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ABSTRACT

Environment setup—the process of configuring the system to work with a specific
software project—represents a persistent challenge in Software Engineering (SE).
Automated environment setup methods could assist developers by providing fully
configured environments for arbitrary repositories without manual effort. This also
helps SE researchers to scale execution-based benchmarks. However, recent studies
reveal that even state-of-the-art Large Language Models (LLMs) achieve limited
success in automating this task. To address this limitation, we tune a specialized
model for environment setup. We combine supervised fine-tuning for generating
correct Bash scripts and Reinforcement Learning with Verifiable Rewards (RLVR)
to adapt it to the task of environment setup. On EnvBench-Python, our method
enables Qwen3-8B (a model runnable on consumer hardware) to perform on par
with larger models—Qwen3-32B and GPT-40. The training code and model
checkpoints are available online: |https://github.com/PIPer-iclr/PIPerl

1 INTRODUCTION

Large Language Models (LLMs) show great promise for Software Engineering (SE) tasks (Liu
et al.| [2024). While closed-source general-purpose models largely dominate benchmarks (Jain et al.;
Jimenez et al.,|2024), open-source models remain strong competitors (DeepSeek-Al 2025} |Qwen
Team| 2025} Kimi Team et al.||2025)). Recent studies demonstrate that task-specific autonomous agents
powered by open-source models can solve various SE problems, including code generation (Hasan
et al., 20235)), bug localization (Ma et al., [2025; |Chang et al., 2025} |Reddy et al.,[2025; |Chen et al.,
2025b)), and issue resolution (Luo et al.||2025; [Wang| [2025} |Pan et al.| 2025} |Zeng et al.| [2025; Ma
et al.,[2025; |Chang et al.| 2025)).

A common strategy for developing capable task-specific agents is to train them on carefully curated
datasets (Pan et al., 2025} |Zeng et al.l 2025). However, in the SE domain, the bottleneck has shifted
from sophisticated data filtering strategies to acquiring sufficient data in the first place. Since agents
operate in an interactive manner, this requires scaling the construction of interactive environments.
This, in turn, often requires appropriately configuring the system to be able to execute the sample
code. In this paper, we will call this configuration process an environment setup.

This limitation has far-reaching implications for SE benchmarks. For instance, SWE-Bench (Jimenez
et al., [2024), one of the leading benchmarks for SE agents, includes only 12 Python repositories, and
collecting and maintaining it required substantial manual effort. Scaling such datasets typically relies
on manual setup (Pan et al., 2025) or on synthetic augmentation (Pham et al.| 2025)), trading realism
for scale. Automated environment setup methods (Guo et al., [2025; |Badertdinov et al., 2025} Zhang
et al.| 2025} [Vergopoulos et al., 2025) promise scalability with real data but remain limited—for
instance, SWE-Rebench (Badertdinov et al.,[2025)) reports a 31% success rate on Python repositories
overall, while on EnvBench (Eliseeva et al.,|2025)), a recently introduced benchmark for environment
setup specializing on hard repositories, the best result is 6.69% (22 out of 329), achieved by GPT-40
in an agentic workflow.

We seek to improve small open-source models to democratize the usage of LLMs for environment
setup. To this end, we analyze the environment setup scripts produced by strong LLMs on EnvBench
and employ both supervised fine-tuning (SFT) and reinforcement learning (RL) to resolve found
issues. The proposed method achieves more than 9 x improvement over the base model, being on par
with the open-source model four times the size, and strong closed-source baselines. Specifically, our
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contributions are: (1) the first application of online reinforcement learning with lightweight verifiable
reward to environment setup, (2) on-device sized PIPER model performing on par with strong
baselines offering a superior performance-cost ratio, and (3) a rigorous evaluation, demonstrating that
the model trained with the proposed method generalizes across different datasets, indicating genuine
scripting capability enhancement. To facilitate reproducibility and future research in this direction,
we make our code, model weights, and generated scripts publicly available [ﬂ

The rest of the manuscript is organized as follows. We describe the datasets used for training and
evaluation in Section 2} motivate and describe the training approach in Section 3] describe how we
set up the experiments in Section[d] and provide an overview of our experimental results in Section 3]

2 DATASET

The focus of our work is to democratize the use of LLMs for environment setup. To measure our
progress in this task, we select two environment setup benchmarks, EnvBench (Eliseeva et al.| [2025)
and Repo2Run (Hu et al.,|2025b). Also, to check how this training affects a broader set of tasks, we
employ Terminal-Bench (The Terminal-Bench Team, [2025). In this section, we outline the specifics
of each dataset we use—the inputs and outputs of the evaluated method, and the definition of task
resolution.

EnvBench-Python comprises 329 Python repositories from GitHub. As an input, an environment
setup approach has access to the full repository context and base environment configuration. How
exactly this context is utilized remains part of the approach definition: it could be a predefined
prompt, an interactive agentic workflow, and more. As an output, an environment setup approach
should produce a shell script that installs all the needed dependencies in the base environment. The
correctness of the environment setup script is evaluated by first executing it, and then invoking
Pyrightﬂ—a static analysis tool used to evaluate whether the imports across the codebase were
resolved successfully. The repository is considered to be set up correctly if the script finished with
exit code 0 and subsequent Pyright check reported no import issues.

