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1 Introduction

The modelling of relationships between sequences is an important task that enables a wide
array of applications, including classical time-series prediction problems in finance [78],
and modern machine learning problems in natural language processing [4]. Another class
of engineering applications involving sequential relationships are control systems, which
study the dependence of a dynamical trajectory on an input control sequence [12]. In
general, sequence-to-sequence relationships can be very complex. For example, when the
index set for the sequences is infinite, one can understand these relationships as mappings
between infinite-dimensional spaces. Thus, traditional modelling techniques are limited
in their efficacy, especially when there is little prior knowledge on the system of interest.
To address these difficulties, an increasingly popular method to model sequence relation-
ships is to leverage machine learning.

To date, a large variety of machine learning paradigms have been proposed to model
sequential relationships. One of the earliest attempts is the class of neural networks called
recurrent neural networks (RNN) [70], and their variants [17,39]. Besides the RNN family
of models, many other alternatives have also been explored. These include convolutional
based models [84], encoder-decoder based models [17] attention based models [4], and
their combinations. For example, the powerful transformer architecture [85] combines
encoder-decoder and attention architectures.

Despite the rapid developments in the practical domain, the theoretical foundation
of data-driven sequence modelling is still in its nascent stages. For example, the most
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basic question of how the aforementioned architectures are different, and how practition-
ers should select the model architecture based on their applications, is largely unknown
and relies on trial and error. Thus, an important direction of theoretical research is to
understand the essential properties, and most importantly, distinctions between different
sequence modelling paradigms.

The present survey aims to provide an overview of the theoretical research on sequence
modelling in the specific direction of approximation theory [22, 59]. In a nutshell, approx-
imation theory is the study of how a complex relationship (say a function) can be broken
down as a combination of simpler, more readily computable building blocks. A theoretical
foundation of sequence modelling requires the understanding of how and when a sequen-
tial relationship can be approximated by simpler components realized as various neural
network architectures. The theory of sequence modelling is an active area of research that
spans decades of work both in machine learning and the study of nonlinear dynamics.
Thus, the purpose of this survey is not to give an exhaustive summary of all relevant re-
sults in the literature, but rather to highlight some interesting insights for approximation
theory gained from existing works. Moreover, we discuss some classes of open questions
that are of significance in order to progress the understanding of the approximation theory
for sequences.

The survey is organized as follows. In Section 2, we introduce the mathematical prob-
lem of approximation, including the key questions one is interested in answering. In par-
ticular, we highlight the new aspects of sequence approximation as compared to classical
paradigms of function approximation. In Section 3, we discuss approximation results on
recurrent neural networks, where much more is known compared with other architec-
tures. In Section 4, we consider the approximation theory of other model architectures,
including those of convolutional, encoder-decoder and attention types. In Section 5, we
summarize the known results and motivate some future directions of interest.

Notation. Let us introduce some notational conventions. Throughout this paper, we
use lower-case letters to denote scalars and vectors. Boldface letters are reserved for se-
quences, e.g. x = {x(t) : t ∈ T }. As in the previous formula, script letters such as T
are used to represent sets of scalar or vectors, both finite and infinite-dimensional. Capital
letters are used to denote mappings between vector spaces. Correspondingly, a bold-faced
capital letter is a sequence of such mappings. Sometimes, we wish to refer to a portion of
a sequence. Let S ⊂ T , then xS := {x(t) : t ∈ S}. We use | · | to denote the Euclidean
norm, and reserve ‖ · ‖, possibly with subscripts, for norms over function (e.g. sequence)
spaces. We use ẋ(t) to denote the derivative of t 7→ x(t). Higher derivatives of order r ≥ 0

are written as x(r)(t). Throughout this survey, we reserve the letters m, n, d, i, j to represent
integers. Sequence indices, equivalently referred to as time indices, are written as t or s.

2 Sequence modelling as an approximation problem

We begin by formalizing the broad mathematical problem of approximation and some
of the key questions one may be interested in. We then discuss how one may formulate
sequence modelling in the setting of approximation theory.
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2.1 The problem of approximation

Let us introduce the basic problem of approximation for functions on vector spaces. Let
X and Y be normed vector spaces. We consider a family of target functions, or simply

targets, which is a subset C of all mappings X → Y , i.e. C ⊂ YX . In the learning theory
literature, one sometimes calls C a concept space. These are the relationships we wish
to learn, or approximate, by some simpler candidate functions. Let us denote this set of

candidates by H ⊂ YX . In learning theory, this is often called a hypothesis space. The
problem of approximation concerns how well can functions in H resolve functions in C.

In broad terms, we may classify results on approximation theory into three types: uni-
versal approximation results (density-type), approximation rate estimates (Jackson-type),
and inverse approximation results (Bernstein-type). Let us discuss each in turn.

Universal approximation results (density-type). Universal approximation theorems are
the most basic approximation results. We say that H is an universal approximator for C if

for every H ∈ C and ǫ > 0, there exists Ĥ ∈ H such that ‖H − Ĥ‖ ≤ ǫ. In other words,
H is dense in C in the topology generated by ‖ · ‖. The choice of the norm depends on
applications. We illustrate this with the following example.

We consider approximating scalar functions by trigonometric polynomials. Here, we
set X = [0, 2π] and Y = R. The target space is C = Cα

per([0, 2π]), the set of α-times

continuously differentiable, periodic functions on [0, 2π]. The hypothesis space is

H = ∪m∈N+

{
Ĥ(x) =

m−1

∑
i=0

ai cos(ix) + bi sin(ix) : ai, bi ∈ R, m ∈ N+

}
. (2.1)

As a direct consequence of the Stone-Weierstrass theorem, H ⊂ C is dense in C with
respect to the norm ‖H‖ = supx∈[0,2π] |H(x)| [2, p. 32].

Approximation rate estimates (Jackson-type). Universal approximation (density) en-
sures that our hypothesis space H is in a sense “big enough”, so that we can use it to
approximate a reasonably large variety of target functions. However, such results do not
tell us precisely what types of functions in C are “easy” (or “hard”) to approximate us-
ing H. In other words, two hypothesis spaces H1 and H2 may both be dense in C but can
be naturally adapted to approximate functions of different types.

To resolve this, we may ask a finer question on the rate of approximation. Fix a hypoth-
esis space H. Let {Hm : m ∈ N+} be a collection of subsets of H such that Hm ⊂ Hm+1

and ∪m∈N+Hm = H. Here, m is a measure of complexity of the approximation candi-
dates, and Hm is the subset of hypotheses with complexity at most m. This is also called
the approximation budget. Then, the approximation rate estimate is an inequality of the
form

inf
Ĥ∈Hm

‖H − Ĥ‖ ≤ CH(H, m). (2.2)

Eq. (2.2) tells us the best possible approximation error one can hope to obtain under ap-
proximation budget m. Note that H is dense if and only if limm→∞ CH(H, m) = 0 for every
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H ∈ C. The speed at which CH(H, m) decays as m increases is the approximation rate, and
its dependence on H measures the complexity of a particular target H under the current
approximation scheme H.

Returning to the example in Eq. (2.1), the hypothesis space with budget m is

Hm =

{
Ĥ(x) =

m−1

∑
i=0

ai cos(ix) + bi sin(ix) : ai, bi ∈ R

}
. (2.3)

The classical Jackson’s theorem [2, p. 187] gives a rate estimate of the form

inf
Ĥ∈Hm

‖H − Ĥ‖ ≤ cα max0≤r≤α ‖H(r)‖
mα

, (2.4)

where cα is a constant depending only on α. Observe that the rate of decay of the ap-
proximation error is m−α and the complexity of a target function under the trigonometric
polynomial approximation scheme is its norm associated with the Sobolev space Wα,∞ :=

{H : max0≤r≤α ‖H(r)‖ < ∞}. The key insight here is that a function H is easy to approx-
imate using trigonometric polynomials if it has small gradient (Sobolev) norm. We will
hereafter refer to estimates in the form of Eq. (2.2) as Jackson-type results.

Inverse approximation results (Bernstein-type). Jackson-type results tell us that if a tar-
get function H possesses some property related to {Hm}, (e.g. smoothness, small gradient
norm), then it is in fact easy to approximate with {Hm}. Inverse approximation results are
converse statements. It identifies properties that H ought to possess if one starts with the
assumption that it can be well-approximated (in a sense to be made precise in each case)
by {Hm}.

