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Abstract

Large Language Models (LLMs) have benefited enormously from scaling, yet these gains
are bounded by five fundamental limitations: (1) hallucination, (2) context compression,
(3) reasoning degradation, (4) retrieval fragility, and (5) multimodal misalignment. While
existing surveys describe these phenomena empirically, they lack a rigorous theoretical
synthesis connecting them to the foundational limits of computation, information, and
learning. This work closes that gap by presenting a unified, proof-informed framework
that formalizes the innate theoretical ceilings of LLM scaling. First, computability and
uncomputability imply an irreducible residue of error: for any computably enumerable model
family, diagonalization guarantees inputs on which some model must fail, and undecidable
queries (e.g., halting-style tasks) induce infinite failure sets for all computable predictors.
Second, information-theoretic and statistical constraints bound attainable accuracy even on
decidable tasks, finite description length enforces compression error, and long-tail factual
knowledge requires prohibitive sample complexity. Third, geometric and computational
effects compress long contexts far below their nominal size due to positional under-training,
encoding attenuation, and softmax crowding. We further show how likelihood-based training
favors pattern completion over inference, how retrieval under token limits suffers from
semantic drift and coupling noise, and how multimodal scaling inherits shallow cross-modal
alignment. Across sections, we pair theorems and empirical evidence to outline where scaling
helps, where it saturates, and where it cannot progress, providing both theoretical foundations
and practical mitigation paths like bounded-oracle retrieval, positional curricula, and sparse
or hierarchical attention.

1 Introduction

The past half-decade has witnessed an unprecedented surge in the scale and influence of Large Language
Models (LLMs). Parameter counts, training datasets, and compute budgets have all expanded by orders of
magnitude, leading to models whose emergent capabilities increasingly resemble general reasoning systems.
For instance, OpenAI’s GPT series has grown from 117 million parameters in GPT-1 (Radford et al., 2018)
to over a trillion in GPT-4 (OpenAI Achiam et al., 2023): a thousand-fold rise in representational capacity.
Empirical scaling laws suggest that training loss and downstream performance improve predictably with
model size, dataset volume, and compute (Hoffmann et al., 2022a). The transition from GPT-3.5 to GPT-4,
for example, achieved a 16-point gain on Measuring Massive Multitask Language Understanding (MMLU)
and a 35-point leap on GSM-8K (OpenAI Achiam et al., 2023). These successes have inspired the prevailing
belief that scale itself can indefinitely extend intelligence, reducing every failure mode to an engineering
obstacle solvable by more data, parameters, or alignment.

Yet as models approach trillion-parameter regimes, the very process that powers their ascent also exposes
fundamental limits that scale cannot surmount. Larger models not only perform better but also fail
more confidently: they hallucinate, misreason, forget, and misalign in increasingly systematic ways. These
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Figure 1: Five interacting fronts that bound LLM reliability. Long context window: practical use is
curtailed by training on finite windows, inputs that exceed the window, positional-encoding overlap, and
computational constraints. Reasoning: adherence to rules/logic, exploitation of reasoning patterns, and
cross-step consistency remain brittle. Hallucination: prompt and sentence-level contradictions—amplified
by language complexity, induce factual errors. Retrieval quality: database and evidence selection are
filtered by retrieval metrics, yet degrade under query ambiguity and attention distraction during integration.
Multimodality: cross-modal inputs introduce architectural colonization effects, epistemic pitfalls, and
scaling/deployment challenges. Arrows indicate information flow and couplings among factors analyzed in
subsequent sections.

pathologies persist even under massive data, suggesting deeper computational and statistical origins. In
this paper, we argue that such behaviors are not transient artifacts of optimization or data curation but
manifestations of intrinsic theoretical barriers, constraints imposed by computability, information theory, and
learnability itself. We identify five main limitations that capture distinct failure modes that persist with
scaling:

(1) Hallucination. LLMs often generate fluent yet fabricated content. Beyond data or alignment flaws (Dziri
et al., 2023; Banerjee et al., 2025), we prove hallucination is inevitable: diagonalization over enumerable
model classes (Tong et al., 2024b) ensures at least one failure input for every model; uncomputability of
problems like the Halting task (Turing et al., 1936) yields infinite failure sets; and finite information capacity
and compression bounds (Sahoo et al., 2024) force distortion on complex or rare facts. Thus, no computable
LLM can be universally correct over open-ended queries.

2



Under review as submission to TMLR

(2) Context compression. Even with 128K-token windows (Grattafiori et al., 2024), positional under-
training, encoding saturation, and softmax crowding (Xiong et al., 2023; Bai et al., 2024a) jointly limit
effective context utilization far below its nominal capacity. Gradient decay at rare positions, vanishing
sinusoidal/RoPE overlap, and logarithmic score-margin growth show that effective context scales sub-linearly
with nominal length.

(3) Reasoning degradation. Despite surface fluency, LLMs favor correlation completion over true
inference. Likelihood training rewards local coherence, not logical entailment, producing syntactic rather
than semantic generalization (Wei et al., 2022). Token-level objectives and lack of explicit reasoning loss
drive this systematic “reasoning collapse” out of distribution.

(4) Retrieval fragility. Retrieval-augmented models (Lewis et al., 2020a; Borgeaud et al., 2022) inherit
theoretical fragilities: bounded token budgets induce semantic drift, ranking noise, and weak coupling between
retrieved and generated text. Information-theoretically, as retrieval breadth increases, mutual information
with the target decays, imposing an upper limit on factual grounding.

(5) Multimodal misalignment. Joint vision–language models suffer cross-modal imbalance, language
channels dominate gradients, while visual features under-adapt. Differing modality entropies and misaligned
latent manifolds cause perceptual illusions and symbolic confusion, showing that multimodal scaling amplifies
rather than removes single-modality brittleness.

Across these axes, we uncover a unifying principle: LLM failures scale with capability because they
stem from the very theoretical roots that enable language modeling itself. Each failure mode reflects a
projection of the same underlying triad: computational undecidability, statistical sample insufficiency, and
finite information capacity. Despite extensive empirical documentation, prior surveys (Matarazzo & Torlone,
2025; Kostikova et al., 2025) remain descriptive and lack a formal synthesis connecting these observations
to the mathematical foundations of computation and learning. We close this gap through a proof-informed
framework that derives a hierarchy of impossibility and saturation results, jointly characterizing when scaling
improves, when it plateaus, and when it provably cannot advance. Specifically, we show that no enumerable
model class can be universally hallucination-free, as dictated by computability and diagonalization limits. We
also demonstrate that finite description length and sample complexity enforce an irreducible generalization
error, reflecting the information-theoretic bounds on learnability. Finally, we also show that context, reasoning,
retrieval, and multimodal grounding each follow identifiable degradation laws determined by architectural
constraints and data entropy.

Together, these results reframe scaling not as an unbounded engineering problem but as a process bounded
by intrinsic computational and epistemic constraints. The remainder of this paper systematically
formalizes each limitation, and each section is designed to be self-contained so that readers may engage
selectively:

• Section 2 proves the inevitability of hallucination via a three-tier hierarchy: diagonalization guarantees
at least one failure per model, Cantor-pairing–based construction extends this to infinitely many failures
per model, and reduction to the Halting Problem shows that undecidable queries force infinite error sets
for all computable predictors. Statistical and information-theoretic bounds then quantify the residual
hallucination risk even on decidable, learnable tasks.

• Section 3 derives three complementary laws governing effective context length: positional undertraining
from left-skewed training distributions (Lemma 2), sinusoidal and RoPE encoding attenuation at long
ranges (Lemma 3), and softmax crowding that requires O(lnN) score margins to maintain attention on
relevant tokens (Lemma 4). Together these show that effective context scales sub-linearly with nominal
window size.

• Section 4 analyzes why likelihood-based training produces fluent but logically brittle outputs, formal-
izes four failure modes (objective mismatch, spurious correlations, search pathology, metric fragility),
and presents a unified objective augmenting likelihood with verification and cost regularization. Prac-
tical instantiations, i.e., solver-based, prompt-based, and fine-tuning methods, are reviewed as concrete
operationalizations.
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• Section 5 dissects how bounded token budgets, semantic drift, and weak coupling between retrieved and
generated text impose information-theoretic upper bounds on the factual grounding achievable through
retrieval-augmented generation.

• Section 6 shows how cross-modal entropy imbalance and misaligned latent manifolds cause language
channels to dominate gradients, producing perceptual illusions and symbolic confusion that scaling amplifies
rather than resolves.

• Section 7 examines how current evaluation practices interact with the theoretical limits established in
earlier sections, highlighting where benchmarks measure genuine capability versus where they obscure
fundamental ceilings.

• Section 8 synthesizes these findings to delineate where further scaling in parameters, data, or modalities
yields diminishing or zero returns, and outlines mitigation paths that operate within the identified
constraints.

• Section 9 summarizes the key results and identifies open problems for future work.

2 What Makes LLMs Hallucinate?

To ground the subsequent analysis, we first provide a precise definition of hallucination adopted throughout
this work.
Definition 1 (Hallucination). Let h : Σ∗ → Y be a language model mapping input strings to outputs. We
distinguish three types of hallucination:

1. Factual hallucination. The model output contradicts an external ground-truth function f : Σ∗ → Y,
i.e., h(x) ̸= f(x) for some input x ∈ Σ∗.

2. Faithfulness hallucination. Given a context C provided at inference time, the model output contradicts
or is unsupported by C, i.e., h(x | C) ̸|= C.

3. Intrinsic hallucination. The model produces outputs that are internally inconsistent, e.g., h(x) ̸= h(x′)
for semantically equivalent inputs x ≃ x′, or the model contradicts its own prior statements within a
single generation.

The theoretical impossibility results in Section 2 concern factual hallucination: they construct ground-truth
functions f against which every computable model must err. Data-induced hallucinations (Section 2.2) and
evaluation misalignment (Section 2.3) exacerbate all three types, while the creativity-factuality trade-off
(Section 2.4) primarily drives factual and faithfulness hallucinations. We note this distinction explicitly
because much of the empirical literature conflates these categories, which obscures where theoretical limits
apply.

Hallucination in large language models arises from four interconnected sources (Figure 2): (1) Fundamental
limits from computability theory, uncomputability, and statistical learning that prove hallucination is mathe-
matically inevitable (Xu et al., 2024e; Banerjee et al., 2025); (2) data-induced hallucinations from incomplete
coverage, noise, long-tail distributions, temporal decay, and conflicting information in training corpora (Huang
et al., 2025a; Wang et al., 2023); (3) evaluation misalignment where benchmarks reward confident fabrication
over calibrated uncertainty (Xu et al., 2024a; Kirichenko et al., 2025); and (4) creativity-factuality trade-offs
where mechanisms enabling creative generation necessarily increase hallucination risk (Nguyen et al., 2024;
Peeperkorn et al., 2024). Together, these establish hallucination not as a transient engineering problem but
as an intrinsic property of probabilistic language models.

2.1 Fundamental limits

Hallucination in LLMs is not merely an engineering artifact of insufficient data or suboptimal training; rather,
it reflects intrinsic computational and statistical limits that no (present) architecture, scale, or optimization
can overcome (Xu et al., 2024e; Banerjee et al., 2025). We formalize these intrinsic boundaries through three
complementary lenses: computability theory, which shows that no enumerable class of models can correctly
answer all computable queries (Peng et al., 2024; Karpowicz, 2025); uncomputability, which demonstrates that
certain problems lie beyond the reach of any algorithm (Melo et al., 2025); and statistical learnability, which
reveals that even learnable functions require sample complexity that often exceeds practical limits (Asher et al.,
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Figure 2: Taxonomy of hallucination sources in LLMs. (Fundamental limits.) Diagonalization (no
enumerable model set answers all queries), uncomputability (undecidable problems force infinite failures),
and statistical constraints (finite models cannot compress infinite information). (Data failures.) Incomplete
coverage, noise (2–3% error rates), long-tail distributions, temporal decay (>50% staleness after 6 months),
conflicts, and exposure bias. (Evaluation misalignment.) Binary grading equates uncertainty with
wrong answers, incentivizing fabrication across benchmarks {MMLU-Pro, Graduate-Level Google-Proof
Q&A (GPQA), MATH}, causing reinforcement learning from human feedback (RLHF) reward hacking and
overconfidence. (Creativity-factuality trade-off.) Low temperature yields accurate but repetitive outputs;
high temperature enables diversity but increases errors.

2023; Su, 2025; Khakhar et al., 2023; Goldblum et al., 2023). These results together establish hallucination as
an inevitable feature of any learning system operating over open-ended domains (Huang et al., 2025a; Dziri
et al., 2023).

Diagonalization boundary. We begin with the most fundamental limit: the impossibility of perfect
learning for any enumerable collection of models. Modern LLMs, viewed as computable functions mapping
input strings to output distributions, belong to computably enumerable sets (e.g., all polynomial-time Turing
machines). A classical diagonalization argument originating from Cantor’s proof of uncountable infinities and
adapted to learning theory reveals that any such enumerable collection must hallucinate on some inputs. We
formalize this as follows.