Repo2Run comprises 420 Python repositories from GitHub with no overlaps with EnvBench-Python.
The original work primarily focuses on an agentic setting, where an environment setup agent is granted
access to the base environment with the repository through a terminal interface and other specialized
tools. The agent is then expected to autonomously configure the repository by interacting with the
environment. In contrast with static analysis-based metrics from EnvBench-Python, Repo2Run runs
test collection via pytesﬂ to verify the environment setup correctness. We include Repo2Run to
verify that our experimental results transfer across different repositories and success criteria. We
additionally adapt Repo2Run to settings beyond agentic, employing a more general task formulation
similar to that of EnvBench-Python (discussed in detail in Section [4.2).

Terminal-Bench comprises 80 tasks focused on command-line environment configuration tasks (we
use version 0.1.1 of the benchmark), evaluating Al agents’ ability to handle real-world, end-to-end
terminal operations, including compiling code, training models, and setting up servers. Each task
consists of the problem described in natural language passed to an LLM, a Docker environment, and a
test script to verify if the agent completed the task successfully. We use the original implementatiorﬂ
with multi-turn agentic scaffold Terminus 1. The success is determined by whether the agent can
complete the specified terminal-based objective within a sandbox environment. We use Terminal-
Bench to assess whether our training pipeline, designed primarily for single-turn Python package
installation scenarios, generalizes to broader, out-of-distribution, multi-turn terminal command
execution tasks beyond dependency management.

3 METHOD

To train the model, we employ a two-stage process widely adopted in the literature (Liu et al., |2025b;
Yoshihara et al., 2025} |Golubev et al.| 2025). First, we tune the model in a supervised manner on the

'Replication Package: https://github.com/PIPer-iclr/PIPer
2https ://microsoft.github.io/pyright
3https://pytest.org
*https://github.com/laude-institute/terminal-bench
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Figure 1: Overview of the proposed training pipeline. (a) SFT training: For the i-th sample (a
repository), both teacher and student LLMs receive the prompt ¢;, which includes the task description
and repository context. They generate completions o! and of, respectively, expected to contain a
shell script. The student model’s weights are updated by minimizing the cross-entropy loss between
its output distribution and the teacher’s completion. (b) RL training: For each sample, LLM 7y
generates a completion o;, expected to contain a shell script. The completion is evaluated by a
rule-based reward function R, which outputs a score R;. The REINFORCE++ algorithm then updates
the LLM weights using the rewards R; and responses o;.

executable scripts sampled from the larger model of the same family. Then, we run one more stage
of RL training, to refine the capabilities of the model after the SFT update. We employ the RLVR
technique since it has been reported to show promising results on tasks from the SE domain (Luo
et al.} 2025} |Golubev et al.| [2025)). In our notation throughout this paper, we use g to denote prompts
provided to the model, o to represent model responses, s to refer to shell scripts extracted from model
outputs, and 7y to denote the model with parameters 6. We use regular expressions to extract the
shell script from the model outputs, and if parsing fails, we consider s to be empty. The schematic
representation of the training stages is illustrated in Figure[I] Further, we introduce the details of the
method. In Section[3.T| we discuss the SFT training, and in Section [3.2] we introduce the RL training.

3.1 SUPERVISED FINE-TUNING

The supervised fine-tuning involves training a model on a set of data points that are considered to be
ground truth. However, for the task of environment setup, and for the hard repositories specifically, it
is a costly task to obtain such ground truth scripts. The authors of EnvBench provide only a small
number of scripts generated by experts, and even strong models are solving only a small portion
of the dataset (Eliseeva et al.| [2025). Due to this, we employ distillation (Hinton et al.l |2015), a
technique where the small model (called Student) learns to imitate the behavior of a larger model
(called Teacher). Our setup is shown in Figure[T[(a) and detailed below.

We implement the SFT stage using executable scripts collected during the evaluation of a larger
Qwen3-32B model. We first collect samples {g;, o} from evaluation rollouts. Then we filter out
the samples where of doesn’t contain a script, or the script results in a non-zero exit code. Finally,
we select 2,500 pairs {g;, ¢} at random to form the distillation dataset. The student model 7y is
trained on this dataset in a supervised manner without further changes or masking. Since these
samples originate from a different, larger model rather than 7y, there is a potential distributional shift
between the generated solutions and our model’s natural output distribution, which can affect the
generalization capabilities of the model (Shenfeld et al.| 2025} [Chu et al.). However, this approach
allows us to leverage higher-quality executable solutions that demonstrate successful task completion
patterns. The resulting SFT checkpoint serves as the foundation for the subsequent RLVR training.
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3.2 REINFORCEMENT LEARNING

The reward design is a crucial component of RLVR training. A common choice is to use binary
outcome-based rewards for each model response (Luo et al.,[2025)). For the environment setup task,
this means evaluating whether each script successfully configures the corresponding repository. For
safety, each script must run in an isolated container, which, together with the massive scale required
for efficient RLVR training (e.g., recent work runs up to 512 containers in parallel (Luo et al.}[2025)),
creates significant computational and technical overhead. To address these challenges, we turn to
lightweight execution-free LLM-as-a-Judge reward (denoted Ryppnm), which serves as a verifiable
reward by mimicking rule-based evaluation criteria. The general scheme is presented in Figure[T|b).