In the case of trigonometric polynomial approximation, the following inverse approx-
imation result is due to Bernstein [2, p. 206]. Fix some periodic H : [0, 2π] → R, and
suppose that there exists a constant c > 0, δ > 0 and α ∈ N+ so that for every m ∈ N+,
one has

inf
Ĥ∈Hm

‖H − Ĥ‖ ≤ c

mα+δ
. (2.5)

Then, H is α-times continuously differentiable and its α-th derivative is δ-Hölder contin-
uous. Intuitively, this result says that if a function H can be approximated with a rate
in Eq. (2.4), then it must be in Cα

per([0, 2π]). Combined with Jackson’s result, one gains

a complete characterization of the type of functions - namely smooth functions, and their
associated Sobolev spaces - that can be efficiently approximated with trigonometric poly-
nomials. We will hereafter refer to these inverse approximation theorems as Bernstein-
type results.

2.2 Sequence modelling as an approximation problem

Now, we introduce the problem of sequence approximation, which can be regarded as
a particular class of approximation problems as introduced in Section 2.1. The key dif-
ference with classical approximation theories is that the input spaces X and the output
spaces Y are now spaces of sequences, and may be infinite-dimensional.
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We consider an input sequence indexed by a completely ordered index set T

x = {x(t) : t ∈ T }. (2.6)

There are two main choices of the index set T . For discrete sequences (e.g. sequences of
word embeddings), T is (a subset of) Z. For continuous sequences (e.g. measurements of
a continuous-time control system), T is (a subset of) R. The input space is a collectionX of
such sequences. Correspondingly, the output space Y is another collection of sequences.

Each input sequence x ∈ X corresponds to an output sequence y with

y(t) = Ht(x), t ∈ T . (2.7)

That is, the sequence H = {H(t) ≡ Ht : t ∈ T } is our target. In this case, the target
is in general an infinite-dimensional operator mapping X → Y , and for each t, Ht is
a functional on X . We will hereafter refer to operators of this type as functional sequences.

Now, we seek to approximate H by candidates from a hypothesis space H. The latter
may be recurrent neural networks, convolutional networks or other types of models. In
each case, one first identifies appropriate target spaces C for which H is dense. Then,
one seeks Jackson-type and Bernstein-type results that characterize the types of sequence
relationships that can be efficiently approximated by each hypothesis space.

From the viewpoint of classical approximation theory, one novel aspect of sequence
approximation is that the input and output spaces are infinite-dimensional, provided
that the index set T is infinite. In fact, many interesting aspects of sequence modelling,
such as those associated with memory, precisely result from an unbounded index set, e.g.
T = R or Z. We note that while sequence modelling is in effect an infinite-dimensional
approximation problem, it should be contrasted with generic operator learning prob-
lems [9,15,20,47,61,65,75]. Here, a sequence is not a generic function but one with domain
being a completely ordered index set. Therefore, the sequences and their corresponding
vector spaces contain temporal structure that should be highlighted in the approximation
results. It is for this reason that we do not call H operators, but functional sequences, to
highlight the presence of its sequential structure. We close this part with a final remark.
There are many applications where the output is not a sequence but rather just a finite di-
mensional vector. Examples include sequence regression [87] and sentiment analysis [77].
The present formulation includes these cases by writing y ≡ y(∞) = H∞(x) as the input-
output functional relationship.

In next sections, we give a brief but structured overview of the approximation results
for sequence modelling, paying particular attention to the theoretical insights and their
consequences on practical architecture design.

3 Recurrent neural networks

Recurrent neural networks (RNN) are one of the earliest model architectures proposed
for modelling sequential relationships [70]. The key idea is the introduction of a hidden
dynamical system that captures the memory patterns in the sequences. We begin by intro-
ducing the RNN architecture and its corresponding hypothesis space.
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3.1 Recurrent neural network hypothesis space

We first consider modelling a sequential relationship on the index set T = Z. Suppose at

each time, the input sequence x(t) ∈ R
d is a vector. Without much loss in generality, we

can consider the output sequence as a scalar sequence, i.e. y(t) ∈ R. For vector-valued
output sequences, one may consider each output dimension separately to deduce corre-
sponding results. The (one-layer) recurrent neural network parametrizes the relationship
between an input sequence x and an output sequence y as the following discrete dynami-
cal system:1

h(t + 1) = σ
(
Wh(t) + Ux(t) + b

)
,

y(t) = c⊤h(t),
t ∈ Z. (3.1)

Here, h is a hidden state sequence, with each h(t) ∈ R
m. Thus, the trainable parameters

are W ∈ R
m×m, U ∈ R

m×d, b ∈ R
m, and c ∈ R

m. Conventionally, we impose a zero
initial condition on h, i.e. if the input sequence first becomes non-zero at a particular t0

then h(t0) = 0. For theoretical treatments, we can also take t0 = −∞ to handle inputs of
unbounded support. The function σ is an activation function, which is a scalar function
acting element-wise. In typical RNNs, σ is taken as the hyperbolic tangent function (tanh),
but many other choices are possible.

Observe that Eq. (3.1) defines a functional sequence Ĥ , with y(t) = Ĥt(x) = c⊤h(t),
and h(t) satisfies the dynamics in Eq. (3.1). Formally, we can write the RNN hypothesis
space as

HRNN =
⋃

m∈N+

Hm
RNN,

Hm
RNN =

{
Ĥ : Ĥt(x) = c⊤h(t), h follows Eq. (3.1) with

W ∈ R
m×m, U ∈ R

m×d, b ∈ R
m, c ∈ R

m

}
.

(3.2)

The approximation budget here is m, which is the width of the RNN, or the dimension
of the hidden state sequence h. Approximation theory of RNN investigates the ability of
HRNN and {Hm

RNN} to approximate appropriate target functional sequences.
It is often convenient to consider a continuous variant of the RNN, i.e. T = R. In this

case, the RNN hidden state equation is now continuous in t, and it can be viewed as a time
index. The only change is that we replace the difference equation (3.1) by the differential
equation

ḣ(t) = σ
(
Wh(t) + Ux(t) + b

)
,

y(t) = c⊤h(t),
t ∈ R. (3.3)

Besides theoretical advantages, some practical applications (e.g. irregularly-sampled time
series) require a continuous-index model. The corresponding hypothesis space is analo-
gous to Eq. (3.2) with Eq. (3.3) in place of Eq. (3.1).

A remark is in order on the choice of time-index for sequence approximation. Gener-
ally, T can be discrete or continuous, and bounded or unbounded, leading to four different

1There are notational variants in the literature, e.g. sometimes the index for the input is t − 1 instead of t. Such minor
variations do not affect approximation results.
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settings. In addition, in each setting there is a choice of the norm that measures the approx-
imation error. In the simplest case where T is bounded and discrete, the approximation
problem is finite-dimensional. Beyond this setting, the choice of norm generally matters.
For density-type results, the choice of discrete vs continuous T is usually not important,
since they can be bridged by a discretization argument in one way and taking limits in
the other. The distinction between bounded and unbounded T is however significant,
and the latter generally requires more stringent conditions and is also more important for
analyzing memory behavior that occurs at asymptotic regimes of T . On the other hand,
for Jackson/Bernstein-type theorems, there is a difference between discrete and continu-
ous T . Typically, approximation error estimates for a discrete T are grid-dependent, and
do not readily translate to a uniform error estimate over all discrete grid partitions. In this
sense, uniform-in-t estimates for the continuous case are stronger results, as they imply
approximation rates for any grid using a discretization argument, given some regularity
conditions on the sequences to allow one to estimate the discretization error.

3.2 Density-type results

As with most machine learning models, density-type results are the most basic and thus
prevalent. Such results are minimal guarantees for the general applicability of a machine
learning model. At the same time, the most theoretically interesting part about these re-
sults is the identification of appropriate target spaces C in which a particular H is dense.

Hidden dynamic functionals. By observing the RNN structure, it is natural to consider
target functionals that are themselves defined via observations of a hidden dynamical
system that has a compatible structure. For instance, in continuous time index case one
can consider

x 7→ H(x) = y with
ḣ(t) = f

(
h(t), x(t)

)
, h(t) ∈ R

n,

y(t) = g(h(t)
)
, h(−∞) = 0,

(3.4)

where f : R
n × R

d → R
n and g : R

n → R. We may assume that f is Lipschitz and g is
continuous so that H is well-behaved. The function g is called a readout map. Since the
functions f , g parameterize a functional sequence via a hidden dynamical system, we call
them hidden dynamic functional sequences, or CHD for short. The discrete or bounded
index cases are defined similarly. In the non-linear dynamics literature, Eq. (3.4) is of-
ten called a non-linear time-invariant system and the corresponding functional sequence
H is referred to as a time-invariant filter. The term time-invariant (strictly, equivariant)
highlights that H commutes with time-shifts. To see this, denote by Sτ the shift operator
Sτ(x)(t) = x(t − τ), then H satisfies H ◦ Sτ = Sτ ◦ H. However, in this survey we refrain
from calling them time-invariant filters, because there may exist functional sequences that
commute with time shifts, but are not readily written in the form Eq. (3.4), e.g. the shift
functional sequence Ht(x) = Sτ(x)(t) = x(t − τ).

