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Abstract

Continual learning is a promising alternative
to the current pretrain-and-finetune paradigm:
It aims to learn a model on a sequence of tasks
without forgetting knowledge from preceding
tasks. We investigate continual learning for Vi-
sual Question Answering and show that perfor-
mance highly depends on task design, order,
and similarity — where tasks may be formu-
lated according to either modality. Our results
suggest that incremental learning of language
reasoning skills (such as questions about color,
count etc.) is more difficult than incrementally
learning visual categories. We show that this
difficulty is related to task similarity, where
heterogeneous tasks lead to more severe for-
getting. We also demonstrate that naive fine-
tuning of pretrained models is insufficient, and
recent continual learning approaches can re-
duce forgetting by more than 20%. We pro-
pose a simple yet effective PSEUDO-REPLAY
algorithm, which improves results while using
less memory compared to standard replay. Fi-
nally, to measure gradual forgetting we intro-
duce a new metric that takes into account the
semantic similarity of predicted answers.

1 Introduction

The standard paradigm for Vision+Language
(V+L) problems is to pretrain large-scale models,
which are then finetuned and evaluated on inde-
pendent and identically distributed (i.i.d.) data. In
practice, the i.i.d. assumption often does not hold:
New data becomes available sequentially, which
often results in a change of data distribution. This
is referred to as a new ‘task’ by the continual learn-
ing literature (Biesialska et al., 2020). Under this
setting, continuously adapting an existing model
via finetuning will lead to catastrophic forgetting,
i.e. significant performance degradation on previ-
ous data (McCloskey and Cohen, 1989; Ratcliff,
1990). Continual learning provides a counterpart
to i.i.d. learning by defining a class of algorithms
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Figure 1: Predicted answers as the model continuously
learns a sequence of tasks. Catastrophic forgetting
causes incorrect predictions for preceding tasks.

aiming at incremental learning without forgetting.
This line of work becomes increasingly relevant
given the financial and environmental costs of (re-)
training large models (Strubell et al., 2019; Bender
et al., 2021), and the inability of static models to
adequately generalize in a dynamic world (Lazari-
dou et al., 2021). While continual learning has
been widely studied in the computer vision commu-
nity, its use within V+L problems remains under-
explored — with a few notable exceptions (Greco
et al., 2019; Nguyen et al., 2019b; Hayes et al.,
2020; Jin et al., 2020; Del Chiaro et al., 2020).

V+L applications are a particularly challenging
setting for continual learning since tasks can be
formulated according to each modality. In particu-
lar, task definitions for Visual Question Answering
(VQA) can either be based on the language rea-
soning skills (as defined by the question type, cf.
Figure 1) or the objects in the image (Whitehead
et al., 2021). While there is increasing evidence
that continual learning performance is highly de-
pendent on the task formulation, i.e. task design,
order, and similarity (Van de Ven and Tolias, 2019;
Yoon et al., 2020; Delange et al., 2021), tasks are
often formulated in an ad-hoc fashion and vary
widely for each application and dataset.

This paper addresses this challenge by conduct-
ing a systematic study on how different task for-
mulations impact performance and forgetting in
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Figure 2: Tasks in continual VQA learning can be based on visual content, e.g. object categories split into into
Diverse groups (left), or according to a Taxonomy such as ‘food’ items, ‘animals’ etc. (middle); Tasks can also be
based on Question Types representing different reasoning skills, such as color recognition or counting (right).

VQA. We introduce three settings based on the
VQA-v2 dataset (Goyal et al., 2017) as illustrated
in Figure 2 — two defined by visual objects and
one by reasoning skills as determined by the ques-
tions. We first characterize the difficulty of each
setting by studying pairwise task relationships and
relate the amount of forgetting, i.e. the accuracy
decrease on the previous task, to task similarity.
Our results show that dissimilar tasks exhibit more
severe forgetting. We then evaluate several reg-
ularization and memory-based continual learning
methods using randomly initialized and pretrained
models across our three settings. Based on the ob-
servation that approaches which store samples from
previous tasks in their ‘memory’ perform reliably
well, we propose a simple yet effective PSEUDO-
REPLAY algorithm that combines data augmenta-
tion and distillation for greater memory efficiency
and better privacy. We also introduce a new metric,
termed Semantic Backward Transfer, which penal-
izes semantically similar answer changes less than
nonsensical ones. Finally, we demonstrate that task
order leads to high performance variance per ques-
tion type and analyze how representations from
each modality change during continual learning.

2 Problem formulation

In continual learning, model parameters 6 are in-
crementally updated as new data become available.
We assume that samples from tasks t = 1...7T
arrive sequentially as D; = {a;, yi}fv:tl, where NV}
is the number of data for task ¢. Following previous
work, VQA is formulated as a multi-label classifi-
cation problem with soft targets y; (Anderson et al.,
2018). Starting from parameters 6;_; of the previ-
ous model, the updated parameters 0, are obtained

Setting Task Train  Val Test  Classes
Group 1 44254 11148 28315 2205
Q Group 2 39867 10202 22713 1874
§ Group 3 37477 9386 23095 1849
a Group 4 35264 8871 22157 2119
Group 5 24454 6028 14490 1777
o Animals 37270 9237 22588 1331
g Food 26191 6612 15967 1365
g Interior 43576 11038 26594 2096
c;é Sports 32885 8468 19205 1471
Transport 41394 10280 25416 1954
Action 18730 4700 11008 233
g Color 34588 8578 21559 92
Z Count 38857 9649 23261 42
& Scene 25850 6417 14847 170
Subcategory 22324 8578 21559 659