Theorem 1 (Inevitability for enumerable LLMs). For any computably enumerable set of LLMs {h0, h1, h2, . . .},
where each hi : Σ∗ → Y maps input strings to outputs, there exists a computable ground-truth function
f : Σ∗ → Y such that every model state h[j]

i (at training step j) hallucinates on at least one input.

Proof. Since both the set of all computable LLMs and the set of all input strings over finite alphabet Σ are
countable, we can enumerate them: models {h0, h1, h2, . . .} and inputs {s0, s1, s2, . . .}. This enumeration is
computable.
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Construct the ground-truth function f : Σ∗ → Y by diagonalization as follows. For each index i ∈ N:

f(si) :=
{
yalt if hi(si) = ydefault

ydefault otherwise
(1)

where ydefault, yalt ∈ Y are two distinct outputs. For inputs sj with j ̸= i, define f(sj) arbitrarily (this choice
does not affect the argument for model hi).

By construction, f(si) ̸= hi(si) for all i. Since f is defined by case analysis on computable functions
(enumeration and hi), f itself is computable. Each model hi produces incorrect output on input si, hence
hallucinates. This holds for any training state h[j]

i since the enumeration includes all states of all models. This
proves that no matter how large or how well-trained an LLM becomes, there will always exist specific queries
on which it hallucinates. The adversarial input is constructible for every model architecture and training
regime, indicating that hallucination-free LLMs are mathematically impossible. This argument presumes the
existence of a ground-truth function that can be defined outside the enumerable set of models, a necessary
premise for this proof structure.

This establishes that at least one adversarial input exists for each model. However, practically, the situation
is more broad: hallucination is not an isolated phenomenon but occurs on infinitely many inputs.
Theorem 2 (Infinite hallucinations). For any computably enumerable set of LLMs {h0, h1, . . .}, there exists
a computable ground-truth function f ′ such that each model hi hallucinates on infinitely many inputs.

Proof. Let π : N → N × N be a computable bijection (for example, the inverse of the Cantor pairing function
⟨a, b⟩ = (a+b)(a+b+1)

2 + a). For each k ∈ N, write π(k) = (ak, bk) and set ik := ak.

Construct f ′ : Σ∗ → Y as follows. For each input sk where k ∈ N, define:

f ′(sk) := flip(hik
(sk)) (2)

where flip(·) returns a different output from its argument (e.g., if output space Y = {y0, y1}, then flip(y0) = y1
and flip(y1) = y0).

Since π is a bijection onto N × N, every pair (i, b) is the image of exactly one k. Therefore, for each model
index i, the set {k ∈ N : ik = i} = {π−1(i, b) : b ∈ N} is infinite (containing one element for each b ∈ N). For
each such k, we have f ′(sk) = flip(hi(sk)) ̸= hi(sk) by definition of flip. Since the Cantor pairing, its inverse,
and the flip function are all computable, f ′ is computable. Therefore, each model hi hallucinates on infinitely
many inputs. The situation is worse than isolated failures since each model fails on infinitely many inputs,
not just rare edge cases. This establishes hallucination as pervasive rather than exceptional.

Note that these results are independent of architecture (transformers, RNNs, state-space models), training
procedure (supervised, reinforcement learning), or prompt engineering. Even using another LLM to detect
and correct hallucinations cannot eliminate them, as the correcting model is itself subject to Theorem 1.

Uncomputability boundary. Beyond enumeration-based limitations, certain problems are undecidable:
no algorithm can solve them for all inputs, regardless of computational resources. The canonical example is
the Halting Problem, which asks whether a given computer program will finish running or continue to run
forever on a given input. This was proven undecidable by Turing in 1936 (Turing et al., 1936). When an
LLM encounters such queries, it faces an impossible dilemma: refusing to answer reveals incompleteness,
while attempting an answer inevitably leads to hallucination (Xu et al., 2024e). We formalize this inherent
limitation.
Theorem 3 (Undecidable problems force hallucination). Let Π denote the set of all program-input pairs,
and let fhalt : Π → {0, 1} be the characteristic function of the Halting Problem (outputting 1 if the program
halts, 0 otherwise). For any computable LLM h : Π → {0, 1} attempting to approximate fhalt, the set
Sh := {π ∈ Π : h(π) ̸= fhalt(π)} of inputs on which h hallucinates is infinite.
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Proof. Assume for contradiction that Sh is finite, i.e., |Sh| = k < ∞. Then there exists a finite exception
set E := {(π1, b1), . . . , (πk, bk)} where bi = fhalt(πi) are the correct answers, and for all π /∈ {π1, . . . , πk}, we
have h(π) = fhalt(π).

Construct a Turing machine M ′ that decides the Halting Problem:

1. On input π, check if π ∈ {π1, . . . , πk} (finite check).
2. If yes, output the precomputed correct answer bi from table E.
3. If no, run h(π) and output its result.

By assumption, M ′ correctly decides fhalt(π) for all π ∈ Π. Since h is computable and the table lookup is
computable, M ′ is a computable decider for the Halting Problem. This contradicts the undecidability of the
Halting Problem (Turing et al., 1936). Therefore, Sh must be infinite.

Theorem 3 shows that undecidability creates an insurmountable barrier: no matter how sophisticated an
LLM becomes, infinite failures are guaranteed on such problems. Moreover, variants of undecidable problems
permeate practical applications: code analysis tasks (“Will this loop terminate?”), logical consistency checking
(“Does this axiom set entail a contradiction?”), and self-referential queries (“Generate a sentence you cannot
generate”) all inherit this fundamental impossibility (Xu et al., 2024e). These are not contrived examples but
questions users naturally pose to LLMs, making uncomputability-induced hallucination practically relevant.
Yet even when we restrict attention to computable and decidable problems, statistical barriers remain.

Information-theoretic & statistical limits. Even for functions that are both computable and learnable
in principle, resource constraints impose hallucination risk. A model with finite descriptive complexity cannot
faithfully reproduce arbitrary functions of unbounded complexity without compression-induced distortion.
This information-theoretic bottleneck complements the computational barriers above.
Lemma 1 (Kolmogorov complexity bottleneck). Let h be an LLM with Kolmogorov complexity K(h) = c < ∞.
For any τ > 0, there exists a ground-truth function f such that h exhibits hallucination with error exceeding
τ on some input.

Proof. Let Fn := {f : Σ≤n → Y} be the set of all functions on inputs of length at most n. The cardinality
|Fn| = |Y||Σ|n+1 grows exponentially. The number of functions with Kolmogorov complexity at most c is
bounded by O(2c), since each can be described by a program of length at most c.

For sufficiently large n, we have |Fn| ≫ 2c. Thus, there exist functions f ∈ Fn with K(f) > c = K(h).
For such f , the model h cannot encode f exactly; by the pigeonhole principle, there must exist inputs
where h’s output differs from f ’s output. The fraction of functions with K(f) > c approaches 1 as n → ∞,
making hallucination on incompressible functions inevitable. Specifically, if h attempts to approximate
a random function f with K(f) ≫ K(h), the expected error can be made arbitrarily large by choosing
sufficiently complex f , exceeding any threshold τ . A model with finite parameters cannot perfectly memorize
all facts in an unbounded knowledge domain. Compression is mandatory, and compression introduces
errors—particularly on incompressible (random or arbitrary) facts like specific dates, numerical constants, or
rare entity attributes.

Lemma 1 captures the intuition that finite-capacity models must compress, and compression introduces
errors on incompressible data. To quantify this limitation in a learning-theoretic framework, we turn to
probably approximately correct (PAC) learning, which formalizes sample complexity. Let Rhal(h) denote the
hallucination risk, i.e., the probability that h produces a factually incorrect output on a random query drawn
from distribution D. The Vapnik-Chervonenkis (VC) dimension is a measure of the complexity or capacity
of a class of functions, which reflects its ability to fit diverse patterns. Standard VC-dimension arguments
provide generalization bounds:

Rhal(h) ≤ R̂hal(h) + O

(√
d log(n/d) + log(1/δ)

n

)
, (3)
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where R̂hal(h) is the empirical hallucination rate on n training samples, d is the VC dimension of the
hypothesis class, and the bound holds with probability at least 1 − δ (Sahoo et al., 2024). For high-capacity
models (large d) or distributions with long tails (rare facts appearing in ≪ n examples), the generalization
term remains large even with low training error.

This provides an upper bound on risk given sufficient samples, but how many samples are required to achieve
low hallucination? For arbitrary facts, say, information with no compressible structure, the answer is
prohibitively large.
Theorem 4 (Sample complexity for arbitrary facts). Consider a distribution over m independent binary
facts, each with a correct answer chosen uniformly at random and independently. To learn a classifier that
achieves hallucination probability at most ϵ across all m facts simultaneously, with confidence at least 1 − δ,
requires

n = Ω
(m
ϵ2

log m
δ

)
(4)

training examples.

Proof. Each of the m facts defines a binary classification problem. Since answers are chosen uniformly
and independently, there is no compressible pattern; each fact must be memorized independently. The VC
dimension of the hypothesis class capable of representing all m independent facts is at least m (the class can
shatter m points).

By the VC inequality, to achieve error at most ϵ on each fact, we need approximately O(d/ϵ2) samples where
d is the VC dimension. With d = m and applying a union bound over m facts to achieve simultaneous
correctness with confidence 1 − δ, we obtain:

n = Ω
(
m

ϵ2
·
(

logm+ log 1
δ

))
= Ω

(m
ϵ2

· log m
δ

)
. (5)

For large m (e.g., millions of rare entities, dates, or numerical facts), this bound becomes prohibitive, exceeding
the size of any feasible training corpus.

Theorem 4 can essentially be translated as: when knowledge lacks structure (e.g., birthdates of millions
of individuals, precise numerical constants, arbitrary historical events), sample requirements scale linearly
with the number of facts. Real-world corpora, while vast, are finite and contain each rare fact only sparsely,
making hallucination on long-tail queries much more statistically likely (Su, 2025).

The PAC framework can be refined further through PAC-Bayesian bounds, which incorporate prior knowledge.
Letting P be a prior distribution over models and Q a posterior (concentrated near the trained model), we
obtain:

Eh∼Q[Rhal(h)] ≤ Eh∼Q[R̂hal(h)] +
√

KL(Q∥P ) + log(2
√
n/δ)

2n . (6)

The Kullback-Leibler (KL) divergence term KL(Q∥P ) penalizes models that deviate significantly from the
prior, capturing a complexity-accuracy tradeoff. While fine-tuning on high-quality factual data can reduce
R̂hal and tighten the bound, the sample complexity constraint remains: complete elimination of hallucination
over open-ended queries with arbitrary facts is infeasible without exponential data, i.e., a requirement no
corpus can satisfy.

Combining the aforementioned results, hallucination emerges from a rigorous three-tier hierarchy, each layer
imposing its own constraints:

1. Any enumerable set of models fails on adversarially constructed queries (Theorems 1 and 2), ensuring
that no finite or countable collection of LLMs can be universally correct.

2. Undecidable problems (such as the Halting Problem) force infinite-failure sets regardless of model capacity
or training data (Theorem 3), making hallucination unavoidable on natural problem classes.

3. Finite model capacity cannot compress infinite-complexity functions without distortion (Lemma 1), and
sample complexity for arbitrary facts scales prohibitively (Theorem 4), rendering exhaustive memorization
impractical.
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Mitigation strategies, including retrieval-augmented generation (oracle access), continual learning (adaptive
capacity expansion), and constraint-based decoding can reduce hallucination in specific domains but cannot
eliminate it universally (Béchard & Ayala, 2024). The takeaway is that: hallucination is an intrinsic property
of learning systems operating over unbounded, open-ended query spaces, and any deployment of LLMs must
account for this irreducible uncertainty.

Having established the inevitability of hallucination from first principles, we now turn to mechanisms that
exacerbate this phenomenon in practice.

2.2 Data-induced hallucinations

While the preceding analysis establishes that hallucination is theoretically inevitable, training data exacerbates
this through systematic imperfections. Even if we could construct an arbitrarily large model with infinite
capacity, the training corpus itself introduces hallucination pathways that compound the irreducible baseline.
We examine how data incompleteness, quality degradation, distributional skew, temporal decay, and internal
conflicts create fertile ground for factual errors that persist even in well-trained models.

Incompleteness. No training corpus, regardless of size, can encode all knowledge. The set of facts about
the world grows continuously, while training datasets represent finite snapshots. Even static domains suffer
from coverage gaps; i.e., rare entities, niche topics, and low-resource languages receive sparse representation,
forcing models to interpolate or guess when queried about underrepresented content (Onoe et al., 2022;
Mousavi et al., 2024; Cheng et al., 2024).

