
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FALCON-S: FIXED-WING AERODYNAMICS
AND LEARNING CONTROL SUITE

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce FALCON-S, a modular and high-fidelity framework for learning
and control of fixed-wing aerial vehicles operating in ground effect. In con-
trast to existing aerial platforms with simplified dynamics, FALCON-S incor-
porates full 6DoF simulation alongside detailed modeling of ground-effect aero-
dynamics, actuator dynamics, sensors and environmental disturbances. It offers
a level of physical fidelity and modular component design that enables fine-
grained manipulation and systematic analysis of low-altitude flight phenomena,
capabilities rarely found in open-source or state-of-the-art simulation platforms.
The framework includes both CPU and GPU simulation backends via Python
and NVIDIA Warp, supporting high-throughput simulation across up to mil-
lions of parallel environments, which makes it suitable for reinforcement learn-
ing, sampling-based control algorithms, and large-scale evaluation. FALCON-S
features a flexible architecture with interchangeable controllers, supporting opti-
mal control, model-free and model-based RL, as well as a suite of flight control
tasks such as altitude regulation and trajectory tracking. We include optional in-
terfaces for validation and comparison through MATLAB/Simulink and X-Plane,
making it compatible with both engineering workflows and commercial simula-
tors. The framework is released as open-source to facilitate reproducibility and
enable controlled benchmarking in realistic flight scenarios. Link to the code at
https://anonymous.4open.science/r/falcon-s-860E.

1 INTRODUCTION

The design of intelligent control policies for aerial vehicles has advanced rapidly through the use of
simulation-based learning. In particular, reinforcement learning (RL) methods have demonstrated
remarkable capabilities in controlling complex robotic systems, from quadrotors (Kaufmann et al.,
2023) and fixed-wing UAVs (Bøhn et al., 2019; De Marco et al., 2023) to satellites (El-Hariry et al.,
2024) and legged robots (Chane-Sane et al., 2024). However, the practical deployment of RL poli-
cies on aerial vehicles remains limited by the gap between simulation and real-world dynamics, a
gap often widened by the oversimplification of flight models, actuator behaviors, and environmental
effects missing from existing simulators.
While simulation environments such as JSBSim (Berndt, 2004), X-Plane (Laminar Research, 2024),
and Flightmare (Song et al., 2021) offer varying degrees of realism and extensibility, they typically
lack features essential for research in modern RL and control: fine-grained aerodynamic modeling
under phenomena like ground effect, GPU-accelerated simulation for sample efficiency, modular
control integration, and compatibility with both model-based and model-free methods. Moreover,
most existing platforms are tailored for either industry-focused pilot training or general-purpose
physics simulation, offering limited flexibility for benchmarking learning algorithms across fidelity,
dynamics, and control architecture variants.
In this work, we introduce a modular, physics-grounded, and RL-compatible simulation benchmark,
focused on the control of fixed-wing vehicle, where ground effect, sensors and actuators realism, and
full six-degree-of-freedom (6DoF) dynamics create a rich and challenging environment for learning
and control. Our simulator provides:
(1) Scalable dual-backend simulation engine: We implement a GPU-accelerated physics pipeline
using NVIDIA Warp alongside a CPU-compatible fallback, enabling high-throughput simulation for

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

both learning-based and classical control methods. The framework achieves a single-step simula-
tion time of 0.0022 seconds at a scale of 106 parallel environments (on a desktop equipped with an
NVIDIA RTX 4070-Ti SUPER GPU), which is a 100x speed-up w.r.t current state-of-the-art. Our
simulator supports not only accelerated RL training but also efficient sampling for methods such as
Model Predictive Path Integral (MPPI) and large-scale parallel evaluation.
(2) Modular architecture for control and benchmarking: The framework supports both rein-
forcement learning and optimal control methods (e.g., PPO, DreamerV3, LQR, MPPI), and includes
a library of physically grounded flight tasks (e.g., altitude regulation, trajectory tracking) that can be
easily extended or modified.
(3) Comprehensive physics modeling: Our simulation core incorporates aerodynamic models ac-
counting for ground effect, wind, and atmospheric conditions, along with configurable sensor and
actuator dynamics to support high-fidelity or ablation-based experiments.
(4) Cross-platform validation interfaces: We provide validation capabilities with both MAT-
LAB/Simulink and X-Plane (for closed-loop testing in a high-fidelity commercial rendering engine),
broadening applicability across academic and industrial settings.

This benchmark builds on a growing body of literature aiming to bridge control theory and deep
learning in realistic flight settings. Notably, prior works have explored neural flight control under
high-speed dynamics (Basescu et al., 2023), residual modeling of post-stall aerodynamics (Richards
et al., 2021), and simulation-driven learning using platforms like NeuralPlane (Xue et al., 2024)
and QPlane (Richter & Calix, 2021). Our contribution complements these by offering a fully open
and customizable framework that blends scientific modeling (e.g., actuator dynamics, ground effect)
with scalable learning infrastructure.
By supporting both classic and learning-based controllers within the same environment, we aim
to foster reproducible research in control and learning under physically plausible dynamics. We
demonstrate the use of both classical and learning-based controllers to illustrate the benchmarking
capabilities of our framework. We envision this work as a step toward unifying optimal control
and deep reinforcement learning in the context of aerial vehicle control, and as a building block for
broader generalization across simulation-based autonomy research.

