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ABSTRACT

We introduce FALCON-S, a modular and high-fidelity framework for learning
and control of fixed-wing aerial vehicles operating in ground effect. In con-
trast to existing aerial platforms with simplified dynamics, FALCON-S incor-
porates full 6DoF simulation alongside detailed modeling of ground-effect aero-
dynamics, actuator dynamics, sensors and environmental disturbances. It offers
a level of physical fidelity and modular component design that enables fine-
grained manipulation and systematic analysis of low-altitude flight phenomena,
capabilities rarely found in open-source or state-of-the-art simulation platforms.
The framework includes both CPU and GPU simulation backends via Python
and NVIDIA Warp, supporting high-throughput simulation across up to mil-
lions of parallel environments, which makes it suitable for reinforcement learn-
ing, sampling-based control algorithms, and large-scale evaluation. FALCON-S
features a flexible architecture with interchangeable controllers, supporting opti-
mal control, model-free and model-based RL, as well as a suite of flight control
tasks such as altitude regulation and trajectory tracking. We include optional in-
terfaces for validation and comparison through MATLAB/Simulink and X-Plane,
making it compatible with both engineering workflows and commercial simula-
tors. The framework is released as open-source to facilitate reproducibility and
enable controlled benchmarking in realistic flight scenarios. Link to the code at
https://anonymous.4open.science/r/falcon-s-860FE.

1 INTRODUCTION

The design of intelligent control policies for aerial vehicles has advanced rapidly through the use of
simulation-based learning. In particular, reinforcement learning (RL) methods have demonstrated
remarkable capabilities in controlling complex robotic systems, from quadrotors (Kaufmann et al.,
2023)) and fixed-wing UAVs (Bghn et al.,2019; De Marco et al., 2023) to satellites (El-Hariry et al.,
2024) and legged robots (Chane-Sane et al.,[2024). However, the practical deployment of RL poli-
cies on aerial vehicles remains limited by the gap between simulation and real-world dynamics, a
gap often widened by the oversimplification of flight models, actuator behaviors, and environmental
effects missing from existing simulators.

While simulation environments such as JSBSim (Berndt, [2004), X-Plane (Laminar Research| 2024),
and Flightmare (Song et al.l 2021)) offer varying degrees of realism and extensibility, they typically
lack features essential for research in modern RL and control: fine-grained aerodynamic modeling
under phenomena like ground effect, GPU-accelerated simulation for sample efficiency, modular
control integration, and compatibility with both model-based and model-free methods. Moreover,
most existing platforms are tailored for either industry-focused pilot training or general-purpose
physics simulation, offering limited flexibility for benchmarking learning algorithms across fidelity,
dynamics, and control architecture variants.

In this work, we introduce a modular, physics-grounded, and RL-compatible simulation benchmark,
focused on the control of fixed-wing vehicle, where ground effect, sensors and actuators realism, and
full six-degree-of-freedom (6DoF) dynamics create a rich and challenging environment for learning
and control. Our simulator provides:

(1) Scalable dual-backend simulation engine: We implement a GPU-accelerated physics pipeline
using NVIDIA Warp alongside a CPU-compatible fallback, enabling high-throughput simulation for
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both learning-based and classical control methods. The framework achieves a single-step simula-
tion time of 0.0022 seconds at a scale of 10° parallel environments (on a desktop equipped with an
NVIDIA RTX 4070-Ti SUPER GPU), which is a 100x speed-up w.r.t current state-of-the-art. Our
simulator supports not only accelerated RL training but also efficient sampling for methods such as
Model Predictive Path Integral (MPPI) and large-scale parallel evaluation.

(2) Modular architecture for control and benchmarking: The framework supports both rein-
forcement learning and optimal control methods (e.g., PPO, DreamerV3, LQR, MPPI), and includes
a library of physically grounded flight tasks (e.g., altitude regulation, trajectory tracking) that can be
easily extended or modified.

(3) Comprehensive physics modeling: Our simulation core incorporates aerodynamic models ac-
counting for ground effect, wind, and atmospheric conditions, along with configurable sensor and
actuator dynamics to support high-fidelity or ablation-based experiments.

(4) Cross-platform validation interfaces: We provide validation capabilities with both MAT-
LAB/Simulink and X-Plane (for closed-loop testing in a high-fidelity commercial rendering engine),
broadening applicability across academic and industrial settings.

This benchmark builds on a growing body of literature aiming to bridge control theory and deep
learning in realistic flight settings. Notably, prior works have explored neural flight control under
high-speed dynamics (Basescu et al.,2023)), residual modeling of post-stall acrodynamics (Richards
et al.l 2021)), and simulation-driven learning using platforms like NeuralPlane (Xue et al., [2024)
and QPlane (Richter & Calix, 2021). Our contribution complements these by offering a fully open
and customizable framework that blends scientific modeling (e.g., actuator dynamics, ground effect)
with scalable learning infrastructure.

By supporting both classic and learning-based controllers within the same environment, we aim
to foster reproducible research in control and learning under physically plausible dynamics. We
demonstrate the use of both classical and learning-based controllers to illustrate the benchmarking
capabilities of our framework. We envision this work as a step toward unifying optimal control
and deep reinforcement learning in the context of aerial vehicle control, and as a building block for
broader generalization across simulation-based autonomy research.

