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Abstract

Few-shot Named Entity Recognition (NER) en-
ables models to learn effectively from limited
annotated samples and perform robustly, even
in resource-rich domains, addressing the chal-
lenge of scarce labeled data in many fields. Re-
cently, Large Language Models (LLMs) have
demonstrated strong adaptability and general-
ization capabilities in few-shot learning, offer-
ing new solutions for few-shot NER tasks. In
this paper, we propose OBP-LLM, a novel large
language model-based method that integrates
contrastive learning and Direct Preference Opti-
mization (DPO) to address attention mismatch
and generation fallacy in LLM-based NER, by
refining internal attention and generation pref-
erences. Experimental results demonstrate that
our method significantly outperforms existing
approaches on multiple Few-shot NER bench-
marks, including Few-NERD and CrossNER,
particularly in cross-domain and extremely low-
resource scenarios. This study validates the
potential of contrastive learning and DPO in
optimizing LLMs and provides new directions
and practical solutions for NER tasks in low-
resource domains.

1 Introduction

Named Entity Recognition (NER) is a critical task
in natural language processing closely related to
numerous other tasks. It aims to extract entities
from unstructured text and classify them into pre-
defined categories, such as person names, location
names, and organization names (Guo et al., 2009;
Molla et al., 2006; Nadeau and Sekine, 2007). In
recent years, deep learning models have achieved
significant progress in NER tasks, particularly su-
pervised methods based on pre-trained models like
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), which achieve high accuracy by train-
ing on large-scale annotated datasets. However,
these traditional methods heavily rely on extensive
manually annotated datasets, which are often costly
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Figure 1: An illustration of two challenges applying the
text generation framework of large language models to
NER tasks. Here, we use Llama3.1-8b as the base model
and compute the average of all multi-head attention
scores at the 26th layer.

and time-consuming to obtain. Additionally, they
exhibit limited flexibility in cross-domain applica-
tions. To address these issues, Few-shot Learning
(FSL) (Ding et al., 2021a; Huang et al., 2021)has
emerged as a research focus on NER tasks. The
strength of FSL is its capability to identify new
categories with few annotated samples, reducing
the need for large labeled datasets while greatly
enhancing cross-domain adaptability.

Existing few-shot NER methods generally fol-
low two paradigms:

(1) one-stage: Reformulates NER task as se-
quence labeling via prototypical networks, clas-
sifying tokens based on distances to class proto-
types.(2) two-stage: Splits NER task into span
extraction and entity classification.

With the rise of generative Large Language Mod-
els (LLMs), Few-shot NER tasks have seen break-
throughs. Compared to traditional pre-trained mod-
els, LLMs, such as Llama-3 (Dubey et al., 2024)
and GPT-4 (Achiam et al., 2023), have larger pa-
rameter scales and stronger generalization capa-
bilities. By designing various prompts, LLM can
efficiently perform diverse NLP tasks without fine-
tuning, demonstrating exceptional performance in



few-shot learning scenarios (Zhang et al., 2024).
We adopt a one-stage approach to avoid the error
propagation issues commonly associated with the
two-stage paradigm. However, we find that ap-
plying the text generation framework of LLMs to
one-stage NER tasks still suffers from two major
limitations(show in Figure 1). 1) Attention mis-
match: Input text suffers from attenuated attention
allocation within the prompt, causing the model to
focus on irrelevant tokens during response genera-
tion. 2) Generation fallacy: Although the model’s
attention is focused on the correct tokens, errors
still occur during generation (e.g., incorrect entity
boundaries).

To address these limitations, we propose a novel
framework for LLMs based on contrastive learn-
ing and Reinforcement Learning, enhancing the
model’s perception of entity boundaries to ensure
the generation of accurate entity responses. This
framework achieves exceptional performance in
extremely low-resource named entity recognition
tasks by fine-tuning only a subset of LLM parame-
ters via the LoRA method (Hu et al., 2021).

