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Abstract

Continual learning is a promising alternative001
to the current pretrain-and-finetune paradigm:002
It aims to learn a model on a sequence of tasks003
without forgetting knowledge from preceding004
tasks. We investigate continual learning for Vi-005
sual Question Answering and show that perfor-006
mance highly depends on task design, order,007
and similarity – where tasks may be formu-008
lated according to either modality. Our results009
suggest that incremental learning of language010
reasoning skills (such as questions about color,011
count etc.) is more difficult than incrementally012
learning visual categories. We show that this013
difficulty is related to task similarity, where014
heterogeneous tasks lead to more severe for-015
getting. We also demonstrate that naive fine-016
tuning of pretrained models is insufficient, and017
recent continual learning approaches can re-018
duce forgetting by more than 20%. We pro-019
pose a simple yet effective PSEUDO-REPLAY020
algorithm, which improves results while using021
less memory compared to standard replay. Fi-022
nally, to measure gradual forgetting we intro-023
duce a new metric that takes into account the024
semantic similarity of predicted answers.025

1 Introduction026

The standard paradigm for Vision+Language027

(V+L) problems is to pretrain large-scale models,028

which are then finetuned and evaluated on inde-029

pendent and identically distributed (i.i.d.) data. In030

practice, the i.i.d. assumption often does not hold:031

New data becomes available sequentially, which032

often results in a change of data distribution. This033

is referred to as a new ‘task’ by the continual learn-034

ing literature (Biesialska et al., 2020). Under this035

setting, continuously adapting an existing model036

via finetuning will lead to catastrophic forgetting,037

i.e. significant performance degradation on previ-038

ous data (McCloskey and Cohen, 1989; Ratcliff,039

1990). Continual learning provides a counterpart040

to i.i.d. learning by defining a class of algorithms041
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Figure 1: Predicted answers as the model continuously
learns a sequence of tasks. Catastrophic forgetting
causes incorrect predictions for preceding tasks.

aiming at incremental learning without forgetting. 042

This line of work becomes increasingly relevant 043

given the financial and environmental costs of (re-) 044

training large models (Strubell et al., 2019; Bender 045

et al., 2021), and the inability of static models to 046

adequately generalize in a dynamic world (Lazari- 047

dou et al., 2021). While continual learning has 048

been widely studied in the computer vision commu- 049

nity, its use within V+L problems remains under- 050

explored – with a few notable exceptions (Greco 051

et al., 2019; Nguyen et al., 2019b; Hayes et al., 052

2020; Jin et al., 2020; Del Chiaro et al., 2020). 053

V+L applications are a particularly challenging 054

setting for continual learning since tasks can be 055

formulated according to each modality. In particu- 056

lar, task definitions for Visual Question Answering 057

(VQA) can either be based on the language rea- 058

soning skills (as defined by the question type, cf. 059

Figure 1) or the objects in the image (Whitehead 060

et al., 2021). While there is increasing evidence 061

that continual learning performance is highly de- 062

pendent on the task formulation, i.e. task design, 063

order, and similarity (Van de Ven and Tolias, 2019; 064

Yoon et al., 2020; Delange et al., 2021), tasks are 065

often formulated in an ad-hoc fashion and vary 066

widely for each application and dataset. 067

This paper addresses this challenge by conduct- 068

ing a systematic study on how different task for- 069

mulations impact performance and forgetting in 070
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Figure 2: Tasks in continual VQA learning can be based on visual content, e.g. object categories split into into
Diverse groups (left), or according to a Taxonomy such as ‘food’ items, ‘animals’ etc. (middle); Tasks can also be
based on Question Types representing different reasoning skills, such as color recognition or counting (right).

VQA. We introduce three settings based on the071

VQA-v2 dataset (Goyal et al., 2017) as illustrated072

in Figure 2 – two defined by visual objects and073

one by reasoning skills as determined by the ques-074

tions. We first characterize the difficulty of each075

setting by studying pairwise task relationships and076

relate the amount of forgetting, i.e. the accuracy077

decrease on the previous task, to task similarity.078

Our results show that dissimilar tasks exhibit more079

severe forgetting. We then evaluate several reg-080

ularization and memory-based continual learning081

methods using randomly initialized and pretrained082

models across our three settings. Based on the ob-083

servation that approaches which store samples from084

previous tasks in their ‘memory’ perform reliably085

well, we propose a simple yet effective PSEUDO-086

REPLAY algorithm that combines data augmenta-087

tion and distillation for greater memory efficiency088

and better privacy. We also introduce a new metric,089

termed Semantic Backward Transfer, which penal-090

izes semantically similar answer changes less than091

nonsensical ones. Finally, we demonstrate that task092

order leads to high performance variance per ques-093

tion type and analyze how representations from094

each modality change during continual learning.095

2 Problem formulation096

In continual learning, model parameters θ are in-097

crementally updated as new data become available.098

We assume that samples from tasks t = 1 . . . T099

arrive sequentially as Dt = {xi,yi}Nt
i=1, where Nt100

is the number of data for task t. Following previous101

work, VQA is formulated as a multi-label classifi-102

cation problem with soft targets yi (Anderson et al.,103

2018). Starting from parameters θt−1 of the previ-104

ous model, the updated parameters θt are obtained105

Setting Task Train Val Test Classes

D
iv

er
se

Group 1 44254 11148 28315 2205
Group 2 39867 10202 22713 1874
Group 3 37477 9386 23095 1849
Group 4 35264 8871 22157 2119
Group 5 24454 6028 14490 1777

Ta
xo

no
m

y

Animals 37270 9237 22588 1331
Food 26191 6612 15967 1365

Interior 43576 11038 26594 2096
Sports 32885 8468 19205 1471

Transport 41394 10280 25416 1954

Q
ue

st
io

n

Action 18730 4700 11008 233
Color 34588 8578 21559 92
Count 38857 9649 23261 42
Scene 25850 6417 14847 170

Subcategory 22324 8578 21559 659

Table 1: Statistics per task within each setting.

by training on the new data Dt. Some approaches 106

also use a memory Mt containing a subset of sam- 107

ples from previous tasks, e.g. D1, . . . , Dt−1. In 108

our setup, all tasks share a common output head 109

which is extended with new classes from each task. 110

This allows inference to be task-agnostic but cre- 111

ates a more challenging setting than multi-head 112

learning where separate heads are learned for each 113

task (Hussain et al., 2021). At the end of the train- 114

ing sequence, the objective is to achieve strong 115

performance across all tasks observed so far. This 116

objective encloses two challenges: 1) minimizing 117

catastrophic forgetting of tasks seen earlier in train- 118

ing, 2) facilitating positive transfer to improve per- 119

formance on new tasks (Hadsell et al., 2020). 120

3 Settings for Continual VQA 121

We define three continual learning settings, which 122

include different task splits, as summarized in Ta- 123

ble 1 and illustrated in Figure 2. 124
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3.1 Visual Settings125