2 RELATED WORK

Simulation of fixed-wing flight dynamics. Simulators such as JSBSim, FlightGear, and X-Plane
have long supported fixed-wing aircraft modeling, but are primarily designed for pilot training or
certification, and lack native support for reinforcement learning or scalable training. Recent research
platforms such as QPlane (Richter & Calix|, 2021)) and NeuralPlane (Xue et al.| |2024) address this
limitation by exposing lightweight and configurable interfaces suitable for policy learning. QPlane
wraps JSBSim for Gym-based RL experiments, while NeuralPlane introduces a parallel GPU-based
pipeline for efficient large-scale simulation. However, both frameworks simplify critical aspects of
flight dynamics, often using 3DoF or attitude-only models, with limited actuator fidelity and mini-
mal environmental realism.

Flight control benchmarks and learning environments. While platforms like AirSim (Shah et al.,
2017), Flightmare (Song et al.l 2021}, and RotorS (Furrer et al., | 2016) have successfully advanced
learning-based control for multirotor drones, fixed-wing benchmarks remain scarce due to the in-
creased complexity of forward-flight dynamics, non-holonomic constraints, and sensitivity to exter-
nal disturbances. Most existing learning environments focus on hover-capable vehicles, leaving lim-
ited support for lift-based platforms. Our work addresses this gap by introducing a unified simulation
suite tailored to fixed-wing aircraft operating near the ground, combining realistic 6DoF dynamics
with actuator and sensor models, ground effect, and wind disturbances. It supports both classical
and learning-based controllers and achieves millisecond-scale single-step performance through GPU
acceleration, enabling rigorous, scalable, and physically grounded benchmarking. Combining clas-
sical control with deep learning. There is increasing interest in combining optimal control meth-
ods with reinforcement learning (Berkenkamp et al., 2019; |Liu et al., 2021). Works like Basescu
et al. (Basescu et al., [2023) show how model predictive control can be extended with learned aero-
dynamic models to achieve aggressive post-stall landings. Similarly, residual RL and hybrid policy
architectures have been used to improve control generalization while retaining safety guarantees.
Our environment supports both classical baselines and learning-based controllers, enabling direct
comparisons and hybrid control studies under consistent dynamics.

Modular, accelerated simulators for RL. Efficient learning requires simulators that are both
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Table 1: Comparison of our platform with existing aircraft simulation frameworks. Our system
combines realistic near-ground fixed-wing aerodynamics with modular flight tasks and supports
advanced controllers in a reinforcement learning context, with rich sensors and actuators modeling,
while enabling expandability for sim-to-real transfer. [v'] fully supported,[*] partially or optionally
supported, [-] not supported.

Feature Ours NeuralPlane QPlane JSBSim XPlane
Open-source v v v v -
Physics-based FDM v (WIG, 6DoF) v/ (fixed-wing only) v (JSBSim/XPlane) v v
Ground Effect Model v'(semi-empirical) - * (depends on JSBSim) * v
GPU Acceleration v (Warp) V' (PyTorch) - - -
Multi-agent Support - v v * * (via UDP)
Multiple Flight Tasks v v v * *
Controller Support v v v * *
Realism High Medium High (if X-Plane) High High
Visualization Tools v * * * (via FlightGear) v
Sim-to-Real Ready * * * v v

fast and customizable. GPU-accelerated simulators like WarpDrive (Pan et al. 2021 and Isaac-
Gym (Makoviychuk et al), 2021)) have become increasingly popular in robotics research, but few
have targeted flight vehicles. Flightmare (Song et al.| [2021)) provides GPU acceleration via Unity,
yet focuses on quadrotor dynamics. Our Warp-based simulator offers domain-specific GPU accel-
eration for fixed-wing vehicles with detailed aerodynamics, supporting large-scale training without
compromising physical realism.

To contextualize our contribution, Table [T| presents a detailed comparison between our simulation
platform and several prominent aircraft simulation frameworks, including NeuralPlane (Xue et al.,
2024), QPlane (Richter & Calix, 2021), JSBSim (Berndt, 2004) and XPlane (Laminar Research)
2024). While prior systems offer valuable capabilities, such as high-fidelity physics engines, Gym-
compatible RL integration, or large-scale parallelism, most fall short in supporting near-ground
aerodynamic effects or unified, extensible control pipelines. In contrast, our platform combines
realistic 6-DoF flight dynamics with explicit ground effect modeling, modular control integration
(classical and learning-based), precise actuator and sensors modeling and support for advanced aero-
dynamic modeling and realistic disturbance injection, like wind turbulence, atmospheric pressure
(for high altitude flight conditions) and simplified computation of aerodynamics coefficients with
OpenVSP (NASA OpenVSP Team, [2025)).