Table 1: Statistics per task within each setting.

by training on the new data D;. Some approaches
also use a memory M, containing a subset of sam-
ples from previous tasks, e.g. D1,...,D¢ 1. In
our setup, all tasks share a common output head
which is extended with new classes from each task.
This allows inference to be task-agnostic but cre-
ates a more challenging setting than multi-head
learning where separate heads are learned for each
task (Hussain et al., 2021). At the end of the train-
ing sequence, the objective is to achieve strong
performance across all tasks observed so far. This
objective encloses two challenges: 1) minimizing
catastrophic forgetting of tasks seen earlier in train-
ing, 2) facilitating positive transfer to improve per-
formance on new tasks (Hadsell et al., 2020).

3 Settings for Continual VQA

We define three continual learning settings, which
include different task splits, as summarized in Ta-
ble 1 and illustrated in Figure 2.



3.1 Visual Settings

We design two settings based on visual object cate-
gories. We take advantage of the fact that images
in the VQA-v2 dataset originate from the COCO
dataset (Lin et al., 2014) which provides object-
level image annotations. Following previous work
in image captioning (Del Chiaro et al., 2020), we
organize 50 object categories into five groups. Im-
ages with objects from multiple groups are dis-
carded in order to create clean task splits Dy — re-
sulting in a total of 181K train, 45K validation, and
110K test samples.

For the first setting, Diverse Domains, tasks are
defined by grouping the object categories randomly.
Each task is assigned a balanced count of 10 dis-
tinct objects resulting in five tasks. This type of set-
ting corresponds to common practice of continual
learning research within computer vision (Rebuffi
et al., 2017; Lomonaco and Maltoni, 2017), and
reflects a real-world scenario where sequential data
do not necessarily follow a taxonomy.

The second setting, Taxonomy Domains groups
objects based on their common super-category as
in (Del Chiaro et al., 2020). This results in five
tasks: Animals, Food, Interior, Sports, and Trans-
port. Note that the number of object classes per
task under this definition is unbalanced since splits
depend on the size of the super-category. More
details on each task can be found in Appendix A.

3.2 Language Setting

We create a third setting Question Types, where
each task corresponds to learning to answer a dif-
ferent category of questions. We use a classifica-
tion scheme developed by Whitehead et al. (2021)
to form a sequence of five tasks: Count, Color,
Scene-level, Subcategory, and Action recognition.
The splits for Count, Color, and Subcategory ques-
tions are obtained from Whitehead et al. (2021).
We create two additional tasks from the remain-
ing questions. In particular, we cluster question
embeddings from Sentence-BERT (Reimers and
Gurevych, 2019) ! so that each cluster has at least
15 questions and a minimum cosine similarity of
0.8 between all embeddings. We annotate clusters
as ‘scene’, ‘action’ or ‘irrelevant’ question types.
Based on a seed of 10K annotated questions, we
retrieve all other questions with similarity above

"We use the ‘all-MiniLM-L6-v2’ model and Fast Clus-
tering algorithm from the sentence-transformers package
(https://www.sbert.net/).

0.8 and label them using the K-nearest neighbor
algorithm (K = 5). Question Types have a total of
140K train, 35K validation and 84K test samples
(cf. Table 1). Common question words and answers
per task are presented in the Appendix (Figure 8).

4 Experimental Framework

In our experiments, we use the UNITER-
base (Chen et al., 2020) model which has a single-
stream transformer architecture and shows strong
performance compared to state-of-the-art V+L
model architectures (Bugliarello et al., 2021). In
experiments where we finetune a pretrained model,
we use the checkpoint from (Chen et al., 2020)
which is pretrained among others on in-domain
images, i.e. COCO captions (Lin et al., 2014).

4.1 Defining Task Difficulty via Pairwise Task
Relationships

We first characterize the difficulty of each setting
by describing pairwise task relationships, following
studies in transfer (Zamir et al., 2018) and multitask
learning (Standley et al., 2020; Lu et al., 2020).
In particular, we measure the extent to which each
task is forgotten after training on a second task.

Diverse Domains
Task 2

Task 1 Groupl Group2 Group3 Group4 Group5
Group 1 67.52 -6.58 -5.21 -4.84 -7.09
Group 2 -4.55 67.92 -5.61 -4.51 -4.99
Group 3 -4.64 -8.39 70.83 -7.37 -11.66
Group 4 -4.69 -7.10 -7.40 65.03 -9.63
Group 5 -4.29 -5.82 -6.09 -3.80 63.24
Taxonomy Domains

Task 2 Animals  Food Interior ~ Sports  Transport
Task 1
Animals 73.29 -8.06 -3.63 -5.84 -4.35
Food -16.38 63.00 -4.29 -17.08 -11.94
Interior -5.75 -5.19 65.26 -7.63 -2.83
Sports -11.63 -18.20 -9.60 73.36 -9.47
Transport -4.19 -8.48 -2.62 -3.67 64.50
Question Types

Task 2 Action Color Count Scene Subcat.
Task 1
Action 78.01 -12.58
Color -62.46
Count
Scene
Subcat.