To design the reward, we qualitatively study the scripts generated by GPT-4o for a sample of 40
repositories. Overall, we find that failures are due to the inability of the models to fully understand
the context of the repository, the system they operate in, and the tools they are required to use.
Specifically, we identify 11 failure patterns in model-produced scripts and 3 configuration challenges
presented by the repositories that GPT-40 could not overcome. These failures fall into two categories:
those producing non-zero exit codes, dominated by incorrect syntax (10% of repositories) and models
failing to resolve conflicting dependencies versions (7.5%), and those causing unresolved import
issues reported by Pyright, most frequently, models failing to install dependencies present in the
codebase but not specified in the configuration files (25%) and optional dependencies required for
development, such as test packages or linters (22.5%). A detailed description of the analysis process
and all findings are presented in Appendix

The reward Ry takes in the extracted script s along with a comprehensive context for the corre-
sponding repository and emulates the EnvBench evaluation suite. The instruction for the judge is
motivated by our findings of typical errors, and prompts it to predict the exit code from the shell script
execution and the number of Pyright issues (num_issues). Further implementation details could be
found in Appendix Formally, the reward is calculated as follows:

—1.0, if s is empty
RLLM(S) ={ 0.0, if exit_code(s) 75 0
max (1.0 — %, 0.0) , otherwise

4 EXPERIMENTS SETUP

4.1 TRAINING SETUP

Data. Following recent work on code benchmarks (Gehring et al.; Jain et al., 2025} |Le et al., 2022),
where agents learn through trial-and-error on the same problems used for evaluation, our setup also
employs EnvBench tasks for both training and evaluation. However, we never explicitly provide
any ground-truth labels to the model, only rule-based reward scores for the generated scripts. This
ensures the model cannot trivially memorize correct answers, forcing it to learn from reward feedback
alone. However, to further ensure the absence of memorization, we also (1) reserve 96 repositories
as a held-out validation set, using only the remaining 228 repositories for training and (2) evaluate
performance on external benchmarks beyond EnvBench. We compare the results on the train and
validation sets in Appendix [C|and find no strong indication of memorization. Due to technical issues,
we omit five repositories from EnvBench from our training and validation sets.

Models. We select Qwen3-8B as our base model for its strong performance on SE tasks and reason-
able compute requirements (Qwen Team), 2025). Qwen models also show consistent improvements
with RLVR training compared to other model families (Gandhi et al.} 2025). We leave the exploration
of other model families and model sizes to future work. We use non-thinking mode because reasoning
traces are often long and increase the GPU memory requirements as well as the training duration (Sui
et al.l [2025)).

Scaffold. Our experiments follow the zero-shot approach from Eliseeva et al.|(2025). The model
is prompted with the general task description, predefined context for the particular repository, and
information about the base environment (Dockerfile contents). It generates a shell script in a single
attempt without receiving any intermediate feedback from the environment. We instruct the model to
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provide a script in a Markdown format, enclosed in ™~ “bash and ~ "~ delimiters. The prompts and
the provided repository context are described in Appendix [A.T]

SFT Framework and Hyperparameters. We employ the LLamaFactory framework (Zheng et al.|
2024) using a full-weight training approach. We perform the training with cross-entropy loss on a
single H200 GPU for five epochs, without early stopping. We use the AdamW optimizer (Loshchilov,
and Hutter) and the effective batch size of 16. We reserved 5% of the samples for validation and did
not observe signals of overfitting. Comprehensive hyperparameter setup and training details are listed

in Appendix[A.2.1]

RL Frameworks and Hyperparameters. We use the VeRL framework (Sheng et al.| 2024).
All our RL training runs are executed on 4xH200 GPUs with all weights optimized by the REIN-
FORCE++ (Hu et al., [2025a)) algorithm. A more exhaustive comparison with GRPO and GRPO-like
objectives is left for future work. We set the batch size of 64 and the number of epochs to 15, yielding
45 training steps. We truncate the prompts longer than 30,000 tokens and allow the model to generate
up to 4,096 tokens in response. We use VLLM (Kwon et al.| 2023) as the rollout engine and set
sampling parameters to the values recommended in the Qwen3 model card for non-thinking mode.
We perform 5 optimization epochs on each trajectory batch to improve sample efficiency. We use
AdamW (Loshchilov and Hutter)) optimizer. We use GPT-4.1 as the backbone LLM for the judge.
Comprehensive hyperparameter setup and training details are listed in Appendix

4.2 EVALUATION SETUP

EnvBench-Python (Eliseeva et al.,[2025). For EnvBench, we extend the original work with three
additional metrics. The first one is pass @ 5—the binary measure of success across 5 attempts for each
datapoint. It is equal to 1 for a given repository, if at least once in 5 attempts the model was able to
generate a script that results in an exit code of 0 and no issues reported by Pyright. Another metric we
introduce for more detailed results analysis is avgFixRate—the percentage of Pyright issues resolved
by running the generated script. To calculate this, we first take the percentage of issues fixed for each
repository and then average this number across all repositories. This metric is equal to 100% for
the successfully installed repositories, and to 0% for the repositories with a non-zero exit code. We
also report # Failed—number of repositories where the scripts resulted in a non-zero exit code. All
metrics apart from pass@5 are reported averaged over five runs. We use the same base environment,
zero-shot scaffold and prompt as during training (Section[4.T), with evaluation infrastructure available
in our replication package.