Density-type results for CHD are also called universal simulation, since it requires the
approximate simulation of a dynamics driven by f and a readout map defined by g by
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a RNN. Earlier results on hidden dynamic functional sequences focus on a bounded index
set (see the survey of [73] and references therein, and also [18,54]). In these works, the main
technique is to appeal to the universal approximation theory of feed-forward networks
(e.g. [21]). The simple observation is that the right hand side of RNNs are feature maps of
a fully connected network. Thus, by increasing m one can construct an approximation of
f as

(h, x) 7→ f (h, x) ≈ (h1, x) 7→ σ
(
W(h1, h2)

⊤ + Ux + b
)
, (3.5)

where h1 ∈ R
n and h2 ∈ R

m−n. The readout map g can be handled likewise. A similar ap-
proach is developed in [72] in the discrete-time setting, and [29] for simulating dynamics
without inputs. Since the results concern a compact time interval, to approximate dynam-
ics it is enough to approximate f . This is in general not true for the unbounded case, as
the approximation error can be magnified by the dynamics.

To handle unbounded T (e.g. T = R), one strategy is to introduce some decay proper-
ties to the targets. One such property is the fading memory property (FMP) [10]. Let x1, x2

be bounded sequences indexed by R, and let H be a sequence of causal, shift-equivariant
(also called time-homogeneous) functionals. Here, causal means Ht(x) = Ht(x(−∞,t])
for all t. We say that H has the FMP if there is a monotonically decreasing function
w : R+ → (0, 1] such that for any ǫ > 0 there exists δ > 0 with

|Ht(x1)− Ht(x2)| < ǫ whenever sup
s∈(−∞,t]

|x1(s)− x2(s)|w(t − s) < δ. (3.6)

Intuitively, this says that two inputs sequences that differ more and more in their his-
tory (t → −∞) still produce similar outputs at the present. This is in effect requiring the
memory of H to decay. Note that due to time-equivariance, it is enough to check this for
just one t, say t = 0. Then, we can define a weighted norm on the space of semi-infinite
sequences on (−∞, 0] by

‖x‖w = sup
s∈(−∞,0]

|x(s)w(−s)|. (3.7)

Consequently, the FMP (Eq. (3.6)) is simply a continuity requirement of H0 with respect
to ‖ · ‖w. We denote by CFMP the set of causal, shift-equivariant functional sequences
satisfying the FMP. The FMP allows one to prove density on unbounded T , e.g. in [33,35].
Indeed, the FMP property allows one to approximate H ∈ CFMP by a truncated version on
a bounded interval. Then, approximation results can be deduced using methodologies for
the bounded case. Note that the FMP is defined for general functional sequences, and is
not limited to the form of hidden dynamic functional sequences. Thus, this idea can also
be used to prove density for general functionals on unbounded index sets.

In the specific setting of hidden dynamic functional sequences, another technique for
handling unbounded index sets was proposed in [37]. Here, the authors consider dy-
namics driven by f that satisfy a property called uniformly asymptotically incrementally
stable. This roughly says that the flow maps of ḣ = f (h, x) are uniformly continuous, uni-
formly in x, and that h(t) is independent of initial condition at large t. One can understand
this as again a memory decay condition, as any initial condition on h is forgotten in the
large time limit. This allows one to localize the approximation of f and g to a compact set,
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which then allows one to appeal to standard approximation results from the feed-forward
networks.

General functional sequences. Now, we turn to more general functional sequences.
Since the RNN architecture (Eq. (3.2)) is causal and shift-equivariant, we should restrict
our attention to target spaces satisfying the same properties. However, we no longer as-
sume that these functional sequences admit a representation in the form of Eq. (3.4). For
density-type results, this distinction is not important. This is because it is known that CHD

is dense in CFMP in the norm ‖H‖ = supt∈R,x∈K |Ht(x)|, where K is a bounded equicon-

tinuous set in C(R) [11, Theorem 2]; see also [36]. The idea relies on approximation of
FMP functionals by a Volterra series [86]. The density can also be established without
appealing to the Volterra series [35, Theorem 8]. Therefore, density-type results on CHD

can be passed onto CFMP, provided the norms are compatible. In the RNN case, this pro-
gram is carried out in [34, 35]. However, we will see later that for Jackson-type results,
the choice of target spaces is important: the rate of approximations generally depends on
such choices.

It is also possible to construct a RNN approximation in CFMP directly, without the need
to use CHD as an intermediate. For example, in [33] the authors first use the FMP to reduce
the approximation problem to one over a finite, bounded index set, and then appeal to the
density of fully connected neural network to obtain approximation. It remains then to
construct a (large) RNN to represent the fully connected network. A similar result for
stochastic inputs is proved in [32].

Many of the aforementioned density-results stem from the reservoir computing litera-
ture, where researchers are interested in studying systems such as the RNN, but with the
internal weights (W, U, b in Eq. (3.3)) being random variables. This random version of the
RNN is called an echo-state network (ESN). From the machine learning viewpoint, one
can understand ESNs as an analogue of random feature models corresponding to RNNs.
These models have the nice property that the hypothesis space is linear and training these
networks is a convex problem, since only c needs to be trained. Previously mentioned
results show existence of (W, U, b) and c to approximate each H, but do not address the
approximation of classes of H by choosing only c and using a common random realization
of (W, U, b). The latter approximation problem is studied in [31], where a density result
with some explicit error estimates is obtained. Here, the primary idea is to constrain tar-
get functionals to a subset of CFMP whose Fourier transform has finite third moment. This
builds on the idea of [6,7] where functions of this type (but with finite first and second mo-
ments) were shown to be approximated by feed-forward neural networks without suffer-
ing the curse of dimensionality. This is to be contrasted with a related line of work [25–27],
which introduces a probabilistic definition of Barron-type functions via an expectation in
place of a moment condition on its Fourier transform. In both cases, it is known that such
functions can be approximated by randomly sampling neural network weights accord-
ing to a distribution to achieve approximation. This is used in [31] to prove density for
ESNs with random weights. We note that in general Barron function approximations, the
random weight distributions depend on the target functions to be approximated, whereas
in [31] the distribution of the reservoir weights is fixed as uniform. This comes with the
cost of stronger regularity conditions, as we will discuss later.
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3.3 Jackson-type results

Compared to density-type results, there are fewer Jackson-type results for RNNs. In the
aforementioned work of [31], a quantitative error estimate can be obtained by a time-
truncation argument in the discrete time index setting. Let H|T denote the restriction of H
to sequences of length T + 1. Then, for each t we can identify H|T(t) with a function HT,t :

R
d×(T+1) → R. If one imposes additional regularity conditions by requiring HT,t ∈ W k,2

for each t, then one can deduce an error estimate of the form

inf
Ĥ∈Hm

ESN

E

[
‖H − Ĥ‖2

]1/2
≤ c1

‖H|T‖Wk,2

m1/α
+ c2

∞

∑
i=T+1

w(−i), (3.8)

where α > 2 and w is the weighting function used in the definition of CFMP. In particular,
if we consider approximation on a bounded index set the last term vanishes, and we ob-
tain an approximate Monte-Carlo rate 1/

√
m. However, a caveat is that the smoothness

requirement k for this estimate to hold increases linearly with dT, i.e. it becomes increas-
ingly stringent on larger time intervals or input dimensions. In other words, this estimate
is more useful for bounded index sets and low input dimensions.

In the setting of hidden dynamic functional sequences, a similar estimate is proved
in [37] for unbounded index sets. The key assumption of uniformly asymptotically incre-
mentally stable dynamics (c.f. the discussion in Section 3.2) is combined with the addi-
tional assumption that f , g are Barron-type functions. Then, one can obtain a Monte-Carlo
error rate that decays as 1/

√
m. The argument is a combination of the localization argu-

ment outlined previously for the density result, and the application of the results of [6, 7]
on the localized compact domain.

