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Abstract001

Few-shot Named Entity Recognition (NER) en-002
ables models to learn effectively from limited003
annotated samples and perform robustly, even004
in resource-rich domains, addressing the chal-005
lenge of scarce labeled data in many fields. Re-006
cently, Large Language Models (LLMs) have007
demonstrated strong adaptability and general-008
ization capabilities in few-shot learning, offer-009
ing new solutions for few-shot NER tasks. In010
this paper, we propose OBP-LLM, a novel large011
language model-based method that integrates012
contrastive learning and Direct Preference Opti-013
mization (DPO) to address attention mismatch014
and generation fallacy in LLM-based NER, by015
refining internal attention and generation pref-016
erences. Experimental results demonstrate that017
our method significantly outperforms existing018
approaches on multiple Few-shot NER bench-019
marks, including Few-NERD and CrossNER,020
particularly in cross-domain and extremely low-021
resource scenarios. This study validates the022
potential of contrastive learning and DPO in023
optimizing LLMs and provides new directions024
and practical solutions for NER tasks in low-025
resource domains.026

1 Introduction027

Named Entity Recognition (NER) is a critical task028

in natural language processing closely related to029

numerous other tasks. It aims to extract entities030

from unstructured text and classify them into pre-031

defined categories, such as person names, location032

names, and organization names (Guo et al., 2009;033

Mollá et al., 2006; Nadeau and Sekine, 2007). In034

recent years, deep learning models have achieved035

significant progress in NER tasks, particularly su-036

pervised methods based on pre-trained models like037

BERT (Devlin et al., 2019) and RoBERTa (Liu038

et al., 2019), which achieve high accuracy by train-039

ing on large-scale annotated datasets. However,040

these traditional methods heavily rely on extensive041

manually annotated datasets, which are often costly042
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Figure 1: An illustration of two challenges applying the
text generation framework of large language models to
NER tasks. Here, we use Llama3.1-8b as the base model
and compute the average of all multi-head attention
scores at the 26th layer.

and time-consuming to obtain. Additionally, they 043

exhibit limited flexibility in cross-domain applica- 044

tions. To address these issues, Few-shot Learning 045

(FSL) (Ding et al., 2021a; Huang et al., 2021)has 046

emerged as a research focus on NER tasks. The 047

strength of FSL is its capability to identify new 048

categories with few annotated samples, reducing 049

the need for large labeled datasets while greatly 050

enhancing cross-domain adaptability. 051

Existing few-shot NER methods generally fol- 052

low two paradigms: 053

(1) one-stage: Reformulates NER task as se- 054

quence labeling via prototypical networks, clas- 055

sifying tokens based on distances to class proto- 056

types.(2) two-stage: Splits NER task into span 057

extraction and entity classification. 058

With the rise of generative Large Language Mod- 059

els (LLMs), Few-shot NER tasks have seen break- 060

throughs. Compared to traditional pre-trained mod- 061

els, LLMs, such as Llama-3 (Dubey et al., 2024) 062

and GPT-4 (Achiam et al., 2023), have larger pa- 063

rameter scales and stronger generalization capa- 064

bilities. By designing various prompts, LLM can 065

efficiently perform diverse NLP tasks without fine- 066

tuning, demonstrating exceptional performance in 067
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few-shot learning scenarios (Zhang et al., 2024).068