Table 2: Task difficulty measured by forgetting in pair-
wise tasks. Diagonal elements show the accuracy after
training on Task 1. Non-diagonal elements show rela-
tive BWT after finetuning on Task 2.

Experimental Setup. We finetune the pretrained
UNITER model on Task 7} and compute the ac-


https://www.sbert.net/

Dissimilarity Diverse Taxonomy Questions
Factor Domains Domains Types
Answer distribution 0.567* 0.791%* 0.795%*
Image embedding 0.248 0.492% -0.640%*
Question embedding 0.184 0.531%* 0.631%*
Joint embedding 0.220 0.622%* -0.223

Table 3: Spearman correlation of pairwise performance
drop and embedding dissimilarity (* where p < 0.05).

curacy Ajp on its test set. Then, we finetune
this model on another Task 75 and compute the
new accuracy Ao on the test set of 77. Forget-
ting is measured as the relative accuracy drop:
(A2 — A11)/A11. Regardless of dataset size, we
finetune on 75 for a fixed number of 400 steps using
a batch size of 512 and learning rate Se-5.

Observations. Table 2 shows the relative accu-
racy drop for all task pairs. We observe that for-
getting in Taxonomy Domains fluctuates more de-
pending on the task pairing, compared to Diverse
Domains. Question Types is evidently a more chal-
lenging setting, where several task combinations
show more than 90% drop. In all settings, task
relationships are asymmetric. We find that some
relations reflect semantic similarity, e.g., low for-
getting between Food and Interior, as the two tasks
are expected to contain similar visual scenes and
vocabulary. We also observe that the model is more
robust against forgetting when Task 75 has a wide
range of possible answers (e.g., Interior); while 75
with a narrow answer set (e.g., Food, Color, Count)
lead to maximum forgetting.

Task similarity and forgetting. To gain further
insight into which factors contribute to forgetting,
we measure the correlation between accuracy drop
and different proxies of task similarity. In partic-
ular, we consider the answer distributions P, )
of Tasks 711,75 respectively, as well as average
embeddings of the image, question and the joint
pair. Since some answers of 7 do not appear in
Ty, we measure the skew divergence (Lee, 2001)
between P and @ as the KL divergence between
P and a mixture distribution (1 — o) P + @) with
a = 0.99 (Ruder and Plank, 2017). For the in-
put embeddings, we measure the cosine distance
between the average task representation. As im-
age representations, we utilize Faster R-CNN fea-
tures from (Anderson et al., 2018), while questions
are embedded using Sentence-BERT. Joint embed-
dings for image-question pairs are obtained using
the final layer representation of the [CLS] token of

UNITER 2. The detailed similarity measures are
shown in the Appendix Table 9.

The correlation results in Table 3 indicate that
the more similar two consecutive tasks are, the less
forgetting occurs. The divergence of answer distri-
butions consistently correlates with forgetting, but
does not fully account for the performance drop.
For example, the divergence of Interior from Ani-
mals and Sports answer distributions is the same,
however Sports leads to 1.88% more forgetting.
Regarding the embedding distances, image embed-
dings show the highest correlation in the visual
Taxonomy Domain, meaning that the more visually
similar two domains are, the less severe forgetting
is. We observe the same relationship mirrored in
Question Types for question embeddings. How-
ever, we find no factor to correlate significantly
with Diverse Domains, where tasks are generally
similar to each other (cf. Appendix 9). Looking
across modalities, we find that question and joint
similarities in Taxonomy Domains correlate with
forgetting, showing that the shift of the visual do-
mains results in changes of the referred objects and
types of questions per task.’

4.2 Continual Learning Methods

We next benchmark common continual learn-
ing algorithms, including regularization- and
replay-based approaches. We investigate two
regularization-based approaches: Learning with-
out Forgetting (LWF) (Li and Hoiem, 2018), which
uses knowledge distillation (Hinton et al., 2015)
in order to retain knowledge from previous tasks,
and Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017). The EWC regularization term
discourages big changes of parameters that were
important for previous tasks, where importance is
approximated using the Fisher information matrix.

We apply three types of replay approaches that
allow access to a memory of past samples. Experi-
ence Replay (ER) (Chaudhry et al., 2019b) is the
most straightforward approach, as it samples train-
ing data from both the current task and memory
at each training step. Average Gradient Episodic
Memory (A-GEM) (Lopez-Paz and Ranzato, 2017;

“The [CLS] token aggregates multimodal information. It is
the first token of the input sequence and the final transformer
layer passes only its representation to the classifier.

3We notice that the more similar images of two Question
Types tasks are, the more forgetting occurs. A possible ex-
planation is that new questions for similar images ‘overwrite’
previous knowledge. However, all cosine distances of image
embeddings are too low (<0.05) to lead to any conclusions.



Chaudhry et al., 2019a) utilizes the memory of past
data to ensure that gradient updates on past and
new data are aligned.

We also experiment with a PSEUDO-REPLAY
method for the Question Types setting. Instead
of storing raw data from previous tasks, we use a
data augmentation method, inspired by (Kafle et al.,
2017; Kil et al., 2021). When training on task ¢, we
augment the data D, by retrieving past questions
based on their shared detected objects classes. For
example, if an elephant is detected on the current
picture, we retrieve a past question about an ele-
phant. We then use the previous model fp, , to
generate a distribution § = fp, , (&) which serves
as soft targets for the new sample &. By not stor-
ing the original answers, we address privacy and
efficiency concerns of replay approaches (Van de
Ven and Tolias, 2018; Delange et al., 2021).