We design two settings based on visual object cate-126

gories. We take advantage of the fact that images127

in the VQA-v2 dataset originate from the COCO128

dataset (Lin et al., 2014) which provides object-129

level image annotations. Following previous work130

in image captioning (Del Chiaro et al., 2020), we131

organize 50 object categories into five groups. Im-132

ages with objects from multiple groups are dis-133

carded in order to create clean task splits Dt – re-134

sulting in a total of 181K train, 45K validation, and135

110K test samples.136

For the first setting, Diverse Domains, tasks are137

defined by grouping the object categories randomly.138

Each task is assigned a balanced count of 10 dis-139

tinct objects resulting in five tasks. This type of set-140

ting corresponds to common practice of continual141

learning research within computer vision (Rebuffi142

et al., 2017; Lomonaco and Maltoni, 2017), and143

reflects a real-world scenario where sequential data144

do not necessarily follow a taxonomy.145

The second setting, Taxonomy Domains groups146

objects based on their common super-category as147

in (Del Chiaro et al., 2020). This results in five148

tasks: Animals, Food, Interior, Sports, and Trans-149

port. Note that the number of object classes per150

task under this definition is unbalanced since splits151

depend on the size of the super-category. More152

details on each task can be found in Appendix A.153

3.2 Language Setting154

We create a third setting Question Types, where155

each task corresponds to learning to answer a dif-156

ferent category of questions. We use a classifica-157

tion scheme developed by Whitehead et al. (2021)158

to form a sequence of five tasks: Count, Color,159

Scene-level, Subcategory, and Action recognition.160

The splits for Count, Color, and Subcategory ques-161

tions are obtained from Whitehead et al. (2021).162

We create two additional tasks from the remain-163

ing questions. In particular, we cluster question164

embeddings from Sentence-BERT (Reimers and165

Gurevych, 2019) 1 so that each cluster has at least166

15 questions and a minimum cosine similarity of167

0.8 between all embeddings. We annotate clusters168

as ‘scene’, ‘action’ or ‘irrelevant’ question types.169

Based on a seed of 10K annotated questions, we170

retrieve all other questions with similarity above171

1We use the ‘all-MiniLM-L6-v2’ model and Fast Clus-
tering algorithm from the sentence-transformers package
(https://www.sbert.net/).

0.8 and label them using the K-nearest neighbor 172

algorithm (K = 5). Question Types have a total of 173

140K train, 35K validation and 84K test samples 174

(cf. Table 1). Common question words and answers 175

per task are presented in the Appendix (Figure 8). 176

4 Experimental Framework 177

In our experiments, we use the UNITER- 178

base (Chen et al., 2020) model which has a single- 179

stream transformer architecture and shows strong 180

performance compared to state-of-the-art V+L 181

model architectures (Bugliarello et al., 2021). In 182

experiments where we finetune a pretrained model, 183

we use the checkpoint from (Chen et al., 2020) 184

which is pretrained among others on in-domain 185

images, i.e. COCO captions (Lin et al., 2014). 186

4.1 Defining Task Difficulty via Pairwise Task 187

Relationships 188

We first characterize the difficulty of each setting 189

by describing pairwise task relationships, following 190

studies in transfer (Zamir et al., 2018) and multitask 191

learning (Standley et al., 2020; Lu et al., 2020). 192

In particular, we measure the extent to which each 193

task is forgotten after training on a second task. 194

Diverse Domains

Task 1
Task 2

Group 1 Group 2 Group 3 Group 4 Group 5

Group 1 67.52 -6.58 -5.21 -4.84 -7.09
Group 2 -4.55 67.92 -5.61 -4.51 -4.99
Group 3 -4.64 -8.39 70.83 -7.37 -11.66
Group 4 -4.69 -7.10 -7.40 65.03 -9.63
Group 5 -4.29 -5.82 -6.09 -3.80 63.24

Taxonomy Domains

Task 1
Task 2

Animals Food Interior Sports Transport

Animals 73.29 -8.06 -3.63 -5.84 -4.35
Food -16.38 63.00 -4.29 -17.08 -11.94
Interior -5.75 -5.19 65.26 -7.63 -2.83
Sports -11.63 -18.20 -9.60 73.36 -9.47
Transport -4.19 -8.48 -2.62 -3.67 64.50

Question Types

Task 1
Task 2

Action Color Count Scene Subcat.

Action 78.01 -68.40 -90.45 -19.59 -12.58
Color -88.89 81.01 -99.65 -27.75 -62.46
Count -99.17 -99.68 61.68 -97.52 -87.00
Scene -10.91 -34.40 -77.73 86.62 -15.22
Subcat. -31.73 -85.45 -96.15 -30.55 58.43

Table 2: Task difficulty measured by forgetting in pair-
wise tasks. Diagonal elements show the accuracy after
training on Task 1. Non-diagonal elements show rela-
tive BWT after finetuning on Task 2.

Experimental Setup. We finetune the pretrained 195

UNITER model on Task T1 and compute the ac- 196

3
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Dissimilarity Diverse Taxonomy Questions
Factor Domains Domains Types
Answer distribution 0.567* 0.791* 0.795*
Image embedding 0.248 0.492* -0.640*
Question embedding 0.184 0.531* 0.631*
Joint embedding 0.220 0.622* -0.223

Table 3: Spearman correlation of pairwise performance
drop and embedding dissimilarity (* where p < 0.05).

curacy A11 on its test set. Then, we finetune197

this model on another Task T2 and compute the198

new accuracy A12 on the test set of T1. Forget-199

ting is measured as the relative accuracy drop:200

(A12 − A11)/A11. Regardless of dataset size, we201

finetune on T2 for a fixed number of 400 steps using202

a batch size of 512 and learning rate 5e-5.203

Observations. Table 2 shows the relative accu-204

racy drop for all task pairs. We observe that for-205

getting in Taxonomy Domains fluctuates more de-206

pending on the task pairing, compared to Diverse207

Domains. Question Types is evidently a more chal-208

lenging setting, where several task combinations209

show more than 90% drop. In all settings, task210

relationships are asymmetric. We find that some211

relations reflect semantic similarity, e.g., low for-212

getting between Food and Interior, as the two tasks213

are expected to contain similar visual scenes and214

vocabulary. We also observe that the model is more215

robust against forgetting when Task T2 has a wide216

range of possible answers (e.g., Interior); while T2217

with a narrow answer set (e.g., Food, Color, Count)218

lead to maximum forgetting.219

Task similarity and forgetting. To gain further220

insight into which factors contribute to forgetting,221

we measure the correlation between accuracy drop222

and different proxies of task similarity. In partic-223

ular, we consider the answer distributions P , Q224

of Tasks T1, T2 respectively, as well as average225

embeddings of the image, question and the joint226

pair. Since some answers of T1 do not appear in227

T2, we measure the skew divergence (Lee, 2001)228

between P and Q as the KL divergence between229

P and a mixture distribution (1− α)P + αQ with230

α = 0.99 (Ruder and Plank, 2017). For the in-231

put embeddings, we measure the cosine distance232

between the average task representation. As im-233

age representations, we utilize Faster R-CNN fea-234

tures from (Anderson et al., 2018), while questions235

are embedded using Sentence-BERT. Joint embed-236

dings for image-question pairs are obtained using237

the final layer representation of the [CLS] token of238

UNITER 2. The detailed similarity measures are 239

shown in the Appendix Table 9. 240

The correlation results in Table 3 indicate that 241

the more similar two consecutive tasks are, the less 242

forgetting occurs. The divergence of answer distri- 243

butions consistently correlates with forgetting, but 244

does not fully account for the performance drop. 245

For example, the divergence of Interior from Ani- 246

mals and Sports answer distributions is the same, 247

however Sports leads to 1.88% more forgetting. 248

Regarding the embedding distances, image embed- 249

dings show the highest correlation in the visual 250

Taxonomy Domain, meaning that the more visually 251

similar two domains are, the less severe forgetting 252

is. We observe the same relationship mirrored in 253

Question Types for question embeddings. How- 254

ever, we find no factor to correlate significantly 255

with Diverse Domains, where tasks are generally 256

similar to each other (cf. Appendix 9). Looking 257

across modalities, we find that question and joint 258

similarities in Taxonomy Domains correlate with 259

forgetting, showing that the shift of the visual do- 260

mains results in changes of the referred objects and 261

types of questions per task.3 262

4.2 Continual Learning Methods 263

We next benchmark common continual learn- 264

ing algorithms, including regularization- and 265

replay-based approaches. We investigate two 266

regularization-based approaches: Learning with- 267

out Forgetting (LwF) (Li and Hoiem, 2018), which 268

uses knowledge distillation (Hinton et al., 2015) 269

in order to retain knowledge from previous tasks, 270

and Elastic Weight Consolidation (EWC) (Kirk- 271

patrick et al., 2017). The EWC regularization term 272

discourages big changes of parameters that were 273

important for previous tasks, where importance is 274

approximated using the Fisher information matrix. 275

We apply three types of replay approaches that 276

allow access to a memory of past samples. Experi- 277

ence Replay (ER) (Chaudhry et al., 2019b) is the 278

most straightforward approach, as it samples train- 279

ing data from both the current task and memory 280

at each training step. Average Gradient Episodic 281

Memory (A-GEM) (Lopez-Paz and Ranzato, 2017; 282

2The [CLS] token aggregates multimodal information. It is
the first token of the input sequence and the final transformer
layer passes only its representation to the classifier.