2 RELATED WORK

Simulation of fixed-wing flight dynamics. Simulators such as JSBSim, FlightGear, and X-Plane
have long supported fixed-wing aircraft modeling, but are primarily designed for pilot training or
certification, and lack native support for reinforcement learning or scalable training. Recent research
platforms such as QPlane (Richter & Calix, 2021) and NeuralPlane (Xue et al., 2024) address this
limitation by exposing lightweight and configurable interfaces suitable for policy learning. QPlane
wraps JSBSim for Gym-based RL experiments, while NeuralPlane introduces a parallel GPU-based
pipeline for efficient large-scale simulation. However, both frameworks simplify critical aspects of
flight dynamics, often using 3DoF or attitude-only models, with limited actuator fidelity and mini-
mal environmental realism.
Flight control benchmarks and learning environments. While platforms like AirSim (Shah et al.,
2017), Flightmare (Song et al., 2021), and RotorS (Furrer et al., 2016) have successfully advanced
learning-based control for multirotor drones, fixed-wing benchmarks remain scarce due to the in-
creased complexity of forward-flight dynamics, non-holonomic constraints, and sensitivity to exter-
nal disturbances. Most existing learning environments focus on hover-capable vehicles, leaving lim-
ited support for lift-based platforms. Our work addresses this gap by introducing a unified simulation
suite tailored to fixed-wing aircraft operating near the ground, combining realistic 6DoF dynamics
with actuator and sensor models, ground effect, and wind disturbances. It supports both classical
and learning-based controllers and achieves millisecond-scale single-step performance through GPU
acceleration, enabling rigorous, scalable, and physically grounded benchmarking. Combining clas-
sical control with deep learning. There is increasing interest in combining optimal control meth-
ods with reinforcement learning (Berkenkamp et al., 2019; Liu et al., 2021). Works like Basescu
et al. (Basescu et al., 2023) show how model predictive control can be extended with learned aero-
dynamic models to achieve aggressive post-stall landings. Similarly, residual RL and hybrid policy
architectures have been used to improve control generalization while retaining safety guarantees.
Our environment supports both classical baselines and learning-based controllers, enabling direct
comparisons and hybrid control studies under consistent dynamics.
Modular, accelerated simulators for RL. Efficient learning requires simulators that are both

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of our platform with existing aircraft simulation frameworks. Our system
combines realistic near-ground fixed-wing aerodynamics with modular flight tasks and supports
advanced controllers in a reinforcement learning context, with rich sensors and actuators modeling,
while enabling expandability for sim-to-real transfer. [✓] fully supported,[*] partially or optionally
supported, [–] not supported.

Feature Ours NeuralPlane QPlane JSBSim XPlane

Open-source ✓ ✓ ✓ ✓ –
Physics-based FDM ✓(WIG, 6DoF) ✓(fixed-wing only) ✓(JSBSim/XPlane) ✓ ✓
Ground Effect Model ✓(semi-empirical) – * (depends on JSBSim) * ✓
GPU Acceleration ✓(Warp) ✓(PyTorch) – – –
Multi-agent Support – ✓ ✓ * * (via UDP)
Multiple Flight Tasks ✓ ✓ ✓ * *
Controller Support ✓ ✓ ✓ * *
Realism High Medium High (if X-Plane) High High
Visualization Tools ✓ * * * (via FlightGear) ✓
Sim-to-Real Ready * * * ✓ ✓

fast and customizable. GPU-accelerated simulators like WarpDrive (Pan et al., 2021) and Isaac-
Gym (Makoviychuk et al., 2021) have become increasingly popular in robotics research, but few
have targeted flight vehicles. Flightmare (Song et al., 2021) provides GPU acceleration via Unity,
yet focuses on quadrotor dynamics. Our Warp-based simulator offers domain-specific GPU accel-
eration for fixed-wing vehicles with detailed aerodynamics, supporting large-scale training without
compromising physical realism.
To contextualize our contribution, Table 1 presents a detailed comparison between our simulation
platform and several prominent aircraft simulation frameworks, including NeuralPlane (Xue et al.,
2024), QPlane (Richter & Calix, 2021), JSBSim (Berndt, 2004) and XPlane (Laminar Research,
2024). While prior systems offer valuable capabilities, such as high-fidelity physics engines, Gym-
compatible RL integration, or large-scale parallelism, most fall short in supporting near-ground
aerodynamic effects or unified, extensible control pipelines. In contrast, our platform combines
realistic 6-DoF flight dynamics with explicit ground effect modeling, modular control integration
(classical and learning-based), precise actuator and sensors modeling and support for advanced aero-
dynamic modeling and realistic disturbance injection, like wind turbulence, atmospheric pressure
(for high altitude flight conditions) and simplified computation of aerodynamics coefficients with
OpenVSP (NASA OpenVSP Team, 2025).

3 PRELIMINARIES

We consider the control of a rigid fixed-wing vehicle flying in proximity to the ground, modeled as
a six-degrees-of-freedom (6DoF) system with coupled translational and rotational dynamics. The
vehicle is subject to forces from gravity, aerodynamics, and propulsion, and its motion is described
in the body frame. The state vector x ∈ R9 × S 3 (or x ∈ R12) comprises the position p ∈
R3, orientation (represented as an unit quaternion q ∈ S 3 = {q ∈ H : ||q|| = 1} or Euler angles
(ϕ, θ, ψ) ∈ R3), linear velocity v ∈ R3, and angular velocity ω ∈ R3. Control inputs include
throttle and actuator deflections for the elevator, rudder, and ailerons. The equations of motion
follow Newton-Euler rigid body dynamics:

mv̇ = Fg + Fa + Ft − ω ×mv, (1)
Jω̇ = τa + τt − ω × Jω, (2)

where m is the vehicle mass, J is the inertia tensor, Fg is the gravitational force, Fa and τa are
aerodynamic forces and moments, and Ft and τt are thrust-generated force and moment vectors.
We assume constant mass and neglect gyroscopic effects. Each vehicle is modeled as a rigid body
with a body-fixed frame {b} rigidly attached at the centre of mass, and motion is described relative
to an inertial north–east–down (NED) frame {I}.
Aerodynamic forces and moments are computed using semi-empirical models based on the vehicle’s
angle of attack α, sideslip β, Reynolds number Re and control surface deflections. Lift, drag, and
side force coefficients are computed from look-up tables or parametric expressions derived from ge-
ometric tools such as OpenVSP (NASA OpenVSP Team, 2025). The effect of actuator dynamics is
captured using first- or second-order response models, governed by user-defined time constants and
damping ratios. This introduces realistic response delays and rate limits to control surface inputs.
Thrust is generated by propellers whose outputs are mapped from normalized throttle commands via

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

first-order response curves. In asymmetric thrust configurations, this can introduce differential yaw
moments. Our simulator also supports ground effect modeling, which alters the lift and drag char-
acteristics of the vehicle when flying close to the surface. This effect is modeled through empirical
corrections (Phillips & Hunsaker, 2013) to the aerodynamic coefficients as a function of height-over-
span ratio, tamper ration and aspect ratio. The detailed derivation and parameterizations for ground
effect are provided in Appendix A. Overall, the simulator produces time-continuous dynamics that
are discretized using a configurable integration scheme (e.g., Euler or RK4) and exposed through a
modular interface supporting both CPU and GPU implementations. These dynamics form the basis
for the environments used in training classical and learning-based controllers.