We adopt a one-stage approach to avoid the error069

propagation issues commonly associated with the070

two-stage paradigm. However, we find that ap-071

plying the text generation framework of LLMs to072

one-stage NER tasks still suffers from two major073

limitations(show in Figure 1). 1) Attention mis-074

match: Input text suffers from attenuated attention075

allocation within the prompt, causing the model to076

focus on irrelevant tokens during response genera-077

tion. 2) Generation fallacy: Although the model’s078

attention is focused on the correct tokens, errors079

still occur during generation (e.g., incorrect entity080

boundaries).081

To address these limitations, we propose a novel082

framework for LLMs based on contrastive learn-083

ing and Reinforcement Learning, enhancing the084

model’s perception of entity boundaries to ensure085

the generation of accurate entity responses. This086

framework achieves exceptional performance in087

extremely low-resource named entity recognition088

tasks by fine-tuning only a subset of LLM parame-089

ters via the LoRA method (Hu et al., 2021).090

On the one hand, we impose constraints on the091

decoding phase during response generation, ensur-092

ing that generated tokens are derived solely from093

the input text. Additionally, we introduce attention-094

based contrastive learning during the Supervised095

Fine-Tuning (SFT) stage, bringing entities of the096

same category closer together while pushing differ-097

ent categories further apart in the semantic space,098

This optimization refines the distribution of entity099

representations, enabling a global semantic adjust-100

ment that enhances local attention mechanisms,101

thereby guiding the model to focus on the correct102

tokens.103

On the other hand, to retain the rich boundary104

information utilized in two-stage methods without105

task decomposition (which risks cascading errors106

from subtasks), we construct preference data based107

on entity boundaries and error feedback from the108

initially aligned model. Through reinforcement109

learning, the model learns more precise boundary110

information and corrects previous errors to some111

extent. To simplify the reinforcement learning pro-112

cess, we adopt the computationally efficient Direct113

Preference Optimization (DPO) approach (Rafailov114

et al., 2023). Extensive experiments across multi-115

ple benchmarks demonstrate that our method con-116

sistently outperforms existing state-of-the-art ap-117

proaches.118

In summary, our main contributions are as fol-119

lows: 120

(1) We propose a novel large language model- 121

based approach to address few-shot NER tasks, 122

which requires training only a subset of parameters 123

yet demonstrates strong generalization capabilities 124

on novel entity categories, especially in scenarios 125

with extremely limited training samples. 126

(2)We address the attention mismatch and gen- 127

eration fallacy issues inherent in applying LLM- 128

based generation to one-stage NER. To this end, 129

we incorporate contrastive learning to enhance en- 130

tity semantics and guide attention to relevant to- 131

kens, and apply Direct Preference Optimization 132

(DPO) to enrich boundary perception and enable 133

self-correction from error feedback, ensuring more 134

accurate generation. 135

(3) Experiments conducted on two widely used 136

few-shot NER benchmarks demonstrate that our 137

method outperforms current state-of-the-art ap- 138

proaches, particularly in more challenging tasks. 139

2 Related Work 140

2.1 Few-shot Named Entity Recognition 141

Few-shot Named Entity Recognition (NER) aims to 142

efficiently identify and classify entities with limited 143

annotated data. The primary challenge is learning 144

robust entity representations and achieving strong 145

generalization under data scarcity. 146

One-stage methods (Fritzler et al., 2019; Gao 147

et al., 2019; Yang and Katiyar, 2020; Hou et al., 148

2020; Ma et al., 2022a) transform NER tasks into 149

sequence-labeling problems using prototype net- 150

works, classifying tokens by computing their dis- 151

tance to category prototypes. While computation- 152

ally efficient, they are susceptible to interference 153

from the non-entity label "O," degrading classifica- 154

tion performance. Moreover, in transformer-based 155

pre-trained models like BERT, self-attention mech- 156

anisms can cause cross-entity interference within 157

the same sentence, leading to densely packed or 158

overlapping entity distributions in the semantic 159

space. 160

Two-stage methods(Shen et al., 2021; Wang 161

et al., 2022b; Ma et al., 2022b; Wang et al., 2022a; 162

Dong et al., 2023; Guo et al., 2024) methods de- 163

compose NER tasks into two independent pro- 164

cesses——span extraction and entity classification. 165

The model first extracts all potential entity spans 166

without assigning categories, followed by classi- 167

fication for each candidate span. While this de- 168

composition improves entity boundary modeling, 169
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Figure 2: The overall architecture of OBP-LLM. It consists of three stages: pre-training on the source domain,
supervised fine-tuning on the target domain, and Direct Preference Optimization.