Repo2Run (Hu et al.,[2025b). For Repo2Run, we also use the pass@5 metric. Success is deter-
mined by running test collection via pytest: if there are no collection errors, the setup is considered
successful. We do not use the agentic setting from original work and instead employ the same base
environment as the EnvBench.

Terminal-Bench (The Terminal-Bench Team), 2025). For Terminal-Bench, which is a more
challenging benchmark, especially for smaller models, we use the pass@ /0 metric. The benchmark
provides custom evaluation commands for each data point.

Baselines. We compare the trained models against multiple general-purpose LL.Ms. We evaluate
three closed-source OpenAl models: GPT-5, GPT-40, and GPT-40-mini. We also assess multiple
models from the Qwen3 family (8B, 14B, and 32B parameters) to understand how our approach
compares across different model scales. All Qwen3 models are evaluated in non-thinking mode for
consistency.

5 RESULTS

5.1 TRAINING DYNAMICS

Training dynamics of base and SFT model with the LLM-based reward described in Section [3.2]are
depicted in Figure[2] The reward function returns values from the [—1, 1] range, where —1 indicates
malformatted scripts, and 1 indicates perfect performance.
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Table 1: Results on Repo2Run and Terminal- (@) RL over (b) RL over
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The base model exhibits formatting compliance but fails to satisfy the meaningful criteria imposed
by the reward. This is evident from almost zero scores at step 0, which are close to the
minimum values achievable with the correct formatting. On the other hand, the SFT checkpoint from
the start produces high-quality scripts that are correctly formatted and highly assessed by the judge.

We observe a steady initial increase for both training and sets, which then slows for the
base model, and plateaus for the SFT model. The substantial differences in validation reward scores
between step 0 and step 45 suggest that RLVR training successfully steers the models to better adhere
to the criteria imposed by the reward. In addition, we do not observe strong overfitting: there is only
a small gap between training and reward scores.

5.2 EVALUATION RESULTS

The evaluation results on EnvBench are presented in Table[2] While the GPT-5 frontier model claims
the first place, the proposed PIPER model is competitive with both strong open-source (Qwen3-
32B) and closed-source (GPT-40) baselines. With respect to all reported metrics on EnvBench, it
comes with a small gap or is on par with these strong competitors. The outlier metric here is the
surprisingly low # Failed of the GPT-40-mini model, which claims the second place in the rating, and
is significantly better than GPT-40. We leave a thorough investigation of this phenomenon to future
work.

To assess the cost-performance ratio of PIPER, we compare the baselines with respect to both
performance and inference cost. We take prices per 1M generated tokens as the cost of a model.
For OpenAl models, we take official API pricesﬂ? and for the Qwen3 model family, we take costs
from the Alibaba Cloud websiteﬂ The costs are reported as of 22.09.2025. Figure b) indicates
comparable-or-better performance relative to baselines at a fraction of their cost; PIPER can also run
on local machines, further reducing cost.

The ablation of RL and SFT phases, also shown in Table |2} shows the necessity of the two-stage
pipeline. While both SFT and RL checkpoints outperform the base model, pushing its avg@5
performance from 2.6 to 13 (SFT) or 11.8 (RL), they both are significantly worse than the checkpoint
yielded by the combined training.

5https ://platform.openai.com/docs/pricing
6https ://www.alibabacloud.com/help/en/model-studio/models


https://platform.openai.com/docs/pricing
https://www.alibabacloud.com/help/en/model-studio/models

Under review as a conference paper at ICLR 2026

Table 2: EnvBench evaluation results for base models and PIPER with various training setups. The
total number of samples is 329. pass@5 shows the number of successful samples (zero exit code
and zero issues). avg@5 shows mean + std for the following metrics: # Success (average number
of successful samples per run), # Failed (average number of samples where scripts finished with
non-zero exit code), and avgFixRate (average ratio of resolved import issues per sample as compared
to the evaluation run with empty setup script; for samples where scripts execute with non-zero exit
codes, ratio is considered 0). The symbol 1 indicates higher is better, while | indicates lower is better.

Model pass@5 avg@5
# Success T # Success T #Failed | avgFixRate 1
GPT-5 043 925+3 9131 +£5 ©9(32.7£3.3)%
GPT-40 ©29 91942 194+6 ©(28.0+1.00%
GPT-40-mini 15 96+1.3 ©166+6 (22.6 £ 1.5)%
Qwen3-32B ©29 ©162+1.3 207+6 (25.1 +1.3)%
Qwen3-14B 17 5.6+ 1.1 268 10  (9.9540.81)%
Qwen3-8B 8 2.6+1.5 294 + 2 (4.44+1.2)%
PIPER ©27 ©19+3 ©183+£3 ©(272+£1.2)%
PIPERSFT-only 25 13.0+£1.0 19247  (23.6+1.4)%
PIPERRL-oY 19 11.84+0.8 205+5 (25.24+1.2)%
@ o o a cwmses o o (b)
N 404 8 *
8 % § 25 GPT-5 (25.0)
§ 324 ® = 8 20 PIPer (19.4) GPT-40 (19.4)
w24 ® 3 i 15+ Qwen3-32B (16.2)
Z 16 o 0101 -
Cg) " o o % ((;21;—40-m|n| Closed-Source
g 8 ¢ A E 5 Qwen3-148 (5.6) Open-Source
o & A A o Qwen3-8B (2.6) Ours
3 2 3 4 5 $0.7 $1 $2 $3  $5  $10
N (Number of Attempts) Price per 1M output tokens (USD)