4 FALCON-S FRAMEWORK

Our simulation platform is designed to support the development, training, and evaluation of flight
control strategies for fixed-wing aircraft operating in near-ground environments. The architecture,
illustrated in Figure 1, consists of two primary modules: the agent and the environment.

Figure 1: Overview of our FALCON-S simulation platform architecture. The environment module
includes aerodynamic modeling, actuator dynamics, environmental effects such as ground effect and
turbulence, and configurable sensor suites. The agent module supports both classical and learning-
based controllers. Tasks, metrics, and visualization tools are modular and extensible, enabling robust
benchmarking and policy training across single and multi-agent setups.

4.1 AGENT MODULE

The agent module supports a wide range of control models, including classical approaches such as
Linear Quadratic Regulator (LQR) and Model Predictive Path Integral (MPPI), as well as modern
learning-based controllers such as PPO, LSTM-based PPO, and DreamerV3. These controllers can
be executed on either CPU or GPU for both evaluation and large-scale training, enabling both quick
debugging of simulated flight conditions and heavy-duty batched experiments, where millions of
trajectories can be collected to train and evaluate control performance.
LQR with Integral action: The LQR controller is implemented in closed form using discrete-time
linearization of the vehicle dynamics around a steady trim condition. The gain matrix K is pre-
computed using the Riccati equation solution, and the resulting control law u = −Kx is applied at
each simulation step. The linearization matrices (A,B) are precomputed and approximated using
numerical Jacobians based on the simulator’s physics model. For LQRI (LQR with integral action)
the state vector is augmented with integrator states (e.g. integrated altitude error) before forming
(Ad, Bd) and solving the Ricatti equation B.1.
MPPI: The Model Predictive Path Integral controller follows a sampling-based trajectory optimiza-
tion approach. At each control step, the algorithm samples multiple control sequences sampled from

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a Gaussian distribution centred on the previous action sequence, propagates each action through the
dynamics model, and computes an optimal control output from the weighted average of trajectories
based on their cumulative cost. The implementation supports GPU-based sampling for parallelized
inference, using a Warp backend. The cost function is task-specific and includes weighted penalties
on tracking error, control effort, and constraint violations. More in Appendix B.2.
Gymnasium interface: The environment exposes a compliant Gymnasium Towers et al. (2024)
interface through the CoreAirshipEnv class and its wrappers. It supports reset(),
step(action), and render() methods, and optionally includes info dictionaries with task-
specific diagnostics. Observations are exposed as flat NumPy arrays and can be extended with sensor
noise or delays via wrapper classes. The action space is continuous (bounded) and directly maps to
control surface deflections and throttle values.
For high-performance training and evaluation, a parallelized variant of the environment is available
through the Warp backend. This wrapper implements the same Gymnasium API but executes dy-
namics in batched form on the GPU, leveraging Warp’s kernel-level integration and memory model.
Stable-Baselines3 and DreamerV3 support: We provide out-of-the-box integration with Stable
Baselines3 (SB3), enabling rapid experimentation with off-the-shelf RL algorithms like PPO and
SAC. Model-based RL agents are supported via a DreamerV3 (Hafner et al., 2025) pipeline that
wraps the simulation environment in a recurrent state-space model (RSSM). The implementation
reuses the ‘dreamerv3‘ codebase, adapted for continuous-control fixed-wing tasks. The world model
is trained jointly with a policy and value network using imagined rollouts. Action sequences are op-
timized through learned latent trajectories. GPU acceleration is used for both training and inference.
See Appendix B.3 for architecture, hyperparameters, and adaptation details for fixed-wing control.

4.2 ENVIRONMENT MODULE

Our environment module supports multiple simulation backends and interoperation with external
tools, allowing flexibility in simulation fidelity, performance, and controller design workflows.
Specifically, we offer two primary physics engines in Python: one based on SciPy’s numerical inte-
gration for rapid prototyping, and another leveraging NVIDIA Warp for large-scale GPU-accelerated
simulation. In addition, MATLAB and Simulink can be used for validation or control design tasks,
such as symbolic derivation of system matrices for LQR or linearized model identification. This
dual-language and dual-backend setup enables practitioners to prototype quickly in Python and val-
idate or deploy controllers using industry-standard tools when necessary.

Core Physics: The environment simulates full six-degree-of-freedom (6DoF) rigid-body aircraft
dynamics, focusing on low-altitude scenarios where physical effects such as ground proximity and
turbulence dominate. The physics module is structured around five interconnected components:
Aerodynamics: Uses precomputed aerodynamic coefficients from OpenVSP or analytical approxi-
mations. Aerodynamic forces and moment forces are adjusted dynamically based on airspeed, angle
of attack, sideslip angle, height above ground and control surface deflection. Ground effect correc-
tions are applied using semi-empirical models A.1.
Actuators: Control surface deflections and thrust values are passed through first- or second-order
actuator dynamics A.2, allowing simulation of latency, saturation, and rate-limited responses. The
actuator module outputs net forces and moments in the body frame.
Environmental Effects: Wind gusts, turbulence fields, and pressure gradients are injected into the
dynamics via different noise models A.3, enabling robustness testing under realistic conditions.
Sensors: An onboard sensor model simulates IMU measurements (accelerometer, gyroscope), GPS,
and optional encoders A.4. Sensor noise, sampling rate, resolution, or delay can be added to evaluate
performance under degraded sensing.
Flight Tasks: The agent interacts with the environment through a set of modular task definitions,
such as fixed-altitude keeping, dynamic climbing/descending, 2D path following, and full 3D tra-
jectory tracking. These are defined as reward functions and success conditions on top of the raw
physics simulation.