performance heavily depends on span extractor ac-170

curacy. Errors in span extraction inevitably impact171

entity classification.172

Furthermore, with the recent emergence of173

LLMs demonstrating remarkable capabilities in174

few-shot learning, several works have explored ap-175

plying LLMs to few-shot NER tasks (Wang et al.,176

2023; Zhu et al., 2024).177

2.2 Contrastive learning178

The foundational concept of contrastive learning179

lies in the analysis of feature similarities and dispar-180

ities. Hadsell et al. (2006) introduced contrastive181

loss, which refines feature representations by min-182

imizing the distance between positive pairs while183

maximizing the separation between negative pairs.184

In recent years, contrastive learning has seen rapid185

advancements, particularly in computer vision and186

natural language processing (Chen et al., 2020; He187

et al., 2020). Today, contrastive learning has be-188

come a cornerstone technique in pre-training, find-189

ing widespread application (Reimers, 2019; Gao190

et al., 2021).191

2.3 Direct Preference Optimization192

Reinforcement Learning from Human Feedback193

(RLHF) optimizes model behavior by incorporat-194

ing human preferences to align generated content195

with user expectations. Christiano et al. (2017) ap- 196

plied RLHF to simulated games and simple text 197

generation tasks, while Ziegler et al. (2019) used 198

human feedback to enhance the quality, coherence, 199

and style of language model outputs, demonstrating 200

its effectiveness in task optimization. 201

With the rise of pre-trained language models 202

(e.g., the GPT series), RLHF has been widely 203

adopted to improve text generation quality and con- 204

trol (Stiennon et al., 2020). The introduction of 205

InstructGPT (Ouyang et al., 2022) and ChatGPT 206

marks a key milestone in its application, driving its 207

expansion in large-scale language models. 208

3 Method 209

3.1 Prompt Construction 210

Before starting the training process, we first con- 211

struct a prompt for the LLM to adapt to the NER 212

task (Zhang et al., 2024). Figure 3 below provides 213

an example of such a prompt, which consists of 214

four parts: (1) The first line is a fixed description of 215

the alpaca-lora method, introducing the following 216

three sections: Instruction, Input, and Response. 217

(2) instruction: In this part, we specify the entity 218

categories to be extracted and briefly describe the 219

definition of each entity type to help the LLM bet- 220

ter understand the NER task. (3) input: The sen- 221
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Below is an instruction that describes a task, paired with an input 
that provides further context. Write a response that appropriately 
completes the request.

instruction：I want you to extract organization-media/newspaper 
entities from the following input sentence, the entity of organization-
media/newspaper refers to the entity that represents a specific 
media outlet, newspaper, or press organization in the input sentence.

input：It joined the CTV Television Network when it launched on 
October 1,1961.

response：The entities I extracted for you are <<< CTV Television 
Network >>> .

Figure 3: a example of prompt

tence from which entities are to be extracted. (4)222

response: This section contains the model’s gener-223

ated output, where each extracted entity is enclosed224

within <<< >>> identifiers.225

3.2 Pre-Training in Source Domain226

We first construct training data from the source227

Domain using the prompt designed in the previous228

subsection, enabling the model to perform NER229

tasks on the source Domain.230

L = −
T∑
t=1

log p(yt|x1:t−1) (1)231

where T is the length of the generated sequence,232

y is the target output, x1:t−1 is the input sequence233

before the current time step t, and p(yt|x1:t−1) is234

the probability of the model predicting yt given235

x1:t−1 as input.236

However, we aim for the model to focus more237

on generating better and more accurate responses238

rather than overly emphasizing the instruction and239

input. Therefore, the loss during training is com-240

puted solely based on the tokens in the model’s241

response.242

Lsource = −
T∑
t=r

log p(yt|xr:t−1) (2)243

where model’s response xres = {xr, xr+1, ...xT }.244

3.3 Supervised Fine-tuning with contrastive245

learning246

After pre-training on the Source domain, we per-247

form supervised fine-tuning (SFT) on the model248

using a small number of Target domain samples.249

Similar to the Source domain, we fine-tune the250

model with next-token prediction. However, unlike251

the Source domain, we introduce attention-based252

contrastive learning during SFT. By constructing253

positive and negative sample pairs, we optimize en-254

tity representations, improve internal attention, and255

enhance the model’s perception of entity bound- 256

aries. The process of constructing positive and 257

negative sample pairs is as follows: 258

For a given input xi and the entity category pi 259

to be extracted, qi,j represents the entity in xi. 260

qi,j ∈ Cpos
i , |Cpos

i | = J . Then, (pi, qi,j) forms 261

a positive sample pair, with a total of J pairs. For 262

each positive sample pair (pi, qi,j), we select 2 263

tokens ni,j,k near the left and right boundary of 264

entity qi,j , where ni,j,k ∈ Cneg
i,j ,

∣∣∣Cneg
i,j

∣∣∣ = 2, and 265

(pi, ni,j,k) forms a negative sample pair, with a to- 266

tal of 2 pairs. In this way, the model can implicitly 267

learn some information related to entity boundaries. 268

We apply contrastive learning to the model’s atten- 269

tion to improve internal attention, increasing focus 270

on positive samples and reducing focus on negative 271

samples. The contrastive loss function is defined 272

as follows: 273

Lcon =− 1

N

N∑
i=1

log(σ(

J∑
j

(eQ,type
i · eK,pos

i,j )