On the one hand, we impose constraints on the
decoding phase during response generation, ensur-
ing that generated tokens are derived solely from
the input text. Additionally, we introduce attention-
based contrastive learning during the Supervised
Fine-Tuning (SFT) stage, bringing entities of the
same category closer together while pushing differ-
ent categories further apart in the semantic space,
This optimization refines the distribution of entity
representations, enabling a global semantic adjust-
ment that enhances local attention mechanisms,
thereby guiding the model to focus on the correct
tokens.

On the other hand, to retain the rich boundary
information utilized in two-stage methods without
task decomposition (which risks cascading errors
from subtasks), we construct preference data based
on entity boundaries and error feedback from the
initially aligned model. Through reinforcement
learning, the model learns more precise boundary
information and corrects previous errors to some
extent. To simplify the reinforcement learning pro-
cess, we adopt the computationally efficient Direct
Preference Optimization (DPO) approach (Rafailov
et al., 2023). Extensive experiments across multi-
ple benchmarks demonstrate that our method con-
sistently outperforms existing state-of-the-art ap-
proaches.

In summary, our main contributions are as fol-

lows:

(1) We propose a novel large language model-
based approach to address few-shot NER tasks,
which requires training only a subset of parameters
yet demonstrates strong generalization capabilities
on novel entity categories, especially in scenarios
with extremely limited training samples.

(2)We address the attention mismatch and gen-
eration fallacy issues inherent in applying LLM-
based generation to one-stage NER. To this end,
we incorporate contrastive learning to enhance en-
tity semantics and guide attention to relevant to-
kens, and apply Direct Preference Optimization
(DPO) to enrich boundary perception and enable
self-correction from error feedback, ensuring more
accurate generation.

(3) Experiments conducted on two widely used
few-shot NER benchmarks demonstrate that our
method outperforms current state-of-the-art ap-
proaches, particularly in more challenging tasks.

2 Related Work

2.1 Few-shot Named Entity Recognition

Few-shot Named Entity Recognition (NER) aims to
efficiently identify and classify entities with limited
annotated data. The primary challenge is learning
robust entity representations and achieving strong
generalization under data scarcity.

One-stage methods (Fritzler et al., 2019; Gao
et al., 2019; Yang and Katiyar, 2020; Hou et al.,
2020; Ma et al., 2022a) transform NER tasks into
sequence-labeling problems using prototype net-
works, classifying tokens by computing their dis-
tance to category prototypes. While computation-
ally efficient, they are susceptible to interference
from the non-entity label "O," degrading classifica-
tion performance. Moreover, in transformer-based
pre-trained models like BERT, self-attention mech-
anisms can cause cross-entity interference within
the same sentence, leading to densely packed or
overlapping entity distributions in the semantic
space.

Two-stage methods(Shen et al., 2021; Wang
et al., 2022b; Ma et al., 2022b; Wang et al., 2022a;
Dong et al., 2023; Guo et al., 2024) methods de-
compose NER tasks into two independent pro-
cesses——span extraction and entity classification.
The model first extracts all potential entity spans
without assigning categories, followed by classi-
fication for each candidate span. While this de-
composition improves entity boundary modeling,



Pre-Training

Souce Domain Data Target Domain Data

.
Instruction

... extract entities from ...
Input

It joined the CTV Television Network when it launched

on October 1,1961.

contrastive learning

=

Model

=}
x
<

v v

positive sample negative sample

Ve BN / \
(sample1) (sample1 )
N * h NG

entity-type . .
minimize distance maxmize distance

— \ .
wj/samplez ) (sample2)

N Attentionpos T .

¢ Attention,e,

Supervised Fine-tuning

L con

_________________________

,
N { Direct Preference Optimization } \
>
1
1
1
1

bad case

Instruction
... extract
from ...
Input

It joined the CTV Television Network when it
launched on October 1,1961.

Chosen

CTV Television Network

Rejected

October 1,1961

entities

Instruction
... extract
from ...
Input

It joined the CTV Television Network when it
launched on October 1,1961.