Each of these components interacts through the environment interface, which passes state transi-
tions, sampled observations, and reward signals to the agent. Each physics component can be in-
dependently toggled or simplified, enabling ablation studies and comparative benchmarking under
controlled settings.
Aircraft 3D model: Our framework supports rapid prototyping of different airframes via JSON-
based configuration files. Each aircraft model (e.g., Navion, Cessna, or Airship) is described by its

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

geometry, mass, inertia, control surface layout, propulsion system parameters, sensor configuration
and environmental settings. Given the aircraft OpenVSP 3D model, using its python API, the aero-
dynamic coefficients can be computed as a luck-up table and then fitted to a N th order polynomial.
These models are then used for both simulation and visualization. The modular setup makes it easy
to switch between vehicles and test control policies across different configurations, improving gen-
eralization and robustness.
Validation with X-Plane: To improve validation and high-fidelity visualization, FALCON-S in-
cludes an interface to the X-Plane using the Python XPlaneConnect API (NASA Ames Research
Center, 2025) developed by NASA. Given the same aircraft configuration (geometry and flight initial
conditions), trajectories generated in our simulator can be replayed or compared within X-Plane’s
high-resolution rendering engine. This allows cross-verification of dynamics between our model and
an industry-standard closed-source simulator. Additionally, X-Plane can be used to test the different
controllers and scenarios in an different simulation environment, providing a practical robustness
and check for controller performance under a different modeling physics engine. Lastly, it can be
used to capture high-quality video demonstrations of trained agents flying over varied terrain. In the
Appendix A.5 we show examples for how comparisons with X-Plane can be performed.

5 EXPERIMENTS & RESULTS

Our experiments are designed to highlight the flexibility and realism of the FALCON-S framework,
rather than to optimize or compare specific learning or control algorithms. The primary objective is
to demonstrate how the simulator supports a wide variety of use cases and provides structured tools
to evaluate control performance under diverse settings. To this end, we present a set of illustrative
results covering four key aspects:

(1) Algorithm performance illustration: We demonstrate how FALCON-S supports consistent
benchmarking by applying both classical (e.g., LQR) and learning-based (e.g., DreamerV3) con-
trollers to standard tasks like altitude keeping.
(2) Multi-task generalization: We test a single controller (e.g., MPPI or LQR) on multiple tasks
(e.g., altitude regulation, 2D path tracking, 3D trajectory tracking) to show how FALCON-S sup-
ports task variation and behavioral analysis with minimal reconfiguration.
(3) Cross-vehicle testing: Using the same control policy, we evaluate performance across different
aircraft models (e.g., Cessna, Navion, Airship) to highlight how simulation fidelity and control dif-
ficulty change across morphologies and configurations.
(4) Environmental sensitivity: We analyze the impact of physical realism features, such as wind
disturbance, ground effect, sensor noise, or actuator delay, by toggling them independently and
observing the effect on controller robustness and behavior.

Metrics: To evaluate controller performance, we compute a set of standard metrics from each sim-
ulated trajectory, including root mean square error (RMSE), settling time, overshoot, energy uti-
lization, and mean error. RMSE and mean error quantify overall tracking accuracy; settling time
measures how quickly the agent enters and remains within a defined error band (1m); overshoot
reflects the maximum deviation from the reference; and energy utilization serves as a proxy for con-
trol effort, computed from the squared motor actions over time. These metrics, together with full
trajectory and action logs, allow structured comparisons across algorithms, tasks, vehicle models,
and environmental settings. Equations are provided in the Appendix A.6.

Trajectories: The trajectories (a)–(f) correspond to: (a) altitude sine wave, (b) altitude ramps, (c)
altitude and lateral ramps, (d) lateral sine wave, (e) altitude and lateral sine wave, and (f) spiral wave.

Each subsection below presents a brief experiment showcasing these capabilities. We leave detailed
quantitative benchmarking and algorithm tuning to future work.

5.1 DEMONSTRATING LEARNING-BASED CONTROL WITH DREAMER

To illustrate how FALCON-S supports modern reinforcement learning pipelines, we trained a
DreamerV3 agent to perform altitude regulation. The task consists of maintaining flight along a
forward trajectory while matching a time-varying altitude reference. Figure 2 shows the learned
behavior over multiple rollouts, with 3D trajectory tracking, orientation stabilization, position evo-
lution, and linear velocity regulation. The results indicate stable control behavior and successful

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

learning of the target altitude profile, albeit with slight oscillations due to limited policy tuning.
Performance metrics across representative environments are summarized in Table 2, demonstrating
tracking accuracy in the sub-meter range with energy usage that can be improved.

Figure 2: DreamerV3 agent controlling the airship along a dynamic altitude-keeping trajectory. Top-
left: 3D trajectory tracking. Top-right: orientation convergence. Bottom-left: position over time.
Bottom-right: body-frame velocity components.

Table 2: Mean ± standard deviation across five DreamerV3 runs for dynamic altitude tracking.

RMSE (m) Alt. RMSE (m) Overshoot (m) Error (mean ± std) (m) Energy Util.

0.756 ± 0.763 1.309 ± 1.231 1.540 ± 1.246 1.270 ± 1.369 0.743 ± 0.066

5.2 SINGLE CONTROLLER ACROSS MULTIPLE TASKS

We evaluate the LQR controller on six trajectory tracking tasks of increasing complexity using the
same airship model. As shown in Figure 3 and Table 3, the controller maintains low RMSE and
smooth behavior on simpler tasks such as single-axis sine waves (a, d) and low-frequency ramps (b,
e), with minimal overshoot and low energy usage. Performance degrades in more challenging 3D
or fast-changing trajectories (c, f), where the controller exhibits larger errors and reduced stability.
These results demonstrate the ability of our framework to highlight task-dependent control limita-
tions and enable fine-grained benchmarking across diverse reference profiles.
Performance metrics for the MPPI controller can be seen in table 9 in section B.2 of the appendix.