−
2∑
k

(eQ,type
i · eK,neg

i,j,k )))

(3)

274

We used cosine similarity to represent the distance 275

between positive and negative sample pairs. Specif- 276

ically, for a given input xi, e
Q,type
i represents the 277

embedding of the entity category pi output by the 278

Q projector in the model. eK,pos
i,j and eK,neg

i,j,k repre- 279

sent the embeddings of the positive sample qi,j and 280

the negative sample ni,j,k output by the K projector, 281

respectively. It is important to note that the output 282

embeddings from both the Q projector head and the 283

K projector head are averaged across all heads and 284

normalized at the 26th layer. Here, we choose the 285

output of the Q and K projector heads instead of 286

the hidden layer states to further improve internal 287

attention and achieve faster convergence and better 288

performance during training. 289

By combining the SFT loss and the contrastive 290

learning loss, we obtain the overall loss function 291

for fine-tuning the target domain. This allows the 292

model to adapt to the target domain while optimiz- 293

ing the representations’ distribution in the semantic 294

space. Here, λ is used to control the weight of the 295

contrastive learning loss, and in our experiments, 296

λ = 0.01. 297

Ltarget = Lsft + λLcon (4) 298
299

Lsft = Lsource (5) 300
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3.4 Direct Preference Optimization on Entity301

Boundary302

After the initial alignment of the model with the tar-303

get domain via SFT, we use preference data based304

on entity boundaries and error feedback to adjust305

the model’s generation preferences using RLHF.306

This enables the model to learn more accurate en-307

tity boundaries and correct existing errors. The308

process of constructing preference data is as fol-309

lows:310

(1)Preference Data Based on Entity Bound-311

aries For the data shown in Figure 3, we gener-312

ate incorrect entity responses by shifting one to-313

ken left or right from the correct entity boundaries.314

These incorrect entity responses are labeled as low-315

preference ‘rejected’ samples, while the original316

correct responses are labeled as high-preference317

‘chosen’ samples.318

chosen: The entities I extracted for you are <<<319

CTV Television Network >>>.320

rejected: The entities I extracted for you are <<<321

join the CTV Television Network when >>>.322

(2)Preference Data Based on Error Feedback323

We use the training data from the previous phase324

to test the SFT model that has undergone the first325

alignment. The misclassified entity extraction re-326

sults are then used to construct the preference data.327

Specifically, the original correct answers are la-328

beled as the ‘chosen’ data in the preference dataset,329

while the incorrect responses generated by the SFT330

model are labeled as the ‘rejected’ data.331

After constructing the preference data, in tra-332

ditional RLHF methods, we first need to train333

a reward model to evaluate and score the gen-334

erated responses on the preference data D =335 {
x(i), y

(i)
w , y

(i)
l

}N

i=1
, where y

(i)
w and y

(i)
l represent336

the preferred and non-preferred generations given337

input x(i), respectively. According to the Bradley-338

Terry (BT) model, the negative log-likelihood loss339

for the reward model is defined as:340

LR(rϕ,D)=−E(x,yw,yl)∼D [log σ(rϕ(x, yw)