3We notice that the more similar images of two Question
Types tasks are, the more forgetting occurs. A possible ex-
planation is that new questions for similar images ‘overwrite’
previous knowledge. However, all cosine distances of image
embeddings are too low (<0.05) to lead to any conclusions.
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Chaudhry et al., 2019a) utilizes the memory of past283

data to ensure that gradient updates on past and284

new data are aligned.285

We also experiment with a PSEUDO-REPLAY286

method for the Question Types setting. Instead287

of storing raw data from previous tasks, we use a288

data augmentation method, inspired by (Kafle et al.,289

2017; Kil et al., 2021). When training on task t, we290

augment the data Dt by retrieving past questions291

based on their shared detected objects classes. For292

example, if an elephant is detected on the current293

picture, we retrieve a past question about an ele-294

phant. We then use the previous model fθt−1 to295

generate a distribution ỹ = fθt−1(x̃) which serves296

as soft targets for the new sample x̃. By not stor-297

ing the original answers, we address privacy and298

efficiency concerns of replay approaches (Van de299

Ven and Tolias, 2018; Delange et al., 2021).300

4.3 Evaluation Metrics301

After training on task t, we compute the VQA ac-302

curacy At,i on data from the previous task i. We303

report the macro-average accuracy at the end of304

the training sequence: A = 1
T

∑T
i=1AT,i. Fol-305

lowing Riemer et al. (2019), we report the learned306

accuracy LA = 1
T

∑T
i=1Ai,i, which measures the307

ability to learn the new task i. We also compute308

backward transfer BWT = 1
T−1

∑T−1
i=1 AT,i −309

Ai,i (Lopez-Paz and Ranzato, 2017), that captures310

the impact of catastrophic forgetting.311

In addition, we introduce a new metric, we term312

semantic backward transfer (SBWT), that weights313

backward transfer with the semantic distance of the314

predicted answers. The motivation for this metric315

is that some forgetting is worse than others. Con-316

sider the example in Figure 1, where the ground317

truth is ‘duck’. After training on subsequent tasks,318

the sample gets misclassified as ‘seagull’ which319

might have a milder impact on the downstream ap-320

plication than completely unsuited answers such321

as ‘black and white’ or ‘one’. For each sample322

j = 1 . . . , N of task i, we measure the accuracy323

difference ∆T i
j of the answers predicted by the T -324

th and i-th models and weigh it by cosine distance325

of the two answer embeddings eTj and eij . The326

final SBWT is computed as :327

SBWT =
1

T − 1

T−1∑
i=1

ST,i (1)328

where ST,i is the average weighted accuracy differ-329

ence for task i: 330

ST,i =
1

N

N∑
j=1

(1− cos(eTj , eij)) ·∆T i
j (2) 331

In our implementation, we use averaged 300- 332

dimensional GloVE embeddings (Pennington et al., 333

2014), since most answers are single words. 334

4.4 Experimental Setup 335

We investigate our three task settings on the VQA- 336

v2 dataset (Goyal et al., 2017). Since ground truths 337

are publicly available for the train and validation 338

sets, we use validation samples as our test set, and 339

create a new validation set by randomly sampling 340

20% of the training images. We follow a single 341

head setting to allow for task-agnostic inference 342

but assume knowledge of task boundaries during 343

training. Memory-based approaches store 500 ran- 344

domly selected samples per past task. For further 345

implementation details, please refer to Appendix B. 346

We consider two baselines: The Fix Model base- 347

line represents the generalization ability of the 348

model across all tasks after being trained on only 349

the first task D1. The vanilla Finetuning baseline 350

represents the performance degradation if no mea- 351

sures are taken to prevent forgetting. We also report 352

the performance of joint training on all the data si- 353

multaneously (Joint) as an upper bound. 354

5 Results 355

5.1 Continual Learning Results 356

Table 4 summarizes the results averaged over five 357

task orders. The results show an increasing diffi- 358

culty for the three incremental learning task defi- 359

nitions, i.e. Diversity Domains < Taxonomy Do- 360

mains < Question Types, which is in line with 361

the results from our pairwise task characterization 362

in Section 4.1. Although Question Types has the 363

highest Joint accuracy, naive finetuning shows poor 364

performance: it has the lowest final accuracy and 365

large negative BWT. The low Fixed Model accu- 366

racy corroborates that tasks are highly dissimilar as 367

a model trained on a single task fails to generalize. 368

Pretraining. Our results also confirm that pre- 369

training leads to models that are more robust to for- 370

getting (Mehta et al., 2021): all metrics consistently 371

improve starting from a pretrained model. Pretrain- 372

ing combined with naive finetuning achieves on 373

average 58% relative accuracy improvement over 374

finetuning a model from scratch. Interestingly, the 375
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w/o Pretraining w/ Pretraining
Split Method Accuracy LA BWT SBWT Accuracy LA BWT SBWT

D
iv

er
se

Fixed Model 41.60 ± 0.84 - - - 57.38 ± 0.83 - - -
Finetuning 49.64 ± 0.78 56.69 ± 0.28 -8.80 ± 0.89 –5.35 ± 0.61 64.59 ± 0.56 67.77 ± 0.22 -3.97 ± 0.59 -1.93 ± 0.39

LwF 50.70 ± 0.56 54.67 ± 0.42 -4.96 ± 0.29 -2.89 ± 0.17 65.23 ± 0.42 67.62 ± 0.25 -3.02 ± 0.44 -1.50 ± 0.28

AGEM 51.56 ± 0.78 56.72 ± 0.30 -6.45 ± 0.87 -3.84 ± 0.60 65.65 ± 0.85 67.72 ± 0.30 -2.60 ± 0.71 -1.22 ± 0.38

EWC 52.05 ± 0.30 56.49 ± 0.22 -5.55 ± 0.60 -3.12 ± 0.40 66.26 ± 0.55 67.58 ± 0.27 -1.65 ± 0.45 -0.67 ± 0.29

ER 54.36 ± 0.33 56.31 ± 0.51 -2.45 ± 0.49 -1.42 ± 0.26 66.66 ± 0.50 67.55 ± 0.23 -1.11 ± 0.41 -0.51 ± 0.27

Joint 60.41 ± 0.03 - - - 69.76 ± 0.18 - - -

Ta
xo

no
m

y

Fixed Model 39.96 ± 1.05 - - - 55.00 ± 0.95 - - -
Finetuning 47.72 ± 0.72 57.75 ± 0.24 -12.53 ± 0.65 -8.45 ± 0.38 63.65 ± 0.63 68.77 ± 0.12 -6.40 ± 0.67 -3.89 ± 0.53