Table 3: Performance metrics (RMSE, settling time, σ, overshoot, mean error, and energy utiliza-
tion) for the Airship vehicle in tasks (a)–(f) with the LQR controller.

Task RMSE (m) Settling Time (s) Overshoot (m) Error (mean ± std) (m) Energy Utilization
(a) 0.025 1.48 0.211 0.037 ± 0.024 0.663
(b) 0.052 41.55 0.671 0.025 ± 0.087 0.370
(c) 0.213 44.06 1.708 0.144 ± 0.339 0.379
(d) 0.017 2.94 0.213 0.014 ± 0.026 0.303
(e) 0.019 2.40 0.209 0.024 ± 0.021 0.583
(f) 0.149 – 0.704 0.231 ± 0.114 0.565

5.3 CROSS-AIRCRAFT EVALUATION

To evaluate generalization across vehicle morphologies, we test the same LQR controller on three
aircraft models, Airship (A), Cirrus SR22 (B), and Navion (C), across all six trajectory tracking
tasks. As shown in Table 4, performance varies significantly with aircraft dynamics. The Airship
(A), for which the controller was tuned, consistently achieves the lowest RMSE and overshoot,
indicating good stability and responsiveness. In contrast, the Cirrus (B) and Navion (C) exhibit
higher errors and settling times, especially in dynamic or multi-axis tasks (e.g., tasks c and f), due
to differences in actuation and inertia properties. These results illustrate how the framework en-
ables structured comparisons across vehicle configurations and supports benchmarking controller
robustness to morphology changes.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Altitude sine wave (b) Altitude ramps (c) Altitude and lateral ramps

(d) Lateral sine wave (e) Altitude and lateral sine wave (f) Spiral wave

Figure 3: LQR-controlled Airship response to tracking different trajectories.

(a) Airship trajectory (b) Cirrus SR22 trajectory (c) Navion trajectory

(d) Airship actuator actions (e) Cirrus SR22 actuator actions (f) Navion actuator actions

Figure 4: LQR-controlled Airship, Cirrus SR22 and Navion response to altitude and lateral sine
wave trajectory tracking.

5.4 ROBUSTNESS UNDER ENVIRONMENTAL VARIATIONS

We assess the robustness of the LQR controller under different sources of environmental uncer-
tainty: sensor noise (A), wind disturbances (B), and sensor delay (C). Table 5 shows that all three
perturbations impact performance to varying degrees, with wind disturbances generally inducing
the highest errors, overshoot, and energy usage, especially in fast-changing tasks such as (c) and (f).
Sensor noise introduces more variability (e.g., increased RMSE and error variance), while sensor

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Performance metrics for scenarios (a)–(f). Columns (A), (B), (C) correspond to Airship,
Cirrus SR22 and Navion respectively.

RMSE Settling Time (s) Overshoot Error (mean ± std) (m) Energy Utilization
Task (A) (B) (C) (A) (B) (C) (A) (B) (C) (A) (B) (C) (A) (B) (C)

(a) 0.025 0.024 0.055 1.48 1.63 1.51 0.211 0.419 1.227 0.037 ± 0.024 0.028 ± 0.031 0.034 ± 0.089 0.663 0.372 0.362
(b) 0.052 0.045 0.049 41.55 41.27 41.27 0.671 0.787 0.854 0.025 ± 0.087 0.019 ± 0.076 0.019 ± 0.082 0.370 0.322 0.315
(c) 0.213 0.223 0.208 44.06 46.20 46.00 1.708 1.709 1.877 0.144 ± 0.339 0.158 ± 0.352 0.148 ± 0.328 0.379 0.322 0.315
(d) 0.017 0.023 0.056 2.94 3.22 2.70 0.213 0.412 1.250 0.014 ± 0.026 0.017 ± 0.037 0.022 ± 0.094 0.303 0.290 0.289
(e) 0.019 0.022 0.055 2.40 2.59 1.95 0.209 0.416 1.237 0.024 ± 0.021 0.021 ± 0.032 0.027 ± 0.091 0.583 0.345 0.338
(f) 0.149 0.161 0.163 – – – 0.704 0.739 1.290 0.231 ± 0.114 0.248 ± 0.126 0.243 ± 0.143 0.565 0.340 0.335

(a) Trajectory with sensor noise
(b) Trajectory with light Dryden
turbulence (c) Trajectory with sensor delay

(d) Actuator actions with sensor
noise

(e) Actuator actions with light
Dryden turbulence

(f) Actuator actions with sensor
delay

Figure 5: LQR-controlled Airship response to altitude and lateral sine wave trajectory tracking under
sensor noise, light Dryden turbulence, or a 20 ms sensor delay.

delay has a relatively smaller effect in most scenarios, though certain tasks (e.g., (b), (f)) remain
sensitive. These results demonstrate FALCON-S’s capacity to simulate realistic disturbances and
evaluate controller sensitivity in a structured and reproducible way.

Table 5: Performance metrics for scenarios (a)–(f). Columns (A), (B), (C) correspond to Airship,
with sensor noise, wind disturbances and sensor delay respectively.