−rϕ(x, yl))]
(6)341

Where σ is the logistic function, during initializa-342

tion, rϕ(x, y) is typically implemented by adding343

a linear layer on top of the SFT model πsft(y|x)344

from the previous stage to score the model’s genera-345

tions. After obtaining the trained reward model, the346

large language model is further optimized based on347

feedback from the reward model. This process is348

formulated as: 349

max
πθ

Ex∼D,y∼πθ(y|x) [rϕ(x, y)]−

βDKL [πθ(y | x) |∥ πref(y | x)]
(7) 350

where β is a parameter controlling the deviation 351

from the baseline reference policy model πref , 352

πθ(y|x) is the current language model, and both 353

piref and πθ(y|x) are initialized with the SFT 354

model πsft(y|x). This ensures that the model is op- 355

timized toward higher rewards, as scored by the re- 356

ward model while preventing the generation distri- 357

bution from deviating too far from the SFT model, 358

which could otherwise lead to unpredictable and 359

undesirable outputs. 360

To simplify the training process and avoid the 361

need for training a reward model, we use the Direct 362

Preference Optimization (DPO) method to perform 363

the model policy optimization. Based on the deriva- 364

tion from the Equation 7, we obtain the following: 365

max
π

Ex∼D,y∼π [r(x, y)]−βDKL [π(y|x)∥πref(y|x)] 366

367
= min

π
Ex∼DEy∼π(y|x)

log π(y|x)
1

Z(x)
πref(y|x) exp

(
1
β
r(x, y)

)
− logZ(x)]

(8) 368

where Z(x) is the partition function. We will 369

not elaborate on the derivation method here. For 370

a detailed derivation, please refer to the paper on 371

DPO (Rafailov et al., 2023). 372

Z(x) =
∑
y

πref(y|x) exp
(
1

β
r(x, y)

)
(9) 373

The explicit optimal solution π∗(y|x) for model 374
π(y|x) is: 375

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
r(x, y)

)
(10) 376

The form of the reward model r(x, y) can be de- 377

rived as follows: 378

r∗(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x) (11) 379

By substituting the reward model r(x, y) into the 380

loss function under the Bradley-Terry (BT) model 381

Equation 6 for optimization, the optimal solution 382

is directly obtained through the process of training 383

the reward model. 384

LR(rϕ,D)=−E(x,yw,yl)∼D

[
log σ

(
β log

π∗(y1|x)
πref(y1|x)

−β log
π∗(y2|x)
πref(y2|x)

)] (12) 385
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Datasets Domain #Sent #Labels
Few-NERD Mixed 188.2k 66
CoNLL-03 News 20.7k 5
GUM WiKi 3.5k 12
WNUT-17 Social 5.6k 7
OntoNotes Mixed 159.6k 19

Table 1: The statistics of each dataset.