Chosen

CTV Television Network

Rejected

join the CTV Television Network when

1

1

1

1

1

1

1

1

1

1

1

1

1

! Preference Data Based on Error Feedback
1

1

1

1

1

: entities
1
1
1
1
1

Preference Data Based on Entity Boundaries

Figure 2: The overall architecture of OBP-LLM. It consists of three stages: pre-training on the source domain,
supervised fine-tuning on the target domain, and Direct Preference Optimization.

performance heavily depends on span extractor ac-
curacy. Errors in span extraction inevitably impact
entity classification.

Furthermore, with the recent emergence of
LLMs demonstrating remarkable capabilities in
few-shot learning, several works have explored ap-
plying LL.Ms to few-shot NER tasks (Wang et al.,
2023; Zhu et al., 2024).

2.2 Contrastive learning

The foundational concept of contrastive learning
lies in the analysis of feature similarities and dispar-
ities. Hadsell et al. (2006) introduced contrastive
loss, which refines feature representations by min-
imizing the distance between positive pairs while
maximizing the separation between negative pairs.
In recent years, contrastive learning has seen rapid
advancements, particularly in computer vision and
natural language processing (Chen et al., 2020; He
et al., 2020). Today, contrastive learning has be-
come a cornerstone technique in pre-training, find-
ing widespread application (Reimers, 2019; Gao
et al., 2021).

2.3 Direct Preference Optimization

Reinforcement Learning from Human Feedback
(RLHF) optimizes model behavior by incorporat-
ing human preferences to align generated content

with user expectations. Christiano et al. (2017) ap-
plied RLHF to simulated games and simple text
generation tasks, while Ziegler et al. (2019) used
human feedback to enhance the quality, coherence,
and style of language model outputs, demonstrating
its effectiveness in task optimization.

With the rise of pre-trained language models
(e.g., the GPT series), RLHF has been widely
adopted to improve text generation quality and con-
trol (Stiennon et al., 2020). The introduction of
InstructGPT (Ouyang et al., 2022) and ChatGPT
marks a key milestone in its application, driving its
expansion in large-scale language models.

3 Method

3.1 Prompt Construction

Before starting the training process, we first con-
struct a prompt for the LLLM to adapt to the NER
task (Zhang et al., 2024). Figure 3 below provides
an example of such a prompt, which consists of
four parts: (1) The first line is a fixed description of
the alpaca-lora method, introducing the following
three sections: Instruction, Input, and Response.
(2) instruction: In this part, we specify the entity
categories to be extracted and briefly describe the
definition of each entity type to help the LLM bet-
ter understand the NER task. (3) input: The sen-



Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.

instruction: | want you to extract
entities from the following input sentence, the entity of

refers to the entity that represents a specific
media outlet, newspaper, or press organization in the input sentence.

input: It joined the CTV Television Network when it launched on
October 1,1961.

response: The entities | extracted for you are <<< CTV Television
Network >>> .

Figure 3: a example of prompt

tence from which entities are to be extracted. (4)
response: This section contains the model’s gener-
ated output, where each extracted entity is enclosed
within <<< >>> identifiers.

3.2 Pre-Training in Source Domain

We first construct training data from the source
Domain using the prompt designed in the previous
subsection, enabling the model to perform NER
tasks on the source Domain.

T
L==Y logp(ylrii) (1)

t=1

where T is the length of the generated sequence,
y is the target output, x1.4—1 is the input sequence
before the current time step ¢, and p(y;|z1..—1) is
the probability of the model predicting y; given
Z1:4—1 as input.

However, we aim for the model to focus more
on generating better and more accurate responses
rather than overly emphasizing the instruction and
input. Therefore, the loss during training is com-
puted solely based on the tokens in the model’s
response.

