri,l

25 W ′V
l ←

∑L1

i=1 W
V
i Ri,l

26 W ′O
l ←

∑L1

i=1 W
O
i Ri,l

27 W
′(ln1)
l ←

∑L1

i=1 W
(ln1)
i Ri,l

28 W
′(fc1)
l ←

∑L1

i=1 W
(fc1)
i Ri,l

29 W
′(fc2)
l ←

∑L1

i=1 W
(fc2)
i Ri,l

30 W
′(ln2)
l ←

∑L1

i=1 W
(ln2)
i Ri,l

31 end
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Algorithm 3: De-Coalescing Operation
Input : A small transformer with L2 layers, hidden dimension of E2, vocabulary size T .

Denote the embedding weight as W (emb) ∈ RT×E2 , parameters of attention layers
as WQ

l ,WK
l ,W V

l ,WO
l ∈ RE2×E2 , bQl , b

K
l , bVl , b

O
l ∈ RE2 , parameters of FFN

layers as W (fc1)
l ∈ RE2×4E2 ,W

(fc2)
l ∈ R4E2×E2 , b(fc1)l ∈ R4E2 , b

(fc2)
l ∈ RE2 ,

parameters of layernorm layer as W (ln1)
l ,W

(ln2)
l ∈ RE2 , b(ln1)l , b

(ln2)
l ∈ RE2 .

Width coalescing matrix F
(emb)
out ,F

(QK)
out ,F

(V )
out ,F

(fc1)
out ∈ RE1×E2 . Depth

coalescing matrix G ∈ RL1×L2 .
Output: A large transformer with L1 layers, hidden dimension of E1. Utilize an upper right

stroke to denote the parameters of the large transformer.
1 // Preparation

2 T
(emb)
out = F

(emb)
out

T
diag(1/sumcol(F

(emb)
out F

(emb)
out

T
))

3 T
(QK)
out = F

(QK)
out

T
diag(1/sumcol(F

(QK)
out F

(QK)
out

T
))

4 T
(V )
out = F

(V )
out

T
diag(1/sumcol(F

(V )
out F

(V )
out

T
))

5 T
(fc1)
out = F

(fc1)
out

T
diag(1/sumcol(F

(fc1)
out F

(fc1)
out

T
))

6 // Calculate Fin as in Algorithm 2.

7 T
(emb)
in = diag(1/sumrow(F

(emb)
in

T
F

(emb)
in ))F

(emb)
in

T

8 T
(QK)
in = diag(1/sumrow(F

(QK)
in

T
F

(QK)
in ))F

(QK)
in

T

9 T
(V )
in = diag(1/sumrow(F

(V )
in

T
F

(V )
in ))F

(V )
in

T

10 T
(fc1)
in = diag(1/sumrow(F

(fc1)
in

T
F

(fc1)
in ))F

(fc1)
in

T

11 G = RT diag(1/sumcol(RRT ))
12 // Width De-Coalescing
13 W (emb) ←W (emb)T

(emb)
out

14 for l = 1→ L2 do
15 WQ

l ← T
(emb)
in WQ

l T
(QK)
out

16 WK
l ← T

(emb)
in WK

l T
(QK)
out

17 W V
l ← T

(QK)
in W V

l T
(V )
out

18 WO
l ← T

(V )
in WO

l T
(emb)
out

19 bQl ← bQl T
(QK)
out

20 // The bias vector consistently multiplies with the width coalescing matrix.
21 // For the sake of brevity, we will omit the bias vector in following codes.
22 W

(ln1)
l ←W

(ln1)
l T

(emb)
out

23 W
(fc1)
l ← T

(emb)
in W

(fc1)
l T

(fc1)
out

24 W
(fc2)
l ← T

(fc1)
in W

(fc2)
l T

(emb)
out

25 W
(ln2)
l ←W

(ln2)
l T

(emb)
out

26 end
27 // Depth De-Coalescing
28 for l = 1→ L1 do
29 W ′Q

l ←
∑L2

i=1 W
Q
i Gi,l

30 W ′K
l ←

∑L2

i=1 W
K
i Gi,l

31 W ′V
l ←

∑L2

i=1 W
V
i Gi,l

32 W ′O
l ←

∑L2

i=1 W
O
i Gi,l

33 W
′(ln1)
l ←

∑L2

i=1 W
(ln1)
i Gi,l

34 W
′(fc1)
l ←

∑L2

i=1 W
(fc1)
i Gi,l

35 W
′(fc2)
l ←

∑L2

i=1 W
(fc2)
i Gi,l

36 W
′(ln2)
l ←

∑L2

i=1 W
(ln2)
i Gi,l

37 end
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Algorithm 4: Interpolation Operation
Input : A large transformer with L1 layers, hidden dimension of E1, vocabulary size T .