LwF 48.05 ± 0.24 55.25 ± 0.27 -9.00 ± 0.38 -6.13 ± 0.44 64.83 ± 0.50 68.73 ± 0.17 -4.88 ± 0.69 -2.88 ± 0.43

AGEM 50.51 ± 0.66 57.80 ± 0.25 -9.10 ± 0.79 -5.77 ± 0.55 66.52 ± 0.34 68.86 ± 0.12 -2.92 ± 0.50 -1.63 ± 0.33

EWC 52.17 ± 0.54 57.49 ± 0.19 -6.65 ± 0.44 -4.33 ± 0.28 67.70 ± 0.29 68.57 ± 0.16 -1.09 ± 0.33 -0.62 ± 0.19

ER 54.60 ± 0.14 57.67 ± 0.28 -3.84 ± 0.42 -2.38 ± 0.27 66.76 ± 0.16 68.61 ± 0.13 -2.32 ± 0.16 -1.22 ± 0.10

Joint 60.82 ± 0.02 - - - 70.08 ± 0.18 - - -

Q
ue

st
io

ns

Fixed Model 18.81 ± 5.90 - - - 25.54 ± 8.75 - - -
Finetuning 23.30 ± 8.83 65.24 ± 0.42 -52.42 ± 10.88 -39.86 ± 12.08 48.81 ± 5.56 72.94 ± 0.20 -30.17 ± 7.07 -22.43 ± 7.02

LwF 26.23 ± 8.56 60.69 ± 1.43 -43.08 ± 11.22 -34.32 ± 9.94 46.61 ± 3.95 72.06 ± 0.44 -31.82 ± 5.42 -25.13 ± 5.35

AGEM 50.73 ± 1.92 65.38 ± 0.56 -18.31 ± 3.04 -10.02 ± 1.39 68.30 ± 0.74 72.96 ± 0.24 -5.83 ± 1.08 -2.95 ± 0.63

EWC 36.77 ± 5.01 49.05 ± 3.82 -15.35 ± 5.85 -11.76 ± 5.41 66.77 ± 3.54 70.03 ± 1.03 -4.08 ± 3.58 -2.62 ± 2.28

PSEUDO-REPLAY 55.22 ± 1.75 65.12 ± 0.46 -12.37 ± 2.57 -7.29 ± 1.64 67.66 ± 1.15 72.97 ± 0.26 -6.63 ± 1.74 -3.27 ± 0.98

ER 59.54 ± 0.32 65.09 ± 0.52 -6.93 ± 0.71 -3.50 ± 0.35 69.18 ± 0.38 72.82 ± 0.22 -4.56 ± 0.56 -1.82 ± 0.34

Joint 66.35 ± 0.24 - - - 72.54 ± 0.15 - - -

Table 4: Results from VQA Incremental Learning. We report the average and standard deviation over five random
task orders. LA: Learned Accuracy, BWT: Backward Transfer, SBWT: Semantic Backward Transfer.

pretrained Fixed Model is able to generalize reason-376

ably well to other domains for both image-based377

settings, and the final Pretraining+Finetuning accu-378

racy exceeds the Joint accuracy without pretraining.379

These results indicate that learning generic V+L380

representations via pretraining has persistent ben-381

efits. However, pretraining is insufficient for en-382

suring continual learning and additional strategies383

improve the final accuracy by 8.83% on average.384

Continual Learning Methods. Among contin-385

ual learning methods, LwF offers the smallest386

gains in terms of final accuracy and forgetting. 4387

This shortcoming is reasonable considering that388

LwF generates pseudo-labels using the current data,389

which may be too noisy if the answers for the cur-390

rent and previous tasks differ substantially. In con-391

trast, our PSEUDO-REPLAY method, which com-392

bines distillation and replay, does not suffer from393

the same limitation and achieves almost 20% im-394

provement of the accuracy in Question Types.395

Pretraining+EWC achieves the highest accuracy396

in the Taxonomy Domains. However, when deal-397

ing with heterogeneous tasks (i.e. within Question398

Types) the high regularization weights, which are399

required to prevent forgetting, end up limiting the400

model’s ability to adapt to new and dissimilar tasks.401

This over-stability is also reflected in the low LA402

of EWC, which indicates that the model struggles403

to learn new tasks. On the other hand, memory-404

4Despite searching a wide range of values, we were unable
to find a distillation weight that improves the final accuracy of
the pretrained model in Question Types.

based approaches have consistently high LA. In ad- 405

dition, ER shows the best performance with models 406

trained from scratch as well as for the challenging 407

setting of Question Types. 408

Measuring Forgetting. Next, we compare our 409

newly introduced metric SBWT, which takes se- 410

mantic similarities into account, to the standard 411

BWT, which measures absolute forgetting. We ob- 412

serve some notable differences, which indicate that 413

SBWT favors strong models that forget gradually. 414

For instance, EWC w/o pretraining shows lower 415

performance and LA under the Question Types 416

setting compared to, e.g. AGEM w/o pretraining. 417

However, it receives a better BWT score. We make 418

similar observations for LwF vs. AGEM in Taxon- 419

omy Domains w/o pretraining, and EWC vs. ER 420

in Taxonomy Domains with pretraining. Table 9 in 421

the Appendix provides an example-based analysis, 422

showing that semantically more similar answers 423

have higher SBWT scores. 424

5.2 Effect of Memory Size 425

Here, we compare the memory size for ER and our 426

new PSEUDO-REPLAY method. PSEUDO-REPLAY 427

only stores questions and uses the previous check- 428

point to generate soft pseudo-labels. We choose 429

the Question Types setting, as it is most prone to 430

forgetting. In general, more memory means less 431

forgetting but at a higher computation and storage 432

cost. Figure 3 shows the average accuracy for 433

three memory sizes across training. At each step, 434

we compute the average accuracy of the experi- 435
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enced tasks up to that point. As expected, both436

methods benefit from access to a larger memory.437

PSEUDO-REPLAY shows comparable performance438

for up to three tasks, while raw ER replay becomes439

more advantageous as more tasks are added. We440

attribute this convergence in performance to errors441

by PSEUDO-REPLAY’s pseudo-labeling causing442

confirmation bias (Tarvainen and Valpola, 2017).443

Despite this limitation, PSEUDO-REPLAY exceeds444

the performance of naive finetuning by over 18%445

when storing only 500 samples per task.446

5.3 Sensitivity to Task Order447

Next, we investigate the impact of task order. Re-448

sults in Table 4 were averaged over five random449

task orders. In real scenarios, however, tasks would450

appear in a specific order. The high variance of the451

results in Question Types already indicates that task452

order can influence performance. To verify this, we453

plot in Figure 4 the final accuracy of a pretrained454

w/o Pretraining
Method What animal What room What sport
Finetuning 33.09 ± 13.38 54.38 ± 32.42 25.14 ± 32.11

EWC 48.18 ± 15.67 83.48 ± 7.61 62.81 ± 13.67

ER 73.11 ± 0.70 89.04 ± 2.80 87.20 ± 1.84

w/ Pretraining
Method What animal What room What sport
Finetuning 75.07 ± 3.54 83.26 ± 12.47 69.92 ± 14.14

EWC 81.75 ± 1.42 94.32 ± 0.88 90.82 ± 1.36

ER 80.73 ± 0.37 94.10 ± 1.39 90.92 ± 0.71

Table 5: Accuracy and standard deviation of the best
performing models on different sub-questions in Tax-
onomy Domains.