4.3 Evaluation Metrics

After training on task ¢, we compute the VQA ac-
curacy A;; on data from the previous task i. We
report the macro-average accuracy at the end of
the training sequence: A = % Zg’zl Ar;. Fol-
lowing Riemer et al. (2019), we report the learned
accuracy LA = % ZiTzl A; ;, which measures the
ability to learn the new task . We also compute
backward transfer BWT = =L S Ary —
A; ; (Lopez-Paz and Ranzato, 2017), that captures
the impact of catastrophic forgetting.

In addition, we introduce a new metric, we term
semantic backward transfer (SBWT), that weights
backward transfer with the semantic distance of the
predicted answers. The motivation for this metric
is that some forgetting is worse than others. Con-
sider the example in Figure 1, where the ground
truth is ‘duck’. After training on subsequent tasks,
the sample gets misclassified as ‘seagull’” which
might have a milder impact on the downstream ap-
plication than completely unsuited answers such
as ‘black and white’ or ‘one’. For each sample
j = 1..., N of task 7, we measure the accuracy
difference A;” of the answers predicted by the 7'-
th and i-th models and weigh it by cosine distance
of the two answer embeddings er; and e;;. The
final SBWT is computed as :

1 T-1

SBWT = T 12::1 St (D

where St ; is the average weighted accuracy differ-

ence for task i:

1 Y :
ST7i Z(l — cos(eTj, e,-j)) . A?Z (2)

le

In our implementation, we use averaged 300-
dimensional GloVE embeddings (Pennington et al.,
2014), since most answers are single words.

4.4 Experimental Setup

We investigate our three task settings on the VQA-
v2 dataset (Goyal et al., 2017). Since ground truths
are publicly available for the train and validation
sets, we use validation samples as our test set, and
create a new validation set by randomly sampling
20% of the training images. We follow a single
head setting to allow for task-agnostic inference
but assume knowledge of task boundaries during
training. Memory-based approaches store 500 ran-
domly selected samples per past task. For further
implementation details, please refer to Appendix B.
We consider two baselines: The Fix Model base-
line represents the generalization ability of the
model across all tasks after being trained on only
the first task D;. The vanilla Finetuning baseline
represents the performance degradation if no mea-
sures are taken to prevent forgetting. We also report
the performance of joint training on all the data si-
multaneously (Joint) as an upper bound.

5 Results

5.1 Continual Learning Results

Table 4 summarizes the results averaged over five
task orders. The results show an increasing diffi-
culty for the three incremental learning task defi-
nitions, i.e. Diversity Domains < Taxonomy Do-
mains < Question Types, which is in line with
the results from our pairwise task characterization
in Section 4.1. Although Question Types has the
highest Joint accuracy, naive finetuning shows poor
performance: it has the lowest final accuracy and
large negative BWT. The low Fixed Model accu-
racy corroborates that tasks are highly dissimilar as
a model trained on a single task fails to generalize.

Pretraining. Our results also confirm that pre-
training leads to models that are more robust to for-
getting (Mehta et al., 2021): all metrics consistently
improve starting from a pretrained model. Pretrain-
ing combined with naive finetuning achieves on
average 58% relative accuracy improvement over
finetuning a model from scratch. Interestingly, the



w/o Pretraining

w/ Pretraining

Split Method Accuracy LA BWT SBWT Accuracy LA BWT SBWT
Fixed Model 41.60 + 0.84 - - - 57.38 + 083 - - -
Finetuning 49.64 + 078 56.69 - 028 -8.80 + 0.80 —5.35 + 061 64.59 +0s6 6777 022 -3.97 + 059 -1.93 + 039

2 LwF 50.70 + 056 54.67 + 042 -4.96 + 029 -2.89 +0.17 65.23 +042  67.62 +025  -3.02 + 044 -1.50 + o028
§ AGEM 51.56 +078  56.72 - 030 -6.45 +o0s -3.84 + 060 65.65 ~0s5  67.72 +030  -2.60 + 071 -1.22 + 038
A EWC 52.05 +030 56.49 + 02 -5.55 + 060 =312 + 040 66.26 +055  67.58 +027  -1.65 + 045 -0.67 + 029
ER 5436 033 5631 +051 =245 049 -1.42 + 026 66.66 + 050 6755 +023  -1.11 + 041 -0.51 027
Joint 60.41 +0.03 - - - 69.76 +o.18 - - -
Fixed Model 39.96 + 1.05 - - - 55.00 + 095 - - -
o Finetuning 4772 o072 5775 £024 -12.53 065 -8.45 + o038 63.65 063 6877 012 -6.40 + 06 -3.89 105
g LwF 48.05 +024 5525 +027 -9.00 + 038 -6.13 + 04 64.83 050 6873 +017  -4.88 + 069 -2.88 + 04
g AGEM 50.51 + 066 57.80 =025 -9.10 + 079 -5.77 + 055 66.52 +034 68.86 01> -2.92 050 -1.63 +o
% EWC 5217 +o0s54 5749 +019  -6.65 +0.44 -4.33 + 028 67.70 020 6857 +o016  -1.09 =033 -0.62 019
= ER 54.60 - 014 57.67 +028 -3.84 00 -2.38 027 66.76 ~016  68.61 +013 232 +016 -1.22 +o0.10
Joint 60.82 +0.02 - - - 70.08 +0.18 - - -
Fixed Model 18.81 + 590 - - - 25.54 + 575 - - -
Finetuning 23.30 +883 6524 04 -52.42 + 1088 -39.86 + 1208 | 48.81 +556 7294 020 -30.17 707 -22.43 +7.0
2 LwF 26.23 +856  60.69 + 143  -43.08 £ 1122 -34.32 19904 | 46.61 £395 72,06 044 -31.82 £542 2513 1535
2 AGEM 50.73 +192 6538 056 -18.31 +304  -10.02 + 130 | 68.30 074 7296 +024  -5.83 + 108 -2.95 + 06
ig EWC 36.77 +501  49.05 38 -15.35 +585  -11.76 =541 | 66.77 +354  70.03 103  -4.08 + 358 -2.62 + 208
o PSEUDO-REPLAY 5522 +175 65.12 046 -12.37 + 257 729 &6 67.66 ~1.15 7297 + 026 -6.63 174 -3.27 £ 098
ER 59.54 032 65.09 + o052 -6.93 + 071 -3.50 035 69.18 +038 7282 1022 -4.56 1056 -1.82 £ o
Joint 66.35 +0.24 - - - 72.54 +0.15 - - -