T
Lsource = - Z log p(yt|m7‘:t71) (2)

t=r
where model’s response Zyes = {Xy, Tyi1, ...27}

3.3 Supervised Fine-tuning with contrastive
learning

After pre-training on the Source domain, we per-
form supervised fine-tuning (SFT) on the model
using a small number of Target domain samples.
Similar to the Source domain, we fine-tune the
model with next-token prediction. However, unlike
the Source domain, we introduce attention-based
contrastive learning during SFT. By constructing
positive and negative sample pairs, we optimize en-
tity representations, improve internal attention, and

enhance the model’s perception of entity bound-
aries. The process of constructing positive and
negative sample pairs is as follows:

For a given input x; and the entity category p;
to be extracted, ¢; ; represents the entity in x;.
q,; € CP”,|CP| = J. Then, (p;,q;,;) forms
a positive sample pair, with a total of J pairs. For
each positive sample pair (p;,g;;), we select 2
tokens n; ;. near the left and right boundary of

entity ¢; ;, where n; ;1 € CZ;’Q, C’Z;g = 2, and
(pi, 14 j,1) forms a negative sample pair, with a to-
tal of 2 pairs. In this way, the model can implicitly
learn some information related to entity boundaries.
We apply contrastive learning to the model’s atten-
tion to improve internal attention, increasing focus
on positive samples and reducing focus on negative
samples. The contrastive loss function is defined
as follows:

N J

1
ﬁcon = — N Zlog(o-(z(ei@,type . eZ{(]ijS)
=1 7
2
it K,
=D (e i)
k

3)

We used cosine similarity to represent the distance
between positive and negative sample pairs. Specif-
ically, for a given input z;, e?’typ “ represents the
embedding of the entity category p; output by the
Q projector in the model. ei{( PO and ef’(j’gfg repre-
sent the embeddings of the positive sample g; ; and
the negative sample n; ; x. output by the K projector,
respectively. It is important to note that the output
embeddings from both the Q projector head and the
K projector head are averaged across all heads and
normalized at the 26th layer. Here, we choose the
output of the Q and K projector heads instead of
the hidden layer states to further improve internal
attention and achieve faster convergence and better
performance during training.

By combining the SFT loss and the contrastive
learning loss, we obtain the overall loss function
for fine-tuning the target domain. This allows the
model to adapt to the target domain while optimiz-
ing the representations’ distribution in the semantic
space. Here, A is used to control the weight of the
contrastive learning loss, and in our experiments,
A =0.01.

£target = ﬁsft + )\Econ (4)
£sft = Esource (5)



3.4 Direct Preference Optimization on Entity
Boundary

After the initial alignment of the model with the tar-
get domain via SFT, we use preference data based
on entity boundaries and error feedback to adjust
the model’s generation preferences using RLHF.
This enables the model to learn more accurate en-
tity boundaries and correct existing errors. The
process of constructing preference data is as fol-
lows:

(1)Preference Data Based on Entity Bound-
aries For the data shown in Figure 3, we gener-
ate incorrect entity responses by shifting one to-
ken left or right from the correct entity boundaries.
These incorrect entity responses are labeled as low-
preference ‘rejected’ samples, while the original
correct responses are labeled as high-preference
‘chosen’ samples.

chosen: The entities I extracted for you are <<<
CTV Television Network >>>.

rejected: The entities I extracted for you are <<<
join the CTV Television Network when >>>.

(2)Preference Data Based on Error Feedback
We use the training data from the previous phase
to test the SFT model that has undergone the first
alignment. The misclassified entity extraction re-
sults are then used to construct the preference data.
Specifically, the original correct answers are la-
beled as the ‘chosen’ data in the preference dataset,
while the incorrect responses generated by the SFT
model are labeled as the ‘rejected’ data.

After constructing the preference data, in tra-
ditional RLHF methods, we first need to train
a reward model to evaluate and score the gen-
erated responses on the preference data D =

] ) y N ) )
{x(’), y&f),y}” } ~, where yq(ﬁ) and yl(l)
the preferred ané}lon—prefened generations given
input 2@, respectively. According to the Bradley-
Terry (BT) model, the negative log-likelihood loss
for the reward model is defined as:

represent

£R(T¢7 D) = _E(a:,yw wy1)~D [lOg 0'(7"(75(33, yw)

O

Where o is the logistic function, during initializa-
tion, r4(x, y) is typically implemented by adding
a linear layer on top of the SFT model 75/*(y|x)
from the previous stage to score the model’s genera-
tions. After obtaining the trained reward model, the
large language model is further optimized based on
feedback from the reward model. This process is

formulated as:

H}SX ExND,ywﬂg(y|x) [T¢>(xa y)] - N
BDkL [mo(y | ) [|| meet(y | )]

where [ is a parameter controlling the deviation
from the baseline reference policy model 7.y,
mo(y|z) is the current language model, and both
Pirey and me(y|x) are initialized with the SFT
model 7%/*(y|x). This ensures that the model is op-
timized toward higher rewards, as scored by the re-
ward model while preventing the generation distri-
bution from deviating too far from the SFT model,
which could otherwise lead to unpredictable and
undesirable outputs.