A general property of these results is the reliance on time truncation, thus the rate
estimates do not explicitly account for the behavior on large time intervals. Jackson-type
error estimates that directly operates on unbounded time domains are proved in the linear
RNN case (σ(z) = z and b = 0 in (3.3)) [55,56]. Let us call these hypothesis spaces HL-RNN

and {Hm
L-RNN}. Observe that each Ĥ ∈ Hm

L-RNN has the form

Ĥt(x) =
∫ ∞

0
c⊤eWsUx(t − s)ds, c ∈ R

m, W ∈ R
m×m, U ∈ R

m×d. (3.9)

Here, the input space considered is X = C0(R, R
d), the space of continuous vector-valued

sequences vanishing at infinity. We will also assume that W is Hurwitz (i.e. it is non-
singular with eigenvalues having negative real parts), so that the dynamics is stable. In

this case, one can check that each Ĥ is linear, continuous in the uniform norm and shift-
equivariant (time-homogeneous). In addition, it is regular in the sense that if xn(t) → 0
for almost every t then H(xn) → 0. It turns out that these conditions are sufficient con-
ditions for functionals in C to be uniformly approximated by linear RNNs [56]. The idea
is straightforward: one first shows that any linear functional sequence H satisfying these
conditions admits a common Riesz representation

Ht(x) =
∫ t

−∞
ρ(t − s)⊤x(s)ds =

∫ ∞

0
ρ(s)⊤x(t − s)ds. (3.10)
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In other words, H and ρ ∈ L1 can be identified. Note that the application of Riesz repre-

sentation is valid since C0(R, R
d) is taken as the input sequence space. In broader settings,

e.g. C(R, R
d) where input sequences need not decay at infinity, more assumptions is re-

quired for the existence of this representation. For example, [10, Theorem 5] shows that if
X = C(R, R), H admits the form (3.10) if and only if H has fading memory, in addition
to the aforementioned assumptions. Now, comparing Eq. (3.9) and Eq. (3.10), linear RNN
approximation of these functionals boils down to

|Ht(x)− Ĥt(x)| ≤ ‖x‖L∞‖ρ − ρ̂‖L1 , (3.11)

where ρ̂(s) = [c⊤eWsU]⊤. Therefore, we may deduce approximation properties of targets
by linear RNNs by approximation of functions in L1 by exponential sums of the form

[c⊤eWsU]⊤. The density of such exponential sums can be derived using the Müntz–Szász
theorem [59].

Similarly, [56] further use this idea to prove a Jackson-type result for the error estimate.
Here enters the crucial property of memory decay. There exists a vast literature on possible
notions of memory decay for functional sequences, see e.g. [10,32] and references therein.
In the linear case, the following simple definition suffices. Let ei = ei1t≥0, i = 1, . . . , d
with ei the unit vector in the i-th axis direction. We consider targets H such that there exist
α ∈ Z+, β > 0 such that

eβtH
(r)
t (ei) = o(1), t → ∞, i = 1, . . . , d, 1 ≤ r ≤ α + 1. (3.12)

Intuitively, these functionals forget input history at a rate of at least e−βt. Thus, we may
also understand them possessing an exponentially decaying memory. The main result
in [55] is a Jackson-type error estimate

inf
Ĥ∈Hm

L-RNN

‖H − Ĥ‖ ≤ cαdγ

βmα
, γ = sup

t≥0

max
i=1,...,d

max
r=1,...,α+1

∣∣eβtH
(r)
t (ei)

∣∣
βr

, (3.13)

where ‖H‖ = supt sup‖x‖L∞≤1 |Ht(x)|. Comparing with Eq. (2.4), we see that one obtains

a similar rate characterized by the smoothness parameter α. The new phenomena is the
assumption of exponential decaying memory in Eq. (3.12). The key insight here is as fol-
lows. If we assume, in addition to the usual smoothness requirements, that the memory
of targets decay like an exponential (Eq. (3.12)), then we can efficiently approximate them
using linear RNNs.

We remark here that this result demonstrates the importance of considering more gen-
eral functional sequences than CHD in establishing Jackson-type results. Assume instead
that one considers hidden dynamic functional sequences with both f , g as linear functions,
i.e.

f (h, x) = W∗h + B∗x, g(h) = c⊤∗ h, W∗ ∈ R
n×n, U∗ ∈ R

n×d, c∗ ∈ R
n. (3.14)

Then, the rate estimate becomes trivial: If m ≥ n, then the approximation error is 0 and we
have perfect representation. However, in practice it is generally not possible to know the
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precise mechanism for the generation of the sequence data, and a theory should handle
general functional sequences. From the Riesz representation (3.10) of general linear, causal
and shift-equivariant target functional sequences, ρ can be any L1 function, and may not
in the form of an exponential sum. In this case, the approximation rate estimate becomes
non-trivial.

We close the discussion by discussing the so-called curse of memory phenomenon
identified in the above analysis observed in [55]. The density type results, including the
linear RNN case, do not require the targets to have an exponentially decaying memory
in the sense of Eq. (3.12). However, the rate estimate in Eq. (3.13) does have this require-
ment. The natural question is therefore, what if one has a slower memory decay rate? For
example, we may replace Eq. (3.12) by

H
(r)
t (ei) ∼ e−βt −→ H

(r)
t (ei) ∼ t−(r+ω), ω > 0. (3.15)

Then, a truncation argument in [56] shows that to obtain an approximation error of ǫ,

a size of the RNN may need to grow exponentially, as m ∼ ǫ−1/ω. While this is not
a lower bound for the optimal approximation error, it suggests that in sequence approx-
imation, one may observe a very similar issue with approximating ordinary functions in
high dimensions. There, it is known that the approximation budget required to achieve
a prescribed approximation error grows like an exponential function of the dimension of
the function domain. This is known as the curse of dimensionality. Here, the results sug-
gests that in sequence approximation problems using RNNs, there lies a curse of memory.
In particular, it affirms the empirical observations that RNNs usually perform well when
memory in the system is small, but suffer in its performance for approximating long-term
memory [8]. The result in Eq. (3.13) confirms the first part of the observation. The second
part can be further demonstrated by optimization analysis [56] and also a Bernstein-type
result, as we discuss next.

3.4 Bernstein-type results

Recall that Bernstein-type results deduce properties of targets assuming that they can be
efficiently approximated by a hypothesis space. Known Bernstein-type results for RNNs
are currently limited to linear functional sequences. With the same set-up as the Jackson-
type theorem, [56] proves a Bernstein-type result, which we now describe.

Let us assume that we have a target functional sequence H such that it (and its deriva-
tives in time) can be uniformly approximated by a sequence of linear RNNs. That is, we

assume that there is a sequence Ĥm ∈ Hm
L-RNN such that ‖H − Ĥm‖ → 0 and that

sup
t≥0

∣∣∣H(k)
t (ei)− Ĥ

(k)
m,t(ei)

∣∣∣→ 0, k = 1, . . . , α + 1. (3.16)

Then, under additional technical conditions, there must exist a β > 0 such that

eβtH
(r)
t (ei) = o(1), t → ∞, i = 1, . . . , d, 1 ≤ r ≤ α + 1. (3.17)

In other words, a target can be effectively approximated by linear RNNs only if it has
exponentially decaying memory. This is in a sense a partial converse to the Jackson-type
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result in Eq. (3.13). Together, it shows that, at least in the linear setting, effective RNN
approximation occurs if and only if the target functional sequence has an exponentially
decaying memory pattern. Bernstein-type results can assist in designing architectures for
sequence modelling: if a model aims to model a sequential relationship whose memory
pattern does not decay like an exponential, then it is necessary to go beyond the RNN
setting due to the limitations posed by the inverse approximation result.

At the end of Section 4.1, we discuss an example given in [42] where the target func-
tional sequence does not have an exponentially decaying memory, and alternative archi-
tectures such as dilated convolutions are shown to be more effective than RNNs.

We end the section on RNNs approximation by discussing some of its variants. In
the practical literature, a number of generalizations of the simple RNN hypothesis space
(Eq. (3.2)) have been proposed. Examples include the long-short term memory (LSTM)
network [39] and gated recurrent units (GRU) [16]. Density-type results for these networks
can be directly deduced since they often include the classical RNN as a special case by
a proper choice of its trainable parameters. In some cases (e.g. normalized RNNs in [72],
and deep variants with fixed width in [41]), additional analysis is required to establish
density. However, rate estimates of Jackson-type or inverse theorems of Bernstein-type
(different from classical RNNs) are generally not known for these more complex struc-
tures, and is an interesting direction of future work.

4 Other architectures

Let us now expand our discussion to models beyond the RNN model family. Many of
these architectures are proposed or popularized in fairly recent years. A partial but im-
portant motivations for developing these alternative model architectures is precisely the
limitations with respect to memory we have discussed in Section 3. Very often in practical
applications, we want to model sequence relationships having long and irregular memory
patterns. For example, in machine translation tasks, an output word at the end of the sen-
tence in one language may depend on the very first word in the corresponding sentence in
another language. Moreover, the number of words in the original and translated sentences
are often not the same. For these reasons, a variety of alternative models to the RNN have
been proposed. Each of them are competitive in different domains of application. The
subsequent discussions will highlight a number of such examples.