Formally, let Kworld denote the set of all factual propositions and Ktrain ⊂ Kworld the subset present in the
training data. The knowledge gap Kworld \ Ktrain is necessarily non-empty and, in practice, vast. Define the
coverage ratio as:

ρcov := |Ktrain|
|Kworld|

∈ [0, 1], (7)

which, for any finite corpus and unbounded knowledge domain, satisfies ρcov → 0 as |Kworld| → ∞. Queries
targeting the knowledge gap force the model to extrapolate from seen patterns to unseen facts, a process
prone to plausible-sounding fabrications (Wang et al., 2023). Further, let q ∈ Kworld \ Ktrain be a query about
missing knowledge. The model generates an answer by maximizing:

ŷ = arg max
y∈Y

pθ(y | q,Ktrain), (8)

where pθ is the learned distribution. Since q /∈ Ktrain, the model relies on spurious correlations or superficial
pattern matching, resulting in a high hallucination probability:

P[ŷ ̸= y∗ | q /∈ Ktrain] ≫ P[ŷ ̸= y∗ | q ∈ Ktrain], (9)

where y∗ is the true answer. Note that this is quite distinct from the theoretical limits discussed earlier: even
for computable, decidable facts, absence from training data makes hallucination empirically likely.

Noise, errors, and misinformation. Training corpora are typically scraped from the internet or aggregated
from diverse sources and naturally contain substantial noise, factual errors, and deliberate misinformation (Sa-
hoo et al., 2024). Web text includes unverified claims, outdated information, satirical content misinterpreted
as factual, and adversarial misinformation. When LLMs ingest such data, they learn both correct and
incorrect associations with no inherent process to distinguish truth from falsehood during pretraining.

Let Dtrain = {(xi, yi)}n
i=1 be the training dataset, and let η ∈ [0, 1] denote the noise rate, i.e., the fraction of

examples with incorrect labels or factual errors. For a fixed error tolerance ϵ > 0, the expected hallucination
rate under noisy training satisfies:

E[Rhal(h)] ≥ η ·

(
1 −O

(√
d

n

))
, (10)

9



Under review as submission to TMLR

Popular

Tail
Steep
drop

(a)

6 months

(b)

Figure 3: Empirical evidence of data-induced hallucinations. (a) Model accuracy exhibits a steep
degradation for rare entities, dropping from >95% for highly popular entities (100k+ Wikipedia views/day)
to <40% for tail entities (<100 views/day). (b) Information validity decays over time since the training
cutoff. While static facts remain valid indefinitely and demographics change slowly, rapidly evolving domains
cross the 50% validity threshold within 6 months, causing temporally induced hallucinations as models lack
explicit temporal reasoning and treat all training data as contemporaneous.

where d is model capacity and n is dataset size.1 This lower bound implies that even with infinite data
(n → ∞), a non-zero noise rate η > 0 imposes a floor on hallucination risk. Studies quantifying this effect
show that common web scrapes contain 2-3% demonstrably false factual claims (η ≈ 0.02-0.03), conspiracy
theories appear with non-negligible frequency, and even curated datasets like Wikipedia exhibit temporal
inconsistencies and edit wars that encode conflicting information (Zhang et al., 2025d). The model’s objective
of “next-token prediction” treats all training text equally, optimizing likelihood rather than veracity:

L(θ) = −
n∑

i=1
log pθ(yi | xi), (11)

without regard to whether yi is factually correct. Consequently, frequently repeated misinformation can
dominate the learned distribution, leading models to confidently reproduce falsehoods (Dufour et al., 2024).

Long-tail distribution and memorization failures. Real-world knowledge follows a heavily skewed
distribution; a small number of entities and facts appear frequently, such as major historical figures or popular
scientific concepts, while the vast majority occur rarely. This long-tail phenomenon creates a memorization
challenge: models must store millions of low-frequency facts with minimal reinforcement (Sahoo et al., 2024).

Empirical evidence shows that LLM factual accuracy degrades sharply for tail entities (Figure 3a). For
instance, when asked about individuals with fewer than 10 Wikipedia page views per day, GPT-4’s factual
precision drops below 40%, compared to >90% for highly popular entities (Kandpal et al., 2023). The model
has insufficient exposure to reliably encode these facts and instead generates plausible-sounding but incorrect
details by analogy to more common patterns. This aligns with what Theorem 4 states, which in this context
implies that without sufficient training examples for each rare fact, generalization bounds guarantee high
error rates.

The memorization challenge is further complicated by interference: the model’s finite capacity means
that learning new facts can overwrite or distort previously learned information, a phenomenon known as
catastrophic forgetting in continual learning (Gekhman et al., 2024). As models grow and training data
expands, managing this interference becomes increasingly difficult, with rare facts being the most vulnerable
to degradation.

Temporal decay. Training data represents a temporal snapshot, but the world evolves continuously. Let
tcutoff denote the training data cutoff time and tquery the query time. Facts that were true at tcutoff may

1This bound on the expected risk does not explicitly depend on the confidence parameter δ, unlike high-probability bounds.
It reflects the floor on average error imposed by label noise.
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become outdated by tquery. For example, political leaders change, scientific consensus shifts, companies merge
or dissolve, and technologies become obsolete (Zhu et al., 2024a). Define the temporal staleness of a fact f as:

τ(f) := P[f is outdated at tquery | f was true at tcutoff], (12)

which increases with ∆t := tquery − tcutoff. For time-sensitive domains, empirical studies show τ(f) can
exceed 0.5 within months, i.e., over half of time-dependent facts become stale (Figure 3b) (Lazaridou et al.,
2021). Models trained on pre-2023 data confidently assert information valid only in that historical context,
producing temporally induced hallucinations when queried about current events (Zhu et al., 2024b).

This issue is particularly worse for rapidly evolving domains. A model queried about “the current treatment
for disease X” may generate a response reflecting outdated clinical guidelines from its training distribution,
presenting obsolete information as current fact (Lazaridou et al., 2021). Unlike incompleteness (which can be
addressed via knowledge expansion), temporal decay may require continuous model updates. This presents
a difficult trade-off: avoiding the “catastrophic forgetting” of past knowledge is important, yet retaining
outdated information leads to temporal hallucinations. This process is costly and technically challenging, and
thus requires a careful balance between preserving and updating information.

Worse, models lack explicit temporal reasoning. They cannot reliably distinguish between timeless facts
(e.g., mathematical theorems, τ(f) ≈ 0) and time-dependent facts (e.g., “the president of the United States”,
τ(f) ≫ 0). When training data contains multiple temporal versions of a fact without clear timestamp
annotations, the model may conflate them, producing anachronistic or contradictory outputs (Wang et al.,
2023).

Conflicting information. In training corpora, different sources disagree on contested facts, present
conflicting interpretations of events, or reflect divergent cultural perspectives, and thus, inherent contradictions
arise. When such conflicts are unresolved in training, the model learns a superposition of contradictory beliefs,
surfacing whichever aligns with the prompt’s framing or the model’s implicit biases (Huang et al., 2025a).

For example, politically contentious topics have multiple narratives in web text. An LLM trained on this
mixture may generate different “facts” depending on subtle prompt variations, revealing that it has not
learned a single coherent world model but rather a distribution over conflicting models (Zhang et al., 2025d).
Unlike simple factual errors, the model has learned both correct and incorrect information, and query-time
stochasticity determines which surfaces.

Additionally, systematic biases in training data—gender stereotypes, racial prejudices, and the perspectives
of the dominant cultures in the training data—become encoded in model parameters (Gallegos et al., 2024).
When generating content about underrepresented groups or non-Western contexts, models often fall back on
stereotypes or fabricate details consistent with biased training patterns. This produces culturally skewed
hallucinations that reflect and amplify societal biases present in the data.

Exposure bias and distributional mismatch. A subtle but critical issue arises from the discrepancy
between training and deployment distributions. During training, models see gold-standard prefixes x<t from
the corpus and predict the next tokens. At inference, they generate text autoregressively, feeding their own
predictions x̂<t back as input. Let pdata(x<t) be the training prefix distribution and pmodel(x<t) be the
distribution induced by autoregressive generation. This exposure bias means the model never experiences its
own errors during training, leading to compounding mistakes at test time (Wang & Sennrich, 2020). The
distributional shift can be quantified via the KL divergence:

∆shift(t) := KL(pmodel(· | x<t)∥pdata(· | x<t)), (13)

which grows with generation length t as errors accumulate.

Concretely, suppose the model makes a small factual error at step t0, i.e., x̂t0 ̸= x∗t0
. This error shifts the

context distribution away from the training distribution, increasing the likelihood of subsequent errors. The
error probability at step t > t0 satisfies:

P[x̂t ̸= x∗t | x̂t0 ̸= x∗t0
] ≥ P[x̂t ̸= x∗t ] + ∆shift(t− t0), (14)
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where ∆shift(t− t0) quantifies the compounding effect. Over long generations, these errors accumulate—a
phenomenon observed in tasks like multi-hop reasoning and long-form summarization, where factual accuracy
degrades as output length increases (Wang & Sennrich, 2020). The model has no mechanism to detect or
correct these drifts, as it was never trained on its own potentially erroneous outputs.

Data contamination and leakage. A growing concern nowadays is benchmark contamination. Test
datasets inadvertently appearing in training corpora inflate performance estimates and obscure true hallucina-
tion rates (Xu et al., 2024a). When models have seen test examples during training, they can memorize answers
rather than learn generalizable reasoning, leading to brittle performance that fails on out-of-distribution
queries. This creates an illusion of reduced hallucination that evaporates under “true” novel queries.

Related issues include data leakage from private or copyrighted sources, where models reproduce verbatim
or near-verbatim text from training data, and model-generated data in training corpora, where synthetic
text produced by earlier LLMs contaminates datasets for subsequent models. This latter issue, termed
“model collapse” in some literature, can amplify hallucination patterns; if an earlier model’s factual errors
are treated as ground truth in a later model’s training data, those errors become entrenched and harder to
correct (Shumailov et al., 2023).

All these failures are not independent: long-tail facts are more likely to be noisy or outdated, conflicting
information is harder to verify for rare entities, and exposure bias amplifies any underlying data quality
issue. The compounding effect means that data-induced hallucinations are often more severe in practice than
theoretical limits alone would predict. Addressing these issues requires improved data curation, architectural
innovations, and deployment-time verification, among other things. However, as with the fundamental limits,
complete elimination is infeasible. Data will always be incomplete, imperfect, and outdated relative to the
unbounded query space LLMs confront.

2.3 Evaluation misalignment and guessing incentives

While fundamental limits and data imperfections guarantee some baseline hallucination rate, evaluation
practices and training incentives can systematically amplify this problem by rewarding confident fabrication
over honest uncertainty. Modern LLM benchmarks, leaderboards, and reward models create perverse incentives
that penalize abstention and reward guessing even when the model lacks knowledge. This misalignment
between evaluation metrics and deployment desiderata transforms hallucination from an unavoidable failure
into a sort of “rational” strategy for maximizing scores.

The penalty for “I don’t know.” The vast majority of present-day LLM evaluations employ binary
grading. Responses are scored as either correct (1) or incorrect (0), with no partial credit for expressing
uncertainty (Xu et al., 2024a). Under such schemes, abstentions, which can be responses like “I don’t know,”
“I’m uncertain,” or “I cannot answer without more information”, receive the same zero score as confident but
incorrect answers. This creates a rational incentive structure that strictly favors guessing over abstention.

Formally, consider a prompt c with response space Rc and abstention responses Ac ⊂ Rc (e.g., “I don’t
know”). A grader gc : Rc → {0, 1} is binary if gc(r) = 0 for all r ∈ Ac and gc(r) = 1 for some correct
r /∈ Ac. For any belief distribution ρc over which responses are correct, the expected score of an abstention is
always zero, while even a low-confidence guess has positive expected score if the model assigns any non-zero
probability to being correct. The optimal strategy under binary grading is thus to never abstain:

Ac ∩ arg max
r∈Rc

Egc∼ρc
[gc(r)] = ∅. (15)

A meta-analysis of influential benchmarks confirms this pervasive issue (Yang et al., 2023). Among the most
widely cited evaluations, namely MMLU-Pro, GPQA, Omni-MATH, IFEval, SWE-bench, MATH, BBH, HLE,
all employ binary grading with no credit for uncertainty expressions (Li et al., 2023c). MMLU-Pro and GPQA
are standard multiple-choice exams with no “I don’t know” option. Omni-MATH uses equivalence grading
(often via LM judges) that compares outputs to ground-truth answers, assigning full credit for correctness
and zero otherwise. IFEval grades instruction-following compliance programmatically, again binarized. Only
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WildBench, which evaluates real user chats on a 10-point scale, offers partial credit for uncertainty, but
even there, the rubric suggests that “I don’t know” responses score lower than “fair” responses with minor
hallucinations, thus still incentivizing guessing (Kirichenko et al., 2025).

Reward hacking and confident fabrication. When models are trained via reinforcement learning
from human feedback (RLHF) or direct preference optimization (DPO), the reward model inherits biases
from human annotators who often prefer confident, fluent answers over hedged or uncertain ones (Xu et al.,
2024a). Even when a model is unsure, producing a plausible-sounding fabrication receives higher reward than
admitting ignorance. This creates a reward hacking dynamic, wherein models learn to maximize perceived
confidence and fluency, which correlates with reward, rather than factual accuracy.