To simplify the training process and avoid the
need for training a reward model, we use the Direct
Preference Optimization (DPO) method to perform
the model policy optimization. Based on the deriva-
tion from the Equation 7, we obtain the following:

max Eunp y~r [7(2,y)] = BDxL [7(y[2) || Tret (y]2)]

~(ylo)
AT (yle) exp (3r(2.y)
~log Z(x)]

= min EIN'DEyNW(y‘I) llog

®)

where Z(z) is the partition function. We will

not elaborate on the derivation method here. For

a detailed derivation, please refer to the paper on
DPO (Rafailov et al., 2023).

Z(x) = mret(ylz) exp (;r(x,y)> )

The explicit optimal solution 7*(y|z) for model
m(y|z) is:

™ (ylz) = %mef(yhc) exp (%r(m,y)) (10)

The form of the reward model 7(z, y) can be de-
rived as follows:

r*(x,y) = ﬁlogm

Wref(y‘x) * B log Z(w)

(11)
By substituting the reward model r(x, y) into the
loss function under the Bradley-Terry (BT) model
Equation 6 for optimization, the optimal solution
is directly obtained through the process of training
the reward model.

" T
Lr(re,D)=—E sy, ,yz>~D|:IOg o (,3 log ﬁ

e (31 )
log 2l ]

Tret (y2]2)

12



Datasets Domain #Sent #Labels
Few-NERD Mixed 188.2k 66
CoNLL-03  News 207k 5

GUM WiKi 3.5k 12
WNUT-17 Social 5.6k 7
OntoNotes  Mixed 159.6k 19

Table 1: The statistics of each dataset.

The preference generation yg ) corresponds to the
‘chosen’ part of the preference data we construct,
while the non-preferred generation yl(z)
to the ‘rejected’ part.

Finally, we incorporate a portion of the model’s
SFT loss into the training process to prevent the
model from deviating too much from the initial
alignment results. « represents the weight of the
SFT loss.

corresponds

‘Cldpo = aﬁsft(ﬂ-*(mx)) + £dpo (13)

4 Experiments

4.1 Datasets

We selected two widely used few-shot named en-
tity recognition benchmarks for evaluation: Few-
NERD and CrossNER.

Few-NERD: Few-NERD (Ding et al., 2021b)
is a large-scale, fine-grained manually annotated
NER dataset with 8 coarse-grained and 66 fine-
grained entity categories. It provides two few-shot
settings: Inter and Intra. In the Inter setting, the
training, validation, and test sets share all coarse-
grained categories but have disjoint fine-grained en-
tity categories. In the Intra setting, entity categories
are disjoint at both coarse-grained and fine-grained
levels. Here, we use the episode data released by
Ding et al. for experiments, defining the few-shot
tasks as N-way K~2K-shot scenarios, where N-
way indicates the number of entity categories in
the task, and K~2K-shot denotes the sampling of
K~2K training instances per entity category.

CrossNER: CrossNER (Hou et al., 2020) con-
sists of four datasets: CoNLL-2003 (Sang and
De Meulder, 2003), GUM (Zeldes, 2017), WNUT-
17 (Derczynski et al., 2017), and OntoNotes (Prad-
han et al., 2013), coming from four distinct do-
mains: News, Wiki, Social, and Mixed. We used
the episode data constructed by Hou et al. (2020),
selecting two domains for training, one for valida-
tion, and one for testing.

4.2 Baselines

For the baselines, we refer to previous works and
select several strong methods from both one-stage
and two-stage paradigms.