model for five training sequences, each ending with 455

a different task. Our results show that task order 456

can lead to Finetuning accuracy that varies more 457

than 15%. Although EWC improves the average 458

accuracy, there is still a 10% fluctuation depend- 459

ing on the order. However, replay-based methods 460

are able to improve performance and mitigate the 461

sensitivity to task order. 462

While Table 4 shows low variance in Taxonomy 463

Domains, we find high variance when examining 464

the performance on specific questions. In partic- 465

ular, we find that certain question types, such as 466

Animals, Interior, and Sports, have high variance. 467

Table 5 reveals a standard deviation which is up to 468

30 times higher compared to the average results in 469

Table 4. High standard deviation across random- 470

ized task orders is problematic since models can 471

have different behavior in practice despite similar 472

(aggregated) performance. In other words, the 473

current task performance will highly depend on the 474

previous task order, even though the overall accu- 475

racy from the randomized trials appears similar. 476

5.4 Representation Analysis 477

Finally, we ask how representations from each 478

modality evolve throughout the training sequence 479

and compare this evolution across our continual 480

learning settings. We use centered kernel align- 481

ment (CKA) (Kornblith et al., 2019) to track the 482

representation similarity of sequentially finetuned 483

models. We extract representations X1
t of the vali- 484

dation data of the first task after training for each 485

task t = 1 · · ·T , and measure the CKA similarity 486

of X1
t>1 to the original representations X1

1 . Fig- 487

ure 5 shows the evolution of the representation of 488

the [CLS] token from the final transformer layer 489

as well as the average representation of visual and 490

textual tokens from the embedding and final layers. 491

Across all settings, the representations of ques- 492
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Figure 5: Representation similarity for the first task under the three settings.

tion tokens retain higher similarity than the image493

tokens. This suggests that the features extracted494

from the visual inputs in order to predict an answer495

are more dependent on the current task than the496

features extracted from the more reusable question497

tokens. We also corroborate previous findings (Ra-498

masesh et al., 2021) showing that representations499

from deeper layers change more during continual500

learning. These results highlight the importance of501

stabilizing visual representations in deeper layers.502

6 Related Work503

To the best of our knowledge, this is the first work504

studying the impact of task formulation for con-505

tinual learning in V+L models. Past studies exam-506

ined the relationship between catastrophic forget-507

ting and different aspects of a continual learning508

algorithm, such as the activation function, dropout,509

and learning rate schedule (Goodfellow et al., 2013;510

Mirzadeh et al., 2020). Other work has investi-511

gated which layers of deep neural networks forget512

more (Nguyen et al., 2021), the role of task simi-513

larity (Ramasesh et al., 2021; Lee et al., 2021) and514

which properties of task sequences amplify forget-515

ting (Nguyen et al., 2019a). However, all of these516

studies have focused on image classification tasks.517

Previous work on V+L continual learning has518

studied a range of different tasks. Del Chiaro et al.519

(2020) and Nguyen et al. (2019b) study continual520

learning for domain- and class-incremental image521

captioning, while Jin et al. (2020) provide a bench-522

mark for task-agnostic phrase prediction to test523

compositionality and soft task boundaries. Kemker524

et al. (2018) propose a multimodal continual learn-525

ing setting, where audio and image classification526

tasks are learned sequentially.527

More closely related to our work, Greco et al.528

(2019) explore the effect of forgetting in VQA with529

two question types (‘Wh-’ and binary questions).530

Consistent with our findings, they show that task or- 531

der influences forgetting and that continual learning 532

methods can alleviate forgetting. However, their 533

study is limited to only two tasks and does not test 534

the impact of pretrained models, which, as we show, 535

can mitigate forgetting. Hayes et al. (2020) also 536

study continual learning of question-based tasks 537

focusing on a challenging low-resource online set- 538

ting, where new samples are available for a single 539

update. Our study focuses on a less strict yet practi- 540

cal scenario where models are updated periodically 541

with all data for the new task until convergence. 542

7 Conclusion 543

We empirically investigate the impact of task for- 544

mulation, i.e. task design, order and similarity, 545

on continual learning in VQA. We evaluate a 546

transformer-based model and benchmark several 547

methods, including a new PSEUDO-REPLAY ap- 548

proach which combines data augmentation and dis- 549

tillation. Our results show that both task order and 550

similarity influence results. These results are impor- 551

tant for designing continual learning experiments 552

for real-world settings, where task formulation de- 553

pends on the application scenario. For example, the 554

Taxonomy Domains resembles applications where 555

data is continuously collected in different visual 556

surroundings, whereas Question Types corresponds 557

to ‘teaching’ the system new reasoning capabilities. 558

Our results suggest that the latter is the most chal- 559

lenging. The easiest and thus ‘best-case’ scenario 560

is a Diverse data collection setup, where the sys- 561

tem incrementally learns to recognize new objects 562

which are randomly sampled from different do- 563

mains. Moreover, the strong performance of the 564

relatively simple PSEUDO-REPLAY method sug- 565

gests that more advanced strategies for selecting or 566

generating samples representative of past tasks can 567

yield further improvements. 568
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8 Ethical Impact569

The proposed continual learning approach to V+L570

problems offers a promising alternative to the cur-571

rent pretraining-and-finetuning paradigm, which572

has the potential to mitigate the financial and573

environmental costs of (re-)training large mod-574

els (Strubell et al., 2019; Bender et al., 2021). In ad-575

dition to demonstrating performance gains of con-576

tinual learning over vanilla finetuning, our paper577

also proposes a novel PSEUDO-REPLAY algorithm.578

PSEUDO-REPLAY not only uses less memory than579

standard memory-based approaches, but also is bet-580

ter at preserving privacy. Preserving privacy is es-581

pecially important for federated data settings (Jiang582

et al., 2021) or for sensitive applications such as583

medical imaging (Ravishankar et al., 2019).584

The paper also highlights potential negative im-585

pacts related to the high variability in performance,586

where performance can vary up to 15% depending587

on the task order. Robust performance is especially588

important in the context of applying this technol-589

ogy with real-users, such as supporting users with590

visual impairments (Gurari et al., 2018). We thus591

see the robustness of continual learning approaches592

as a main challenge for future research.593
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Tomáš Kočiský, Sebastian Ruder, Dani Yogatama, 735
Kris Cao, Susannah Young, and Phil Blunsom. 2021. 736
Mind the gap: Assessing temporal generalization in 737
neural language models. In Advances in Neural In- 738
formation Processing Systems. 739

Lillian Lee. 2001. On the effectiveness of the skew 740
divergence for statistical language analysis. In Pro- 741
ceedings of the Eighth International Workshop on 742
Artificial Intelligence and Statistics, volume R3 of 743
Proceedings of Machine Learning Research, pages 744
176–183. PMLR. Reissued by PMLR on 31 March 745
2021. 746

Sebastian Lee, Sebastian Goldt, and Andrew Saxe. 747
2021. Continual learning in the teacher-student 748
setup: Impact of task similarity. In 2021 Interna- 749
tional Conference on Machine Learning. 750

Zhizhong Li and Derek Hoiem. 2018. Learning with- 751
out forgetting. IEEE Transactions on Pattern Analy- 752
sis and Machine Intelligence, 40(12):2935–2947. 753

Tsung-Yi Lin, Michael Maire, Serge Belongie, James 754
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, 755
and C. Lawrence Zitnick. 2014. Microsoft coco: 756
Common objects in context. In Computer Vision – 757
ECCV 2014, pages 740–755, Cham. Springer Inter- 758
national Publishing. 759