Let R(r | c) denote the reward for response r to prompt c. A model optimizing E[R(r | c)] learns an optimal
policy, π∗, according to the reward function:

π∗(r | c) ∝ exp
(
β ·R(r | c)

)
, (16)

where β is the inverse temperature. If R rewards verbosity and confidence over accuracy, the learned policy π∗
shifts toward hallucination-prone policies that generate detailed fabrications. This phenomenon is exacerbated
by LM-as-judge evaluation, where another LLM grades outputs. LM judges are susceptible to length bias,
favoring longer responses even when they contain errors, and often fail to detect subtle factual inaccuracies,
grading incorrect but fluent hallucinations as correct (Yao et al., 2024).

Overconfidence and calibration failure. Related to reward hacking is the issue of miscalibration: models
systematically overestimate their correctness probability. Let pθ(c) denote the model’s self-assessed confidence
that its answer to prompt c is correct, and let P[correct | pθ(c)] be the true accuracy conditioned on that
confidence level. A well-calibrated model satisfies:

P[correct | pθ(c) = p] = p ∀p ∈ [0, 1]. (17)

In practice, LLMs exhibit significant overconfidence. They assign high probabilities to incorrect answers,
i.e., P[correct | pθ(c) = 0.9] ≪ 0.9. This miscalibration is particularly severe on long-tail queries and
out-of-distribution inputs, where the model has minimal training signal (Sainz et al., 2023).

Overconfidence arises from multiple sources: softmax temperature tuning during fine-tuning often sharpens
distributions to increase apparent certainty; RLHF rewards confident responses regardless of correctness; and
models lack mechanisms to estimate epistemic uncertainty (what they don’t know) versus aleatoric uncertainty
(inherent ambiguity). The result is that when a model hallucinates, it does so confidently, providing no signal
to users or downstream systems that the output is unreliable.

Illusion of competence. As already discussed previously, benchmark contamination creates an illusion of
reduced hallucination. Models memorize test answers rather than learning generalizable reasoning, scoring
well on benchmarks while failing on novel queries. Let ζ denote the contamination fraction and Rtrue(h) the
true hallucination rate on uncontaminated data. Observed benchmark performance satisfies:

Robs(h) = (1 − ζ) · Rtrue(h) + ζ · Rmem(h), (18)

where Rmem(h) ≪ Rtrue(h) reflects near-perfect recall of memorized answers. This distorts leaderboard
rankings: models with higher contamination rates appear to hallucinate less, while their real-world performance
remains poor (Xu et al., 2024a).

Fluency vs. factuality. The fundamental training objective, i.e., next-token likelihood maximization,
prioritizes fluency and coherence over factual correctness. The loss function:

L(θ) = −
T∑

t=1
log pθ(xt | x<t) (19)
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measures how well the model predicts text continuations from the training distribution, not whether those
continuations are factually accurate. A model can achieve low perplexity by learning stylistic patterns,
grammatical structures, and common narrative arcs, all while encoding factual errors. Again, when training
and evaluation metrics both reward fluency, hallucination becomes a rational strategy: fabricating plausible
details improves likelihood while remaining unpunished.

Language modeling treats all tokens equally, whether they convey facts (“The capital of France is Paris”) or
stylistic filler (“In this essay, I will argue that...”), whereas factuality requires distinguishing knowledge-bearing
content from discourse markers. Without explicit factuality signals in the training objective or evaluation
metrics, models default to the easier-to-optimize goal of producing text that sounds right rather than text
that is right.

Toward aligned evaluation. Addressing evaluation misalignment requires major socio-technical re-
forms (Kirichenko et al., 2025). First, confidence-aware grading should assign partial credit for well-calibrated
uncertainty expressions. Instead of binary {0, 1} scores, evaluations could use:

gc(r, p) =


1 if r is correct
1 − λ · (1 − p) if r is abstention with confidence p
0 if r is incorrect

(20)

where λ ∈ (0, 1] controls the penalty for abstention relative to guessing. A value of λ = 0 would make
abstention as rewarding as a correct answer, while λ = 1 equates the value of abstaining to its expected
accuracy p. This incentivizes models to abstain when uncertain, aligning evaluation with deployment
desiderata.

Second, explicit confidence thresholds should be stated in evaluation instructions, specifying the error tolerance
for each task domain. Third, reward models should be trained to value honesty over confidence, penalizing
overconfident incorrect answers more than hedged uncertain ones. Finally, benchmark contamination must
be actively monitored via canary tokens, adversarial test sets, and temporal segregation of training and
evaluation data.

Without these changes, evaluation practices will continue to amplify hallucination by rewarding exactly the
behaviors that users and applications most want to avoid.

2.4 Creativity-factuality trade-off

Creativity and factuality are fundamentally at odds in probabilistic language generation. Unfortunately, the
same mechanisms that enable LLMs to produce novel, engaging, and imaginative text, i.e., exploration of
low-probability continuations, deviation from training patterns, and compositional recombination, also create
pathways for fabrication.

Exploration-exploitation dilemma. LLMs generate text by sampling from a learned probability distribu-
tion pθ(xt | x<t) over next tokens. The sampling strategy governs the balance between exploitation (selecting
high-probability, safe continuations) and exploration (venturing into lower-probability, generative territory).
This trade-off is controlled by hyperparameters like temperature T and nucleus (top-p) sampling (Peeperkorn
et al., 2024).

With temperature scaling, the next-token distribution becomes:

pT (xt | x<t) = exp(zt/T )∑
v∈V exp(zv/T ) , (21)

where zt is the logit for token xt. As T → 0, sampling becomes deterministic (greedy decoding), favoring the
single most likely token. As T → ∞, the distribution flattens toward uniform (high exploration, minimal
exploitation). Empirically, low temperatures (T ≈ 0.1-0.5) produce repetitive, conservative text with high
factual accuracy but limited novelty. High temperatures (T ≈ 1.0-2.0) yield diverse, creative outputs but also
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frequent hallucinations as the model samples unlikely tokens that lead to fabricated details (Nguyen et al.,
2024).

Nucleus or top-p sampling restricts sampling to the smallest set of tokens whose cumulative probability
exceeds p:

Vp := arg min
V′⊆V

{
|V ′|

∣∣∣ ∑
v∈V′

pθ(v | x<t) ≥ p

}
. (22)

Smaller p (e.g., 0.7) enforces exploitation; larger p (e.g., 0.95) permits exploration. The choice of T and p
directly controls the creativity-factuality trade-off, and increasing either parameter boosts creative diversity
at the cost of factual reliability.

Entropy, uncertainty, and hallucination. A model’s predictive uncertainty, measured by entropy,
correlates with both creativity and hallucination risk. Define the entropy of the next-token distribution as:

H(xt | x<t) = −
∑
v∈V

pθ(v | x<t) log pθ(v | x<t). (23)

High entropy (H ≫ 0) indicates the model is uncertain about the next token, with probability mass spread
across many candidates. This uncertainty can arise from two sources: epistemic uncertainty, which occurs
when the model lacks knowledge about the domain, or aleatoric uncertainty, which arises when the next
token is inherently ambiguous given the context.

When epistemic uncertainty is high, e.g., when the model is queried about rare facts or out-of-distribution
topics, high-entropy sampling increases hallucination risk, as the model explores tokens it has weak evidence
for, leading to fabrications. Conversely, when aleatoric uncertainty is high, as in creative writing where
multiple valid continuations exist, high-entropy sampling is desirable. In this case, the model produces diverse,
imaginative outputs without sacrificing correctness (since no single answer is uniquely correct).

The challenge is distinguishing these cases. Models lack explicit mechanisms to estimate epistemic vs.
aleatoric uncertainty, so sampling strategies cannot adapt. A fixed high temperature boosts creativity but
also hallucination, while a fixed low temperature reduces hallucination but also stifles creativity (Farquhar
et al., 2024).

Accuracy vs. originality. The creativity-factuality trade-off can be formalized as an optimization problem
with competing objectives. Specifically, let A(θ) denote a factuality (accuracy) metric which measures how
often the model’s outputs align with ground truth, and let C(θ) be a creativity metric measuring diversity,
novelty, or originality. A natural framework posits a constrained capacity:

A(θ) + α · C(θ) = κ, (24)

where α > 0 weights creativity relative to accuracy, and κ represents total model capacity. Taking the
differential:

dA = −α · dC, (25)

showing a negative correlation: improving creativity (dC > 0) necessitates reducing accuracy (dA < 0), and
vice versa (Nguyen et al., 2024).

Empirically, this trade-off manifests in multiple ways. Models fine-tuned for factuality (e.g., via retrieval-
augmented generation or fact-checking objectives) exhibit lower perplexity on factual QA but higher perplexity
on open-ended creative tasks. Conversely, models optimized for dialogue engagement or storytelling generate
more varied, entertaining responses but make more factual errors. The α parameter in the trade-off reflects
task requirements; for instance, medical diagnosis or legal advice demand high A (low α), while fiction writing
or brainstorming favors high C (high α).

Improvisation requires hallucination. A provocative theoretical perspective argues that hallucination
is necessary for improvisation in LLMs (Jiang et al., 2024). If a model were constrained to produce only
outputs directly supported by its training data, it could never generate truly novel text because every
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sequence then would be a recombination of observed patterns. Creativity demands extending beyond the
training distribution, which by definition involves assigning non-zero probability to unseen or low-probability
continuations. These exploratory samples constitute hallucinations when they introduce factual errors,
but they are indispensable for creative generation. Formally, let Dtrain denote the support of the training
distribution. A model that generates only from Dtrain produces zero hallucinations but also zero novel outputs.
To improvise, the model must sample from regions where ptrain(x) ≈ 0 but pθ(x) > 0. Whether such samples
are creative or hallucinatory depends on the task: in fiction, they are celebrated as originality; in fact-based
QA, they are condemned as fabrications. The line between creativity and hallucination blurs, with both
stemming from the model’s learned ability to extrapolate beyond its training data.

Practical implications. The creativity-factuality trade-off implies that no single model configuration is
optimal for all tasks. Systems requiring high factual precision should use low-temperature, retrieval-augmented
generation with strict verification. Tasks valuing creativity benefit from high-temperature sampling with
relaxed factuality constraints. Attempting to optimize both objectives simultaneously, i.e., a “do-everything”
model, results in suboptimal performance on both, one that is too conservative for creativity and too
error-prone for factuality.

Ultimately, the creativity-factuality trade-off reflects a fundamental tension in generative AI: the mechanisms
enabling models to produce engaging, original, human-like text are the same mechanisms that produce
plausible but false content. Recognizing this inherent duality shifts the question from “How do we eliminate
hallucinations?” to “How do we deploy LLMs in ways that use creativity where beneficial and enforce
factuality where critical?”

3 How Far Do LLMs Really Look Into Context?

3.1 Problem description

Transformer-based LLMs have pushed context lengths into the tens or even hundreds of thousands of tokens,
enabling applications like book summarization, multi-document QA, and long conversation memory (Vaswani
et al., 2017; Beltagy et al., 2020; Zaheer et al., 2020; OpenAI Achiam et al., 2023; Grattafiori et al., 2024; Liu
et al., 2024a; Tomczak & Kuppannagari, 2025). Yet despite larger context windows, practical long-context
reasoning often falls short of expectations (Qiu et al., 2020; Han et al., 2021). Models frequently cannot
effectively utilize the full window. The effective usable context of many LLMs is much shorter than their
nominal context length (Wang et al., 2024c; Liu et al., 2023c; Wang et al., 2024c; Huang et al., 2023). Even a
70B model trained to 128K context (Llama3.1) was found to only leverage about 64K effectively (Grattafiori
et al., 2024; Wang et al., 2024c) and in a comprehensive benchmark (LongBench) with average inputs 6.7K
words, even a strong 16K-token model (GPT-3.5-Turbo-16k) still struggles on longer contexts (Radford et al.,
2019; Brown et al., 2020; Wei et al., 2022). Clearly, simply extending the context window does not guarantee
strong reasoning across that entire length. This review explores the reason why. We focus on three core
factors (as shown in Figure 5), including training data positional distribution, positional encoding limits, and
attention computation constraints, and explain how each fundamentally hinders long-range reasoning (Wang
et al., 2024c; Huang et al., 2023).

3.2 Left-skewed training distribution and undertraining of long positions

One root cause is the left-skewed distribution of token positions in training data (Wang et al., 2024c). During
pretraining, model inputs are far more likely to be shorter texts or early segments of long texts, rather than
full-length sequences. This creates a severe imbalance: tokens at later positions (far right in the context)
are extremely underrepresented (Xiong et al., 2023), as also shown in Figure 4. Recent analyses confirm
this “left-skewed position frequency distribution” in large corpora (Wang et al., 2024c;c). For example, in
the SlimPajama dataset (a massive webtext corpus), the frequency of examples using very long-range token
distances is vanishingly low: using a 2048 token window, less than 20% of the training pairs involve distances
in the upper half of the window, and less than 5% involve the extreme end of the window (Bai et al., 2024a).
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Figure 4: Position-frequency distribution for models
trained with 2K vs. 4K sequence lengths after 1T to-
kens.