RMSE Settling Time (s) Overshoot Error (mean ± std) (m) Energy Utilization
Scenario (A) (B) (C) (A) (B) (C) (A) (B) (C) (A) (B) (C) (A) (B) (C)

(a) 0.091 0.220 0.024 64.43 – 0.01 0.619 1.155 0.215 0.131 ± 0.089 0.312 ± 0.218 0.036 ± 0.023 0.760 0.741 0.663
(b) 0.087 0.141 0.051 31.00 42.24 30.70 0.689 0.783 0.663 0.118 ± 0.093 0.178 ± 0.168 0.024 ± 0.084 0.464 0.476 0.371
(c) 0.394* 0.250 0.210 –* 43.37 43.20 1.732* 1.753 1.686 0.473 ± 0.492* 0.249 ± 0.354 0.142 ± 0.335 0.799* 0.474 0.380
(d) 0.066 0.076 0.017 0.01 0.01 0.01 0.356 0.382 0.217 0.099 ± 0.057 0.114 ± 0.065 0.014 ± 0.026 0.425 0.430 0.303
(e) 0.068 0.194 0.018 0.01 – 0.01 0.438 1.167 0.214 0.102 ± 0.060 0.253 ± 0.220 0.023 ± 0.021 0.669 0.668 0.583
(f) 0.163 0.238 0.147 2.34 87.28 2.48 0.766 1.401 0.691 0.260 ± 0.112 0.327 ± 0.249 0.228 ± 0.113 0.649 0.665 0.565

6 CONCLUSIONS

We introduced FALCON-S, a modular and high-fidelity simulation benchmark for fixed-wing air-
craft operating in ground effect. By combining realistic 6DoF dynamics, configurable actuator and
sensor models, and support for both classical and learning-based controllers, FALCON-S enables
structured benchmarking across tasks, vehicle types, and environmental conditions. Its dual CPU-
GPU backends and Gym-compatible API make it suitable for scalable training, analysis, and cross-
validation. Future work will extend the framework with path planning algorithms, real-world hard-
ware integration, and more solutions to support sim-to-real transfer.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Calin Basescu, Tianshu Li, Nikolay Atanasov, and Vijay Kumar. Post-stall landing of a fixed-
wing uav using learned aerodynamic models and nonlinear mpc. IEEE Robotics and Automation
Letters, 8(3):1681–1688, 2023.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. NeurIPS, 32, 2019.

Jon Berndt. Jsbsim: An open source flight dynamics model in c++. In AIAA modeling and simulation
technologies conference and exhibit, pp. 4923, 2004.

Eivind Bøhn, Erlend M Coates, Signe Moe, and Tor Ame Johansen. Deep reinforcement learning
attitude control of fixed-wing uavs using proximal policy optimization. In 2019 international
conference on unmanned aircraft systems (ICUAS), pp. 523–533. IEEE, 2019.

Elliot Chane-Sane, Pierre-Alexandre Leziart, Thomas Flayols, Olivier Stasse, Philippe Souères, and
Nicolas Mansard. Cat: Constraints as terminations for legged locomotion reinforcement learn-
ing. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
13303–13310. IEEE, 2024.

Agostino De Marco, Paolo Maria D’Onza, and Sabato Manfredi. A deep reinforcement learn-
ing control approach for high-performance aircraft. Nonlinear Dynamics, 111(18):17037–17077,
2023.

HL Dryden and AM Kuethe. Effect of turbulence in wind tunnel measurements, volume 342. US
Government Printing Office, 1930.

Matteo El-Hariry, Antoine Richard, Vivek Muralidharan, Matthieu Geist, and Miguel Olivares-
Mendez. Drift: Deep reinforcement learning for intelligent floating platforms trajectories. In
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 14034–
14041. IEEE, 2024.

Franz Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. Rotors—a modular gazebo
mav simulator framework. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 46–51, 2016.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, 640:647–653, 2025.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

Laminar Research. X-Plane Flight Simulator. https://www.x-plane.com/, 2024. Accessed:
2025-09-12.

Jiayuan Liu, Jemin Hwangbo, Jongwoo Lee, et al. Impact of dynamics randomization on policy
transfer for quadrotors. IEEE Robotics and Automation Letters, 6(3):5300–5307, 2021.

Viktor Makoviychuk, Lukasz Wawrzyniak, et al. Isaac gym: High performance gpu-based physics
simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

NASA Ames Research Center. X-plane connect (xpc). https://github.com/nasa/
XPlaneConnect, 2025. Accessed: 2025-09-12.

NASA OpenVSP Team. Openvsp: Nasa’s open vehicle sketch pad. https://openvsp.org/,
2025. Accessed: 2025-09-12.

Xingyou Pan, Yikang Cui, Yi Zhang, et al. Warpdrive: Extremely fast end-to-end deep multi-agent
reinforcement learning on a gpu. arXiv preprint arXiv:2108.13976, 2021.

Warren F Phillips and Douglas F Hunsaker. Lifting-line predictions for induced drag and lift in
ground effect. Journal of Aircraft, 50(4):1226–1233, 2013.

10

https://www.x-plane.com/
https://github.com/nasa/XPlaneConnect
https://github.com/nasa/XPlaneConnect
https://openvsp.org/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

George Richards, Roberto Naldi, and Shankar Sharma. Neural networks for aerodynamic modeling
of post-stall fixed-wing flight. In AIAA Scitech 2021 Forum, pp. 1–13. AIAA, 2021.

Christoph Richter and Ruben Calix. Qplane: A reinforcement learning toolkit for fixed-wing aircraft
simulation. In Proceedings of the ACM Multimedia Systems Conference (MMSys), pp. 334–337.
ACM, 2021.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and
physical simulation for autonomous vehicles. In Field and Service Robotics, 2017.

Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and Davide Scaramuzza. Flight-
mare: A flexible quadrotor simulator. In Conference on Robot Learning, pp. 1147–1157. PMLR,
2021.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A Standard
Interface for Reinforcement Learning Environments. arXiv preprint arXiv:2407.17032, 2024.

Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos A. Theodorou.
Information-theoretic model predictive control: Theory and applications to autonomous driving.
IEEE Transactions on Robotics, 34(6):1603–1622, 2018. doi: 10.1109/TRO.2018.2865891.

Zifan Xue, Ashish Kumar, Karttikeya Jatavallabhula, Pulkit Agrawal, et al. Neuralplane: Efficiently
parallelizable platform for fixed-wing aircraft control. In NeurIPS Datasets and Benchmarks,
2024.