3 PRELIMINARIES

We consider the control of a rigid fixed-wing vehicle flying in proximity to the ground, modeled as
a six-degrees-of-freedom (6DoF) system with coupled translational and rotational dynamics. The
vehicle is subject to forces from gravity, aerodynamics, and propulsion, and its motion is described
in the body frame. The state vector x € R” x S3 (or x € R'2?) comprises the position p €
R?, orientation (represented as an unit quaternion q € S® = {q € H : ||q|| = 1} or Euler angles
(¢,0,9) € R3), linear velocity v € R3, and angular velocity w € R?. Control inputs include
throttle and actuator deflections for the elevator, rudder, and ailerons. The equations of motion
follow Newton-Euler rigid body dynamics:

mv=F;+F,+F; —wxmyv, (D
Jo=71,4+717—wxJw, 2)

where m is the vehicle mass, J is the inertia tensor, F is the gravitational force, F, and 7, are
aerodynamic forces and moments, and F; and 7, are thrust-generated force and moment vectors.
We assume constant mass and neglect gyroscopic effects. Each vehicle is modeled as a rigid body
with a body-fixed frame {b} rigidly attached at the centre of mass, and motion is described relative
to an inertial north—east-down (NED) frame {7}.

Aerodynamic forces and moments are computed using semi-empirical models based on the vehicle’s
angle of attack «, sideslip /3, Reynolds number Re and control surface deflections. Lift, drag, and
side force coefficients are computed from look-up tables or parametric expressions derived from ge-
ometric tools such as OpenVSP (NASA OpenVSP Team) 2025). The effect of actuator dynamics is
captured using first- or second-order response models, governed by user-defined time constants and
damping ratios. This introduces realistic response delays and rate limits to control surface inputs.
Thrust is generated by propellers whose outputs are mapped from normalized throttle commands via
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first-order response curves. In asymmetric thrust configurations, this can introduce differential yaw
moments. Our simulator also supports ground effect modeling, which alters the lift and drag char-
acteristics of the vehicle when flying close to the surface. This effect is modeled through empirical
corrections (Phillips & Hunsaker, [2013) to the aerodynamic coefficients as a function of height-over-
span ratio, tamper ration and aspect ratio. The detailed derivation and parameterizations for ground
effect are provided in Appendix [A] Overall, the simulator produces time-continuous dynamics that
are discretized using a configurable integration scheme (e.g., Euler or RK4) and exposed through a
modular interface supporting both CPU and GPU implementations. These dynamics form the basis
for the environments used in training classical and learning-based controllers.

4 FALCON-S FRAMEWORK

Our simulation platform is designed to support the development, training, and evaluation of flight
control strategies for fixed-wing aircraft operating in near-ground environments. The architecture,
illustrated in Figure[T] consists of two primary modules: the agent and the environment.
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Figure 1: Overview of our FALCON-S simulation platform architecture. The environment module
includes aerodynamic modeling, actuator dynamics, environmental effects such as ground effect and
turbulence, and configurable sensor suites. The agent module supports both classical and learning-
based controllers. Tasks, metrics, and visualization tools are modular and extensible, enabling robust
benchmarking and policy training across single and multi-agent setups.

4.1 AGENT MODULE

The agent module supports a wide range of control models, including classical approaches such as
Linear Quadratic Regulator (LQR) and Model Predictive Path Integral (MPPI), as well as modern
learning-based controllers such as PPO, LSTM-based PPO, and DreamerV3. These controllers can
be executed on either CPU or GPU for both evaluation and large-scale training, enabling both quick
debugging of simulated flight conditions and heavy-duty batched experiments, where millions of
trajectories can be collected to train and evaluate control performance.

LQR with Integral action: The LQR controller is implemented in closed form using discrete-time
linearization of the vehicle dynamics around a steady trim condition. The gain matrix K is pre-
computed using the Riccati equation solution, and the resulting control law v = — Kz is applied at
each simulation step. The linearization matrices (A, B) are precomputed and approximated using
numerical Jacobians based on the simulator’s physics model. For LQRI (LQR with integral action)
the state vector is augmented with integrator states (e.g. integrated altitude error) before forming
(A4, By) and solving the Ricatti equation B}

MPPI: The Model Predictive Path Integral controller follows a sampling-based trajectory optimiza-
tion approach. At each control step, the algorithm samples multiple control sequences sampled from
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a Gaussian distribution centred on the previous action sequence, propagates each action through the
dynamics model, and computes an optimal control output from the weighted average of trajectories
based on their cumulative cost. The implementation supports GPU-based sampling for parallelized
inference, using a Warp backend. The cost function is task-specific and includes weighted penalties
on tracking error, control effort, and constraint violations. More in Appendix

Gymnasium interface: The environment exposes a compliant Gymnasium [Towers et al.| (2024)
interface through the CoreAirshipEnv class and its wrappers. It supports reset (),
step (action), and render () methods, and optionally includes info dictionaries with task-
specific diagnostics. Observations are exposed as flat NumPy arrays and can be extended with sensor
noise or delays via wrapper classes. The action space is continuous (bounded) and directly maps to
control surface deflections and throttle values.