However, to concretely understand the gains of using alternative architectures to RNN,
it is necessary to develop some theoretical understanding of their comparison. For exam-
ple, can an alternative architecture such as a convolutional-based architecture overcome
the curse of memory related to RNNs? This often requires the developments of Jackson-
type estimates in similar approximation settings, which tells us precisely which functional
sequences are easy to approximate under a particular hypothesis space corresponding to
a model architecture of interest.

4.1 Convolution-based architectures

We begin with results for convolutional-based architectures. While convolutional neural
networks (CNN) were originally developed for computer vision applications [50], tempo-
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ral versions of the CNNs have been shown to be effective in many sequence modelling
tasks [5]. Since convolution operations are easier to describe using a discrete index set, we
shall assume throughout this subsection that T = Z.

The basic building block of temporal CNNs is the causal dilated convolution operation

(u∗ l v)(t) = ∑
s≥0

u(s)⊤v(t − ls), l ∈ Z+. (4.1)

Note that the summation is taken over s ≥ 0 to ensure causality, meaning that the outcome
at time t depends only on the past information. When l = 1, this is the usual convolution.
Dilations l ≥ 2 result in larger receptive fields with the same number of parameters, and
are hence useful in processing long sequences. For example, successful temporal CNN
architectures, including the WaveNet [84] and the TCN [51], contain stacks of dilated con-
volutions with increasing dilation rates.

We can write a general dilated temporal CNN model with K layers and M channels at
each layer as

h0,i = xi,

hk+1,i = σ

(
Mk

∑
j=1

wkji∗ dk
hk,j

)
, i = 1, . . . , Mk+1, k = 0, . . . , K − 1,

ŷ = hK,1,

(4.2)

where M0 = d is the input dimension, MK = 1 is the output dimension. Mk = M is the
number of channels at layer k for k = 1, . . . , K − 1.

Here, xi is the scalar sequence corresponding to the i-th element of the vector sequence
x, and wkji is the convolutional filter at layer k, mapping from channel j at layer k to
channel i at layer k + 1. A common choice for the dilation rate in applications is dk =
2K, so we adopt this choice for the subsequent exposition. Furthermore, for establishing
approximation results it is sufficient to assume that the support of each filter wkji is 2, since
convolutional filters of large sizes include this case. This gives rise to the temporal CNN
hypothesis space

HCNN =
⋃

K,M

H(K,M)
CNN =

⋃

K,M

{
x 7→ ŷ in Eq. (4.2)

}
. (4.3)

Density-type results have been studied for general CNNs mostly for two-dimensional
image applications, and some of them can be adapted to the one-dimensional, causal case
here. For brevity, we will not give an exhaustive list of this literature. We mention however
that most existing results are not directly applicable to the sequence modelling case due to
the shift-equivariant requirement. For example, the works of [66, 67, 88] consider approx-
imating general functions, and shift-equivariance is violated at the boundaries. Density
results for fully convolutional cases [52, 58, 69, 80] are more relevant for the present ap-
plication. Nevertheless, due to the nature of image data having finite supports, none of
these results consider an unbounded index set. However, for sequence approximation, the
problem of memory should be studied precisely on unbounded index sets. If we assume
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some form of memory decay such as the FMP, then a truncation argument can be used to
show that the temporal CNN hypothesis space is dense in sequence spaces (e.g. ℓp), as a
corollary of these results.

For Jackson-type theorems, the current understanding is again limited to the simple
but interesting case of linear temporal CNNs, i.e. σ(z) = z. This gives the linear temporal
CNN hypothesis space

HL-CNN =
⋃

K,M

H(K,M)
L-CNN =

{
Ĥ : Ĥt(x) =

∞

∑
s=0

ρ̂(s)⊤x(t − s)
}

, (4.4)

where ρ̂ is a finitely-supported sequence determined by the filters {wkji}

ρ̂i = ∑
i1,...,iK−1

wK−1,iK−1,1∗ 2K−1wK−2,iK−2,iK−1 ∗ 2K−2 · · ·∗ 2w0,i,i1 . (4.5)

Observe the striking similarity of (4.4) and linear RNN hypothesis space (3.9). The key
difference is that in the RNN case, the sequence ρ̂ is an exponential sum with infinite
support, whereas in the case of CNNs it is a sum of repeated dilated convolutions resulting
in a finite support. This in turn leads to, as investigated in [42], vastly different Jackson-
type estimates. In particular, one can identify different approximation spaces that suggests
how RNN and CNN approximation differ when modelling sequence relationships.

Concretely, [42] proved the following Jackson-type estimate for linear, causal and shift-
equivariant functional sequences H:

inf
Ĥ∈H(K,M)

L-CNN

‖H − Ĥ‖ ≤ G
(
KM1/K − K

)
C1(H)d + C2(H, K). (4.6)

Recall that M is the number of convolution filters at each layer and K is the number of
layers. Together, (M, K) control the complexity of the CNN hypothesis space. The function
G : R → R is a non-increasing function tending to 0, to be explained later.

Let us now clarify the form of C1, C2. Let ρ be the Riesz representation of H,

Ht(x) = ∑
s≥0

ρ(s)x(t − s). (4.7)

Then, C2(H, K) = ‖ρ[2K ,∞)‖ℓ2 is determined by the rate of decay of the memory of the

target functional sequence. In particular, C2 decays at least exponentially in the depth of
the neural network (K), even if the target does not possess memory decay. The term C1(H)
is a complexity measure of the target functional sequence, determined by the effective rank
of H after a tensorisation transformation. Let us motivate its definition by an example. Set
d = 1 and suppose the goal is to model a target functional sequence

Ht(x) = r0x(t) + r1x(t − 1) + r2x(t − 2) + r3x(t − 3), rs ∈ R. (4.8)

In this case, the Riesz representation for H has support 4, i.e. ρ = (r0, r1, r2, r3). A temporal
CNN approximates ρ via product-sums in the form of (4.5). Let us take K = 2 and M = 1.
Then, notice that we are seeking the approximation of

ρ = (r0, r1, r2, r3) by ρ̂ = (w0,0, w0,1)∗ 2(w1,0, w1,1), (4.9)
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which we can rewrite in matrix form as the approximation of

T(ρ) =

(
r0 r1

r2 r3

)
by T(ρ̂) =

(
w0,0

w0,1

) (
w1,0 w1,1

)
. (4.10)

Then, the approximation error becomes clear. If T(ρ) is rank 1, then it can be represented
exactly by the 2-layer CNN with channel size 1. Otherwise, there will be an approxima-
tion error, and the optimal approximation error is the second singular value of T(ρ) as
a consequence of the Eckart-Young theorem.

This argument can be generalized to any K and M. For K ≥ 3 the reshaping operation
T(·) acting on a length 2K sequence produces an order-K tensor of size 2 in each dimension,

T(ρ[0,2K ])i1,...,iK = ρ[0,2K]

(
K

∑
j=1

ij2
j−1

)
, ij ∈ {0, 1}. (4.11)

Then, a temporal CNN approximates this tensor as a sum of rank 1 tensors. The optimal
approximation error is hence a consequence of an Eckart-Young type theorem for higher-
order singular value decomposition (HOSVD) [46]. This motivates the definition of an
approximation space that depends on the tail of the singular value sequence. Let us now
make this more precise. We fix a CNN of depth K, and consider the tensorisation T(ρ[0,2K ]).

In the theory of HOSVD [46], this tensor has 2K singular values

σ
(K)
1 ≥ σ

(K)
2 ≥ · · · ≥ σ

(K)
2K ≥ 0, (4.12)

the first K of which are equal and redundant. The last K singular values determine the
error of low rank approximation of this tensor, much in the same way as ordinary singular
value decay rates determine the accuracy of low rank approximation of matrices. Thus,
we may consider specifying some decay rate G so that the tail sum of singular values
(which corresponds to low rank approximation error) satisfies

(
2K

∑
i=s+K

|σ(K)
i |2

)1/2

≤ cG(s) (4.13)

with G(s) → 0 as s → ∞. Now, we can build an approximation space by considering
target functional sequences whose Riesz representation ρ satisfies the following property:
for each K, the singular value tail sum of T(ρ[0,2K ]) has a decay rate of at least G (Eq. (4.13)).