A PHYSICAL MODELING DETAILS

This appendix provides the mathematical details behind the simulation environment used in the main
paper. The simulator integrates a high-fidelity 6DoF flight model with realistic actuator dynamics,
wind turbulence (Dryden), and optional ground-effect modeling. These models are configured via a
modular system that supports controlled ablation studies and toggling of physical phenomena.

A.1 AERODYNAMIC COEFFICIENTS AND GROUND EFFECT

The aerodynamic forces and moments are computed from lookup tables or polynomial fits, using
the local flow conditions:

Faero = qS

[−CD

CY

−CL

]
, Maero = qS

[
bCl

cCm

bCn

]
, (3)

where q = 1
2ρV

2
a is the dynamic pressure, S is the reference wing area, b and c are the wingspan

and chord, and Ci are the aerodynamic coefficients dependent on angle of attack α, sideslip β, and
control surfaces δa (ailerons), δe (elevator) and δr (rudder).

To model ground effect, the lift and drag coefficients CL and CD are corrected via empirical terms,
following (Phillips & Hunsaker, 2013):

CL = C∞
L (1 + µL(h/b)) , (4)

CD = C∞
D (1− µD(h/b)) , (5)

where µL, µD are ground effect modifiers parameterized as functions of the height ratio h/b, and
C∞

L , C∞
D denotes the out-of-ground-effect coefficients. These modifiers can be toggled to assess the

effect of WIG-specific dynamics.

Table 6 presents the influence of ground effect on the performance of the LQR controller. As ex-
pected, operating close to the ground leads to a noticeable reduction in overall commanded thrust.
The increase in CL reduces the required angle of attack (α) for the same airspeed to maintain steady
flight. Together with the higher µD in ground effect, this results in a substantial decrease in CD,
which lowers the overall drag and, consequently, the thrust required to sustain steady flight. These
effect quickly become negligible once (h/b) ≥ 1 (figure 6).

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

(a) 1.0 m constant altitude (b) 2.5 m constant altitude

(c) 5.0 m constant altitude (d) 10.0 m constant altitude

Figure 6: Variation of CL and CD with altitude due to ground effect, utilizing airship with the LQR
controller.

Table 6: LQR performance metrics (RMSE, settling time, overshoot, error mean + std, and energy
utilization) for the Airship vehicle at various altitudes.

Altitude (m) RMSE (m) Settling Time (s) Overshoot (m) Error (mean ± std) (m) Energy Utilization
1.0 0.008 0.01 0.187 0.002 ± 0.014 0.303
2.5 0.011 0.01 0.247 0.002 ± 0.020 0.590
5.0 0.012 0.01 0.265 0.003 ± 0.021 0.689
10.0 0.013 0.01 0.271 0.003 ± 0.022 0.723
100.0 0.013 0.01 0.280 0.003 ± 0.022 0.743

A.2 ACTUATOR DYNAMICS

Actuator systems (control surfaces and motors) are modeled via first- or second-order transfer func-
tions with configurable time constants and damping ratios:

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

, (2nd-order), (6)

or
H(s) =

1

τs+ 1
, (1st-order), (7)

where ωn is the natural frequency, ζ is the damping ratio, and τ is the time constant. Each actuator
group (e.g., elevator, ailerons, motors) can use a different response model based on configuration.

A.3 WIND AND TURBULENCE MODELING

Environmental disturbances include: - Constant wind in the inertial frame (NED), rotated to the
body frame. - Dryden turbulence (Dryden & Kuethe, 1930), implemented via the MIL-F-8785C
model using band-limited white noise through forming low-pass filters (see table 7).

For low altitude flights (h < 1000 ft), the turbulence scale lengths and intensities are defined as

Lu = Lv =
h

(0.177 + 0.000823h)
1.2 , Lw = h (8)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

(a) Control surfaces step response (b) Motor step response

Figure 7: Control surfaces and motor unit step response for Airship.

Table 7: Dryden turbulence velocity spectral filters.

Longitudinal Lateral Vertical

Filter Gu(s) =
σuKu

(1 + Tus)2
Gv(s) =

σvKv

(
1 +

√
3Tvs

)
(1 + Tvs)2

Gw(s) =
σwKw

(
1 +

√
3Tws

)
(1 + Tws)2

Constants Ku =

√
2Lu

π U0
, Tu =

Lu

U0
Kv =

√
Lv

π U0
, Tv =

Lv

U0
Kw =

√
Lw

π U0
, Tw =

Lw

U0

and

σu = σv =
σw

(0.177 + 0.000823h)
0.4 , σw = 0.1W20, (9)

where h represents the altitude in feet, andW20 is the chosen wind speed at 20 meters, which defines
the intensity of the turbulence.

(a) Light Dryden turbulence (b) Moderate Dryden turbulence (c) Severe Dryden turbulence

Figure 8: Longitudinal, lateral and vertical effects of different Dryden turbulence intensities at 2.5
m altitude, 28 m/s airspeed with the same random seed.

A.4 SENSOR REALISM AND NOISE

To simulate realistic perception pipelines, our framework includes configurable sensor models af-
fected by various imperfections: additive noise, constant bias, scaling errors, clipping (limits), quan-
tization (resolution), reduced sampling rates, and delay. Figure 9 illustrates these effects on sensor
outputs compared to the ground truth signal. Each disturbance can be toggled or combined for
robustness testing and sim-to-real transfer studies.

A.5 VALIDATION WITH X-PLANE

To support high-quality visualization and cross-simulator validation, FALCON-S includes a Python
interface to X-Plane. This allows us to reproduce the same control task shown in previous ex-
periments—such as dynamic altitude keeping—within X-Plane’s rendering engine using the same
aircraft configuration and reference trajectory. This enables visual inspection, qualitative validation,
and future extensions toward sim-to-real transfer.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) Perfect sensors (b) Sensor noise (c) Sensor bias (d) Sensor scaling factor

(e) Sensor limits (f) Sensor resolution (g) Sensor sampling rate (h) Sensor delay

Figure 9: Illustration of different sensor effects implemented in the simulator.

Figure 10: Rendered views of the Airship performing a dynamic altitude keeping task in X-Plane,
aligned with the same reference trajectory used in FALCON-S.