For high-performance training and evaluation, a parallelized variant of the environment is available
through the Warp backend. This wrapper implements the same Gymnasium API but executes dy-
namics in batched form on the GPU, leveraging Warp’s kernel-level integration and memory model.
Stable-Baselines3 and DreamerV3 support: We provide out-of-the-box integration with Stable
Baselines3 (SB3), enabling rapid experimentation with off-the-shelf RL algorithms like PPO and
SAC. Model-based RL agents are supported via a DreamerV3 (Hafner et al., [2025) pipeline that
wraps the simulation environment in a recurrent state-space model (RSSM). The implementation
reuses the ‘dreamerv3° codebase, adapted for continuous-control fixed-wing tasks. The world model
is trained jointly with a policy and value network using imagined rollouts. Action sequences are op-
timized through learned latent trajectories. GPU acceleration is used for both training and inference.
See Appendix [B.3|for architecture, hyperparameters, and adaptation details for fixed-wing control.

4.2 ENVIRONMENT MODULE

Our environment module supports multiple simulation backends and interoperation with external
tools, allowing flexibility in simulation fidelity, performance, and controller design workflows.
Specifically, we offer two primary physics engines in Python: one based on SciPy’s numerical inte-
gration for rapid prototyping, and another leveraging NVIDIA Warp for large-scale GPU-accelerated
simulation. In addition, MATLAB and Simulink can be used for validation or control design tasks,
such as symbolic derivation of system matrices for LQR or linearized model identification. This
dual-language and dual-backend setup enables practitioners to prototype quickly in Python and val-
idate or deploy controllers using industry-standard tools when necessary.

Core Physics: The environment simulates full six-degree-of-freedom (6DoF) rigid-body aircraft
dynamics, focusing on low-altitude scenarios where physical effects such as ground proximity and
turbulence dominate. The physics module is structured around five interconnected components:
Aerodynamics: Uses precomputed aerodynamic coefficients from OpenVSP or analytical approxi-
mations. Aerodynamic forces and moment forces are adjusted dynamically based on airspeed, angle
of attack, sideslip angle, height above ground and control surface deflection. Ground effect correc-
tions are applied using semi-empirical models[A.T]

Actuators: Control surface deflections and thrust values are passed through first- or second-order
actuator dynamics[A.2] allowing simulation of latency, saturation, and rate-limited responses. The
actuator module outputs net forces and moments in the body frame.

Environmental Effects: Wind gusts, turbulence fields, and pressure gradients are injected into the
dynamics via different noise models [A.3] enabling robustness testing under realistic conditions.
Sensors: An onboard sensor model simulates IMU measurements (accelerometer, gyroscope), GPS,
and optional encoders[A.4] Sensor noise, sampling rate, resolution, or delay can be added to evaluate
performance under degraded sensing.

Flight Tasks: The agent interacts with the environment through a set of modular task definitions,
such as fixed-altitude keeping, dynamic climbing/descending, 2D path following, and full 3D tra-
jectory tracking. These are defined as reward functions and success conditions on top of the raw
physics simulation.

Each of these components interacts through the environment interface, which passes state transi-
tions, sampled observations, and reward signals to the agent. Each physics component can be in-
dependently toggled or simplified, enabling ablation studies and comparative benchmarking under
controlled settings.

Aircraft 3D model: Our framework supports rapid prototyping of different airframes via JSON-
based configuration files. Each aircraft model (e.g., Navion, Cessna, or Airship) is described by its
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geometry, mass, inertia, control surface layout, propulsion system parameters, sensor configuration
and environmental settings. Given the aircraft OpenVSP 3D model, using its python API, the aero-
dynamic coefficients can be computed as a luck-up table and then fitted to a Nth order polynomial.
These models are then used for both simulation and visualization. The modular setup makes it easy
to switch between vehicles and test control policies across different configurations, improving gen-
eralization and robustness.

Validation with X-Plane: To improve validation and high-fidelity visualization, FALCON-S in-
cludes an interface to the X-Plane using the Python XPlaneConnect API (NASA Ames Research
Center,, 2025)) developed by NASA. Given the same aircraft configuration (geometry and flight initial
conditions), trajectories generated in our simulator can be replayed or compared within X-Plane’s
high-resolution rendering engine. This allows cross-verification of dynamics between our model and
an industry-standard closed-source simulator. Additionally, X-Plane can be used to test the different
controllers and scenarios in an different simulation environment, providing a practical robustness
and check for controller performance under a different modeling physics engine. Lastly, it can be
used to capture high-quality video demonstrations of trained agents flying over varied terrain. In the
Appendix [A.5]we show examples for how comparisons with X-Plane can be performed.

5 EXPERIMENTS & RESULTS

Our experiments are designed to highlight the flexibility and realism of the FALCON-S framework,
rather than to optimize or compare specific learning or control algorithms. The primary objective is
to demonstrate how the simulator supports a wide variety of use cases and provides structured tools
to evaluate control performance under diverse settings. To this end, we present a set of illustrative
results covering four key aspects:

(1) Algorithm performance illustration: We demonstrate how FALCON-S supports consistent
benchmarking by applying both classical (e.g., LQR) and learning-based (e.g., DreamerV3) con-
trollers to standard tasks like altitude keeping.

(2) Multi-task generalization: We test a single controller (e.g., MPPI or LQR) on multiple tasks
(e.g., altitude regulation, 2D path tracking, 3D trajectory tracking) to show how FALCON-S sup-
ports task variation and behavioral analysis with minimal reconfiguration.

(3) Cross-vehicle testing: Using the same control policy, we evaluate performance across different
aircraft models (e.g., Cessna, Navion, Airship) to highlight how simulation fidelity and control dif-
ficulty change across morphologies and configurations.