Figure 3: Performance analysis of environment setup models on EnvBench-Python. (a) Pass@ N
performance showing how model success rates improve with multiple attempts (N = 1 to 5). Our
PIPER model (shown with cross markers) achieves performance comparable to much larger models
like GPT-40 and Qwen3-32B, while substantially outperforming the base Qwen3-8B model. (b)
Cost-performance tradeoff analysis comparing average pass@ [ performance (averaged over five
runs) against price per 1M output tokens (USD).

Finally, in the Figure [3[(a), we explore how the model results improve with multiple attempts. While
the scaling of PIPER is slower than that of the strong baselines, it is still able to beat them at cost
parity. For example, pass@3 of the proposed model is higher than the pass @2 of both GPT-40 and
Qwen3-32B models. Also, pass@5 of PIPER (27) is higher than pass@ I of GPT-5 (25), while the
cost of inference is more than 14 times lower.

5.3 GENERALIZATION

To ensure that the results of the evaluation are not based on overfitting, we separately evaluate our
model on the evaluation subset of EnvBench and on two additional datasets. We detail the scores on
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the evaluation subset of EnvBench in Appendix [C] but notice that the model yields the results better
or on par with the strong baselines. This confirms that there are no strong signs of memorization.

Table [T) shows the evaluation of the PIPER on Repo2Run and Terminal-Bench. On Repo2Run, which
shares similar single-turn Python environment setup characteristics with EnvBench, all our trained
models substantially outperform the base Qwen3-8B (32 success cases), with PIPER achieving the
best results (103 success cases) and even surpassing larger models like Qwen3-32B (71 success cases)
and GPT-40-mini. However, on Terminal-Bench, which requires multi-turn agentic interactions for
system configuration tasks, we observe a different pattern: while the PIPERRY"Y model shows
modest improvement (8 to 9 success cases), PIPERSTT" (2) actually underperforms the base model,
with united training procedure of PIPER showing a slight recovery (4). This suggests that while
SFT improves single-turn performance, it struggles with the multi-turn interactions required by
Terminal-Bench. These cross-benchmark results demonstrate that our proxy reward-based RLVR
training develops transferable shell scripting capabilities, with the RL. component providing more
robust generalization across diverse interaction paradigms than supervised fine-tuning alone.

6 RELATED WORK

Environment Setup. Following the advances of LLMs in other SE tasks (Liu et al.|[2024), previous
works extensively explored their applications to the environment setup task. Several environment
setup benchmarks were introduced, such as EnvBench (Eliseeva et al., 2025), Repo2Run (Hu et al.,
2025b), and others (Milliken et al., 2025; |Arora et al., 2025). They differ in scale (from tens to
hundreds of repositories), expected model outputs (shell scripts or Dockerfiles), and metrics (static
analysis or test-based). Our study required a large sample of Python repositories, which left us with
EnvBench (329 repositories) and Repo2Run (420 repositories). We selected EnvBench for training
because its construction process explicitly prioritizes challenging repositories, providing a diverse
learning signal.

Existing environment setup approaches range from simple zero-shot prompts (Badertdinov et al.|
2025; [Eliseeva et al., [2025; [Li et al.| 2025) to complicated agentic workflows (Milliken et al., 2025},
Bouzenia and Pradel, 2025} |Hu et al., 2025b; |Vergopoulos et al., 2025} |[Zhang et al.| [2025; |Guo
et al.| [2025). Existing works use general-purpose LLMs as backbones, and many workflows include
execution of intermediate agent outputs (Eliseeva et al., 2025} Milliken et al., 2025 |Bouzenia and
Pradel, 2025; Hu et al., 2025b; [Vergopoulos et al., 2025 [Zhang et al.l 2025} |Guo et al., [2025),
introducing isolation and cost considerations. In contrast, we focus on a zero-shot scaffold, which
was previously shown to achieve reasonable performance given its simplicity (Eliseeva et al.} [2025;
Badertdinov et al., [2025)), to study how far LLMs can go under consistent constraints. Finally, we
note that many works use automated environment setup approaches as a mere tool for constructing
SWE-bench-like (Jimenez et al.| 2024) datasets (Badertdinov et al.| 2025} [Vergopoulos et al., 2025},
Zhang et al.,|2025; |Guo et al.| |2025), making the environment setup not the primary research focus.

Reinforcement Learning with Verifiable Rewards (RLVR). Reinforcement Learning (RL) has
emerged as a powerful LLM post-training technique to further enhance the model’s capabilities, with
early successes achieved from human feedback (Christiano et al.l |2017; Kaufmann et al., [2024)).
Building on this foundation, the RLVR has gained traction, wherein the reward signal is provided
by a rule-based or programmatic verifier. RLVR has found particularly impactful applications in
domains such as mathematics (Lambert et al., |2025; |[Feng et al., [2025) and code generation (Wei
et al.| 2025} |Luo et al.| 2025} |Golubeyv et al.| [2025)).