One-stage paradigms include ProtoBERT (Frit-
zler et al., 2019), Matching Network (Vinyals
et al., 2016), StructShot (Yang and Katiyar, 2020),
NNShot (Yang and Katiyar, 2020), CONTAINER
(Snigdha et al., 2022), LTapNet+CDT (Hou et al.,
2020), Llama3-8b-base(only SFT in target domain),
and Llama3-8b(pre+sft).

Two-stage paradigms include ESD (Wang et al.,
2022b), DecomMeta (Ma et al., 2022b), SpanProto
(Wang et al., 2022a), MSDP (Dong et al., 2023),
BANER (Guo et al., 2024).

4.3 Implementation Details

We chose Meta’s Llama3.1-8b (Dubey et al., 2024),
available on HuggingFace, as the initial language
model. For subsequent training, we employed the
LoRA method, fine-tuning only a subset of the
large language model’s parameters to reduce hard-
ware requirements. The LoRA rank was set to 8,
and the LoRA alpha was set to 16. During the SFT
phase, the parameter A, controlling the contrastive
learning loss, was set to 0.01, while in the DPO
training phase, the parameter /3 was set to 0.1, and
the weight « for the SFT loss was set to 0.2.

We used Adam as the optimizer and applied dif-
ferent learning rates across training stages: a learn-
ing rate of 3e-4 for the source domain pre-training
and target domain SFT phases, and 5e-6 for the
DPO phase. The warm-up ratio was set to 0.1.

All experiments were conducted using a single
4090 GPU for both training and testing.

4.4 Main Result

Tables 2 and 3 present the main results comparing
our method with other baselines. We have the fol-
lowing observations: 1) Our proposed OBP-LLM
significantly outperforms previous methods by a
large margin on both the Few-NERD and Cross-
NER benchmarks. Compared to MSDP, it achieves
overall average improvements of 2.26% and 17.16%
on Few-NERD Inter and Few-NERD Intra, respec-
tively, and a 21.75% improvement on CrossNER,
demonstrating the effectiveness of our approach. 2)
Among previous methods, two-stage paradigms
consistently outperformed one-stage paradigms.
However, our method, which preserves the integrity
and coherence of the NER task within a one-stage