Table 4: Results from VQA Incremental Learning. We report the average and standard deviation over five random
task orders. LA: Learned Accuracy, BWT: Backward Transfer, SBWT: Semantic Backward Transfer.

pretrained Fixed Model is able to generalize reason-
ably well to other domains for both image-based
settings, and the final Pretraining+Finetuning accu-
racy exceeds the Joint accuracy without pretraining.
These results indicate that learning generic V+L
representations via pretraining has persistent ben-
efits. However, pretraining is insufficient for en-
suring continual learning and additional strategies
improve the final accuracy by 8.83% on average.

Continual Learning Methods. Among contin-
val learning methods, LwF offers the smallest
gains in terms of final accuracy and forgetting. *
This shortcoming is reasonable considering that
LwF generates pseudo-labels using the current data,
which may be too noisy if the answers for the cur-
rent and previous tasks differ substantially. In con-
trast, our PSEUDO-REPLAY method, which com-
bines distillation and replay, does not suffer from
the same limitation and achieves almost 20% im-
provement of the accuracy in Question Types.
Pretraining+EWC achieves the highest accuracy
in the Taxonomy Domains. However, when deal-
ing with heterogeneous tasks (i.e. within Question
Types) the high regularization weights, which are
required to prevent forgetting, end up limiting the
model’s ability to adapt to new and dissimilar tasks.
This over-stability is also reflected in the low LA
of EWC, which indicates that the model struggles
to learn new tasks. On the other hand, memory-

“Despite searching a wide range of values, we were unable
to find a distillation weight that improves the final accuracy of
the pretrained model in Question Types.

based approaches have consistently high LA. In ad-
dition, ER shows the best performance with models
trained from scratch as well as for the challenging
setting of Question Types.

Measuring Forgetting. Next, we compare our
newly introduced metric SBWT, which takes se-
mantic similarities into account, to the standard
BWT, which measures absolute forgetting. We ob-
serve some notable differences, which indicate that
SBWT favors strong models that forget gradually.
For instance, EWC w/o pretraining shows lower
performance and LA under the Question Types
setting compared to, e.g. AGEM w/o pretraining.
However, it receives a better BWT score. We make
similar observations for LWF vs. AGEM in Taxon-
omy Domains w/o pretraining, and EWC vs. ER
in Taxonomy Domains with pretraining. Table 9 in
the Appendix provides an example-based analysis,
showing that semantically more similar answers
have higher SBWT scores.

5.2 Effect of Memory Size

Here, we compare the memory size for ER and our
new PSEUDO-REPLAY method. PSEUDO-REPLAY
only stores questions and uses the previous check-
point to generate soft pseudo-labels. We choose
the Question Types setting, as it is most prone to
forgetting. In general, more memory means less
forgetting but at a higher computation and storage
cost. Figure 3 shows the average accuracy for
three memory sizes across training. At each step,
we compute the average accuracy of the experi-
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Figure 4: Sensitivity to task order as illustrated for
Question Types. Each bar shows the accuracy of a task
sequence ending with a different task.

enced tasks up to that point. As expected, both
methods benefit from access to a larger memory.
PSEUDO-REPLAY shows comparable performance
for up to three tasks, while raw ER replay becomes
more advantageous as more tasks are added. We
attribute this convergence in performance to errors
by PSEUDO-REPLAY’s pseudo-labeling causing
confirmation bias (Tarvainen and Valpola, 2017).
Despite this limitation, PSEUDO-REPLAY exceeds
the performance of naive finetuning by over 18%
when storing only 500 samples per task.