(4) Environmental sensitivity: We analyze the impact of physical realism features, such as wind
disturbance, ground effect, sensor noise, or actuator delay, by toggling them independently and
observing the effect on controller robustness and behavior.

Metrics: To evaluate controller performance, we compute a set of standard metrics from each sim-
ulated trajectory, including root mean square error (RMSE), settling time, overshoot, energy uti-
lization, and mean error. RMSE and mean error quantify overall tracking accuracy; settling time
measures how quickly the agent enters and remains within a defined error band (1m); overshoot
reflects the maximum deviation from the reference; and energy utilization serves as a proxy for con-
trol effort, computed from the squared motor actions over time. These metrics, together with full
trajectory and action logs, allow structured comparisons across algorithms, tasks, vehicle models,
and environmental settings. Equations are provided in the Appendix

Trajectories: The trajectories (a)—(f) correspond to: (a) altitude sine wave, (b) altitude ramps, (c)
altitude and lateral ramps, (d) lateral sine wave, (e) altitude and lateral sine wave, and (f) spiral wave.

Each subsection below presents a brief experiment showcasing these capabilities. We leave detailed
quantitative benchmarking and algorithm tuning to future work.

5.1 DEMONSTRATING LEARNING-BASED CONTROL WITH DREAMER

To illustrate how FALCON-S supports modern reinforcement learning pipelines, we trained a
DreamerV3 agent to perform altitude regulation. The task consists of maintaining flight along a
forward trajectory while matching a time-varying altitude reference. Figure [2] shows the learned
behavior over multiple rollouts, with 3D trajectory tracking, orientation stabilization, position evo-
lution, and linear velocity regulation. The results indicate stable control behavior and successful
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learning of the target altitude profile, albeit with slight oscillations due to limited policy tuning.
Performance metrics across representative environments are summarized in Table [2] demonstrating
tracking accuracy in the sub-meter range with energy usage that can be improved.

D Traject
3o Wajectory L oretation States: Positon States:Linear Vel

Figure 2: DreamerV3 agent controlling the airship along a dynamic altitude-keeping trajectory. Top-
left: 3D trajectory tracking. Top-right: orientation convergence. Bottom-left: position over time.

Bottom-right: body-frame velocity components.

Table 2: Mean + standard deviation across five DreamerV3 runs for dynamic altitude tracking.

RMSE (m) Alt. RMSE (m) Overshoot (m)  Error (mean + std) (m)  Energy Util.
0.756 £ 0.763 1.309 + 1.231 1.540 + 1.246 1.270 + 1.369 0.743 + 0.066

5.2 SINGLE CONTROLLER ACROSS MULTIPLE TASKS

We evaluate the LQR controller on six trajectory tracking tasks of increasing complexity using the
same airship model. As shown in Figure [3] and Table [3] the controller maintains low RMSE and
smooth behavior on simpler tasks such as single-axis sine waves (a, d) and low-frequency ramps (b,
e), with minimal overshoot and low energy usage. Performance degrades in more challenging 3D
or fast-changing trajectories (c, f), where the controller exhibits larger errors and reduced stability.
These results demonstrate the ability of our framework to highlight task-dependent control limita-
tions and enable fine-grained benchmarking across diverse reference profiles.

Performance metrics for the MPPI controller can be seen in table [9]in section [B.2]of the appendix.

Table 3: Performance metrics (RMSE, settling time, o, overshoot, mean error, and energy utiliza-
tion) for the Airship vehicle in tasks (a)—(f) with the LQR controller.

Task RMSE (m) Settling Time (s) Overshoot (m) Error (mean + std) (m) Energy Utilization

(a) 0.025 1.48 0.211 0.037 £ 0.024 0.663
(b) 0.052 41.55 0.671 0.025 + 0.087 0.370
(© 0.213 44.06 1.708 0.144 £ 0.339 0.379
(d) 0.017 2.94 0.213 0.014 £ 0.026 0.303
(e) 0.019 2.40 0.209 0.024 £ 0.021 0.583
® 0.149 - 0.704 0.231 £0.114 0.565

5.3 CROSS-AIRCRAFT EVALUATION

To evaluate generalization across vehicle morphologies, we test the same LQR controller on three
aircraft models, Airship (A), Cirrus SR22 (B), and Navion (C), across all six trajectory tracking
tasks. As shown in Table ] performance varies significantly with aircraft dynamics. The Airship
(A), for which the controller was tuned, consistently achieves the lowest RMSE and overshoot,
indicating good stability and responsiveness. In contrast, the Cirrus (B) and Navion (C) exhibit
higher errors and settling times, especially in dynamic or multi-axis tasks (e.g., tasks ¢ and f), due
to differences in actuation and inertia properties. These results illustrate how the framework en-
ables structured comparisons across vehicle configurations and supports benchmarking controller
robustness to morphology changes.
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Figure 3: LQR-controlled Airship response to tracking different trajectories.
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Figure 4: LQR-controlled Airship, Cirrus SR22 and Navion response to altitude and lateral sine
wave trajectory tracking.