In gradient-based training, rarely seen position inter-
actions receive only tiny updates (Wang et al., 2024c;
Liu et al., 2023c). Intuitively, the model learns to
predict the next token mainly using nearby context,
and it gets much less practice using very distant con-
text. Formally, one can consider the training loss as
an expectation over position indices: if the probabil-
ity of a position beyond, say, 75% of the max context
is extremely small, then the contribution of those
positions to the loss (and thus to gradient updates)
is negligible. The model thus remains under-trained
on long-range dependencies, even if in principle it
has the capacity. This results in an effective context
length much shorter than the maximum. Indeed,
most open-source LLMs end up with effective con-
text well under 50% of what they ostensibly trained
for (Wang et al., 2024c).
Lemma 2 (Positional undertraining). Consider a
causal transformer trained by (stochastic) gradient
descent on sequences of maximum length L with pop-
ulation loss L(θ)=ED[ℓ(x; θ)]. Fix a query position i
and a content position j < i. Let p(j) ∈ [0, 1] denote
the (effective) probability that position j contributes nontrivially to the training signal for predicting xi (i.e.,
the event that xj is present, within the causal window of xi, and survives any attention-masking that yields
nonzero loss gradients through the (i, j) pathway). Assume p(j) is left-skewed: p(j) → 0 as j → L.

For an attention head with a score si,j(θ) = 1√
d
qi(θ)⊤kj(θ), and weight ai,j(θ) = exp(si,j)/

∑
t<i exp(si,t),

suppose there exist constants B,G > 0 such that, almost surely,∣∣ ∂ℓ
∂si,j

∣∣ ≤ B and
∥∥∇θsi,j

∥∥ ≤ G.

Then there is a constant C := BG for which the expected per-step gradient on parameters impacting (i, j)
satisfies ∥∥E[∇θℓ(x; θ)]

∥∥ ≤ C p(j).
Consequently, after T training steps with step size η > 0,∥∥E[θT − θ0]

∥∥ ≤ ηT C p(j).

If, in addition, ai,j(·) is La-Lipschitz in θ, then∣∣E[ai,j(θT ) − ai,j(θ0)]
∣∣ ≤ La ηT C p(j).

Hence, as p(j) → 0 (e.g., for j near L), the learned ai,j remains arbitrarily close to its initialization
(unoptimized), while weights for nearer positions j′ with p(j′) ≫ p(j) move by a strictly larger amount. Thus,
the learned attention from i to distant j is significantly weaker than to nearer j′.

Proof. Fix (i, j) with j < i. By the chain rule,

∇θℓ(x; θ) = ∂ℓ

∂si,j
(x; θ) ∇θsi,j(θ) + (terms not passing through (i, j)).

By assumption, on any sample for which the (i, j) pathway is active,
∥∥ ∂ℓ

∂si,j
∇θsi,j

∥∥ ≤ BG = C. Let 1i←j

be the indicator that the sample contributes a nonzero gradient through (i, j). By definition of p(j),
P(1i←j = 1) = p(j). Taking expectations and using the tower property,∥∥E[∇θℓ(x; θ)]

∥∥ ≤ E
[∥∥ ∂ℓ

∂si,j
∇θsi,j

∥∥1i←j

]
≤ C E[1i←j ] = C p(j).
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Figure 5: Overview of the three main factors limiting effective long-context reasoning in transformers. (1)
Training distribution skew: long positions are underrepresented, leaving distant tokens undertrained. (2)
Positional encoding attenuation: sinusoidal cancellation or RoPE phase misalignment shrinks positional
overlap Spos(∆), weakening long-range alignment. (3) Attention computation limits: softmax crowding
requires ∼ lnN score margins to overcome distractors, while quadratic memory/computation further restricts
practical sequence length.

Under SGD with step size η, the parameter recursion is θt+1 = θt − η gt with gt an unbiased stochastic
gradient. Summing and taking expectations,

∥∥E[θT − θ0]
∥∥ =

∥∥∥T−1∑
t=0

−η E[gt]
∥∥∥ ≤

T−1∑
t=0

η
∥∥E[gt]

∥∥ ≤ ηT C p(j).

Finally, if ai,j is La-Lipschitz in θ, then∣∣E[ai,j(θT ) − ai,j(θ0)]
∣∣ ≤ La

∥∥E[θT − θ0]
∥∥ ≤ La ηT C p(j).

Thus, when p(j) → 0, the attention ai,j remains near its initialization, i.e., effectively unoptimized; whereas
for nearer j′ with larger p(j′), the corresponding attention parameters receive larger cumulative updates and
specialize. This proves the claim.

3.3 Positional encoding saturation and long-range attenuation

Even if we had abundant training data for long contexts, the representation of position itself can become a
limiting factor. Transformers rely on positional encodings to inject order information (since self-attention
alone is order-invariant) (Vaswani et al., 2017; Huang et al., 2023). However, standard positional encoding
schemes have mathematical properties that hinder very long-range discrimination (Touvron et al., 2023).
This is called positional encoding saturation, which means that beyond a certain context length, the model’s
ability to distinguish positions or to maintain useful variability in positional signals deteriorates.

In the original transformer, positions are encoded by sinusoids of varying frequencies. These encodings are
periodic and bounded. As positions grow, the sinusoids complete many cycles. Two very distant tokens
might end up with similar encoding vectors if their positional difference coincides with a period of the
encoding. More critically, dot products between position-encoded vectors oscillate and diminish with
large separations.

Consider two positions i and j with sinusoidal encodings. Their dot product contains terms of the form
cos
(
(i− j)ωk

)
at multiple frequencies {ωk}. As the separation |i− j| grows, these cosines oscillate rapidly
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and, when summed across k, approximately cancel. Thus, the positional contribution to similarity averages
toward zero: widely separated positional vectors become nearly orthogonal.
Lemma 3 (Sinusoidal encodings attenuation). Let the d=2m-dimensional sinusoidal positional encoding be

ϕ(t) =
(

sin(ω1t), cos(ω1t), . . . , sin(ωmt), cos(ωmt)
)

∈ R2m,

with frequencies {ωk}m
k=1 ⊂ [ωmin, ωmax] that (as m grows) form an approximately uniform grid on [ωmin, ωmax]

with 0 < ωmin < ωmax < ∞. For positions i, j ∈ Z with separation ∆ = |i− j|, the normalized dot product
satisfies

1
m
ϕ(i) · ϕ(j) = 1

m

m∑
k=1

cos
(
ωk∆

)
−−−−−→

∆→∞
0.

In particular, for any fixed frequency band width Ω := ωmax − ωmin > 0,∣∣∣∣∣ 1
m

m∑
k=1

cos
(
ωk∆

)∣∣∣∣∣ ≤ 2
Ω ∆ + o m(1),

so the expected positional contribution to similarity vanishes as ∆ → ∞.

Proof. Write ϕ(i) · ϕ(j) =
∑m

k=1 cos(ωk∆) using sin a sin b+ cos a cos b = cos(a− b). With the ωk forming an
asymptotically uniform grid on [ωmin, ωmax], the Riemann-sum approximation yields

1
m

m∑
k=1

cos(ωk∆) = 1
Ω

∫ ωmax

ωmin

cos(ω∆) dω + o m(1) = sin(ωmax∆) − sin(ωmin∆)
Ω ∆ + o m(1).

The numerator is bounded by 2 in magnitude, giving
∣∣ 1

m

∑m
k=1 cos(ωk∆)

∣∣ ≤ 2/(Ω ∆) + o m(1) → 0 as ∆ → ∞.
This proves the claim.

Implication for attention. Let wij ∝ exp(qi ·kj) be an attention weight whose queries/keys inherit an
additive positional component aligned with ϕ(·). By Lemma 3, for large separations ∆ the positional dot
product contributes negligibly, so wij receives little reinforcement from positional alignment alone. In plain
terms, a token at position 20,000 has a near-orthogonal positional vector to one at position 1, attenuating
long-range interactions unless content features provide compensating evidence.

Rotary Position Embedding (RoPE). Modern LLMs often use RoPE to encode relative positions by
rotating query/key vectors. RoPE faces a similar issue as it encodes relative phase shifts such that the inner
product of queryi and keyj implicitly includes a factor cos(θ(i − j)) (for each frequency band). Without
adjustment, cos(θ∆) becomes very small for large ∆. This yields a “long-range attenuation” effect, and
attention scores between tokens far apart are exponentially dampened. The base frequency used in RoPE
effectively sets the length scale at which attention fades. If the base is not scaled for a larger window, beyond
a certain distance, the overlap between rotated vectors is nearly zero. Empirical evidence of this comes from
attempts to extend context windows: simply increasing a model’s maximum position with RoPE without
rescaling leads to steep increases in perplexity and degraded utility beyond the original length (Xiong et al.,
2023; Bai et al., 2024a). Recent research identified this as a key limitation and proposed NTK-aware or
scaled RoPE, which amplifies or adjusts the rotation frequency to “stretch” out the positional encoding over
a longer span (Xiong et al., 2023).

Learned positional embeddings. Some models use learned position embeddings (one vector per position
up to L). Here, the issue is simpler than beyond the positions seen in training; the model has no defined
embedding. Even within the training range, if most training sequences were shorter than L, the embeddings
for the largest indices are poorly trained and often end up near-initialization. They may take on nearly
identical or arbitrary values. Thus, the model effectively treats all positions beyond some point as the same
“unknown” position.
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3.4 Attention computation limits

The third fundamental limitation lies in the attention mechanism’s computation itself when faced with
extremely long sequences (as shown in Figure 5). The softmax self-attention in Transformers has a quadratic
complexity in sequence length N for both computation and memory, making very large N costly (Dao, 2023).
But beyond runtime, there are mathematical reasons why softmax attention struggles as N grows, especially
for reasoning tasks (Li et al., 2023a; Liu et al., 2023a).

Softmax competition and diffusion of focus. In an attention head, the probability of attending to
any given token is softmax(eij) = exp(eij)∑N

k=1
exp(eik)

, where eij is the compatibility of token i’s query with token

j’s key. As N increases, the denominator grows with many terms (Huang et al., 2023). If there is one
relevant token among a sea of N − 1 irrelevant ones, the model’s query must assign that relevant token a
logit advantage on the order of logN to maintain a fixed attention probability. For example, to have 50% of
the attention mass on one token out of N , the score for that token needs to be about ln(N) larger than the
average of the others. This is a steep requirement: as context length grows, the model must sharpen the
attention distribution more and more to pick out a single item. If the model’s scores for irrelevant tokens
have some variance, a large N increases the chance that some distractor token will get a moderately high
score by coincidence, eating into the probability of the true relevant token. This effect can be viewed as
a type of combinatorial noise which means that with many keys, the softmax normalization makes it
difficult to preserve a strong signal for the correct one unless the model has learned extremely fine-grained,
high-contrast scoring. In practice, as contexts lengthen, attention tends to diffuse, and it often spreads over
many tokens or attends mostly to the recent segment, unless a very obvious keyword or cue is present to
focus on the far context (Liu et al., 2023c).
Lemma 4 (Softmax crowding and the need for lnN margins). Consider a single attention head over N
candidate tokens. Let one relevant token have score s ∈ R and the remaining N − 1 irrelevant tokens have
scores X1, . . . , XN−1 that are i.i.d. with finite log-moment ψ(1) := lnE[eX1 ] < ∞. The softmax attention on
the relevant token is

PN = es

es +
∑N−1

k=1 eXk

.

If s does not grow with N (e.g., s− µ = C is fixed, where µ := E[X1]), then PN
a.s.−−−−→

N→∞
0.

Proof. By the strong law of large numbers applied to eXk (which is integrable since ψ(1) < ∞),

1
N − 1

N−1∑
k=1

eXk
a.s.−−−−→

N→∞
E[eX1 ] =: M ∈ (0,∞).

Hence,

PN = es

es +
∑N−1

k=1 eXk

= es

es + (N − 1)
(

1
N−1

∑N−1
k=1 eXk

) −→ es

es + (N − 1)M −−−−→
N→∞

0.

Thus, if s is O(1) (including s− µ = C constant), the denominator grows linearly in N while the numerator
is fixed, forcing PN → 0 almost surely.

Corollary 1 (Required scaling to keep constant attention). Fix any target p ∈ (0, 1). Under the assumptions
of Lemma 4, to have PN → p it suffices and is asymptotically necessary that

s = lnN + lnM + ln
( p

1 − p

)
+ o(1), where M = E[eX1 ].

Equivalently, the score margin must scale as s = Θ(lnN) up to additive constants depending on the irrelevant-
score distribution and the desired probability level p.
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Interpretation. With many distractors, softmax acts like a competition against the sum of irrelevant
exponentiated scores, which concentrates near (N − 1)M . A fixed gap s− µ = C is overwhelmed as N grows,
sending the relevant attention to 0. Maintaining a constant selection probability demands an O(lnN) growth
in the relevant score margin, which is a pressure that generic training may not provide when relevant facts are
sparsely embedded among large amounts of filler. Benchmarks with strong, repeated cues make this margin
easy to achieve; in information-dense settings without such cues, performance degrades as N increases.