10

https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/1312.6211
https://openaccess.thecvf.com/content_cvpr_2017/html/Goyal_Making_the_v_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Goyal_Making_the_v_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Goyal_Making_the_v_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Goyal_Making_the_v_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Goyal_Making_the_v_CVPR_2017_paper.html
https://doi.org/10.18653/v1/P19-1350
https://doi.org/10.18653/v1/P19-1350
https://doi.org/10.18653/v1/P19-1350
https://doi.org/10.18653/v1/P19-1350
https://doi.org/10.18653/v1/P19-1350
https://doi.org/https://doi.org/10.1016/j.tics.2020.09.004
https://doi.org/https://doi.org/10.1016/j.tics.2020.09.004
https://doi.org/https://doi.org/10.1016/j.tics.2020.09.004
https://link.springer.com/chapter/10.1007/978-3-030-58598-3_28
https://link.springer.com/chapter/10.1007/978-3-030-58598-3_28
https://link.springer.com/chapter/10.1007/978-3-030-58598-3_28
https://link.springer.com/chapter/10.1007/978-3-030-58598-3_28
https://link.springer.com/chapter/10.1007/978-3-030-58598-3_28
https://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=yJyIjWyPJgs
https://openreview.net/forum?id=yJyIjWyPJgs
https://openreview.net/forum?id=yJyIjWyPJgs
https://openreview.net/forum?id=yJyIjWyPJgs
https://openreview.net/forum?id=yJyIjWyPJgs
https://doi.org/10.24963/ijcai.2021/527
https://doi.org/10.24963/ijcai.2021/527
https://doi.org/10.24963/ijcai.2021/527
https://doi.org/10.18653/v1/2020.emnlp-main.158
https://doi.org/10.18653/v1/2020.emnlp-main.158
https://doi.org/10.18653/v1/2020.emnlp-main.158
https://doi.org/10.18653/v1/W17-3529
https://doi.org/10.18653/v1/W17-3529
https://doi.org/10.18653/v1/W17-3529
https://ojs.aaai.org/index.php/AAAI/article/view/11651
https://ojs.aaai.org/index.php/AAAI/article/view/11651
https://ojs.aaai.org/index.php/AAAI/article/view/11651
https://arxiv.org/abs/2109.06122
https://arxiv.org/abs/2109.06122
https://arxiv.org/abs/2109.06122
https://arxiv.org/abs/2109.06122
https://arxiv.org/abs/2109.06122
https://arxiv.org/abs/2109.06122
https://arxiv.org/abs/2109.06122
https://www.pnas.org/content/114/13/3521
https://www.pnas.org/content/114/13/3521
https://www.pnas.org/content/114/13/3521
https://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.mlr.press/v97/kornblith19a.html
https://openreview.net/forum?id=73OmmrCfSyy
https://openreview.net/forum?id=73OmmrCfSyy
https://openreview.net/forum?id=73OmmrCfSyy
https://proceedings.mlr.press/r3/lee01a.html
https://proceedings.mlr.press/r3/lee01a.html
https://proceedings.mlr.press/r3/lee01a.html
http://proceedings.mlr.press/v139/lee21e/lee21e.pdf
http://proceedings.mlr.press/v139/lee21e/lee21e.pdf
http://proceedings.mlr.press/v139/lee21e/lee21e.pdf
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/TPAMI.2017.2773081
https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48
https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48
https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48


Vincenzo Lomonaco and Davide Maltoni. 2017.760
Core50: a new dataset and benchmark for continu-761
ous object recognition. In Proceedings of the 1st An-762
nual Conference on Robot Learning, volume 78 of763
Proceedings of Machine Learning Research, pages764
17–26. PMLR.765

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.766
Gradient episodic memory for continual learning. In767
Advances in Neural Information Processing Systems,768
volume 30, pages 6470–6479.769

Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi770
Parikh, and Stefan Lee. 2020. 12-in-1: Multi-task771
vision and language representation learning. In Pro-772
ceedings of the IEEE/CVF Conference on Computer773
Vision and Pattern Recognition (CVPR).774

Michael McCloskey and Neal J Cohen. 1989. Catas-775
trophic interference in connectionist networks: The776
sequential learning problem. In Psychology of learn-777
ing and motivation, volume 24, pages 109–165. El-778
sevier.779

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar,780
and Emma Strubell. 2021. An empirical investiga-781
tion of the role of pre-training in lifelong learning.782
arXiv preprint arXiv:2112.09153.783

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan784
Pascanu, and Hassan Ghasemzadeh. 2020. Under-785
standing the role of training regimes in continual786
learning. In Advances in Neural Information Pro-787
cessing Systems, volume 33, pages 7308–7320. Cur-788
ran Associates, Inc.789

Cuong V. Nguyen, Alessandro Achille, Michael Lam,790
Tal Hassner, Vijay Mahadevan, and Stefano Soatto.791
2019a. Toward understanding catastrophic forget-792
ting in continual learning. CoRR, abs/1908.01091.793

Giang Nguyen, Shuan Chen, Tae Joon Jun, and Daey-794
oung Kim. 2021. Explaining how deep neural net-795
works forget by deep visualization. In Pattern796
Recognition. ICPR International Workshops and797
Challenges, pages 162–173, Cham. Springer Inter-798
national Publishing.799

Giang Nguyen, Tae Joon Jun, Trung Tran, Tolcha800
Yalew, and Daeyoung Kim. 2019b. Contcap: A801
scalable framework for continual image captioning.802
arXiv preprint arXiv:1909.08745.803

Jeffrey Pennington, Richard Socher, and Christopher D.804
Manning. 2014. Glove: Global vectors for word rep-805
resentation. In Empirical Methods in Natural Lan-806
guage Processing (EMNLP), pages 1532–1543.807

Vinay Venkatesh Ramasesh, Ethan Dyer, and Maithra808
Raghu. 2021. Anatomy of catastrophic forgetting:809
Hidden representations and task semantics. In Inter-810
national Conference on Learning Representations.811

Roger Ratcliff. 1990. Connectionist models of recog-812
nition memory: constraints imposed by learning813
and forgetting functions. Psychological review,814
97(2):285.815

Hariharan Ravishankar, Rahul Venkataramani, Saiha- 816
reesh Anamandra, Prasad Sudhakar, and Pavan An- 817
nangi. 2019. Feature transformers: Privacy preserv- 818
ing lifelong learners for medical imaging. In Med- 819
ical Image Computing and Computer Assisted In- 820
tervention – MICCAI 2019, pages 347–355, Cham. 821
Springer International Publishing. 822

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, 823
Georg Sperl, and Christoph H Lampert. 2017. icarl: 824
Incremental classifier and representation learning. 825
In Proceedings of the IEEE conference on Computer 826
Vision and Pattern Recognition, pages 2001–2010. 827

Nils Reimers and Iryna Gurevych. 2019. Sentence- 828
bert: Sentence embeddings using siamese bert- 829
networks. In Proceedings of the 2019 Conference on 830
Empirical Methods in Natural Language Processing. 831
Association for Computational Linguistics. 832

Matthew Riemer, Ignacio Cases, Robert Ajemian, 833
Miao Liu, Irina Rish, Yuhai Tu, , and Gerald Tesauro. 834
2019. Learning to learn without forgetting by max- 835
imizing transfer and minimizing interference. In 836
International Conference on Learning Representa- 837
tions. 838

Sebastian Ruder and Barbara Plank. 2017. Learning to 839
select data for transfer learning with Bayesian opti- 840
mization. In Proceedings of the 2017 Conference on 841
Empirical Methods in Natural Language Processing, 842
pages 372–382, Copenhagen, Denmark. Association 843
for Computational Linguistics. 844

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas 845
Guibas, Jitendra Malik, and Silvio Savarese. 2020. 846
Which tasks should be learned together in multi-task 847
learning? In Proceedings of the 37th International 848
Conference on Machine Learning, volume 119 of 849
Proceedings of Machine Learning Research, pages 850
9120–9132. PMLR. 851