The effectiveness of RLVR has been amplified by recent advances in RL algorithms building
upon Proximal Policy Optimization (PPO) (Schulman et al., 2017) (e.g., VAPO (Yue et al., [2025)),
RLOO (Kool et al.| 2019; |/Ahmadian et al., [2024), Reinforce++ (Hu et al., [2025a), GRPO (Shao
et al., [2024), DAPO (Yu et al.,[2025), Dr. GRPO (L1u et al., 2025a)), GRPO++ (Luo et al., 2025),
GSPO (Zheng et al.| 2025))). Furthermore, recent research has explored RLVR settings that do not
rely on labeled data (Zhao et al.,|2025)) or even operate without an explicit verifier (Zhou et al., 2025).
Recent comparative studies of RL and SFT training approaches and their combinations have revealed
both synergistic improvements (Liu et al.,|2025b; [Yoshihara et al.| 2025)) and potential degradation
of final model performance (Chen et al.,2025a), while also demonstrating that SFT alignment can
impair models’ generalization capabilities (Shenfeld et al., 2025} |Liu et al.| 2025bj [Wu et al., [2025]).
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7 LIMITATIONS AND FUTURE WORK

Models We apply the proposed framework to a single LLM, Qwen3-8B in non-thinking mode.
While it comes from the widely used Qwen3 family and presents a competitive quality-compute
tradeoff, the range of applicability of our study could be further verified by probing other model
families, different model sizes, and reasoning LL.Ms.

Scaffold We consider a simple single-turn scaffold in our experiments. Previous works on environ-
ment setup suggest that multi-turn agentic scaffolds—which iteratively interact with an environment
and refine their solutions based on the feedback received on each step—could bring significant
improvements. Extending RLVR training to such multi-turn scaffolds represents a natural progression
for enhancing environment setup capabilities.

Proxy Rewards We introduce the lightweight LLM-based reward function that allows for the
RLVR training pipeline without computational overhead on scaling containerized execution. While
we consider this direction promising given its light computation burden and obtained results, ground
truth runtime feedback would likely provide richer training signals and drive further performance
gains.

8 CONCLUSION

We presented PIPER—a strong on-device-sized model for environment setup. It is trained with a
two-stage pipeline without ground truth data, with SFT distillation to teach the model to write correct
scripts, and RLVR to further improve the environment setup capabilities. We use a lightweight reward
that mimics a ground truth execution check with the LLM-as-a-Judge technique to lift strong infras-
tructure requirements for the direct environment feedback. The resulting model performs on par or bet-
ter than several times more expensive models, such as GPT-40 and Qwen3-32B. Importantly, our find-
ings extend beyond environment setup. The trained models maintain reasonable performance on the
out-of-distribution Terminal-Bench in an agentic scaffold, indicating genuine improvement of terminal
manipulation capabilities rather than task-specific overfitting. Our replication package with training
code and trained model checkpoints is available online: https://github.com/PIPer-iclr/PIPer.

9 REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, all model checkpoints mentioned in this paper are
publicly available, including PIPERRE"Y | PIPERSFTOY "and the final PIPER model, along with
all raw evaluation results from our experiments (https://huggingface.co/PIPer-iclr). The
complete codebase used for SFT training, RL training, and evaluation is available in our dedicated
repository (https://github.com/PIPer-iclr/PIPer]), which contains all configuration files and
implementation details. Upon acceptance of this work, we will also publish the complete training
run logs to provide full transparency into the training process and enable detailed analysis of our
experimental procedures.
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A IMPLEMENTATION DETAILS

In this section, we provide additional details on our experiments.

A.1 SCAFFOLD DETAILS

We use the same zero-shot scaffold as in [Eliseeva et al.| (2025). The prompt is provided in Figure [4]
We collect the repository context by running the following bash commands:

( )

tree -a -L 3 --filelimit 100 || 1s -R
for f in README.md INSTALL.md SETUP.md docs/INSTALL.md docs/SETUP.md; do
if [ -f "$f" 1; then echo -e "\n=== $f ==="; cat "$f"; fi
done
find . -type f \( \
-name "*requirementsx.txt” -o -name "setup.py” -o -name "pyproject.toml” -o -name
setup.cfg” -o -name "tox.ini" \
\) | while read f; do echo -e "\n=== $f ==="; cat "$f"; done
find . -type f -name "*.py"” -exec grep -1 "python_version\|python_requires” {} \;
find . -type f \( -name ".envx" -0 -name "*.env" -o -name "Dockerfilex" \) | \
while read f; do echo -e "\n=== $f ==="; cat "$f"; done

"”

A.2 TRAINING DETAILS

A.2.1 SFT TRAINING

We show the hyperparameters used in our SFT training in Table[3] We fine-tune the Qwen3-8B model
for 5 epochs with a learning rate of 5 x 10~° using the AdamW optimizer with cosine scheduling,
weight decay of 0.01, gradient accumulation of 4 steps, and batch size of 4. Scripts, selected for
the training, cover 227/228 unique repositories from the train split with a median sample size of 11
for each repository. Training is performed with bfloat16 precision, with a 5% validation split for
evaluation.
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Zero-shot Prompt Overview

System Message:

Your task is to generate a bash script that will set up a Python development environment for
a repository mounted in the current directory.