Memory and precision. The quadratic memory use of attention means practical implementations struggle
with very long inputs. Even if a model supports 100K tokens, performing attention on that many tokens can
hit memory limits or require dumping to slower memory, which introduces numerical precision challenges.
Additionally, summing over 100K exponentiated scores in softmax can lead to extremely large or small values,
testing the limits of floating-point precision (Dao, 2023). Transformers process all tokens in parallel, which
means every layer has to recompute interactions across the full sequence. With many layers, the opportunities
for error accumulation or gradient diminishing over long ranges increase. In contrast, a recurrent process
(like a state-space model) carries information forward iteratively, which has its own challenges (e.g., gradient
vanishing through time) but uses a different mechanism for long-term dependency. In transformers, while
skip connections help gradients propagate, there is no persistent memory that carries over from token to
token beyond what attention redistributes at each layer. If at some intermediate layer the model fails to
propagate a piece of information from position j to i, later layers can only recover it if some indirect path
exists. With very deep contexts, ensuring that all needed long-range links are formed somewhere in the stack
is non-trivial.

Empirical benchmark results echo these theoretical concerns. ∞ Bench (Zhang et al., 2024a; Chang et al.,
2023; Pang et al., 2021; Bai et al., 2024b; Kočiskỳ et al., 2018) which pushes context to 100K+ tokens, finds
that current long-context LLMs “still require significant advancements” to handle 100K tokens effectively.
In LongBench’s (Bai et al., 2024b) multitask evaluation, models without explicit long-context training
or architectural adjustments see dramatic drops in accuracy on tasks as input length increases, and as
NeedleBench’s (Li et al., 2025a) Ancestral Trace Challenge shows, even at a relatively modest 2K length,
complex logical reasoning across dispersed information is often beyond the reach of today’s transformers.
The limitations of attention become most apparent when naive long contexts meet tasks requiring synthesis
of widely separated pieces; either the transformer tends to focus myopically on one part or gets lost trying to
handle everything, revealing a fundamental lack of robust long-range reasoning.

Long-context failures manifest the underlying triad of computability, statistical insufficiency, and finite
information capacity distinctly. Positional undertraining (Lemma 2) reflects statistical insufficiency: rare
position pairs receive negligible gradient updates. Encoding attenuation (Lemma 3) demonstrates finite
information capacity: sinusoidal representations compress poorly over long ranges. Softmax crowding
embodies computational constraints: distinguishing signal from noise requires logarithmic score margins
that transformers struggle to maintain. Thus, effective context compression below nominal length is not
architectural accident but mathematical necessity.

4 Reasoning or Recitation? Probing LLM Abilities

Despite broad linguistic competence, LLMs remain brittle in systematic reasoning. Most LLMs optimize the
next-token likelihood under an autoregressive factorization:

max
θ

∑
(x1,...,xT )∈D

T∑
t=1

log pθ(xt | x<t). (26)

Here, xt is the token at position t and x<t its preceding context. This training objective helps models capture
patterns in text but does not push them to perform algorithmic reasoning, track symbolic state, or check
logical validity of the response (Huang & Chang, 2023). As a result, LLMs often produce fluent but incorrect
answers, struggle with compositional tasks, and perform unreliably as problems grow harder (Huang & Chang,
2023; Lee et al., 2024b; Shojaee et al., 2025; Matarazzo & Torlone, 2025).
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Table 1: A comprehensive map of long-context failure modes and the corresponding architectural, training,
and inference-time solutions.

Issue Failure Mode Representative Solutions Key references

Left-skewed train-
ing over positions
(“positional under-
training”)

Model underuses late-
context tokens; perfor-
mance drops when ev-
idence appears in the
middle/end of long in-
puts.

Data-side: Reweight or resample long-range pairs; cur-
riculum that up-weights large relative distances; extend
pretraining/fine-tuning on long sequences. Index remap-
ping: Position redistribution/shift (e.g., StRing) to reuse
well-trained low indices at inference. Loss shaping: depth-
aware losses to boost gradients at large separations.

(Bai et al., 2024b;
Li et al., 2025a;
Wang et al., 2024c;
Saito et al., 2025)

Positional encod-
ing attenuation (si-
nusoidal & vanilla
RoPE saturate)

Dot products between
distant positions van-
ish/oscillate; far tokens
receive negligible posi-
tional reinforcement.

RoPE scaling: NTK-aware or base-frequency scaled RoPE;
dynamic/learned scaling per head. Relative schemes: ALiBi,
T5-style relative attention, KERPLE; monotone distance
biases that do not saturate; hybrid absolute+relative mixes.
Content-aided: strengthen content cues via contrastive span
objectives.

(Press et al., 2021;
Su et al., 2021;
Peng et al., 2023;
Bai et al., 2024b)

Softmax crowding
(logit margin must
grow like ln N)

Single relevant token
drowned among N
distractors; attention
mass diffuses as context
grows.

Architectural: Top-k/sparse attention, landmark/sink tokens,
hierarchical routing; multi-hop retrieval within the model.
Training: margin-aware objectives on salient spans; hard-
negative mining with long-context distractors; temperature
scheduling. Inference: focused rereading (two-pass refine),
constraint hints.

(Li et al., 2025a;
Zhang et al.,
2024b; Dao et al.,
2022; Child et al.,
2019)

Quadratic mem-
ory/compute of
global attention

128K–1M tokens in-
feasible or numerically
brittle; KV cache and
memory blow-ups.

Algorithmic: FlashAttention/IO-aware kernels; block-
sparse/dilated/linear-time variants; chunked sliding-window
with cross-chunk summaries. System: paged KV cache, quan-
tization of KV (NF4/FP8), CPU offloading with prefetch;
windowed decoding.

(Dao et al., 2022;
Child et al., 2019;
Beltagy et al.,
2020; Dao, 2023;
Li et al., 2023a;
Liu et al., 2023a)

Fragmented long-
range reasoning
(missing multi-hop
chains)

Model fails when evi-
dence is dispersed and
must be combined over
long spans.

Planner-reader loops: iterative reasoning over retrieved seg-
ments; scratchpad/state passing across segments. Supervi-
sion: multi-hop chain objectives with distant supervision; com-
positional curricula. Structure: section headers/summaries
injected as anchors.

(Bai et al., 2024b;
Lewis et al.,
2020b)

Context selection
is noisy (irrelevant
filler dilutes signal)

Performance collapses
as irrelevant text in-
creases density.

Retrieval/compression: RAG; learned summariza-
tion/compression to evidence sketches; entropy/gradient-
based token pruning; saliency pre-filters before LLM. Safety
net: late fusion of multiple compressed candidates.

(Bai et al., 2024b;
Li et al., 2025a;
Rae et al., 2019;
Lewis et al.,
2020b)

Index general-
ization beyond
trained L (learned
embeddings)

Positions beyond
the seen range are
near-initialization or
ill-defined.

Inter/extrapolation: continuous position functions; Fourier
features with scale tuning; spline-based or low-rank position
decoders; rope-based annealing during finetune.

(Su et al., 2021;
Peng et al., 2023;
Press et al., 2021)

Chunk boundaries
break dependen-
cies

Errors at the window
cuts; cross-chunk links
lost.

Bridges: memory tokens per chunk; summary vectors with
attention into prior chunks; overlap windows with learned
dedup; cached entity graphs.

(Dai et al., 2019;
Wu et al., 2022;
Sun et al., 2024)

External mem-
ory is not per-
sistent across
tasks/sessions

Forgets earlier sessions;
cannot keep project-
scale facts.

Persistent stores: vector DB + RAG with typed schemas;
tool-augmented retrieval (program-of-thought); long-term
key–value memory distilled from transcripts/logs.

(Lewis et al.,
2020b; Schick
et al., 2023)

Evaluation mis-
alignments (proxy
tasks, short-
context fine-tunes)

Improvements don’t
transfer to real long-
doc reasoning.

Benchmarks: use LongBench/NeedleBench/ ∞ Bench style
tasks with dispersion & density controls; report accuracy
vs. length, energy/token, and effective-context curves; ablate
position reweighting.

(Bai et al., 2024b;
Li et al., 2025a;
Zhang et al.,
2024b; Wang et al.,
2024c)

Alternatives to
pure Transformers
(state-space and
hybrids)

Attention saturation or
cost dominates at scale.

SSM class: S4/Hyena/Mamba for linear-time long-range pro-
cessing; Hybrids: LongMamba (local attention + global state);
gated recurrence for persistent memory; cross-architecture
distillation from long-attention teachers.

(Gu & Dao, 2023;
Gu et al., 2021;
Sun et al., 2024)

22



Under review as submission to TMLR

Solver-Based Methods Prompt-Based Methods Fine-Tuning Methods Logical Consistency Taxonomy

Unified Objective

Reasoning in single response Reasoning consistency b/w responses

Figure 6: Mathematical Framework Adaptations for LLM Reasoning Approaches.

Specifically, the below sections explain (i) explain why likelihood-optimized generation falls short of reliable
reasoning and introduce reasoning efficiency as a quality-per-compute lens (Section 4.1); (ii) catalog failure
modes that undermine reliability (Section 4.2); and (iii) formalize a unified objective with constraints and
verification, then instantiate it with practical patterns (Sections 4.3 and 4.4).

4.1 Why likelihood falls short

Current LLMs (e.g., GPT-3/ChatGPT/GPT-4, PaLM 2, InstructGPT, LaMDA) function like a “Mad Libs”
game: they fill in blanks using statistical associations rather than understanding and logically manipulating
facts (Zhang, 2024). The probabilistic modeling approach captures correlations in language but does not
guarantee that the model has learned the underlying functions or rules needed to solve reasoning problems
(Zhao et al., 2024). Many reasoning tasks (arithmetic, logic puzzles, algorithmic procedures, etc.) require
precise intermediate computations and compositional generalization, the ability to combine learned components
in novel ways. Models learn the pieces but often fail to compose them: in Boolean logic, accuracy drops
sharply as expressions grow deeper or wider, even when the basic primitives are mastered. This suggests they
rely on surface patterns rather than underlying rules (Kim & Thorne, 2024).

This aligns with the Language-of-Thought Hypothesis (LoTH), which holds that human-like reasoning depends
on internal symbolic structures; by contrast, LLMs store knowledge in continuous vectors rather than discrete,
combinatorial representations (Quilty-Dunn et al., 2023). Lee et al. (2024b) evaluated GPT-family models on
the Abstraction and Reasoning Corpus (ARC), a challenging inductive reasoning benchmark. They found
that while LLMs show some inference ability, they still lag in terms of logical coherence, compositionality,
and productivity compared to human problem solvers (Lee et al., 2024b). The stochastic nature of next-token
generation can miss the rigid logic needed for puzzles or math problems that have one correct outcome
following from premises.

These observations motivate not only improving correctness but also explicitly accounting for the cost of
obtaining it. Reasoning efficiency, the expected quality per unit of compute across tasks, is therefore used to
assess progress:

η(M) = Et∼T

[
Q(M, t)
C(M, t)

]
, (27)

where M denotes a fully specified inference configuration (model architecture and parameters together with
decoding hyperparameters and any tool/execution policy), T is a distribution over tasks or problem instances,
and t∼T is a single sampled instance. Q(M, t) is the solution quality, for instance t (e.g., EM/accuracy),
and C(M, t) measures compute for that instance, including prompt and generation tokens, a FLOPs proxy,
latency, and memory (Guo et al., 2025a). Under this lens, recent reasoning models (e.g., OpenAI o1;
DeepSeek-R1) can overthink, producing long chains with redundant steps or shallow branching that raise C
without commensurate gains in Q (Jaech et al., 2024; Liu et al., 2024a; Sui et al., 2025; Qu et al., 2025b).

4.2 What causes reasoning to fail in LLMs?

LLMs exhibit strong fluency but limited stepwise reasoning: they may produce correct answers accompanied by
unsound rationales, over-extend derivations, or shift explanations under minor prompt variations. Advancing
toward reliable reasoning requires models that deliver correct final answers and procedurally valid intermediate
steps. Achieving this requires confronting four persistent failure modes: 1) objective mismatch that makes
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intermediate reasoning disposable, 2) spurious correlations from unverified knowledge, 3) search pathologies
that misallocate compute and derail inference, and 4) fragile interfaces and metrics that distort or obscure
reasoning quality.