The preference generation y
(i)
w corresponds to the386

‘chosen’ part of the preference data we construct,387

while the non-preferred generation y(i)l corresponds388

to the ‘rejected’ part.389

Finally, we incorporate a portion of the model’s390

SFT loss into the training process to prevent the391

model from deviating too much from the initial392

alignment results. α represents the weight of the393

SFT loss.394

L′
dpo = αLsft(π

∗(y|x)) + Ldpo (13)395

4 Experiments396

4.1 Datasets397

We selected two widely used few-shot named en-398

tity recognition benchmarks for evaluation: Few-399

NERD and CrossNER.400

Few-NERD: Few-NERD (Ding et al., 2021b)401

is a large-scale, fine-grained manually annotated402

NER dataset with 8 coarse-grained and 66 fine-403

grained entity categories. It provides two few-shot404

settings: Inter and Intra. In the Inter setting, the405

training, validation, and test sets share all coarse-406

grained categories but have disjoint fine-grained en-407

tity categories. In the Intra setting, entity categories408

are disjoint at both coarse-grained and fine-grained409

levels. Here, we use the episode data released by410

Ding et al. for experiments, defining the few-shot411

tasks as N-way K~2K-shot scenarios, where N-412

way indicates the number of entity categories in413

the task, and K~2K-shot denotes the sampling of414

K~2K training instances per entity category.415

CrossNER: CrossNER (Hou et al., 2020) con-416

sists of four datasets: CoNLL-2003 (Sang and417

De Meulder, 2003), GUM (Zeldes, 2017), WNUT-418

17 (Derczynski et al., 2017), and OntoNotes (Prad-419

han et al., 2013), coming from four distinct do-420

mains: News, Wiki, Social, and Mixed. We used421

the episode data constructed by Hou et al. (2020),422

selecting two domains for training, one for valida-423

tion, and one for testing.424

4.2 Baselines 425

For the baselines, we refer to previous works and 426

select several strong methods from both one-stage 427

and two-stage paradigms. 428

One-stage paradigms include ProtoBERT (Frit- 429

zler et al., 2019), Matching Network (Vinyals 430

et al., 2016), StructShot (Yang and Katiyar, 2020), 431

NNShot (Yang and Katiyar, 2020), CONTAINER 432

(Snigdha et al., 2022), LTapNet+CDT (Hou et al., 433

2020), Llama3-8b-base(only SFT in target domain), 434

and Llama3-8b(pre+sft). 435

Two-stage paradigms include ESD (Wang et al., 436

2022b), DecomMeta (Ma et al., 2022b), SpanProto 437

(Wang et al., 2022a), MSDP (Dong et al., 2023), 438

BANER (Guo et al., 2024). 439

4.3 Implementation Details 440

We chose Meta’s Llama3.1-8b (Dubey et al., 2024), 441

available on HuggingFace, as the initial language 442

model. For subsequent training, we employed the 443

LoRA method, fine-tuning only a subset of the 444

large language model’s parameters to reduce hard- 445

ware requirements. The LoRA rank was set to 8, 446

and the LoRA alpha was set to 16. During the SFT 447

phase, the parameter λ, controlling the contrastive 448

learning loss, was set to 0.01, while in the DPO 449

training phase, the parameter β was set to 0.1, and 450

the weight α for the SFT loss was set to 0.2. 451

We used Adam as the optimizer and applied dif- 452

ferent learning rates across training stages: a learn- 453

ing rate of 3e-4 for the source domain pre-training 454

and target domain SFT phases, and 5e-6 for the 455

DPO phase. The warm-up ratio was set to 0.1. 456

All experiments were conducted using a single 457

4090 GPU for both training and testing. 458

4.4 Main Result 459

Tables 2 and 3 present the main results comparing 460

our method with other baselines. We have the fol- 461

lowing observations: 1) Our proposed OBP-LLM 462

significantly outperforms previous methods by a 463

large margin on both the Few-NERD and Cross- 464

NER benchmarks. Compared to MSDP, it achieves 465

overall average improvements of 2.26% and 17.16% 466

on Few-NERD Inter and Few-NERD Intra, respec- 467

tively, and a 21.75% improvement on CrossNER, 468

demonstrating the effectiveness of our approach. 2) 469

Among previous methods, two-stage paradigms 470

consistently outperformed one-stage paradigms. 471

However, our method, which preserves the integrity 472

and coherence of the NER task within a one-stage 473
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Paradigms Models
Intra Inter

1∼2-shot 5∼10-shot
Avg.

1∼2-shot 5∼10-shot
Avg.

5 way 10 way 5way 10 way 5 way 10 way 5way 10 way

One-stage

ProtoBERT 23.45±0.92 19.76±0.59 41.93±0.55 34.61±0.59 29.94 44.44±0.11 39.09±0.87 58.80±1.42 53.97±0.38 49.08
NNShot 31.01±1.21 21.88±0.23 35.74±2.36 27.67±1.06 29.08 54.29±0.40 46.98±1.96 50.56±3.33 50.00±0.36 50.46
StructShot 35.92±0.69 25.38±0.84 38.83±1.72 26.39±2.59 31.63 57.33±0.53 49.46±0.53 57.16±2.09 49.49±1.77 53.34
CONTaiNER 40.43 33.84 53.70 47.49 43.87 55.95 48.35 61.83 57.12 55.81
Llama3-8b-base 59.08 55.44 60.38 67.75 60.66 59.13 55.68 75.24 73.43 65.87
Llama3-8b(pre+sft) 74.24 73.20 75.48 71.90 73.70 77.97 77.23 79.67 77.66 78.13
OBP-LLM 75.54±2.14 74.31±2.38 78.01±3.11 75.74±2.22 75.90 81.14±4.41 79.23±1.63 81.30±3.79 80.29±2.92 80.49

Two-stage

ESD 41.44±1.16 32.29±1.10 50.68±0.94 42.92±0.75 41.83 66.46±0.49 59.95±0.69 74.14±0.80 67.91±1.41 67.12
DecomMeta 52.04±0.44 43.50±0.59 63.23±0.45 56.84±0.14 53.9 68.77±0.24 63.26±0.40 71.62±0.16 68.32±0.10 67.99
SpanProto 54.49±0.39 45.39±0.72 65.89±0.82 59.37±0.47 56.29 73.36±0.18 66.26±0.33 75.19±0.77 70.39±0.63 71.3
MSDP 56.35±0.28 47.13±0.69 66.80±0.78 64.69±0.51 58.74 76.86±0.22 69.78±0.31 84.78±0.69 81.50±0.71 78.23
BANER 64.95±0.85 61.24±0.82 72.14±0.33 67.53±0.12 66.47 69.26±0.94 67.43±0.35 76.53±0.51 72.24±0.22 71.37

Table 2: F1 scores on Few-NERD for both inter and intra settings.