5.3 Sensitivity to Task Order

Next, we investigate the impact of task order. Re-
sults in Table 4 were averaged over five random
task orders. In real scenarios, however, tasks would
appear in a specific order. The high variance of the
results in Question Types already indicates that task
order can influence performance. To verify this, we
plot in Figure 4 the final accuracy of a pretrained

w/o Pretraining

Method What animal What room  What sport
Finetuning  33.09 £ 1338 54.38 £32.42 25.14 +32.11
EWC 48.18 +15.67 83.48 +£7.61 62.81 +13.67
ER 73.114+070  89.04 +2.80 87.20 +1.84
w/ Pretraining
Method What animal What room  What sport
Finetuning  75.07 £3.54 8326 £ 1247 69.92 £ 14.14
EWC 81.75+£142 9432+088 90.82+1.36
ER 80.73 £037 94.10+139 90.92 +£0.71

Table 5: Accuracy and standard deviation of the best
performing models on different sub-questions in Tax-
onomy Domains.

model for five training sequences, each ending with
a different task. Our results show that task order
can lead to Finetuning accuracy that varies more
than 15%. Although EWC improves the average
accuracy, there is still a 10% fluctuation depend-
ing on the order. However, replay-based methods
are able to improve performance and mitigate the
sensitivity to task order.

While Table 4 shows low variance in Taxonomy
Domains, we find high variance when examining
the performance on specific questions. In partic-
ular, we find that certain question types, such as
Animals, Interior, and Sports, have high variance.
Table 5 reveals a standard deviation which is up to
30 times higher compared to the average results in
Table 4. High standard deviation across random-
ized task orders is problematic since models can
have different behavior in practice despite similar
(aggregated) performance. In other words, the
current task performance will highly depend on the
previous task order, even though the overall accu-
racy from the randomized trials appears similar.

5.4 Representation Analysis

Finally, we ask how representations from each
modality evolve throughout the training sequence
and compare this evolution across our continual
learning settings. We use centered kernel align-
ment (CKA) (Kornblith et al., 2019) to track the
representation similarity of sequentially finetuned
models. We extract representations X} of the vali-
dation data of the first task after training for each
task¢ = 1..-T, and measure the CKA similarity
of X5, to the original representations X{. Fig-
ure 5 shows the evolution of the representation of
the [CLS] token from the final transformer layer
as well as the average representation of visual and
textual tokens from the embedding and final layers.

Across all settings, the representations of ques-
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Figure 5: Representation similarity for the first task under the three settings.

tion tokens retain higher similarity than the image
tokens. This suggests that the features extracted
from the visual inputs in order to predict an answer
are more dependent on the current task than the
features extracted from the more reusable question
tokens. We also corroborate previous findings (Ra-
masesh et al., 2021) showing that representations
from deeper layers change more during continual
learning. These results highlight the importance of
stabilizing visual representations in deeper layers.

6 Related Work

To the best of our knowledge, this is the first work
studying the impact of task formulation for con-
tinual learning in V+L models. Past studies exam-
ined the relationship between catastrophic forget-
ting and different aspects of a continual learning
algorithm, such as the activation function, dropout,
and learning rate schedule (Goodfellow et al., 2013;
Mirzadeh et al., 2020). Other work has investi-
gated which layers of deep neural networks forget
more (Nguyen et al., 2021), the role of task simi-
larity (Ramasesh et al., 2021; Lee et al., 2021) and
which properties of task sequences amplify forget-
ting (Nguyen et al., 2019a). However, all of these
studies have focused on image classification tasks.

Previous work on V+L continual learning has
studied a range of different tasks. Del Chiaro et al.
(2020) and Nguyen et al. (2019b) study continual
learning for domain- and class-incremental image
captioning, while Jin et al. (2020) provide a bench-
mark for task-agnostic phrase prediction to test
compositionality and soft task boundaries. Kemker
et al. (2018) propose a multimodal continual learn-
ing setting, where audio and image classification
tasks are learned sequentially.

More closely related to our work, Greco et al.
(2019) explore the effect of forgetting in VQA with
two question types (‘Wh-" and binary questions).

Consistent with our findings, they show that task or-
der influences forgetting and that continual learning
methods can alleviate forgetting. However, their
study is limited to only two tasks and does not test
the impact of pretrained models, which, as we show,
can mitigate forgetting. Hayes et al. (2020) also
study continual learning of question-based tasks
focusing on a challenging low-resource online set-
ting, where new samples are available for a single
update. Our study focuses on a less strict yet practi-
cal scenario where models are updated periodically
with all data for the new task until convergence.

7 Conclusion

We empirically investigate the impact of task for-
mulation, i.e. task design, order and similarity,
on continual learning in VQA. We evaluate a
transformer-based model and benchmark several
methods, including a new PSEUDO-REPLAY ap-
proach which combines data augmentation and dis-
tillation. Our results show that both task order and
similarity influence results. These results are impor-
tant for designing continual learning experiments
for real-world settings, where task formulation de-
pends on the application scenario. For example, the
Taxonomy Domains resembles applications where
data is continuously collected in different visual
surroundings, whereas Question Types corresponds
to ‘teaching’ the system new reasoning capabilities.
Our results suggest that the latter is the most chal-
lenging. The easiest and thus ‘best-case’ scenario
is a Diverse data collection setup, where the sys-
tem incrementally learns to recognize new objects
which are randomly sampled from different do-
mains. Moreover, the strong performance of the
relatively simple PSEUDO-REPLAY method sug-
gests that more advanced strategies for selecting or
generating samples representative of past tasks can
yield further improvements.