A.6 METRICS

Table 8 summarizes the performance metrics used to evaluate control strategies in FALCON-S.
Each metric is computed from logged trajectories and actions, capturing accuracy, responsiveness,
and control efficiency.

For interpretation, lower values of tracking error and overshoot indicate higher accuracy, while
shorter settling times reflect faster convergence. Control smoothness metrics (e.g., input rate penal-
ties) capture responsiveness without excessive actuator usage. Energy consumption is evaluated
from integrated thrust and control surface activity (range [0-1]): lower values indicate more efficient
control. Conversely, excessively high energy consumption may reflect oscillatory or unstable control
behavior.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 8: Summary of evaluation metrics computed from trajectory and control logs.

Metric Formula / Description

RMSE (Total) RMSE =
√

1
N

∑N
t=1 ∥et∥2

Where et is the position error at timestep t

Mean Error Mean = 1
N

∑N
t=1 ∥et∥

Overshoot Overshoot = maxt ∥et∥
Settling Time Minimum time t such that ∥et∥ ≤ δ and remains within the band ∀t′ ≥

t for at least 10% of the episode length. Default threshold: δ = 1m

Energy Utilization Energy = 1
T

∫ T

0
∥umotors(t)∥2 dt

Where umotors are normalized motor inputs and T is total time

B AGENT MODULE

B.1 LQR WITH INTEGRAL ACTION DETAILS

The Linear Quadratic Regulator (LQR) controller was tuned using state and input weighting matrices
selected to balance tracking accuracy and control effort. The state weighting matrix QLQR was
defined as

QLQR = diag(14.6, 8.2, 14.6, 8.2, 14.6, 8.2, 1, 1,

0.25, 0.25, 0.25, 18.2, 18.2, 18.2,

10−5, 10−5, 10−5, 10−5, 1, 400),

(10)

where the first six entries correspond to actuator states, followed by velocity, angular velocity, imag-
inary quaternion components, and position. The very small weights on the quaternion error terms(
10−5

)
were introduced to avoid biasing the controller towards any one given attitude, while still

ensuring stability.

To incorporate integral action, the augmented weighting matrix was defined as

QLQI = diag (QLQR, QLQR(18:20)) , (11)

and the integral gains were set to KI = [0 −1 −1.5]
⊤.

The control effort weighting matrix was chosen as

RLQR = diag
(
1, 1, 800, 800, 800

)
,

assigning higher penalties to thrust-related control inputs in order to limit excessive propulsive effort
and improve efficiency.

The complete state-feedback gain matrix K (including integral augmentation where applicable) was
computed in MATLAB using the built-in lqr function. The state-space matrices (A,B) required by
lqr were obtained from the system linearization tool (linearization around the chosen trim condi-
tion). Full implementation and resulting K matrices for each aircraft can be seen in the open source
repository.

B.2 MPPI DETAILS

For all experiments the MPPI controller was initialized the following settings: number of sampled
trajectories N = 103, planning horizon T = 100 time steps, temperature λ = 3.0, and control
perturbation covariance Σ = diag(σ2

e , σ
2
a, σ

2
r , σ

2
T) = diag(0.10, 0.08, 0.08, 0.10), for elevator,

aileron, rudder and throttle respectively.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Performance metrics (RMSE, settling time, σ, overshoot, mean error, and energy utiliza-
tion) for the Airship vehicle for constant altitude and tasks (a)–(f) with the MPPI controller. Runs
marked with ‘*’ indicate simulations that terminated prematurely due to instability (crash or stall).

Task RMSE (m) Settling Time (s) Overshoot (m) Error (mean ± std) (m) Energy Utilization
2.5 m altitude 0.010 0.84 0.119 0.013 ± 0.010 0.787
60.0 m altitude 0.013 1.08 0.158 0.017 ± 0.013 0.786
(a) 0.012 0.01 0.070 0.017 ± 0.011 0.780
(b)* 1.075 – 3.836 1.330 ± 1.303 0.367
(c)* 3.046 – 11.256 3.837 ± 3.621 0.340
(d) 0.008 0.01 0.081 0.011 ± 0.009 0.525
(e) 0.010 0.01 0.088 0.014 ± 0.010 0.757
(f)* 0.814 – 4.581 0.971 ± 1.023 0.419

The cost function employed in the planner is the sum of weighted penalties for: (i) altitude tracking,
(ii) lateral (cross-track) tracking, (iii) ground-collision/proximity avoidance, (iv) angular-rate inten-
sity, (v) airspeed keeping, (vi) penalization of excessive altitude, (vii) excessive angle-of-attack (α),
and (viii) excessive sideslip (β).

MPPI trajectory sampling and propagation were implemented using NVIDIA Warp to JIT-compile
the simulation kernels and execute large numbers of trajectories in parallel on the GPU.

The formulation and implementation follow the approach described in Williams et al. (2018). Exact
numeric weights, cost functions and process are also available in the open-source repository.

B.3 DREAMERV3 HYPERPARAMS

DreamerV3
Discount Factor (γ) 0.997
Replay Buffer Size 2, 000, 000
Batch Size 16
Sequence Length 1024
Updates per Environment Step 32
Model Size:

RSSM Hidden Size 384
RSSM Deterministic Units 3072
Discrete Latents per State 24
MLP Units 384
CNN Depth 24

16

	Introduction
	Related Work
	Preliminaries
	FALCON-S Framework
	Agent module
	Environment module

	Experiments & Results
	Demonstrating Learning-Based Control with Dreamer
	Single Controller Across Multiple Tasks
	Cross-Aircraft Evaluation
	Robustness Under Environmental Variations

	Conclusions
	Physical Modeling Details
	Aerodynamic Coefficients and Ground Effect
	Actuator Dynamics
	Wind and Turbulence Modeling
	Sensor Realism and Noise
	Validation with X-Plane
	Metrics

	Agent module
	LQR with Integral Action details
	MPPI details
	DreamerV3 hyperparams