Objective mismatch & disposable mediators. Standard training maximizes answer likelihood rather
than step faithfulness. Let X be the input, Y the final answer, and Z the chain-of-thought (CoT). The model
marginalizes across traces:

Pθ(Y | X) =
∑

Z

Pθ(Y | X,Z)Pθ(Z | X). (28)

Equation 28 is the optimized quantity, so a fluent but non-causal Z can persist if it maintains a high
Pθ(Y | X) (Wei et al., 2022; Barez et al., 2025). Outcome-only RL further entrenches this: optimizing
maxθ E[R(Y, Ŷθ)] with R = I[Ŷθ = Y ] imposes no requirement to use Z (Turpin et al., 2023; Chen et al.,
2025d). In mediation terms, the CoT Z often has a small indirect effect (IE) on Y relative to the direct effect
(DE) of X:

TE = E[Y | do(X)] − E[Y | do(X ′), Z]︸ ︷︷ ︸
DE

+E[Y | do(Z)] − E[Y | do(Z ′)]︸ ︷︷ ︸
IE

, (29)

where the operator do(·) denotes an intervention in the sense of Pearl’s causal calculus, that is, setting a
variable to a specific value while disconnecting it from its natural causes. In this context, do(X) corresponds to
externally fixing the model input or prompt, and do(Z) corresponds to enforcing a particular chain-of-thought
reasoning path. The expectations E[Y | do(X)] and E[Y | do(Z)] therefore measure the post-intervention
outcomes of Y when X or Z are directly manipulated rather than merely observed. With X ′, Z ′ representing
suitable counterfactual interventions, empirical results show that IE≈0 on many tasks (Paul et al., 2024),
rendering Z a disposable mediator. Consequently, systems rewarded solely for final correctness tend to ignore
or fabricate intermediate steps; improving faithfulness, therefore, requires step-aware objectives or verifiable
rewards that make Z causally indispensable.

Spurious correlations from knowledge injection. External knowledge can correlate with answers
without being deployed as a causal instrument in reasoning, producing CoTs that cite facts yet do not depend
on them for the inference itself. Treating Z as a mediator enables front-door adjustment (Wu et al., 2024a):

P (Y | do(X)) =
∑

z P (Y | do(z))P (z | do(X)), (30)

where z ranges over knowledge-aware traces that pass logical checks. Equation 30 re-weights answers so that
only causally valid z contribute, mitigating spurious shortcuts induced by mere fact mention. In practice,
introducing knowledge should thus be coupled with mechanisms that verify its instrumental use inside Z;
otherwise, models may appear informed while relying on correlations rather than reasoned application of the
information.

Search pathology & compute misallocation. Greedy or locally sampled decoding is myopic (one path,
no backtracking), whereas naive multi-path expansion bloats search without guidance. Reframing reasoning
as planning assigns values to partial states s and actions a:

π(a | s) ∝ exp
(
Qπ(s, a)/τ

)
, (31)

direct exploration toward high-value traces (Hao et al., 2023). Complementary training prefers concise
correctness (e.g., CoPO/AoT-O3) by scaling accuracy Q and cost C:

max
θ

E
[
Qθ − λ C̃θ

]
, C̃θ = normalized tokens/FLOPs. (32)

At the meta-level, models must learn when extended reasoning is warranted. Let c ∈ {short, think} be a
control token; Thinkless, (Fang et al., 2025) optimizes

L = Lctrl(c | X)︸ ︷︷ ︸
mode selection

+ Lresp(Y | X, c)︸ ︷︷ ︸
answer correctness

, (33)
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reducing unnecessary long-CoTs while preserving accuracy (Fang et al., 2025). Thus, effective systems guide
search toward promising partial derivations, explicitly trade off accuracy against computational expense,
and route adaptively between terse and deliberative modes, avoiding both premature commitment and
unproductive overthinking (Zhang et al., 2024f). A related approach is hierarchical reasoning, where a model
first picks abstract subgoals and then expands them into concrete steps (e.g., Hierarchical Reasoning Model
(HRM) (Wang et al., 2025a), HyperTree Planning (HTP) (Gui et al., 2025)). But these methods often falter:
errors in planning cascade downward, high-level plans may misalign with executable detail, and the space of
possible subplans still grows rapidly unless heavily pruned. Thus, HRMs need subgoal verification, pruning,
and cost awareness to be reliable (as discussed in Section 4.3).

Interface & metric fragility. Prompt interfaces, especially delimiter tokens for thought, can inadvertently
truncate or skew Z, exposing unthinking vulnerabilities (Zhu et al., 2025b). The same controls can be co-opted
defensively to terminate unsafe or redundant chains. On the evaluation axis, answer-only metrics (e.g.,
Pass@k) are largely insensitive to improvements in intermediate steps; verifiable rewards (e.g., CoT-Pass@k)
demand that both Y and Z be correct, surfacing gains that Pass@k obscures (Wen et al., 2025). Beyond final
accuracy, compositional causal tests (CCR) evaluate local↔global causal consistency (Maasch et al., 2025),
and length-sensitive rewards must penalize repetition to resist trivial length hacking (Yeo et al., 2025). Robust
reasoning, therefore, depends on interfaces that do not perturb cognitive trajectories and on process-aware
metrics that reward the correctness of the derivation, not merely its endpoint.

To summarize, reasoning degradation again traces directly to the theoretical limitations of LLMs. The
objective mismatch problem reflects computational limits: likelihood training cannot distinguish causal from
spurious mediators. Spurious correlations reveal statistical insufficiency: models learn dataset patterns rather
than compositional rules. Search pathologies demonstrate finite information capacity: exploring exponentially
large reasoning spaces under token budgets forces myopic decisions. These are not fixable through scale alone
but require architectural shifts that respect these fundamental constraints.

4.3 Unified objective to capture reasoning

The above failure modes show that scaling model size or CoT length alone is insufficient; instead, we
need methods that verify correctness at each step, avoid disposable or misleading reasoning chains, and
allocate computation where it truly contributes to performance. Framed by reasoning efficiency η = E[Q/C],
real progress means improving quality per unit cost rather than simply producing longer reasoning traces
(autoregressive manner as in Equation 26). This naturally leads to a unified objective that augments likelihood
with verification and cost regularization, ensuring that each intermediate step is causally meaningful, the
search remains focused, and consistency is maintained.

R(P,Q, C) = argmax
A∈A

[L(A|P,Q, θ) + λ · S(A, C)] , (34)

where P = {p1, p2, . . . , pn} represents the set of premises, Q is the query or question, C represents consistency
constraints, A is the space of possible answers, L(A|P,Q, θ) is the likelihood of answer A given premises
and query, S(A, C) is the consistency score, and λ balances local correctness versus global coherence. This
framework captures the fundamental tension in LLM reasoning between generating locally plausible responses
and maintaining global logical consistency across multiple outputs.

4.3.1 Instantiate Reasoning using the Unified Objective

Solver-based methods. Solver-based approaches transform the reasoning problem into a symbolic manip-
ulation task, where the framework becomes:

Rsolver(P,Q) = TSL→NL ◦ Ssolve ◦ TNL→SL(P,Q), (35)

where TNL→SL [Natural Language to Symbolic Language], Ssolve [Symbolic Formulation to Symbolic Answer],
and TSL→NL [Symbolic Answer to Natural Language Answer]. Methods such as Satisfiability-aided language

25



Under review as submission to TMLR

models (SatLM) (Ye et al., 2023b) translate natural language questions into different formulations and employ
language solvers to derive answers, while Language-INtegrated neuro-symbolic reasoning with Constraints
(LINC) (Olausson et al., 2023) generates multiple natural language to symbolic language translations with
k-majority voting to mitigate translation errors. Logic-LM (Pan et al., 2023) extends this approach by utilizing
task-specific formulations, including logic programming, first-order logic, constraint satisfaction problems,
and different formulations tailored to different datasets. More recent advances include CLOVER (Ryu et al.,
2025), which performs compositional translation via atomic sentences with logical dependency structures, and
VERUS-LM (Callewaert et al., 2025), which introduces self-refinement steps using feedback from reasoning
engines to correct erroneous logical statements.

These solver-based methods provide deterministic and verifiable outputs, making them attractive for applica-
tions requiring high reliability. The framework adaptation for solver-based methods, as shown in Figure 6,
becomes:

Rsolver(P,Q) = MajorityVote
k

[TSL→NL (Sk (Tk(P,Q)))] , (36)

where k indexes different translation attempts, Tk represents the k-th translation function, Sk denotes the
corresponding symbolic solver, and MajorityVote selects the most frequent answer across multiple solver
runs to mitigate translation errors. However, they suffer from several fundamental limitations, including
translation brittleness where small errors in natural language to symbolic language conversion severely affect
results, information loss during symbolic translation that can render problems unsolvable, and exponential
search complexity as problem complexity increases (Feng et al., 2024; Zhang et al., 2024e).

Prompt-based methods. For prompt-based approaches, the reasoning occurs within the language model
itself:

Rprompt(P,Q) = LLM(P ⊕Q⊕ Preasoning), (37)

where Preasoning represents reasoning-specific prompts, and ⊕ denotes concatenation. Two families are
common: (i) explicit chain modeling (CoT/ToT/CR/DoT) and (ii) symbolic expression generation (Symb-
CoT/LoT/Aristotle)

The first subcategory focuses on explicit chain modeling, where methods like CoT (Wei et al., 2022) enable
step-by-step reasoning traces, Tree-of-Thoughts (ToT) (Yao et al., 2023) provides multi-path exploration
with backtracking capabilities, Cumulative Reasoning (CR) (Zhang et al., 2023a) decomposes complex
problems into manageable components using directed acyclic graph structures, and Diagram-of-Thought
(DoT) (Zhang et al., 2024d) employs role-specific tokens for reasoning navigation. The second subcategory
emphasizes symbolic expression generation, with methods such as SymbCoT (Xu et al., 2024b) prompting
LLMs to translate natural language problems to symbolic formulations followed by step-by-step solutions with
verification, Logic-of-Thought (LoT) (Liu et al., 2025b) instructing models to translate and expand logical
expressions based on logic rules, and Aristotle (Xu et al., 2025b) exploiting underlying logical structures for
decomposition to improve both efficacy and efficiency.

The framework adaptation for prompt-based methods (Figure 6) takes two primary forms:

Rprompt(P,Q) = LLM (P ⊕Q⊕ PCoT) or Search
path

[ToT(P,Q)] . (38)

Fine-tuning methods. Fine-tuning modifies model parameters to incorporate logical reasoning directly.
This targets gaps in logic-rich supervision by adding rules, proofs, and structured derivations, particularly
logical multi-step deduction and proofs, in pre-training corpora composed mainly of human-written texts
that exhibit reflexive thinking rather than rigid logical reasoning (Morishita et al., 2024). The framework
adaptation for fine-tuning methods (as shown in Figure 6) becomes:

Rfine-tune(P,Q) = LLMθ∗(P,Q) where θ∗ ∼ Dlogic-augmented, (39)
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where θ∗ represents the optimized model parameters, and Dlogic-augmented denotes the logic-augmented training
distribution that includes synthetic reasoning samples, formal proofs, and structured logical derivations.

LogicAsker (Wan et al., 2024) formally defines comprehensive sets of atomic and extended logic rules necessary
for formal reasoning based on propositional and predicate logic, creating corresponding fine-tuning data to
improve reasoning abilities on poorly performing rules. ALT (Morishita et al., 2024) constructs synthetic
logic corpora based on diverse logical reasoning rules, including syllogism, contraposition, and De Morgan’s
laws, comprising numerous multi-step deduction samples with unknown facts and challenging distractors.
AMR-LDA (Bao et al., 2024) takes a different approach by converting natural language into Abstract Meaning
Representation graphs to capture logical sentence structures before augmenting through logically augmented
AMR graphs. LoGiPT (Feng et al., 2024) empowers LLMs by directly learning reasoning processes of logical
solvers, avoiding risks of unanswerable questions when facing parsing errors in solver-based methods. Yet
reasoning ability on isolated questions is not sufficient. This isolation motivates the need to ensure consistency
across multiple queries.

4.3.2 Reasoning consistency within the unified objective

The consistency framework ensures outputs satisfy logical constraints across multiple queries:

S(A, C) =
∏
c∈C

I[c(A) = True], (40)

where I[·] is the indicator function and c(A) evaluates constraint c on answer A. This framework addresses
the critical problem that LLMs are prone to producing responses that contradict themselves across different
questions, which violates logical consistency and undermines reliability and trustworthiness, particularly in
high-stakes scenarios. Logical consistency encompasses multiple constraint types that can be mathematically
formalized. 1) Negation consistency requires Cneg = {p⊕¬p,¬(p∧¬p)}, ensuring that p and ¬p cannot both be
true simultaneously. 2) Implication consistency requires Cimp = {(p → q)∧p ⇒ q} to preserve logical entailment
relationships. 3) Transitive consistency enforces Ctrans = {(p → q)∧(q → r) ⇒ (p → r)} to maintain transitive
relationships across multiple statements. 4) Factuality consistency requires Cfact = {KB |= A}, ensuring that
each generated answer A is logically entailed ( |=) by the external knowledge base KB, such that all statements
produced by the model are consistent with verified facts and do not contradict established information sources.