Then, the error of low rank approximation of these functional sequences can be described
by G. This leads to the definition of a complexity measure in [42] of the form

C1(H) = inf



c :

(
2K

∑
i=s+K

|σ(K)
i |2

)1/2

≤ cG(s), s ≥ 0, K ≥ 1



 , (4.14)

and G is a specified rate of decay of the singular values. The Jackson-type rate estimate
in Eq. (4.6) then follows from the fact that the maximum rank of a CNN with K layers



J. Mach. Learn., 2(1):1-30 17

and M channels is at least KM1/K. The class of functional sequences where C1 is finite
defines an approximation space (with respect to G) of sufficiently regular functional se-
quences that admits efficient approximation by temporal CNNs. This is analogous to the
characterization of classical smoothness spaces by the decay rate of series coefficients, e.g.
wavelet coefficients [62]. Here, we can understand C1(H) as a measure of how easy it is
to approximate H by tensor product-sums. In particular, it can be shown [42] that if H has
a sparse Riesz representation (memory), then it has small C1(H). This supports the em-
pirical observation that temporal CNNs excel in applications such as text-to-speech [84],
where such sparsity patterns are expected.

Let us now contrast this insight to that obtained for the RNN, which excel at modelling
memory patterns that are exponentially decreasing, but not necessarily sparse. Consider
a target functional sequence with Riesz representation

ρ(t) = δ
(
t − 2K0

)
=

{
1, t = 2K0 ,

0, t 6= 2K0 .
(4.15)

This corresponds to a shift operation, where the output is the result of shifting the input
by 2K0 units. Observe that this target functional sequence is inside the temporal CNN
hypothesis space, hence it can be exactly represented by setting K = K0 and M = 1.
However, when K0 is large, it becomes increasingly difficult for a power sum u(t) = c0 +
∑

m
i=1 ci γt

i to approximate this function. The form of u here is a simplified discrete analogue
of the exponential sum in Eq. (3.9). For any such u, we have the following property due
to [28]:

m ≥ t

2 sups∈[0,2t+2] u(s)
|u(t + 1)− u(t)|. (4.16)

Since ρ(t) has a sudden change at t = 2K0 , u(t) need at least 2K0−1 terms to achieve ap-
proximation, making it challenging for a RNN to learn this target. Conversely, there exists
targets which are easily approximated (in fact, exactly represented) by HRNN but have
high complexity when approximated by HCNN [42]. These Jackson-type results highlight
the interesting differences between the RNN and the CNN architectures with respect to
the types of sequential relationships they are adapted to approximating.

4.2 Encoder-decoder architectures

Encoder-decoder architectures [16, 17, 43, 76] are a class of sequence to sequence models
where an encoder first maps the input sequence into a fixed-sized context vector, and then
a decoder maps the context vector into the output sequence. The development of encoder-
decoder models was motivated by the need to handle input and output sequences with
varying lengths. The encoder-decoder architecture is flexible and allows for the use of
various configurations for the encoder and decoder components.

We consider the simplest setting where the encoder and the decoder are both recur-
rent networks [17, 76]. This has the advantage that we can compare the results here with
those in ordinary RNNs in Section 3. The RNN encoder-decoder (REncDec) architecture
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(ignoring bias for simplicity) can be written as

ḣ(s) = σE

(
Wh(s) + Ux(s)

)
, v = Qh0, s ≤ 0,

ġ(t) = σD

(
Vg(t)

)
, g0 = Pv,

ŷ(t) = c⊤g(t), t ≥ 0,

(4.17)

where W ∈ R
m×m, U ∈ R

m×d, Q ∈ R
N×m, V ∈ R

m×m, P ∈ R
m×N and c ∈ R

m. Sequences
h and g are the RNN-type hidden states corresponding to the encoder and decoder dy-
namics, respectively. The encoder is first applied to the entire input sequence x in order to
produce a fixed-size context vector v, which is the final hidden state of the encoder. This
context vector summarizes the input sequence. The vector is then utilized as the initial
state of the decoder, which generates an output at each time step. This defines sequen-
tial relationship between two semi-infinite sequences, with the input x having support in
(−∞, 0] and the output y having support in [0, ∞). The complexity of these maps (approx-
imation budget) is controlled by the RNN width m and context vector size N.

Approximation properties of the REncDec architecture are investigated in detail for the
linear case (σE, σD are identity maps) in [57]. For simplicity of presentation, we take d = 1,
corresponding to scalar input sequences. Then, one can rewrite the REncDec hypothesis
space as

HL-REncDec =
⋃

m,N

H(m,N)
L-REncDec =

⋃

m,N

{
Ĥ : Ĥt(x) =

∫ ∞

0

N

∑
n=1

ψ̂n(t)φ̂n(s)x(−s)ds

}
, (4.18)

where one may recall that m is the width of the RNNs used for the encoder and the de-
coder, and N is the size of the context vector. The sequences ψ̂n and φ̂n are in exponential
sum forms

ψ̂n(t) =

(
m

∑
i,j=1

ciPjn

[
eVt
]

ij

)
, φ̂n(t) =

(
m

∑
i,j=1

uiQnj

[
eWt
]

ji

)
. (4.19)

Since the REncDec architecture maps sequences of disjoint support, it is no longer mean-
ingful to consider time-homogeneity and causality. Indeed, causality is always satisfied
and time-homogeneity is not satisfied. This is the case by design: the REncDec archi-
tecture is used to model sequential relationships without the shift-equivariant condition.
Consequently, the target functional sequences considered here are only assumed to be
continuous and linear. In this case, the Riesz representation of these targets take the form

Ht(x) =
∫ ∞

0
ρ(t, s)⊤x(−s)ds, t ≥ 0. (4.20)

This is a more general form where ρ depends on two temporal indices t (outputs) and s
(inputs) simultaneously.

The density of the hypothesis space (4.18) in the space of sufficiently regular continu-
ous linear functional is established in [57]. This result follows from the observation that
we now seek approximations of ρ(t, s) via a product of two exponential sums. Hence, one
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may follow essentially the same approach as in the RNN case to prove density. More inter-
estingly, Jackson-type estimates can also be derived. In particular, one has the following
approximation rate under similar settings as in Eq. (3.13):

‖H − Ĥ‖ ≤ C1(α)γ

β2mα
+ C2(H, N), (4.21)

where the meaning of various constants are defined similarly as in Eq. (3.13). Observe
that the first term is similar to the RNN rate (3.13), as both the encoder and decoder are
implemented using RNNs. The estimate C2(H, N) highlights the new complexity mea-
sure associated with encoder-decoder architectures, since N is the complexity of the con-
text (coding) vector that acts as the only intermediary between the encoder and decoder
components. To see what the complexity measure may be, let us compare Eq. (4.19) and
Eq. (4.20). Observe that approximating a target H simply amounts to approximating its
Riesz representation ρ by a tensor-product summation of the form

ρ̂(t, s) =
N

∑
n=1

ψ̂n(t)φ̂n(s). (4.22)

One may immediately notice that this is a rank-N approximation of a two-variable func-
tion as sums of products of univariate functions. The optimal approximation is obtained
through the proper orthogonal decomposition (POD) [13], which is an infinite-dimensional
version of the optimal low rank approximation of matrices via truncated singular value
decomposition. In fact, we may write the formal POD expansion for ρ as

ρ(t, s) =
∞

∑
n=1

σnψn(t)φn(s), (4.23)

where σn are the singular values and ψn, φn are the left and right singular vectors (func-
tions). This is called a temporal product structure in [57]. Then, an analogue of the classical
Eckart-Young theorem implies that the optimal approximation error is simply the tail-sum
of the singular values. This is precisely the estimate in C2, i.e.

C2(H, N) ∝

(
∞

∑
n=N+1

σ2
n

)1/2

. (4.24)

This is considered as the effective rank of the target, and the Jackson-type estimate in
Eq. (4.21) says that a target with low effective rank can be approximated efficiently with
REncDec (with small context vector). Note that this notion of rank is different from the
tensorisation rank discussed for CNNs in Section 4.1. The concept of effective rank of the
sequential relationship under temporal products is similar to that in linear algebra, where
the rank of a matrix is the dimension of its range space. This definition can be extended
to apply to sequential relationships. Fig. 4.1 illustrates this idea: A low rank temporal
relationship results in a more regular output sequence. In particular, local perturbations
to the input sequence result into global perturbations of the output sequence. This is very
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Figure 4.1: Schematic illustration of a high-rank vs low-rank sequential relationship under the temporal product
structure. A dataset of input sequences (left) are fed into a functional sequence producing the corresponding
output sequences (right). The top (resp. bottom) right plot shows the resulting sequence of a high-rank (resp.
low-rank) relationship. Observe that the high rank relationship yields a complex and input-sensitive temporal
structure. In contrast, the outputs of the low rank relationship exhibit greater regularity, with only macroscopic
structures present. It is precisely the latter that REncDec is adapted to model.

different from both the CNN and the RNN architectures, and the Jackson-type estimate
makes this difference precise.