Intra Inter
Paradigms Models 1~2-shot 5~10-shot Av 1~2-shot 5~10-shot Av
5 way 10 way Sway 10 way & 5 way 10 way Sway 10 way &
ProtoBERT 23454092 19.76+0.59 41.93+£0.55 34.61+0.59 29.94 | 44.4440.11 39.09+0.87 58.80+£1.42 53.97+0.38 49.08
NNShot 31.014+1.21 21.88+023 35.74+2.36 27.6741.06 29.08 | 54.294040 46.98+1.96 50.56:3.33 50.000.36 50.46
StructShot 35.9240.69 25.38+0.84 38.83+1.72 26.3942.59 31.63 | 57.33+0.53 49.46+0.53 57.16+£2.09 49.49+1.77 53.34
One-stage ~ CONTaiNER 40.43 33.84 53.70 47.49 43.87 55.95 48.35 61.83 57.12 55.81
Llama3-8b-base 59.08 55.44 60.38 67.75 60.66 59.13 55.68 75.24 73.43 65.87
Llama3-8b(pre-+sft) 74.24 73.20 75.48 71.90 73.70 77.97 77.23 79.67 77.66 78.13
OBP-LLM 75.54+2.14 74314238 78.01+3.11 75.744+2.22 75.90 | 81.14+4.41 79.23+1.63 81.30+3.79 80.29+2.92 8§0.49
ESD 41.44+1.16 32.29+1.10 50.68+0.94 42.92+0.75 41.83 | 66.46+0.49 59.95+0.69 74.14+0.80 67.91+1.41 67.12
Twoustage | DecomMeta 52044044 43.50+0.59 63.23+£0.45 56.84+0.14 539 | 68.7740.24 63.26+0.40 71.62+0.16 68.32+0.10 67.99
WOSIAge g hanProto 54494039 4539+0.72 65.89+0.82 59374047 56.29 | 73.36+0.18 66.26+0.33 75.19+£0.77 70.394+0.63 713
MSDP 56.3540.28 47.134£0.69 66.80+£0.78 64.694+0.51 58.74 | 76.8640.22 69.784+0.31 84.78+0.69 81.50+0.71 78.23
BANER 64.95+0.85 61.24+0.82 72.14+0.33 67.5340.12 66.47 | 69.26+0.94 67.43+0.35 76.53+0.51 72244022 71.37
Table 2: F1 scores on Few-NERD for both inter and intra settings.
Paradigms Models 1-shot 5-shot
g CONLL-03 GUM WNUT-17  OntoNotes  Avg. | CONLL-03 GUM WNUT-17  OntoNotes  Avg.
Matching Network | 19.5040.35 4.73+0.16 17.23£2.75 15.06+1.61 14.13 | 19.85+0.74 5.58+023 6.61£1.75 8.08+0.47 10.03
ProtoBERT 32494201 3.89+024 10.68+£1.40 6.674046 1343 | 50.06+1.57 9.54+0.44 17.26+2.65 13.59+1.61 22.61
One-stage  L-TapNet+CDT 4430+3.15 12.04+0.65 20.80+1.06 15.17+1.25 23.08 | 45.35+2.67 11.65+2.34 23.3042.80 20.95+2.81 25.31
Llama3-8b-base 50.14 36.29 40.30 39.07 41.45 60.86 4228 51.09 54.17 52.10
Llama3-8b(pre-+sft) 55.72 38.15 62.74 53.07 5242 63.18 49.63 62.17 57.65 58.16
OBP-LLM 59.55+3.32 44.63+4.78 65.43+£3.86 55.31+3.35 56.23 | 65.67+3.08 51.82+4.41 64.66:+2.31 59.81+2.25 60.49
DecomMeta 46.09+0.44 17.54+0.98 25.14+0.24 34.13+0.92 30.73 | 58.18+0.87 31.36+0.91 31.02+1.28 45.55+0.90 41.53
Two-stage  SpanProto 4770+0.49 19.92+0.53 283140.61 36.41+0.73 33.09 | 61.88+0.83 35.12+0.88 33.9440.50 48.21+0.89 44.79
MSDP 49.14+0.52 21.88+£0.29 30.10+0.56 38.05+0.88 34.79 | 63.98+0.80 36.53+0.81 35.6140.72 49.99+0.95 46.53
Table 3: F1 scores under 1-shot and 5-shot setting on CrossNER.
Few-NERD CrossNER
Methods
Intra Inter 1-shot 5-shot =
OBP-LLM 7590 80.49 56.23 60.49 W
w/o contrastive learning  74.56  79.07 53.83  59.23 |t
w/o dpo 75.04 79.56 54.82 59.42

Table 4: The ablation study results (average F1 score)
for Few-NERD and CrossNER.

paradigm, is the first to surpass two-stage methods
in all aspects. 3) The Intra scenario in Few-NERD
is more challenging as entity categories in the train-
ing, validation, and test sets are disjoint not only
at the fine-grained level but also at the coarse level.
Similarly, CrossNER is difficult due to both differ-
ent entity categories and datasets from diverse do-
mains. Previous methods have significant room for
improvement in these tasks. Our OBP-LLM shows
remarkable improvements in both Few-NERD and
CrossNER, demonstrating its strong generalization
ability in few-shot learning, especially in cross-
domain scenarios.

4.5 Ablation Study

We conducted ablation studies on the main com-
ponents of OBP-LLM, focusing on 1) contrastive
learning during the SFT phase and 2) Direct Prefer-
ence Optimization (DPO) based on entity boundary
information. The results are shown in Table 4

1) When either of these components is removed,
the overall average performance of the model de-
clines, indicating that both components are neces-

(b) with CL

(a) base model
Figure 4: The comparison of attention heatmaps, where
(a) represents the Llama3.1-8b model with only SFT
training, and (b) represents the model with contrastive
learning added during the SFT phase.

sary and highly effective.