5.4 ROBUSTNESS UNDER ENVIRONMENTAL VARIATIONS

We assess the robustness of the LQR controller under different sources of environmental uncer-
tainty: sensor noise (A), wind disturbances (B), and sensor delay (C). Table |§| shows that all three
perturbations impact performance to varying degrees, with wind disturbances generally inducing
the highest errors, overshoot, and energy usage, especially in fast-changing tasks such as (c) and (f).
Sensor noise introduces more variability (e.g., increased RMSE and error variance), while sensor
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Table 4: Performance metrics for scenarios (a)—(f). Columns (A), (B), (C) correspond to Airship,
Cirrus SR22 and Navion respectively.

RMSE Settling Time (s) Overshoot Error (mean + std) (m) Energy Utilization
Task  (A) (B) ©) (A) (B) ©) (A) (B) ©) (A) (B) ©) (A) (B) ©)
(a) 0.025 0.024 0.055 148 163 151 0211 0419 1227 0.0374+0.024 0.028 £0.031 0.034+£0.089 0.663 0372 0.362
(b) 0.052  0.045 0.049 41.55 4127 4127 0671 0.787 0.854 0.02540.087 0.019£0.076 0.019£0.082 0.370 0322 0315
(c) 0.213 0223 0.208 44.06 46.20 46.00 1.708 1.709 1.877 0.144+0.339 0.158 £0.352 0.148 £0.328 0.379 0.322 0.315
(d) 0.017 0.023 0.056 2.94 322 270 0213 0412 1250 0.014+0.026 0.017 +£0.037 0.022+0.094 0303 0.290 0.289
(e) 0.019 0.022 0.055 240 259 195 0209 0416 1237 0.02440.021 0.021 £0.032 0.027 £0.091 0.583 0.345 0.338
) 0.149 0.161 0.163 - - - 0.704 0.739 1290 0.231 £0.114 0.248 £0.126 0.243 £0.143 0.565 0.340 0.335
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Figure 5: LQR-controlled Airship response to altitude and lateral sine wave trajectory tracking under
sensor noise, light Dryden turbulence, or a 20 ms sensor delay.

delay has a relatively smaller effect in most scenarios, though certain tasks (e.g., (b), (f)) remain
sensitive. These results demonstrate FALCON-S’s capacity to simulate realistic disturbances and
evaluate controller sensitivity in a structured and reproducible way.

Table 5: Performance metrics for scenarios (a)—(f). Columns (A), (B), (C) correspond to Airship,
with sensor noise, wind disturbances and sensor delay respectively.

RMSE Settling Time (s) Overshoot Error (mean =+ std) (m) Energy Utilization

Scenario  (A) (B) ©) (A) (B) ©) (A) (B) ©) (A) (B) ©) (A) (B) ©)

(a) 0.091 0220 0.024 64.43 - 0.01 0619 1.155 0215 0.131+0.089 0312+0.218 0.0364+0.023 0.760 0.741 0.663
(b) 0.087 0.141 0.051 31.00 4224 30.70 0.689 0.783 0.663 0.118 £0.093 0.178 £0.168 0.024 +0.084 0.464 0476 0.371
(c) 0.394* 0.250 0.210 —* 4337 4320 1.732*% 1.753 1.686 0.473 £0.492% 0.249 +0.354 0.1424+0.335 0.799* 0.474 0.380
(d) 0.066 0.076 0.017 0.01 001 001 0356 0382 0217 0.099+0.057 0.114+0.065 0.014+0.026 0425 0430 0.303
(e) 0.068 0.194 0.018 0.01 - 0.01 0438 1.167 0214 0.102+0.060 0253 +£0.220 0.0234+0.021 0.669 0.668 0.583
®) 0.163  0.238 0.147 234 8728 248 0.766 1401 0.691 0.260=+0.112 0327 +0.249 0228 +£0.113 0.649 0.665 0.565

6 CONCLUSIONS

We introduced FALCON-S, a modular and high-fidelity simulation benchmark for fixed-wing air-
craft operating in ground effect. By combining realistic 6DoF dynamics, configurable actuator and
sensor models, and support for both classical and learning-based controllers, FALCON-S enables
structured benchmarking across tasks, vehicle types, and environmental conditions. Its dual CPU-
GPU backends and Gym-compatible API make it suitable for scalable training, analysis, and cross-
validation. Future work will extend the framework with path planning algorithms, real-world hard-
ware integration, and more solutions to support sim-to-real transfer.
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A PHYSICAL MODELING DETAILS

This appendix provides the mathematical details behind the simulation environment used in the main
paper. The simulator integrates a high-fidelity 6DoF flight model with realistic actuator dynamics,
wind turbulence (Dryden), and optional ground-effect modeling. These models are configured via a
modular system that supports controlled ablation studies and toggling of physical phenomena.

A.1 AERODYNAMIC COEFFICIENTS AND GROUND EFFECT

The aerodynamic forces and moments are computed from lookup tables or polynomial fits, using
the local flow conditions:

—Cp bC,
Foero = ¢S Cy v Maero =¢S5 cCh , €))
-CL bC'

where ¢ = % pV.2 is the dynamic pressure, S is the reference wing area, b and c are the wingspan
and chord, and C; are the aerodynamic coefficients dependent on angle of attack «, sideslip 5, and
control surfaces ¢, (ailerons), d. (elevator) and J,. (rudder).