Currently known approximation results only focus on linear RNN encoder-decoder.
However, the density result can be extended to non-linear cases by following the same
approaches outlined in Section 3, due to the similarity with RNNs. The rate estimate is
less straightforward to extend to non-linear activations. Nevertheless, one may expect
that the uncovered relationship between the size the context vector and a low-rank type
of approximation should hold generally for encoder-decoder architectures. This is because
in all such structures, the input and output sequence (both may be infinite-dimensional)
only communicate through a bottle-neck coding vector (finite dimensional), and thus the
approximation should be viewed as a generalized low-rank approximation.

4.3 Attention-based architectures

In the final part of this section, we discuss approximation theory for the growingly pop-
ular attention-based architectures. The attention mechanism was first proposed in [4] in
the context of RNNs. Subsequently, it was employed in a variety of practical network
architectures. The attention mechanism, much like the encoder-decoder mechanism, is
a component that can be incorporated into existing models. Since its introduction, the at-
tention mechanism has become popular tool in applications, including natural language
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processing [85] and computer vision [24]. In fact, one of the most successful model fam-
ilies, the Transformer [85], is based on both the attention mechanism and the encoder-
decoder mechanism. However, our theoretical understanding of the attention mechanism
is currently limited, particularly with regard to its approximation properties.

Let us focus our discussion on the Transformer family of attention-based architectures.
Currently established approximation results include the universal approximation capabil-
ities of Transformer networks [81] and its sparse variants [82]. It is important to note that
in this context, the term Transformer refers specifically to the encoder component of the
original architecture proposed in [85].

In order to study the Transformer under the sequence approximation setting, it is con-
venient to restrict the index set T to a finite set T = {1, 2, . . . , τ}. Then, the approxima-
tion problem becomes finite-dimensional. The reason is as follows. The use of position
encoding in Transformer networks is necessary to eliminate their permutation equivari-
ance (we will show this exactly later). Position encoding is a sequence e where t 7→ e(t) is
a fixed or trainable function, independent of x. The sequence e preserves the information
of temporal order. For training convenience, the length of this encoding is fixed. As a re-
sult, Transformer networks are unable to directly process infinite-length sequences, unlike
RNNs and CNNs based architectures.

The simplest transformer block consists of the following components,

Attn(x)(t) = x(t) +
q

∑
i=1

Wi
o

τ

∑
s=1

σ
[(

Wi
Qx(t)

)⊤
Wi

K x(s)
]

W i
V x(s),

Trans(x)(t) = Attn(x)(t) + f
(
Attn(x)(t)

)
,

(4.25)

where Wi
Q, W i

K, W i
K ∈ R

m×d, Wi
o ∈ R

d×m. Here, Attn(x) is the attention block, σ is a nor-

malization usually taken as the softmax function, and τ is the maximum input sequence
length. The attention mechanism produces an output which is subsequently fed into
a common trainable feed-forward network f , pointwise in time. This constitutes a Trans-
former block. Define the Transformer hypothesis space by

H(m1,m2,q,l)
Trans =

{
Ĥ : Ĥ is a composition of l Transformer blocks t(m1,m2,q)

}
, (4.26)

where t(m1,m2,q) = Trans(·) is a Transformer block defined in (4.25), m1 is the trainable
dimension of the attention block (total degrees of freedom of Wo , WQ, WK, WV ), q is the
number of attention heads and m2 is the dimension of the trainable parameters in the

pointwise feed-forward network f . In [82], a sparse variants is defined, where the W i
Q

matrix in the attention block satisfies certain sparsity conditions. We denote the sparse
Transformer hypothesis space by

H (m1,m2,q,l)
SpTrans ⊂ H (m1,m2,q,l)

Trans , (4.27)

which is a subset of the Transformer hypothesis space.
We start with density results for the Transformer. First, note that without position

encoding, the Transformer hypothesis space is permutation equivariant. Concretely, let p
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be a permutation of the sequence index, which is a bijection on {1, . . . , τ}. For a sequence
x, we denote by x ◦ p the permuted sequence [x ◦ p](t) = x(p(t)). A functional sequence
H is said to be permutation equivariant if for all p and x we have H(x ◦ p) = H(x) ◦ p.
We can check that the Transformer block (4.25) is permutation equivariant if one does not
perform positional encoding. This certainly limits approximation properties, and thus
we hereafter assume that a fixed position encoding is added to the input x, such that the
model input becomes x + e.

In [81, 82], a density results for the Transformer is proved under the following condi-
tions. Assuming the target H is continuous, and the input sequence space is uniformly
bounded, then H can be approximated by

Ĥ ∈
⋃

l

H(1,4,2,l)
SpTrans ⊂

⋃

l

H(1,4,2,l)
Trans . (4.28)

This result is proved by a special construction. First, one uses a stack of attention blocks
to achieve the following condition:

1. For any input x, the value of the output x̃ are all distinct.

2. For all inputs x1, x2 such that x1 6= x2, their outputs x̃1 and x̃2 have no common value.

These conditions can be understood as for each t, x̃(t) captures the information of the
entire input sequence. Next, a deep stack of pointwise feed-forward blocks are constructed
to map each x̃(t) to the desired output. This construction results in a deep Transformer
architecture with a small width.

However, this construction is not generally how Transformer operates, since the first
part of the construction is an attention-only network, which is shown to degenerate quickly
[23]. In a similar vein, several studies such as [19, 53] have demonstrated that a Trans-
former can represent a CNN through careful parameterization. Therefore, density results
from CNN imply the density of the transformer. Again, there is little empirical evidence
that the Transformer behaves like a CNN in applications.

The ability for the Transformer to mimic other architectures is not surprising, since it
has many highly flexible components (encoder-decoders, fully connected networks, at-
tention mechanisms) that can be carefully, but often artificially, adjusted to represent other
known architectures as a special case.

In fact, we give here another example of such a representation that, to the best of
our knowledge, has not been reported in the literature, but is straight-forward to de-
rive. We can show that a two-layer Transformer can mimic the form of a generalized
Kolmogorov representation theorem [68]. This result states that for d dimensional com-

pact sets I1, . . . , Iτ ⊂ R
d, any continuous H : I1 × · · · × Iτ → R can be written as

H(x) =
2dτ

∑
q=0

Φq

(
τ

∑
s=1

φq,s

(
x(s)

)
)

, (4.29)

where Φq and {φq,s} are continuous functions. It is possible to design a two-layer Trans-
former exhibiting a similar form, implying density. For simplicity, we consider d = 1 and
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only the output at Ht when t = 1. The general case can be constructed similarly. One can
ensure that with position encoding, a pointwise feed-forward function is able to apply dif-
ferent mappings at each temporal index position. To see this, observe that for a collection

of continuous functions fi : [0, 1]d → R, i = 1, . . . , τ, we can find vectors {ei} and a con-

tinuous function F : R
d → R such that F(x + ei) = fi(x). Now suppose we have an input

sequence x.

• Layer 1. We set W i
o = 0 in the attention block, so that the input directly goes into

the pointwise feed-forward block. From the previous discussion, the pointwise feed-

forward network can be constructed to give an output y(1) : R → R
2τ+1, such that

y(1)(s) = cs[φ̂0,s(x(s)), . . . , φ̂2τ,s(x(s))]⊤, with c1 = 1/2 and cs = 1 when s > 1. Due

to the density of feed-forward neural networks, each φ̂j,s can be chosen to approxi-
mate any continuous function.

• Layer 2. In the attention block, by letting W i
K = 0, the softmax function gives a con-

stant output where softmax[(W i
Qx(t))⊤W i

K x(s)] ≡ 1/τ. Let W i
V = I, Wi

o = τ I and

h = 1, then we have Attn(y(1))(1) = ∑
τ
s=1 y(1)(s). Hence, the final output after the

feed-forward network with linear readout c⊤ = (1, . . . , 1) ∈ R
2τ+1 gives

H1(x) = c⊤Φ̂
(
Attn(y(1))(1)

)

=
2τ

∑
q=0

Φ̂q

(
τ

∑
s=1

[
y(1)(s)

]
q

)

=
2τ

∑
q=0

Φ̂q

(
τ

∑
s=1

φ̂q,s(s)

)
, (4.30)

where Φ̂ is again a feed-forward neural network that can be adjusted to approximate
any continuous function. Thus, the Kolmogorov representation can be approximated
through this particular construction.

This highlights a common issue in current approximation results for complex struc-
tures such as the transformer. Density-type results are rarely illuminating, since they can
be constructed in many ways due to the structural flexibility. However, they rarely re-
veal the working principles of the complex model under study. In particular, it gives little
insights to why and when these models should be used for applications. Such insights
may result from finer analysis of approximation properties, including Jackson-type and
Bernstein-type results as outlined for the other architectures previously.