Paradigms Models 1-shot 5-shot
CONLL-03 GUM WNUT-17 OntoNotes Avg. CONLL-03 GUM WNUT-17 OntoNotes Avg.

One-stage

Matching Network 19.50±0.35 4.73±0.16 17.23±2.75 15.06±1.61 14.13 19.85±0.74 5.58±0.23 6.61±1.75 8.08±0.47 10.03
ProtoBERT 32.49±2.01 3.89±0.24 10.68±1.40 6.67±0.46 13.43 50.06±1.57 9.54±0.44 17.26±2.65 13.59±1.61 22.61
L-TapNet+CDT 44.30±3.15 12.04±0.65 20.80±1.06 15.17±1.25 23.08 45.35±2.67 11.65±2.34 23.30±2.80 20.95±2.81 25.31
Llama3-8b-base 50.14 36.29 40.30 39.07 41.45 60.86 42.28 51.09 54.17 52.10
Llama3-8b(pre+sft) 55.72 38.15 62.74 53.07 52.42 63.18 49.63 62.17 57.65 58.16
OBP-LLM 59.55±3.32 44.63±4.78 65.43±3.86 55.31±3.35 56.23 65.67±3.08 51.82±4.41 64.66±2.31 59.81±2.25 60.49

Two-stage
DecomMeta 46.09±0.44 17.54±0.98 25.14±0.24 34.13±0.92 30.73 58.18±0.87 31.36±0.91 31.02±1.28 45.55±0.90 41.53
SpanProto 47.70±0.49 19.92±0.53 28.31±0.61 36.41±0.73 33.09 61.88±0.83 35.12±0.88 33.94±0.50 48.21±0.89 44.79
MSDP 49.14±0.52 21.88±0.29 30.10±0.56 38.05±0.88 34.79 63.98±0.80 36.53±0.81 35.61±0.72 49.99±0.95 46.53

Table 3: F1 scores under 1-shot and 5-shot setting on CrossNER.

Methods Few-NERD CrossNER
Intra Inter 1-shot 5-shot

OBP-LLM 75.90 80.49 56.23 60.49
w/o contrastive learning 74.56 79.07 53.83 59.23
w/o dpo 75.04 79.56 54.82 59.42

Table 4: The ablation study results (average F1 score)
for Few-NERD and CrossNER.

paradigm, is the first to surpass two-stage methods474

in all aspects. 3) The Intra scenario in Few-NERD475

is more challenging as entity categories in the train-476

ing, validation, and test sets are disjoint not only477

at the fine-grained level but also at the coarse level.478

Similarly, CrossNER is difficult due to both differ-479

ent entity categories and datasets from diverse do-480

mains. Previous methods have significant room for481

improvement in these tasks. Our OBP-LLM shows482

remarkable improvements in both Few-NERD and483

CrossNER, demonstrating its strong generalization484

ability in few-shot learning, especially in cross-485

domain scenarios.486

4.5 Ablation Study487

We conducted ablation studies on the main com-488

ponents of OBP-LLM, focusing on 1) contrastive489

learning during the SFT phase and 2) Direct Prefer-490

ence Optimization (DPO) based on entity boundary491

information. The results are shown in Table 4492

1) When either of these components is removed,493

the overall average performance of the model de-494

clines, indicating that both components are neces-495
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Figure 4: The comparison of attention heatmaps, where
(a) represents the Llama3.1-8b model with only SFT
training, and (b) represents the model with contrastive
learning added during the SFT phase.