8 Ethical Impact

The proposed continual learning approach to V+L
problems offers a promising alternative to the cur-
rent pretraining-and-finetuning paradigm, which
has the potential to mitigate the financial and
environmental costs of (re-)training large mod-
els (Strubell et al., 2019; Bender et al., 2021). In ad-
dition to demonstrating performance gains of con-
tinual learning over vanilla finetuning, our paper
also proposes a novel PSEUDO-REPLAY algorithm.
PSEUDO-REPLAY not only uses less memory than
standard memory-based approaches, but also is bet-
ter at preserving privacy. Preserving privacy is es-
pecially important for federated data settings (Jiang
et al., 2021) or for sensitive applications such as
medical imaging (Ravishankar et al., 2019).

The paper also highlights potential negative im-
pacts related to the high variability in performance,
where performance can vary up to 15% depending
on the task order. Robust performance is especially
important in the context of applying this technol-
ogy with real-users, such as supporting users with
visual impairments (Gurari et al., 2018). We thus
see the robustness of continual learning approaches
as a main challenge for future research.
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A Data Details

We investigate three continual learning settings
based on the VQA-v2 dataset (Goyal et al., 2017), a
collection of visual question annotations in English.
Tasks in the Diverse Domains setting are created by
grouping 10 objects from COCO annotations (Lin
et al., 2014) as follows:

* Group 1: bird, car, keyboard, motorcycle, orange,
pizza, sink, sports ball, toilet, zebra

* Group 2: airplane, baseball glove, bed, bus, cow,
donut, giraffe, horse, mouse, sheep

* Group 3: boat, broccoli, hot dog, kite, oven, sand-
wich, snowboard, surfboard, tennis racket, TV

* Group 4: apple, baseball bat, bear, bicycle, cake,
laptop, microwave, potted plant, remote, train

* Group 5: banana, carrot, cell phone, chair, couch,
elephant, refrigerator, skateboard, toaster, truck

We also provide a few example questions for
each task in Question Types:

* Action: What is the cat doing?, Is the man catch-
ing the ball?, What is this sport?

Color: What color is the ground?, What color is
the right top umbrella?

Count: How many skaters are there?, How many
elephants?, How many rooms do you see?

Scene: Is the picture taken inside?, Is this photo
black and white?, What is the weather like?

Subcategory: What type of vehicle is this?, What
utensil is on the plate?, What kind of car is it?

Figures 6-8 show the distribution of the 20 most
common question words and answers for each task.
The counts are computed on the combined train and
validation data, excluding stopwords from the ques-
tion vocabulary. These plots support our general
findings about the characteristics of each task and
the relationships between them. For example, an-
swers in Diverse Domains are highly similar across
tasks, while the most considerable difference of
common answers is observed in Question Types.
In addition, frequent nouns in Diverse and Taxon-
omy Domains reflect the typical objects from the
image annotations of each task. Common words in
Question Types also follow the definition of each
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Dissimilarity Diverse Taxonomy Questions

Answers 0.567 (0.009) 0.791 (0.000)  0.795 (0.000)
Image embed. 0.248 (0.293)  0.492 (0.028) -0.640 (0.002))
Question embed.  0.184 (0.437) 0.531 (0.016)  0.631 (0.003)
Joint embed. 0.220 (0.350)  0.622 (0.003) -0.223 (0.344)

Table 6: Spearman correlation of pairwise performance
drop and and different dissimilarity heuristics. In addi-
tion to the results in table 3, we show in parentheses
the corresponding p-values. We underline statistically
significant results (p < 0.05).

Setting Batch Size Learning Rate LwF )\ EWC )\
Diverse 512 8e-5 1 400
Diverse+PT 1024 8e-5 0.7 500
Taxonomy 512 8e-5 1 600
Taxonomy+PT 1024 Se-5 0.5 500
Questions 1024 le-4 0.9 50K
Questions+PT 512 5e-5 0.4 20K

Table 7: Best hyperparameters for all settings. PT: Pre-
training

task. For example, top words in Scene such as
‘sunny’, ‘room’, ‘outside’ refer to the entire im-
age, while Action words such as ‘sport’, ‘playing’,
‘moving’ refer to activities shown in the image.

B Implementation Details

Our implementation is based on the publicly
available PyTorch codebase of UNITER (https:
//github.com/ChenRocks/UNITER). For
the continual learning experiments, we train a
UNITER-base model (86M parameters) on a clus-
ter of NVIDIA V100 GPUs using a single node
with 4 GPUs. Training on a sequence of 5 tasks
requires on average ~ 5 GPU hours. The main
experiments (Table 4) require approximately a total
of 200 GPU hours.

We first tune the batch size and learning rate with
naive finetuning. Keeping these hyperparameters
fixed, we then tune the continual learning hyperpa-
rameters (EWC, LwF \). All hyperparameters are
selected through grid search based on the maximum
final accuracy as shown in Table 7. Initial results
with a pretrained model on Taxonomy Domains
showed that best performance is achieved with a
mixing ratio of 3:1 of new and old data per batch.
We keep this ratio constant for all experiments.