You will be provided with repository context. Follow the build instructions to generate the
script.

A very universal script might look like this:

{baseline_script}

However, your job is to make a script more tailored to the repository context.

It will be only run on a single repository mounted in the current directory that you have
information about.

The script must not be universal but setup the environment just for this repository.

Avoid using universal if-else statements and try to make the script as specific as possible.

The script should:
* Install the correct Python version based on repository requirements

* Install all project dependencies from requirements.txt, setup.py, or
pyproject.toml

* Install any required system packages

For reference, the script will run in this Docker environment, so most of the tools you need
will be available:

{dockerfile}

IMPORTANT:
* Generate ONLY a bash script — you cannot interact with the system
* The script must be non-interactive (use -y flags where needed)

* Base all decisions on the provided repository context. Follow the context instruc-
tions.

* Do not use sudo — the script will run as root

* If you use pyenv install, please use the -f flag to force the installation. For
example: pyenv install -f $PYTHON_VERSION

The script must be enclosed in * ™ “bash™ " code blocks

User Message:

Repository Context:

context

Generate a complete bash script that will set up this Python environment.

The script must be enclosed in * * “bash’ " * code blocks, it can rely on the tools available in
the Docker environment.

Figure 4: Prompt for the zero-shot scaffold for the environment setup task from [Eliseeva et al.| (2025).
Baseline script and Dockerfile context variables are the same as theirs. Repository context is collected
by executing a fixed set of commands within the repository in the target Docker environment.
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Table 4: RL parameters for VeRL

Table 3: SFT parameters for LLaMA-Factory Parameter Value

Model Configuration

Parameter Value Max Prompt Length 30,000
Training Settings Max Response Length 4,096
Epochs 5 Training Settings
Learning Rate 5e-5 Train Batch Size 64
Weight Decay 0.01 Mini-Batch Size 32
Optimizer AdamW Micro-Batch Size 1
LR Scheduler Cosine Optimizer AdamW
Gradient Accumulation Steps 4 Learning Rate Se-6
Warmup Ratio 0.1 Gradient Clipping 1.0
Max Grad Norm 1.0 Total Steps 45
Batch Size 4 RL Settings
Precision & Optimization Algorithm Reinforce++
Dtype bfloat16 KL Loss False
FlashAttention-2 enabled KL Reward False
Evaluation & Logging E;gogy Cﬁefﬁdem 0.001
Validation Split 0.05 POChS >
Early Stopping - N Rollouts 1
Rollout Temperature 0.7
Rollout Top-P 0.8
Rollout Top-K 20

A.2.2 RL TRAINING

We show the hyperparameters used in our RL training in Table [d Sampling parameters are set to the
values recommended in the Qwen3 model car(ﬂ for non-thinking mode. Full configuration files and
code are available in the reproduction package.

A.3 EVALUATION DETAILS

EnvBench. We build off the original implementation provided by EnvBench authors. For Qwen3
models, we set the sampling parameters to the values recommended in the corresponding model cards,
same as for training (Appendix [A.Z). The resulting evaluation suite is available in our replication
package.

Repo2Run. As Repo2Run replication package only includes code for inference of the proposed
Repo2Run agent, we extend EnvBench evaluation suite to support repositories and success check
(test collection via pytest) from Repo2Run. We use the same zero-shot scaffold and prompts as for
EnvBench, detailed in Appendix [A.1I] The resulting evaluation suite is available in our replication
package.

Terminal-Bench. We use the original implementation to run the evaluation on Terminal-Bench. We
use Terminus 1 scaffold and version 0.1.1 of the benchmark.

A.4 LLM-AS-A-JUDGE REWARD IMPLEMENTATION

The LLM-as-a-Judge reward provides repository-specific, scalable feedback for environment setup
scripts by using an LLM as an evaluator. The LLM is prompted to simulate the execution of a
candidate shell script in EnvBench Docker environment and predict the outcome of the environment
setup process, including the script’s exit code and the number of missing import issues (as would be
detected by Pyright static analysis).

The prompt provided to the LLM includes the following components: the Dockerfile specifying the
environment, evaluation guidelines informed by our exploratory analysis of model-generated scripts,

"https://huggingface.co/Qwen/Qwen3-8B#best-practices

16


https://huggingface.co/Qwen/Qwen3-8B#best-practices

Under review as a conference paper at ICLR 2026

and several few-shot examples illustrating script grading. Complete prompt templates and reward
implementation code are available in our replication package.

We selected GPT-4.1 as the language model for our experiments, as it consistently yielded the most
reliable results. While we also evaluated GPT-40 and GPT-40-mini, these models did not achieve
comparable performance. In addition, we explored several ablations: (1) augmenting the LLM-as-a-
Judge with repository information like the zero-shot context, and (2) replacing the LLM-as-a-Judge
with an LLM Agent equipped with tools for repository exploration. Neither approach led to a
noticeable improvement in model performance. Consequently, we adopted the simplest and most
robust configuration for our main experiments.