Emma Strubell, Ananya Ganesh, and Andrew McCal- 852
lum. 2019. Energy and policy considerations for 853
deep learning in NLP. In Proceedings of the 57th 854
Annual Meeting of the Association for Computa- 855
tional Linguistics, pages 3645–3650, Florence, Italy. 856
Association for Computational Linguistics. 857

Antti Tarvainen and Harri Valpola. 2017. Mean teach- 858
ers are better role models: Weight-averaged consis- 859
tency targets improve semi-supervised deep learning 860
results. In Proceedings of the 31st International 861
Conference on Neural Information Processing Sys- 862
tems, NEURIPS’17, page 1195–1204, Red Hook, 863
NY, USA. Curran Associates Inc. 864

Gido M Van de Ven and Andreas S Tolias. 2018. Gen- 865
erative replay with feedback connections as a gen- 866
eral strategy for continual learning. arXiv preprint 867
arXiv:1809.10635. 868

Gido M Van de Ven and Andreas S Tolias. 2019. Three 869
scenarios for continual learning. arXiv preprint 870
arXiv:1904.07734. 871

11

https://proceedings.mlr.press/v78/lomonaco17a.html
https://proceedings.mlr.press/v78/lomonaco17a.html
https://proceedings.mlr.press/v78/lomonaco17a.html
http://papers.nips.cc/paper/7225-gradient-episodic-memory-for-continual-learning
https://openaccess.thecvf.com/content_CVPR_2020/html/Lu_12-in-1_Multi-Task_Vision_and_Language_Representation_Learning_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Lu_12-in-1_Multi-Task_Vision_and_Language_Representation_Learning_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Lu_12-in-1_Multi-Task_Vision_and_Language_Representation_Learning_CVPR_2020_paper.html
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://arxiv.org/abs/2112.09153
https://arxiv.org/abs/2112.09153
https://arxiv.org/abs/2112.09153
https://proceedings.neurips.cc/paper/2020/file/518a38cc9a0173d0b2dc088166981cf8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/518a38cc9a0173d0b2dc088166981cf8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/518a38cc9a0173d0b2dc088166981cf8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/518a38cc9a0173d0b2dc088166981cf8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/518a38cc9a0173d0b2dc088166981cf8-Paper.pdf
http://arxiv.org/abs/1908.01091
http://arxiv.org/abs/1908.01091
http://arxiv.org/abs/1908.01091
https://arxiv.org/abs/1909.08745
https://arxiv.org/abs/1909.08745
https://arxiv.org/abs/1909.08745
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://openreview.net/forum?id=LhY8QdUGSuw
https://openreview.net/forum?id=LhY8QdUGSuw
https://openreview.net/forum?id=LhY8QdUGSuw
https://psycnet.apa.org/fulltext/1990-18992-001.html
https://psycnet.apa.org/fulltext/1990-18992-001.html
https://psycnet.apa.org/fulltext/1990-18992-001.html
https://psycnet.apa.org/fulltext/1990-18992-001.html
https://psycnet.apa.org/fulltext/1990-18992-001.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Rebuffi_iCaRL_Incremental_Classifier_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Rebuffi_iCaRL_Incremental_Classifier_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Rebuffi_iCaRL_Incremental_Classifier_CVPR_2017_paper.html
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://openreview.net/forum?id=B1gTShAct7
https://openreview.net/forum?id=B1gTShAct7
https://openreview.net/forum?id=B1gTShAct7
https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038
https://proceedings.mlr.press/v119/standley20a.html
https://proceedings.mlr.press/v119/standley20a.html
https://proceedings.mlr.press/v119/standley20a.html
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://openreview.net/forum?id=ry8u21rtl
https://openreview.net/forum?id=ry8u21rtl
https://openreview.net/forum?id=ry8u21rtl
https://openreview.net/forum?id=ry8u21rtl
https://openreview.net/forum?id=ry8u21rtl
https://openreview.net/forum?id=ry8u21rtl
https://openreview.net/forum?id=ry8u21rtl
https://arxiv.org/abs/1904.07734
https://arxiv.org/abs/1904.07734
https://arxiv.org/abs/1904.07734


Spencer Whitehead, Hui Wu, Heng Ji, Rogerio Feris,872
and Kate Saenko. 2021. Separating skills and con-873
cepts for novel visual question answering. In Pro-874
ceedings of the IEEE/CVF Conference on Com-875
puter Vision and Pattern Recognition (CVPR), pages876
5632–5641.877

Jaehong Yoon, Saehoon Kim, Eunho Yang, and878
Sung Ju Hwang. 2020. Scalable and order-robust879
continual learning with additive parameter decom-880
position. In International Conference on Learning881
Representations.882

Amir R. Zamir, Alexander Sax, William Shen,883
Leonidas J. Guibas, Jitendra Malik, and Silvio884
Savarese. 2018. Taskonomy: Disentangling task885
transfer learning. In Proceedings of the IEEE Con-886
ference on Computer Vision and Pattern Recognition887
(CVPR).888

A Data Details 889

We investigate three continual learning settings 890

based on the VQA-v2 dataset (Goyal et al., 2017), a 891

collection of visual question annotations in English. 892

Tasks in the Diverse Domains setting are created by 893

grouping 10 objects from COCO annotations (Lin 894

et al., 2014) as follows: 895

• Group 1: bird, car, keyboard, motorcycle, orange, 896

pizza, sink, sports ball, toilet, zebra 897

• Group 2: airplane, baseball glove, bed, bus, cow, 898

donut, giraffe, horse, mouse, sheep 899

• Group 3: boat, broccoli, hot dog, kite, oven, sand- 900

wich, snowboard, surfboard, tennis racket, TV 901

• Group 4: apple, baseball bat, bear, bicycle, cake, 902

laptop, microwave, potted plant, remote, train 903

• Group 5: banana, carrot, cell phone, chair, couch, 904

elephant, refrigerator, skateboard, toaster, truck 905

We also provide a few example questions for 906

each task in Question Types: 907

• Action: What is the cat doing?, Is the man catch- 908

ing the ball?, What is this sport? 909

• Color: What color is the ground?, What color is 910

the right top umbrella? 911

• Count: How many skaters are there?, How many 912

elephants?, How many rooms do you see? 913

• Scene: Is the picture taken inside?, Is this photo 914

black and white?, What is the weather like? 915

• Subcategory: What type of vehicle is this?, What 916

utensil is on the plate?, What kind of car is it? 917

Figures 6-8 show the distribution of the 20 most 918

common question words and answers for each task. 919

The counts are computed on the combined train and 920

validation data, excluding stopwords from the ques- 921

tion vocabulary. These plots support our general 922

findings about the characteristics of each task and 923

the relationships between them. For example, an- 924

swers in Diverse Domains are highly similar across 925

tasks, while the most considerable difference of 926

common answers is observed in Question Types. 927

In addition, frequent nouns in Diverse and Taxon- 928

omy Domains reflect the typical objects from the 929

image annotations of each task. Common words in 930

Question Types also follow the definition of each 931
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Dissimilarity Diverse Taxonomy Questions
Answers 0.567 (0.009) 0.791 (0.000) 0.795 (0.000)
Image embed. 0.248 (0.293) 0.492 (0.028) -0.640 (0.002))
Question embed. 0.184 (0.437) 0.531 (0.016) 0.631 (0.003)
Joint embed. 0.220 (0.350) 0.622 (0.003) -0.223 (0.344)

Table 6: Spearman correlation of pairwise performance
drop and and different dissimilarity heuristics. In addi-
tion to the results in table 3, we show in parentheses
the corresponding p-values. We underline statistically
significant results (p < 0.05).