Denote the embedding weight as W (emb) ∈ RT×E1 , parameters of attention layers
as WQ

l ,WK
l ,W V

l ,WO
l ∈ RE1×E1 , bQl , b

K
l , bVl , b

O
l ∈ RE1 , parameters of FFN

layers as W (fc1)
l ∈ RE1×4E1 ,W

(fc2)
l ∈ R4E1×E1 , b(fc1)l ∈ R4E1 , b

(fc2)
l ∈ RE1 ,

parameters of layernorm layer as W (ln1)
l ,W

(ln2)
l ∈ RE1 , b(ln1)l , b

(ln2)
l ∈ RE1 . A

de-coalesced transformer with the same size of the large transformer. Denote the
parameters of the de-coalesced transformer with a subscript of ”de”. Interpolation
ratio α.

Output: An interpolated transformer with the same size of the input transformers. The
subscript ”intp” is used to designate the parameters of this interpolated transformer.

1 W
(emb)
intp ← (1− α)W (emb) + αW

(emb)
de

2 for l = 1→ L1 do
3 WQ

l,intp ← (1− α)WQ
l + αWQ

l,de

4 WK
l,intp ← (1− α)WK

l + αWK
l,de

5 W V
l,intp ← (1− α)W V

l + αW V
l,de

6 WO
l,intp ← (1− α)WO

l + αWO
l,de

7 bQl,intp ← (1− α)bQl + αbQl,de
8 bKl,intp ← (1− α)bKl + αbKl,de
9 bVl,intp ← (1− α)bVl + αbVl,de

10 bOl,intp ← (1− α)bOl + αbOl,de

11 W
(ln1)
l,intp ← (1− α)W

(ln1)
l + αW

(ln1)
l,de

12 b
(ln1)
l,intp ← (1− α)b

(ln1)
l + αb

(ln1)
l,de

13 W
(fc1)
l,intp ← (1− α)W

(fc1)
l + αW

(fc1)
l,de

14 b
(fc1)
l,intp ← (1− α)b

(fc1)
l + αb

(fc1)
l,de

15 W
(fc2)
l,intp ← (1− α)W

(fc2)
l + αW

(fc2)
l,de

16 b
(ln1)
l,intp ← (1− α)b

(ln1)
l + αb

(ln1)
l,de

17 W
(ln2)
l,intp ← (1− α)W

(ln2)
l + αW

(ln2)
l,de

18 b
(ln2)
l,intp ← (1− α)b

(ln2)
l + αb

(ln2)
l,de

19 end
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J LEARNED TRANSFORMATION
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Figure 7: Further Training Curves of the GPT-Base training with or without learned transforma-
tion. For learned transformation, we train the de-coalescing matrices as in LiGO to perform a better
mapping function, resulting a lower initial loss after interpolated. However, we observe that the
model with learned transformation finally converges to the same performance level as the one with-
out learned transformation. The empirical evidence suggests that a direct combination does not lead
to advantages.

K THE CONNECTION WITH LORA
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Figure 8: Training Curves of Coalesced BERT and BERT-Base with LoRA: Our findings reveal
that the rate of loss decrease in LoRA is substantially slower compared to the coalesced model.
Additionally, the FLOPs required for the coalesced model are significantly lower than those for
LoRA. Therefore, employing a coalescing operation proves to be far more efficient than using LoRA.

Our framework bears a certain degree of resemblance with LoRA. Notably, when we apply
width coalescing alone, the interpolation operator can be redefined as Wintp = Wlarge +
TinFinWlargeFoutTout. Our work focus on updating a segment of the low-rank weights, specifi-
cally FinWlargeFout, for both forward and backward propagation. This approach is different from
LoRA, which involves using both the original and low-rank weights in the forward propagation. As
a result, our approach significantly reduces FLOPs and walltime in the pre-training phase of the
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smaller model. In contrast, LoRA does not alter the forward propagation process of the original
model and even requires additional computations for the low-rank parameters. While LoRA do
not need gradient calculations for weights in the feedforward, layernorm and embedding layers, as
well as biases in all layers, the backpropagation process still needs to process gradients from the
top layer down by calculating the product of weights in each layer and the gradients of the layer
outputs, which is a major contributor to FLOPs in backpropagation. Therefore, the FLOPs sav-
ing for LoRA is marginal compared with the coalesced model. Furthermore, our measurements of
training time on models starting from scratch and those trained with LoRA revealed similar rates
(around 4.0 iterations per second), which further confirms that the computation reduction of BERT
with LoRA is marginal. Finally, in Figure 8, comparing the pre-training of BERT-Base with LoRA
against Coalesced BERT, we observed that the coalesced model converges much faster than BERT-
Base with LoRA. This underscores the importance of focusing on intensive low-rank updates, i.e.
the coalescing operation.
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