sary and highly effective. 496

2) When contrastive learning is removed, the av- 497

erage F1 score drops by 1.26% to 2.4%, with a more 498

pronounced decline in the cross-dataset task Cross- 499

NER. This demonstrates that contrastive learning 500

effectively optimizes the model for cross-domain 501

tasks. 502

3) When DPO is removed, the average F1 score 503

decreases by approximately 1% overall. Compared 504

to contrastive learning, the drop in F1 score is 505

smaller, as DPO primarily refines the model’s judg- 506

ment of entity boundaries while maintaining the ini- 507

tial alignment results of the large language model. 508

4.6 Effectiveness of Contrastive learning 509

In the SFT phase, we introduce contrastive learn- 510

ing to optimize the distribution of entity represen- 511

tations in the model’s semantic space and enhance 512

its attention mechanism, improving performance 513
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Figure 5: t-SNE visualization of entity representations
on CrossNER for the base model and the base model
with contrastive learning, with each color representing
a different entity category.

in entity recognition tasks.514

To evaluate this, we perform SFT on the base515

Llama3.1-8b model, using it as the baseline. We516

randomly select some data to test the impact of517

contrastive learning on attention. As shown in Fig-518

ure 4, for the standard output “nahed dahlan”, the519

baseline model attends to irrelevant tokens, result-520

ing in redundant outputs, while contrastive learning521

helps focus attention on correct entity tokens.522

Additionally, we visualized the distribution of523

entity representations in the semantic space using524

t-SNE, as shown in Figure 5. Compared to the base525

model, the model trained with contrastive learning526

shows a significantly more compact distribution of527

entities within the same category. However, the528

improvement in the boundary distinction between529

different categories of entities was relatively less530

pronounced. This is because, when constructing531

negative samples for contrastive learning, to avoid532

extreme imbalance in the number of positive and533

negative samples, we selected tokens near the enti-534

ties rather than all tokens outside the correct enti-535

ties, many of which are non-entity tokens.536

Overall, the results demonstrate that the con-537

trastive learning we introduced effectively im-538

proves entity semantic representations and en-539

hances model performance in entity recognition540

tasks.541

4.7 Effectiveness of Direct Preference542

Optimization543

To validate the effectiveness of DPO based on en-544

tity boundaries and error feedback, which enhances545

boundary learning and error correction post-SFT546

alignment, we randomly sampled 500 instances547

from the CrossNER task for evaluation. Represen-548

tative cases are shown in Figure 6. The baseline549

model, trained only with SFT, often produces re-550

dundant words at entity boundaries, which may551

Input the hood opening reminds me of a classic ���� ����������.

Output saab 900

Baseline a classic saab 900 ×

Con-DpoNER saab 900 √

Input are the legality of votes cast by ��� ������������� checked 
after they have been cast.

Output non citizens

Baseline the legality of votes ×

Con-DpoNER non citizens √

Figure 6: A case of CrossNER.The correct and incorrect
entities are highlighted in red and green, respectively.

Dataset Boundary Error Rate
few-NERD -10.3%
Cross-NER -11.69%

Table 5: Quantifying boundary error reduction post-
DPO optimization versus SFT-only.

not affect semantics but indicate boundary impreci- 552

sion. After DPO, the model generates more precise 553

boundaries and corrects earlier errors. 554

We also tested boundary errors on Few-NERD 555

and CrossNER datasets. As shown in Table 5, DPO 556

optimization reduced boundary errors by 10.3% and 557

11.69% compared to SFT-only. 558

5 Conclusion 559

We propose OBP-LLM, a method for optimizing 560

entity boundary perception in large language mod- 561

els. By introducing attention-based contrastive 562

learning during the SFT phase, we enhance the 563

distribution of entity representations and improve 564

attention, enabling the model to focus on the cor- 565

rect entity tokens. Additionally, we apply RLHF 566

for secondary alignment optimization based on en- 567

tity boundary information and error feedback, sim- 568

plifying the training process with DPO. Extensive 569

experiments demonstrate that our approach, requir- 570

ing only partial parameter training, outperforms 571

previous SOTA baselines, especially in more chal- 572

lenging tasks. 573

Limitations 574

As mentioned in Section 4.6, due to the construc- 575

tion method, our model shows limited improve- 576

ment in distinguishing boundaries between differ- 577

ent entity categories in contrastive learning. We 578

believe there is significant room for optimization 579

in the negative sample construction method, which 580

will be a focus of our future research. 581
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