Setting Batch Size Learning Rate LwF λ EWC λ

Diverse 512 8e-5 1 400
Diverse+PT 1024 8e-5 0.7 500
Taxonomy 512 8e-5 1 600
Taxonomy+PT 1024 5e-5 0.5 500
Questions 1024 1e-4 0.9 50K
Questions+PT 512 5e-5 0.4 20K

Table 7: Best hyperparameters for all settings. PT: Pre-
training

task. For example, top words in Scene such as932

‘sunny’, ‘room’, ‘outside’ refer to the entire im-933

age, while Action words such as ‘sport’, ‘playing’,934

‘moving’ refer to activities shown in the image.935

B Implementation Details936

Our implementation is based on the publicly937

available PyTorch codebase of UNITER (https:938

//github.com/ChenRocks/UNITER). For939

the continual learning experiments, we train a940

UNITER-base model (86M parameters) on a clus-941

ter of NVIDIA V100 GPUs using a single node942

with 4 GPUs. Training on a sequence of 5 tasks943

requires on average ∼ 5 GPU hours. The main944

experiments (Table 4) require approximately a total945

of 200 GPU hours.946

We first tune the batch size and learning rate with947

naive finetuning. Keeping these hyperparameters948

fixed, we then tune the continual learning hyperpa-949

rameters (EWC, LwF λ). All hyperparameters are950

selected through grid search based on the maximum951

final accuracy as shown in Table 7. Initial results952

with a pretrained model on Taxonomy Domains953

showed that best performance is achieved with a954

mixing ratio of 3:1 of new and old data per batch.955

We keep this ratio constant for all experiments.956

Each experiment is repeated five times with a957

different random seed and task order. The task958

orders used in our experiments are the following:959

• Diverse Domains960

• group 5, group 3, group 2, group 4, group 1961

• group 1, group 2, group 5, group 3, group 4962

• group 4, group 3, group 5, group 1, group 2 963

• group 3, group 1, group 4, group 2, group 5 964

• group 2, group 5, group 1, group 4, group 3 965

• Taxonomy Domains 966

• food, animals, sports, interior, transport 967

• transport, sports, food, animals, interior 968

• interior, animals, food, transport, sports 969

• animals, food, interior, sports, transport 970

• sports, interior, transport, animals, food 971

• Question types 972

• action, count, subcategory, scene, color 973

• color, subcategory, action, count, scene 974

• scene, count, action, color, subcategory 975

• subcategory, color, scene, action, count 976

• count, scene, color, subcategory, action 977

C Further CKA Results 978

Figure 10 provides detailed plots of the CKA sim- 979

ilarity of the representations from all layers us- 980

ing a randomly initialized and a pretrained model. 981

We plot the average CKA values from five task 982

orders. Our results support the observations of 983

Section 5.4. The change of CKA similarity corrob- 984

orates that Question Types is the most challenging 985

of the three settings. We also observe that represen- 986

tations of pretrained models remain more similar, 987

especially representations from layers closer to the 988

input (early layers) in Diverse and Taxonomy Do- 989

mains which retain high similarity across training 990

tasks. This indicates that early layers of the pre- 991

trained model have learned generic representations 992

that transfer across tasks. Comparing the CKA re- 993

sults without pretraining for all settings, we see 994

that in Diverse and Taxonomy Domains, the rep- 995

resentations that change most continue to be those 996

from the images. In Question Types, [CLS] to- 997

ken representations change most. Question word 998

representations remain more similar than image 999

representations of early layers (layers 0-7). 1000

D Qualitative Results 1001

Table 8 shows examples of predicted answers with 1002

different approaches. The two top examples are 1003

from two different task orders in Question Types, 1004

and the two bottom examples are from Taxonomy 1005
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Figure 6: Most common words (left) and answers (right) per task Diverse Domains.

Domains. The model trained from scratch (col-1006

umn w/o PT) fails to retain knowledge from the1007

corresponding training task. The pretrained model1008

(column PT) is more resistant to forgetting and we1009

observe that for the first and third images, it even1010

manages to recover the correct answer during the1011

training sequence. However, relying only on pre-1012

training is insufficient, as the model still tends to1013

change the predicted answer based on the most re-1014

cent training task. Both EWC and ER combined1015

with pretraining successfully retain previous knowl-1016

edge.1017

Table 9 presents examples of the SBWT metric.1018

Specifically, it compares SBWT for two pairs of1019

predicted answers with the same initial reference1020

answer. When the initial prediction (reference an- 1021

swer) is correct, and both compared answers are 1022

wrong, we observe that SBWT penalizes similar 1023

answers less than unrelated ones (see the first four 1024

rows of Table 9). Similarly, when one of the com- 1025

pared answers is partially correct (rows 5-8) ac- 1026

cording to the VQA accuracy metric, SBWT is less 1027

punishing compared to BWT, which in our exam- 1028

ples would be −0.7. Finally, the last row shows an 1029

example of corrected compared answers, where the 1030

accuracy improvement is weighted with the seman- 1031

tic distance of reference and compared answers. 1032
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Figure 7: Most common words (left) and answers (right) per task Taxonomy Domains.
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Figure 8: Most common words (left) and answers (right) per task in Question Types.
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Figure 9: Dissimilarity measures between task pairs.
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Figure 10: CKA similarity of the representations of all layers. Representations are indexed with 0-12 where 0
corresponds to representations from the input embedding layer and 12 from the transformer layer closest to the
output. Deeper colors indicate lower similarity. We observe that representations of models trained from scratch
(top row) remain less similar than pretrained models (bottom row). For pretrained models, mostly representations
from the top two layers change evidently.
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What is the horse doing?

Task w/o PT PT PT+EWC PT+ER
Action jumping jumping jumping jumping
Count two one jumping jumping
Subcat. riding jump jumping jumping
Scene cold jumping jumping jumping
Color black black jumping jumping

What color is the cow?

Task w/o PT PT PT+EWC PT+ER
Color black black black black
Subcat black black black black
Action zero yes cow black
Count one one black black
Scene green green black black

What is orange?

Task w/o PT PT PT+EWC PT+ER
Food carrots carrots carrots carrots
Animals birds carrots carrots carrots
Sports nothing kites carrots carrots
Interior chair carrots carrots carrots
Transport nothing tomato carrots carrots

What type of bird is this?

Task w/o PT PT PT+EWC PT+ER
Interior dog owl owl owl
Animals pigeon pigeon pigeon pigeon
Food turkey pigeon pigeon pigeon
Transport not sure duck pigeon seagull
Sports zero seagull pigeon seagull

Table 8: Examples of the evolution of predicted answers with different approaches. Column Task shows the order
of the training tasks. The bold task corresponds to the task of the sample.

Reference Compared Answer 1 Compared Answer 2
Answer Acc Answer Acc SBWT Answer Acc SBWT
skateboarding 1 skateboard 0 -0.164 black 0 -0.836
snowboarding 1 skiing 0 -0.134 winter 0 -0.529
breakfast 1 sandwich 0 -0.340 one 0 -0.855
food 1 meat 0 -0.320 toothbrush 0 -0.832
skateboarding 1 skateboard 0.3 -0.115 skateboard 0 -0.164
carrots 1 carrot 0.3 -0.093 three 0 -0.818
sheep 1 goat 0.3 -0.197 white 0 -0.676
cloudy 1 overcast 0.3 -0.151 gray 0 -0.577
black 0 black and white 1 0.136 brown 1 0.269

Table 9: Comparison of the SBWT metric of two answers with respect to the same reference answer. We verify
that semantically more similar answers have higher SBWT.
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