2) When contrastive learning is removed, the av-
erage F1 score drops by 1.26% to 2.4%, with a more
pronounced decline in the cross-dataset task Cross-
NER. This demonstrates that contrastive learning
effectively optimizes the model for cross-domain
tasks.

3) When DPO is removed, the average F1 score
decreases by approximately 1% overall. Compared
to contrastive learning, the drop in F1 score is
smaller, as DPO primarily refines the model’s judg-
ment of entity boundaries while maintaining the ini-
tial alignment results of the large language model.

4.6 Effectiveness of Contrastive learning

In the SFT phase, we introduce contrastive learn-
ing to optimize the distribution of entity represen-
tations in the model’s semantic space and enhance
its attention mechanism, improving performance
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(a) base model (b) with CL
Figure 5: t-SNE visualization of entity representations
on CrossNER for the base model and the base model
with contrastive learning, with each color representing
a different entity category.

in entity recognition tasks.

To evaluate this, we perform SFT on the base
Llama3.1-8b model, using it as the baseline. We
randomly select some data to test the impact of
contrastive learning on attention. As shown in Fig-
ure 4, for the standard output “nahed dahlan”, the
baseline model attends to irrelevant tokens, result-
ing in redundant outputs, while contrastive learning
helps focus attention on correct entity tokens.

Additionally, we visualized the distribution of
entity representations in the semantic space using
t-SNE, as shown in Figure 5. Compared to the base
model, the model trained with contrastive learning
shows a significantly more compact distribution of
entities within the same category. However, the
improvement in the boundary distinction between
different categories of entities was relatively less
pronounced. This is because, when constructing
negative samples for contrastive learning, to avoid
extreme imbalance in the number of positive and
negative samples, we selected tokens near the enti-
ties rather than all tokens outside the correct enti-
ties, many of which are non-entity tokens.

Overall, the results demonstrate that the con-
trastive learning we introduced effectively im-
proves entity semantic representations and en-
hances model performance in entity recognition
tasks.

4.7 Effectiveness of Direct Preference
Optimization

To validate the effectiveness of DPO based on en-
tity boundaries and error feedback, which enhances
boundary learning and error correction post-SFT
alignment, we randomly sampled 500 instances
from the CrossNER task for evaluation. Represen-
tative cases are shown in Figure 6. The baseline
model, trained only with SFT, often produces re-
dundant words at entity boundaries, which may

Input the hood opening reminds me of a classic

Output saab 900

Baseline a classic saab 900 x

Con-DpoNER |saab 900 v

are the legality of votes cast by checked

Input after they have been cast.

Output non citizens

Baseline the legality of votes x

Con-DpoNER | non citizens V

Figure 6: A case of CrossNER.The correct and incorrect
entities are highlighted in red and green, respectively.

Dataset Boundary Error Rate
few-NERD -10.3%
Cross-NER -11.69%

Table 5: Quantifying boundary error reduction post-
DPO optimization versus SFT-only.

not affect semantics but indicate boundary impreci-
sion. After DPO, the model generates more precise
boundaries and corrects earlier errors.

We also tested boundary errors on Few-NERD
and CrossNER datasets. As shown in Table 5, DPO
optimization reduced boundary errors by 10.3% and
11.69% compared to SFT-only.

5 Conclusion

We propose OBP-LLM, a method for optimizing
entity boundary perception in large language mod-
els. By introducing attention-based contrastive
learning during the SFT phase, we enhance the
distribution of entity representations and improve
attention, enabling the model to focus on the cor-
rect entity tokens. Additionally, we apply RLHF
for secondary alignment optimization based on en-
tity boundary information and error feedback, sim-
plifying the training process with DPO. Extensive
experiments demonstrate that our approach, requir-
ing only partial parameter training, outperforms
previous SOTA baselines, especially in more chal-
lenging tasks.

Limitations

As mentioned in Section 4.6, due to the construc-
tion method, our model shows limited improve-
ment in distinguishing boundaries between differ-
ent entity categories in contrastive learning. We
believe there is significant room for optimization
in the negative sample construction method, which
will be a focus of our future research.
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