B EMPIRICAL STUDY OF ENVIRONMENT SETUP FAILURE PATTERNS

We manually analyzed scripts generated by GPT-40 in a zero-shot scaffold, the second-best approach
on EnvBench, to understand the fault modes of environment setup scripts. Specifically, we selected
40 scripts (from the first 40 repositories in lexicographical order where the results were available).
Out of those repositories, 2 were set up correctly, 16 had a non-zero exit code (failed), and 22 had
unresolved import issues. For each script, we collected free-form observations about potential failure
reasons and applied an open coding approach to extract common failure themes.

We present the resulting failure patterns in Table[5] with labels for 40 repositories available in our
replication package. We identify three failure patterns categories: (i) Script Problems, the explicit
mistakes made in the model-generated scripts, (ii) Repository Problems, the configuration challenges
presented by a specific repository that the model failed to consider, and (iii) Eval Problems, runtime
failures of EnvBench evaluation suite and/or limitations of the static analysis. Most failures are
caused by Script Problems, while unresolved import issues are often due to Repository Problems. We
observe 3 Eval Problems in total (7.5% of 40 repositories sample).

C TRAIN/VALIDATION PERFORMANCE

To rule out memorization from improvements of our models that were trained on a part of EnvBench,
we present experimental results separately on the held-out validation set in Table[6] From Table 6]
we observe that all PIPER variants retain substantial improvements over the base Qwen3-8B on the
validation set. Similarly, the performance of PIPER on the validation set is comparable to Qwen3-32B
and GPT-4o0, with either second-best or third-best results across all the considered metrics. GPT-5
remains the strongest among the considered baselines. Mirroring our findings on full EnvBench,
SFT-only and RL-only checkpoints show lower per-run metrics than PIPER that combines both
stages.
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Table 5: Identified environment setup failure patterns for zero-shot GPT-40 for 40 repositories
(percentages are relative to full 40 repositories sample). # Failure means number of failed repositories
which contain given pattern; # Issues — number of repositories with unresolved import issues. Note
that each repository can contain multiple fault patterns.

Failure Pattern

Explanation

# Failure

# Issues

Script Problems

Wrong Syntax
Dependencies Resolution Issue

Multiple Dep. Managers
Wrong Python Binary

Missing System Package
Non-existent Package

Wrong Operation

Wrong Python Version
Missing Dep. Group

No Editable Mode

Missing Configuration File

Syntax errors in the script.

Dependency manager can’t resolve depen-
dencies due to conflicting versions.

Script uses both pip and Poetry.

Script installs dependencies for a specific
Python binary, but fails to configure the sys-
tem to use that binary.

Script doesn’t install a system package re-
quired by repository dependencies.

Script tries to install a package that does not
exist on PyPL.

Script executes a command that conflicts
with the given base environment (e.g., tries
to install Poetry even though it is already
installed).

Script uses Python version conflicting with
repository requirements.

Script does not install an optional depen-
dency group required for development (e.g.,
test).

Script installs the repository in non-editable
mode not suitable for development (relevant
for pip).

Script does not install dependencies
from a configuration file in the repos-
itory (e.g., multiple requirements-dev,
requirements-docs, etc.).

4 (10%)
3 (7.5%)

2 (5%)
2 (5%)

1(2.5%)
1(2.5%)

3 (7.5%)

1(2.5%)

1 (2.5%)

1(2.5%)

9 (22.5%)

3 (7.5%)

2 (5%)

Repository Problems

Requirements Not Specified

Poetry Lock Outdated

Misconfigured PYTHONPATH

Some packages used in the repository code-
base are not specified in the configuration
files.

poetry install fails because the
poetry.lock file must be regenerated first.
Local modules do not resolve correctly be-
cause the PYTHONPATH environment vari-
able is not configured properly.

2 (12.5%)

10 (45.5%)

2 (9.09%)

Eval Problems

Dynamic Imports

Eval Failure

Hardware Problems

Repository includes dynamic imports that
cannot be resolved with static analysis.
Runtime failure of EnvBench evaluation
suite, not associated with specific script or
repository characteristics.

Dependencies require hardware not avail-
able in the base environment (e.g., GPU).

2 (12.5%)

1 (6.25%)

5(12.5%)
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Table 6: Validation split results for base models and PIPER model variations. Total number of
samples is 96. pass@5 shows the number of successful samples (zero exit code and zero issues).
avg@5 shows mean = std for the following metrics: # Success (average number of successful samples
per run), # Failed (average number of samples where scripts finished with non-zero exit code), and
avgFixRate (average ratio of resolved import issues per sample as compared to the evaluation
run with empty setup script; for samples where scripts execute with non-zero exit codes, ratio is

considered 0). The symbol 1 indicates higher is better, while | indicates lower is better.

Model pass@5 avg@$5

# Success T # Success T #Failed | avgFixRate 1
GPT-5 210 974415 936.0+3.1°(41.4+28)%
GPT-40 6 48+1.1 604+159(265+1.1)%
GPT-40-mini 3 2.04+0.7 ©50.8+2.0 (20440.8)%
Qwen3-32B @7 48404 626+£23 (253+1.4)%
Qwen3-14B 4 1.84+04 81.6+1.7 (104+15%
Qwen3-8B 1 02+04 89.6+1.1 (3.24+1.9%
PIPER 6 952+08 ©542+1.6 ?(30.0+1.9)%
PIPERSFTonY 6 32404 572413 (24.6+£2.3)%
PIPERRL-OnY 6 3.840.8 63.0+3.1 (24.6+1.9%
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