Each experiment is repeated five times with a
different random seed and task order. The task
orders used in our experiments are the following:

* Diverse Domains
* group 5, group 3, group 2, group 4, group 1
* group 1, group 2, group 5, group 3, group 4
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group 4, group 3, group 5, group 1, group 2

group 3, group 1, group 4, group 2, group 5

group 2, group 5, group 1, group 4, group 3

Taxonomy Domains

* food, animals, sports, interior, transport

transport, sports, food, animals, interior
* interior, animals, food, transport, sports
animals, food, interior, sports, transport
sports, interior, transport, animals, food
Question types

action, count, subcategory, scene, color
color, subcategory, action, count, scene
scene, count, action, color, subcategory
subcategory, color, scene, action, count

count, scene, color, subcategory, action

C Further CKA Results

Figure 10 provides detailed plots of the CKA sim-
ilarity of the representations from all layers us-
ing a randomly initialized and a pretrained model.
We plot the average CKA values from five task
orders. Our results support the observations of
Section 5.4. The change of CKA similarity corrob-
orates that Question Types is the most challenging
of the three settings. We also observe that represen-
tations of pretrained models remain more similar,
especially representations from layers closer to the
input (early layers) in Diverse and Taxonomy Do-
mains which retain high similarity across training
tasks. This indicates that early layers of the pre-
trained model have learned generic representations
that transfer across tasks. Comparing the CKA re-
sults without pretraining for all settings, we see
that in Diverse and Taxonomy Domains, the rep-
resentations that change most continue to be those
from the images. In Question Types, [CLS] to-
ken representations change most. Question word
representations remain more similar than image
representations of early layers (layers 0-7).

D Qualitative Results

Table 8 shows examples of predicted answers with
different approaches. The two top examples are
from two different task orders in Question Types,
and the two bottom examples are from Taxonomy
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Figure 6: Most common words (left) and answers (right) per task Diverse Domains.

Domains. The model trained from scratch (col-
umn w/o PT) fails to retain knowledge from the
corresponding training task. The pretrained model
(column PT) is more resistant to forgetting and we
observe that for the first and third images, it even
manages to recover the correct answer during the
training sequence. However, relying only on pre-
training is insufficient, as the model still tends to
change the predicted answer based on the most re-
cent training task. Both EWC and ER combined
with pretraining successfully retain previous knowl-
edge.

Table 9 presents examples of the SBWT metric.
Specifically, it compares SBWT for two pairs of
predicted answers with the same initial reference
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answer. When the initial prediction (reference an-
swer) is correct, and both compared answers are
wrong, we observe that SBWT penalizes similar
answers less than unrelated ones (see the first four
rows of Table 9). Similarly, when one of the com-
pared answers is partially correct (rows 5-8) ac-
cording to the VQA accuracy metric, SBWT is less
punishing compared to BWT, which in our exam-
ples would be —0.7. Finally, the last row shows an
example of corrected compared answers, where the
accuracy improvement is weighted with the seman-
tic distance of reference and compared answers.
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Figure 7: Most common words (left) and answers (right) per task Taxonomy Domains.
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Figure 8: Most common words (left) and answers (right) per task in Question Types.
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Figure 9: Dissimilarity measures between task pairs.
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Figure 10: CKA similarity of the representations of all layers. Representations are indexed with 0-12 where 0
corresponds to representations from the input embedding layer and 12 from the transformer layer closest to the
output. Deeper colors indicate lower similarity. We observe that representations of models trained from scratch
(top row) remain less similar than pretrained models (bottom row). For pretrained models, mostly representations
from the top two layers change evidently.
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What is the horse doing?

Task w/o PT PT PT+EWC PT+ER
Action jumping jumping jumping jumping
Count two one jumping  jumping
Subcat.  riding jump jumping  jumping
Scene cold  jumping jumping jumping
Color black black jumping  jumping
What color is the cow?
Task w/oPT PT PT+EWC PT+ER
Color  black black black black
Subcat  black  black black black
Action  zero yes cow black
Count one one black black
Scene green  green black black
What is orange?
Task w/o PT PT PT+EWC PT+ER
Food carrots  carrots  carrots carrots
Animals birds  carrots  carrots carrots
Sports nothing  kites carrots carrots
Interior chair  carrots  carrots carrots
Transport nothing tomato  carrots carrots
What type of bird is this?
Task w/o PT PT PT+EWC PT+ER
Interior dog owl owl owl
Animals  pigeon pigeon  pigeon pigeon
Food turkey pigeon  pigeon pigeon
Transport notsure  duck pigeon seagull
Sports Zero seagull  pigeon seagull

Table 8: Examples of the evolution of predicted answers with different approaches. Column Task shows the order
of the training tasks. The bold task corresponds to the task of the sample.

Reference Compared Answer 1 Compared Answer 2
Answer Acc Answer Acc SBWT  Answer Acc SBWT
skateboarding 1 skateboard 0 -0.164 black 0 -0.836
snowboarding 1 skiing 0 -0.134 winter 0 -0.529
breakfast 1 sandwich 0 -0.340 one 0 -0.855
food 1 meat 0 -0.320 toothbrush 0 -0.832
skateboarding 1 skateboard 0.3 -0.115 skateboard O -0.164
carrots 1 carrot 0.3 -0.093 three 0 -0.818
sheep 1 goat 03 -0.197 white 0 -0.676
cloudy 1 overcast 0.3 -0.151 gray 0 -0.577
black 0  black and white 1 0.136 brown 1 0.269

Table 9: Comparison of the SBWT metric of two answers with respect to the same reference answer. We verify
that semantically more similar answers have higher SBWT.
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