To model ground effect, the lift and drag coefficients C'r, and C'p are corrected via empirical terms,
following (Phillips & Hunsaker} 2013):

Cp = Cp (L+ pr(h/b)), 4)
Cp = Cp (1= pp(h/b)), )

where ur,, up are ground effect modifiers parameterized as functions of the height ratio h /b, and
Ct°, C¥ denotes the out-of-ground-effect coefficients. These modifiers can be toggled to assess the
effect of WIG-specific dynamics.

Table [6] presents the influence of ground effect on the performance of the LQR controller. As ex-
pected, operating close to the ground leads to a noticeable reduction in overall commanded thrust.
The increase in C'f, reduces the required angle of attack («) for the same airspeed to maintain steady
flight. Together with the higher up in ground effect, this results in a substantial decrease in Cp,
which lowers the overall drag and, consequently, the thrust required to sustain steady flight. These
effect quickly become negligible once (h/b) > 1 (figure [6).
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Figure 6: Variation of C';, and C'p with altitude due to ground effect, utilizing airship with the LQR
controller.

Table 6: LQR performance metrics (RMSE, settling time, overshoot, error mean + std, and energy
utilization) for the Airship vehicle at various altitudes.

Altitude (m) RMSE (m) Settling Time (s) Overshoot (m) Error (mean + std) (m) Energy Utilization

1.0 0.008 0.01 0.187 0.002 £+ 0.014 0.303
2.5 0.011 0.01 0.247 0.002 £ 0.020 0.590
5.0 0.012 0.01 0.265 0.003 £ 0.021 0.689
10.0 0.013 0.01 0.271 0.003 £ 0.022 0.723
100.0 0.013 0.01 0.280 0.003 £ 0.022 0.743

A.2 ACTUATOR DYNAMICS

Actuator systems (control surfaces and motors) are modeled via first- or second-order transfer func-
tions with configurable time constants and damping ratios:

2
w
H(s)= —“n (opd-
(S) 82 + 2Cwn8 4 w% ’ ( nd order), (6)
or
H(s) = (1st-order), @)

Ts+1’
where w, is the natural frequency, ( is the damping ratio, and 7 is the time constant. Each actuator
group (e.g., elevator, ailerons, motors) can use a different response model based on configuration.

A.3 WIND AND TURBULENCE MODELING

Environmental disturbances include: - Constant wind in the inertial frame (NED), rotated to the
body frame. - Dryden turbulence (Dryden & Kuethe| [1930), implemented via the MIL-F-8785C
model using band-limited white noise through forming low-pass filters (see table [7).

For low altitude flights (h < 1000 ft), the turbulence scale lengths and intensities are defined as
h

Lu:Lv: 1.9 Lw:h (8)
(0.177 + 0.000823R) ™

12
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Figure 7: Control surfaces and motor unit step response for Airship.

Table 7: Dryden turbulence velocity spectral filters.

Longitudinal Lateral Vertical
K, ’UK'U 1 3T1J wKw 1 3£Fw
Filter Gu(s) = _Tultu Gy(s) = M Guls) = o ( +V3 S)
(14 Ty,s)? (1+T,s)? (1+Tys)?
2L L [ L, L [ L L
Constants K,=/—% T,==" K, =4/—~, T,==" Ky=]—%, T,=-"2
onstants ‘ m Uol “ UO v TFUO v U() v ™ Uo v Uo
and
o
Oy =0y = @ ow = 0.1Woy, 9)

(0.177 + 0.000823R)**

where h represents the altitude in feet, and Ws is the chosen wind speed at 20 meters, which defines
the intensity of the turbulence.

(a) Light Dryden turbulence (b) Moderate Dryden turbulence (c) Severe Dryden turbulence

Figure 8: Longitudinal, lateral and vertical effects of different Dryden turbulence intensities at 2.5
m altitude, 28 m/s airspeed with the same random seed.

A.4 SENSOR REALISM AND NOISE

To simulate realistic perception pipelines, our framework includes configurable sensor models af-
fected by various imperfections: additive noise, constant bias, scaling errors, clipping (limits), quan-
tization (resolution), reduced sampling rates, and delay. Figure [J]illustrates these effects on sensor
outputs compared to the ground truth signal. Each disturbance can be toggled or combined for
robustness testing and sim-to-real transfer studies.

A.5 VALIDATION WITH X-PLANE

To support high-quality visualization and cross-simulator validation, FALCON-S includes a Python
interface to X-Plane. This allows us to reproduce the same control task shown in previous ex-
periments—such as dynamic altitude keeping—within X-Plane’s rendering engine using the same
aircraft configuration and reference trajectory. This enables visual inspection, qualitative validation,
and future extensions toward sim-to-real transfer.
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(a) Perfect sensors (b) Sensor noise (c) Sensor bias (d) Sensor scaling factor

(e) Sensor limits (f) Sensor resolution (g) Sensor sampling rate (h) Sensor delay

Figure 9: Illustration of different sensor effects implemented in the simulator.

Figure 10: Rendered views of the Airship performing a dynamic altitude keeping task in X-Plane,
aligned with the same reference trajectory used in FALCON-S.