To date, there are few - if any - Jackson or Berstein-type results for sequence modelling
using the Transformer. We mention a related series of works on static function approx-
imation with a variant of the Transformer architecture [1, 48, 49]. Here, the targets are
continuous functions H : [0, 1]τ → K, and K ⊂ R

n is a compact set. Examples include
classification problems where K is a probability simplex, and covariance matrix predic-
tion problems with K being the set of symmetric positive semi-definite matrices. The au-
thors consider a variant of the transformer architecture to approximate this target function
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family. For x ∈ [0, 1]τ, and Y1, · · · , YN ∈ K, an approximant of the following form is con-
sidered:

Ĥ(x) = Attn
(

D̂(Ê(x)), Y
)
=

N

∑
i=1

softmax
(

D̂(Ê(x))
)

i
δYi

, (4.31)

where Ê : R
τ → R

m, D̂ : R
m → R

N are two fully-connected neural networks, and δYi
is

a point mass at Yi. The softmax is taken along the i = 1, . . . , N direction. One may observe
the deviations of this architecture compared with the Transformer used in sequence mod-
elling (4.25). For this modified architecture, the authors derive an approximation error

estimate based on increasing the complexities of the encoder Ê and the decoder D̂. The
identified notion of regularity for the target to induce efficient approximation is smooth-
ness, similar to classical approximation of functions. However, the sequence approxima-
tion properties of the practical Transformer architecture (4.25), and in particular its relation
to memory structures in the data, remains an open problem. This is an important direction
of future research.

5 Discussion and outlook

Let us first summarize in Table 5.1 the approximation results we discussed in Sections 3
to 4. Observe that most results in the literature are of the density-type, and current Jackson
and Bernstein-type results are often limited to the simplified setting of linear activations.
Nevertheless, these rate estimates are instructive in revealing some key insights on the
approximation of sequence relationships using different architectures.

Table 5.1: Summary of approximation results for sequence modelling.

Density-type Jackson-type Bernstein-type

RNN X Barron, linear linear

CNN X linear -

REncDec X linear -

Transformer X - -

We can collectively summarize this insight as a form of structural compatibility. That
is to say:

Each model architecture is efficient in approximating precisely those targets that resem-
ble its temporal structure.

For example, we saw that RNNs are particularly good at approximating relationships with
an exponentially decaying memory pattern. We can attribute this to the fact that RNNs
themselves have an exponentially decaying memory structure, as evidenced by the ex-
pression Eq. (3.9). Similarly, temporal CNNs are effective in approximating targets whose
memory structure has low-rank under tensorisation, i.e. can be written as the product-sum
of few tensors. This is indeed what the temporal CNN itself looks like: we recall that the

tensorisation rank of the temporal CNN with K layers and M channels scales like KM1/K.
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The same holds for the RNN encoder-decoder with respect to its low-rank structure under
temporal products, induced by the context vector.

We emphasize that this notion of rank is very different from that in temporal CNN
approximation. In the convolution case, the rank refers to the tensorisation procedure
related to the stacked convolutional structure of the temporal CNN. In the case of recurrent
encoder-decoders, the rank refers to the amount of temporal coupling between the input
sequence and the output sequence. Mathematically, this coupling is measured by the rate
of decay of the singular values in the expansion (4.23). The recurrent encoder-decoder
with small context vector precisely parameterize a temporal relationship that has little
coupling between inputs and outputs. The Jackson-type results show that the recurrent
encoder-decoder is indeed adapted to approximate target relationships having the same
property.

The requirement of structural compatibility is consistent with classical approximation
theory. For example, trigonometric polynomials with low-orders are themselves smooth
functions with small gradient-norms, and thus are adapted to approximating these func-
tions. The same pattern is observed for non-linear approximation, wavelets and multi-
resolution analysis, where weakened smoothness, sparsity and multi-scale structures dic-
tate both the model structures and effective targets for their application [22].

Now, let us discuss future research directions to further our understanding of the
approximation theory of sequence modelling. Besides the obvious task of completing
Table 5.1, we may wish to ask: What does a successful theory of sequence approximation
entail? While there is no singular definition of success, it is reasonable to discuss desired
outcomes in two broad categories.

On the practical side, one pressing need is to reduce the amount of trial and error dur-
ing model selection. The understanding of the suitability of different model architectures
for different problem types is essential in guiding implementations in practice. Therefore,
an important task is to formalize a model selection workflow for sequence modelling. This
certainly requires more than approximation theory, but the current understanding already
suggests that we should quantify the memory patterns observed in datasets to select the
model archetype. Developing this concrete pipeline based on well-understood theory is
of great interest and importance. Another practical application worth noting is the simpli-
fication of model architectures. Modern architectures developed for specific applications
may be very complex, and it is likely that some of their components are not performance
critical. A theory of sequence modelling should help to identify the components that may
not be necessary, so as to simplify and distil the essential modelling techniques.

On the mathematical side, following the development of classical approximation the-
ory [22], it is of interest to characterize the so-called approximation spaces that are asso-
ciated with each sequence modelling hypothesis space. Recall that the results for RNN in
Section 3 suggests a type of approximation space in the form of

CRNN =
{

H ∈ C : ‖H‖RNN < ∞
}

, (5.1)

where the norm ‖ · ‖RNN may take the form

‖H‖RNN = ‖H‖+ |H|∗. (5.2)
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Here, ‖H‖ is the usual uniform norm ‖H‖ = supt sup‖x‖L∞≤1 |Ht(x)|, and |H|∗ is a suit-

able semi-norm measuring exponential decay. For example, motivated by Eq. (3.13), we
may take

|H|∗ = sup
t∈R

max
r=1,...,α+1

sup
x∈X0

∣∣eβtH
(r)
t (x)

∣∣, (5.3)

where β is the supremum value for which |eβtH
(r)
t (x)| remains finite for all t, x ∈ X0, and

r = 1, . . . , α + 1. The set X0 ⊂ X is a suitable set of test sequences. One can check that
(CRNN, ‖ · ‖RNN) forms a normed linear subspace. Then, the Jackson-type estimate can be
rewritten as the familiar form

inf
Ĥ∈Hm

L-RNN

‖H − Ĥ‖ ≤ Constant × ‖H‖RNN

mα
. (5.4)

Hence, this suggests that the approximation space CRNN is the RNN analogue of the usual
Sobolev spaces (Wα,∞) that characterizes trigonometric polynomial approximation. The
space CRNN is reminiscent of the Schwartz spaces [74] arising in Fourier analysis, except
that we are now concerned with exponentially (instead of polynomially) decaying deriva-
tives. Note that here, we are primarily concerned with the effect of temporal structure on
approximation. Since time is one-dimensional, regularity related to smoothness should be
expected. In the case where the ambient dimension of the input sequence d is large (and
the relationship is non-linear), one expects that smoothness alone is insufficient to ensure
efficient approximation. In this case, one may envision approximation spaces with a com-
bination of smoothness conditions in the temporal direction and Barron-type conditions
in the spatial direction. Similar constructions of approximation spaces can be made from
Jackson-type results for the other architectures we described before. To characterize these
spaces, their interpolation theory and whether they correspond to familiar spaces arising
from analysis is of keen mathematical interest. Another aspect is characterizing the differ-
ence between linear and non-linear approximation. Taking the RNN as an example, the
usual RNN (with trainable W, U, b) is a non-linear hypothesis space, in the sense that the
linear combination of two functional sequences from Hm

RNN is in general a new functional

sequence not in Hm
RNN, but H2m

RNN. On the contrary, reservoir computing systems take
W, U, b as fixed random realizations, and Hm

ESN ⊕Hm
ESN = Hm

ESN. That is to say, the Hm
ESN

is a linear approximation space. In classical approximation theory, linear and non-linear
(adaptive) approximation lead to different approximation spaces [22]. It is thus of inter-
est to investigate this distinction for sequence modelling, e.g., clarifying the difference of
using ESNs versus RNNs for approximation.

Beyond approximation theory, it is important to note that a comprehensive under-
standing of sequence modelling should also account for optimization and generalization
aspects. Indeed, principled sequence modelling in machine learning is not only the de-
sign of model architectures, but also how to train them and how to regularize them to
maximize testing performance. For example, it is observed that while RNN training can
be shown to be stable in the certain regimes [3, 38], it can sometimes be provably ineffec-
tive in the presence of long-term memory [55, 56]. Generalization theories have also been
explored, e.g. in [14, 79, 83].
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Other than deterministic model families, there are also results on modeling sequential
data via (latent) neural controlled (stochastic) differential equations, such as hybrid archi-
tectures with GANs [44], universal neural operators for causality [30], and neural SPDE
models motivated by mild solutions [40, 71]. Applications include time series genera-
tion [60], irregular and long time series analysis [45, 64], and online prediction [63]. These
interesting aspects of sequence modelling theory are beyond the scope of the current sur-
vey.
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