A.6 METRICS

Table [8] summarizes the performance metrics used to evaluate control strategies in FALCON-S.
Each metric is computed from logged trajectories and actions, capturing accuracy, responsiveness,
and control efficiency.

For interpretation, lower values of tracking error and overshoot indicate higher accuracy, while
shorter settling times reflect faster convergence. Control smoothness metrics (e.g., input rate penal-
ties) capture responsiveness without excessive actuator usage. Energy consumption is evaluated
from integrated thrust and control surface activity (range [0-1]): lower values indicate more efficient
control. Conversely, excessively high energy consumption may reflect oscillatory or unstable control
behavior.
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Table 8: Summary of evaluation metrics computed from trajectory and control logs.

Metric Formula / Description
RMSE (Total) RMSE = /& SN | [le]?
Where e; is the position error at timestep ¢
N
Mean Error Mean = 3+ >, |le]]
Overshoot Overshoot = max; ||e||
Settling Time Minimum time ¢ such that ||e;|| < § and remains within the band V¢’ >

t for at least 10% of the episode length. Default threshold: § = 1m

Energy Utilization Energy = fOT [ Umotors (t)[|? dt
Where uot0rs are normalized motor inputs and 7' is total time

B AGENT MODULE

B.1 LQR WITH INTEGRAL ACTION DETAILS

The Linear Quadratic Regulator (LQR) controller was tuned using state and input weighting matrices
selected to balance tracking accuracy and control effort. The state weighting matrix Qror Was
defined as

Qror = diag(14.6, 8.2, 14.6, 8.2, 14.6, 8.2, 1, 1,
0.25, 0.25, 0.25, 18.2, 18.2, 18.2, (10)
1075, 1075, 107>, 1075, 1, 400),
where the first six entries correspond to actuator states, followed by velocity, angular velocity, imag-
inary quaternion components, and position. The very small weights on the quaternion error terms

(10’5) were introduced to avoid biasing the controller towards any one given attitude, while still
ensuring stability.

To incorporate integral action, the augmented weighting matrix was defined as

Qrqr = diag (Qror, Qror(18:20)), (11)

and the integral gains were setto K; = [0 —1 —1.5]T.

The control effort weighting matrix was chosen as
Rigr = diag(1, 1, 800, 800, 800),

assigning higher penalties to thrust-related control inputs in order to limit excessive propulsive effort
and improve efficiency.

The complete state-feedback gain matrix K (including integral augmentation where applicable) was
computed in MATLAB using the built-in 1gr function. The state-space matrices (A, B) required by
lgr were obtained from the system linearization tool (linearization around the chosen trim condi-
tion). Full implementation and resulting K matrices for each aircraft can be seen in the open source
repository.

B.2 MPPI DETAILS

For all experiments the MPPI controller was initialized the following settings: number of sampled
trajectories N = 103, planning horizon 7' = 100 time steps, temperature A = 3.0, and control
perturbation covariance ¥ = diag(c2,02,02,0%) = diag(0.10, 0.08, 0.08, 0.10), for elevator,
aileron, rudder and throttle respectively.
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Table 9: Performance metrics (RMSE, settling time, o, overshoot, mean error, and energy utiliza-
tion) for the Airship vehicle for constant altitude and tasks (a)—(f) with the MPPI controller. Runs
marked with ‘*’ indicate simulations that terminated prematurely due to instability (crash or stall).

Task RMSE (m) Settling Time (s) Overshoot (m) Error (mean + std) (m) Energy Utilization
2.5 m altitude 0.010 0.84 0.119 0.013 £ 0.010 0.787
60.0 m altitude 0.013 1.08 0.158 0.017 £ 0.013 0.786
(a) 0.012 0.01 0.070 0.017 £ 0.011 0.780
(b)* 1.075 - 3.836 1.330 £+ 1.303 0.367
(c)* 3.046 - 11.256 3.837 £ 3.621 0.340
(d) 0.008 0.01 0.081 0.011 £ 0.009 0.525
(e) 0.010 0.01 0.088 0.014 +0.010 0.757
(f)* 0.814 - 4.581 0.971 + 1.023 0.419

The cost function employed in the planner is the sum of weighted penalties for: (i) altitude tracking,
(ii) lateral (cross-track) tracking, (iii) ground-collision/proximity avoidance, (iv) angular-rate inten-
sity, (v) airspeed keeping, (vi) penalization of excessive altitude, (vii) excessive angle-of-attack (),
and (viii) excessive sideslip (3).

MPPI trajectory sampling and propagation were implemented using NVIDIA Warp to JIT-compile
the simulation kernels and execute large numbers of trajectories in parallel on the GPU.

The formulation and implementation follow the approach described in Williams et al.|(2018)). Exact
numeric weights, cost functions and process are also available in the open-source repository.

B.3 DREAMERV3 HYPERPARAMS

DreamerV3
Discount Factor () 0.997
Replay Buffer Size 2,000, 000
Batch Size 16
Sequence Length 1024
Updates per Environment Step 32
Model Size:

RSSM Hidden Size 384

RSSM Deterministic Units 3072
Discrete Latents per State 24
MLP Units 384
CNN Depth 24
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