Compositional consistency combines these constraint types as Ccomp = Cneg∪Cimp∪Ctrans∪Cfact for simultaneous
satisfaction of multiple logical requirements. The general consistency enhancement framework follows:

ConsistencyEnhance(Q1, . . . , Qn) = argmax
A1,...,An

n∑
i=1

L(Ai|Qi) s.t. C(A1, . . . , An). (41)

BeliefBank (Kassner et al., 2021) stores raw LLM answers and employs MaxSAT solvers to flip beliefs
that clash significantly with others, using modified beliefs as query context via feedback to improve both
consistency and accuracy. ConCoRD (Mitchell et al., 2022) generates multiple candidate outputs, estimates
soft pairwise inconsistencies using natural language inference, and finds optimal outputs for each question
via MaxSAT solvers. The framework adaptation for consistency-enhanced methods (as shown in Figure 6)
follows:

Rconsistent({Qi}) = MaxSAT
{Ai}

∑
i

L(Ai|Qi) +
∑
i,j

wij · Cij(Ai, Aj)

 , (42)

where {Qi} represents the set of related queries, {Ai} denotes the corresponding answer set, wij are pairwise
constraint weights between answers Ai and Aj , Cij(Ai, Aj) evaluates consistency constraints between answer
pairs, and MaxSAT denotes maximum satisfiability optimization that finds the assignment maximizing the
number of satisfied constraints. Conceptually, the weights wij act as reasoning parity bits, analogous to
parity checks in error-correcting codes, indicating whether the logical relation between Ai and Aj satisfies
the required consistency constraints. During optimization, violations of these parity bits signal contradictions
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Figure 7: Overview of reasoning strategies, (a) Chain-of-Verification (generate, execute, verify), (b) Program-
Aided Language (code-based execution), (c) Neuro-Symbolic Integration (neural + rules for multi-step logic),
and (d) Multi-modal LLM (image+language grounding).

in the reasoning chain, prompting iterative adjustments until all parity relations (logical consistencies) are
satisfied.

This resembles the Grandor Chase decoder paradigm in information theory, where bits are iteratively flipped
until all parity checks are satisfied. Here, logical constraints Cij play an analogous role to parity relations, and
consistency enforcement acts as a reasoning-parity check that iteratively adjusts answers until the collective
chain of reasoning achieves global coherence. In this view, parity in AI reasoning corresponds to maintaining
causal and logical alignment across multiple inferential steps.

LoCo-LMs (Calanzone et al., 2025) introduces losses based on neuro-symbolic reasoning that teach LLMs
logical consistency by maximizing the probabilities that beliefs comply with provided logical constraints
during training. REPAIR (Liu et al., 2025c) proposes universal frameworks to quantify compositional logical
consistency, including fundamental properties of transitivity, commutativity, and negation invariance, refining
noisy pairwise comparisons using rank aggregation and augmenting logically consistent comparisons for
instruction-tuning.

4.4 Practical patterns operationalize the unified objective

Building on the above formalisms, recent advances introduce approaches to operationalize the unified
framework in practical systems (as shown in Figure 7). (1) Program-Aided Language Models (PAL) separate
planning from execution by generating code that external engines run, improving precision on arithmetic and
algorithmic tasks. (2) Chain-of-verification and self-correction (CoVe) treat initial answers as hypotheses and
revise them after targeted checks, reducing hallucinations. (3) Neuro-symbolic integration combines neural
generation with symbolic rules or reasoners to enforce global coherence. (4) Multimodal and tool grounding
adds external evidence and computation (e.g., search, calculators, databases) to stabilize answers.

PAL Because likelihood training fundamentally favors correlation over entailment (Section 4.1), mitigations
must outsource computation to verifiable executors. Program-Aided Language Models (PAL) address this by
separating reasoning from execution by having LLMs generate programs in formal languages while delegating
computations to external executors (Gao et al., 2023). The approach follows the paradigm

Ans(q) = Exec
(
LMprog(q)

)
,

where the model writes code that a Python interpreter executes to produce answers. This hybrid approach
leverages LLMs’ strengths in understanding and planning while avoiding their weaknesses in arithmetic and
symbolic manipulation, achieving substantial improvements (e.g., ∼72% vs. 55–65% for CoT on GSM8K) (Gao
et al., 2023). PAL eliminates the notorious computational errors in LLMs while maintaining their flexibility in
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Figure 8: Performance landscape over relevance-coverage space with budget iso-lines and hatched low-cost
region. The 3D surface shows how relevance and coverage affect generative quality under token limits,
contrasting global (red) and budget-constrained (green) optima.

problem decomposition and code generation, making it particularly effective for mathematical and algorithmic
reasoning tasks.

CoVe Since models learn dataset correlations rather than causal structure (Section 4.2), Chain-of-Verification
(CoVe) introduces explicit verification loops. CoVe treats initial LLM responses as hypotheses requiring
systematic verification before acceptance, implementing explicit error-detection loops through a generate-
verify-revise cycle (Dhuliawala et al., 2023). The approach decomposes answers into verifiable claims, checks
each claim independently using external tools or separate model calls, and revises based on verification results.
Self-correction mechanisms similarly enable models to detect and repair reasoning errors through multiple
verification rounds.

Neuro-symbolic integration To overcome the sample complexity barrier for compositional reasoning
(Theorem 4), neuro-symbolic methods inject explicit rule-based constraints. They pair LLMs with symbolic
reasoners to combine flexible language understanding with rule-checked inference (Vsevolodovna & Monti,
2025). Two common patterns are: (i) LLM proposes, symbolics verify, where generated steps are checked for
consistency, and (ii) symbolics constrain, LLM generates, where rules or knowledge bases shape generation.
This reduces contradictions and enforces precise entailment (Hao et al., 2023).

Multimodal grounding and tool integration. Multimodal grounding augments LLMs with visual,
audio, and other signals to reduce ambiguity and add constraints (Zhang et al., 2023b). Tool integration lets
models call external resources, calculators, search, databases, and specialized software, so answers rely on
evidence and precise computation rather than parametric memory.

5 Why Does Retrieval Fail?

Retrieval-augmented generation (RAG) has emerged as a critical paradigm for enhancing LLMs by integrating
external knowledge sources (Lewis et al., 2020a). However, the performance of LLMs in RAG settings is
heavily contingent upon the quality and relevance of the retrieved information (Gupta et al., 2024). Formally,
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the retrieved passages condition the model’s solution space by acting as contextual evidence during generation:

P (y | x,Dr) =
∫
P (y | x, z)P (z | x,Dr) dz.

Here, x denotes the query or input prompt, Dr represents the set of retrieved documents, z corresponds to
latent reasoning variables, and y is the generated response. This formulation highlights that retrieval not
only supplements the model with external information but also constrains its generative distribution. As a
result, the LLM’s output becomes highly dependent on the retrieved context, which effectively steers the
token-level generation process and restricts the accessible solution space to regions consistent with Dr.

Two fundamental dimensions have been central to the research community’s efforts in advancing RAG systems:
(1) improving the quality of retrieval, and (2) enhancing LLM robustness to misleading or contradictory
retrievals. These two axes capture the core limitations that dictate the overall reliability and factual consistency
of RAG pipelines. In this section, we primarily focus on these dimensions. First, we discuss challenges related
to retrieval quality, i.e., how the precision, recall, and contextual alignment of retrieved documents influence
generative performance. Second, robustness of LLMs to misretrieved or contradictory information, where
retrieval errors can mislead the model’s reasoning trajectory or bias its token-level generation toward incorrect
conclusions.

5.1 Why retrieval fails before generation begins

Although retrieval modules are often treated as static components, their quality fundamentally governs
the downstream reasoning and generation capacity of large language models. Even small degradations in
retrieval precision or contextual alignment can cascade into incoherent or factually inconsistent generations.
To understand these effects, we discuss fundamental issues that result in compromise of retrieval quality and
hence generation.

5.1.1 Relevance-coverage dilemma

A fundamental constraint in RAG systems arises from the finite token budget B imposed by the LLM’s
context window. Given a retrieved set Dr, retrieval must satisfy∑

d∈Dr

len(d) ≤ B,

forcing a trade-off between relevance and coverage. Precision-oriented retrievers (e.g., dense bi-encoders)
maximize local similarity Sim(q, d) to ensure high relevance, yet often omit peripheral or multi-hop evidence
required for compositional reasoning. Conversely, recall-oriented retrievers expand Dr to improve coverage but
inject semantically weak or redundant passages, consuming valuable tokens and degrading the signal-to-noise
ratio of the conditioning context. As shown in Figure 8, retrieval performance forms a constrained surface
where increasing coverage or relevance independently cannot guarantee optimal generation quality. The
feasible low-cost region illustrates how token budgets inherently limit the achievable balance between these two
dimensions. This tension directly impacts P (y | x,Dr), as excessive precision limits inferential completeness,
while excessive coverage induces contextual dilution and generation drift.

Recent works address this balance through structure-aware retrieval, where compact graph or cluster represen-
tations encode semantically related content within fewer tokens (Cheng et al., 2025). Graph-based retrievers
leverage node-level relevance propagation to preserve contextual diversity under budget constraints (Zhu
et al., 2025a; Guo et al., 2025b). Similarly, KG-guided and hierarchical retrieval methods compress correlated
information before injection (Li et al., 2024d). While such designs partially alleviate redundancy, inherent
bottlenecks persist: incomplete graph connectivity limits factual recall, graph linearization reintroduces token
overhead, and traversal-based ranking adds computational latency. Hence, the relevance–coverage dilemma
remains a structural limitation of token-bounded retrieval pipelines.
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5.1.2 Information discretization in token-bounded retrieval

Retrieval accuracy in RAG pipelines is fundamentally constrained by the imperfect mapping of query to
Documents, i.e., q 7→ Dr under a bounded token context B. Given segmented documents C(D) = {c1, . . . , cm},
retrieval solves

D∗r = arg max
Dr⊆

⋃
D
C(D)

∑
c∈Dr

s(q, c) s.t.
∑

c∈Dr

len(c) ≤ B.

This optimization assumes chunk independence, yet most natural language dependencies are cross-chunk.
When semantically linked units (e.g., condition-action pairs) straddle boundaries, s(q, ci) and s(q, ci+1) both
drop below threshold, eliminating essential context. The resulting fragmentation loss causes retrieval to
return incomplete evidence, which the generator then over-interprets as complete input, degrading factual
precision and calibration (Qian et al., 2024; Lu et al., 2025).

Hierarchical and chunk-free retrievals alleviate but do not eliminate this degradation. Hierarchical chunking
dynamically merges semantically adjacent spans to preserve local coherence (Lu et al., 2025), while chunk-free
in-context retrieval embeds full documents and extracts spans directly (Qian et al., 2024; Brådland et al.,
2025). Both improve retrieval fidelity yet remain bounded by the token limit B: even if the retriever identifies
coherent evidence, it must still serialize it into a finite context, discarding residual dependencies.

Beyond fragmentation, relevance degradation arises from ranker-level phenomena. As the retriever expands
Dr to increase coverage, average similarity s̄(q,Dr) = 1

|Dr|
∑

c∈Dr
s(q, c) decreases, reducing signal-to-noise

in the prompt. Document-level mismatches and embedding sensitivity further compound error, as minor
paraphrases can alter embedding neighborhoods, leading to unstable recall@k and inconsistent grounding (Cao
et al., 2025; Park & Lee, 2024).

Retrieval accuracy is bounded not only by model capacity but by representational compression under token
budgets. Evidence selection and chunking convert a continuous knowledge space into a discrete, truncated
context sequence; once information is omitted or fragmented, the generator’s posterior P (y |x,Dr) cannot
recover it. Thus, despite improved chunking, hierarchical merging, or structure-aware retrieval, the irreducible
gap between real-world evidence continuity and token-bounded context serialization remains the central
bottleneck in RAG relevance.

Ranking failures and positional bias

Retrieval in RAG systems suffers from two intertwined limitations: rank truncation, where relevant documents
fall below the retrieval cutoff, and positional bias, where the Large Language Model (LLM) underutilizes
information even when it is retrieved. Let s(q, d) denote the retrieval score and S⋆ ⊂ D the set of truly
relevant documents. The retriever selects

Dr = {d(1), . . . , d(k)} = arg max
|Dr|=k

∑
d∈Dr

s(q, d),

yielding an exposure likelihood reflected by the retrieval metric Recall@k = |Dr∩S⋆|
|S⋆| . Whenever ∃ d⋆ ∈ S⋆

with rank > k, the model’s generation is upper-bounded by missing evidence, regardless of reasoning capacity.
This manifests as the scattered-evidence failure, where the rationale spans multiple documents but only a
subset appears in Dr, fragmenting multi-hop inference. Even multi-passage fusion techniques (e.g., FiD-style
decoding) remain constrained by ranker exposure and token budgets (Izacard & Grave, 2020; Agrawal et al.,
2024).

Positional or order bias further compounds this issue. Long-context analyses reveal a consistent “lost-in-the-
middle” effect: tokens located near the start and end of the prompt receive disproportionately higher attention
weights than mid-sequence tokens. Empirically, relocating gold passages from the extremes to mid-context
reduces answer recall, confirming a primacy-recency weighting curve w(t) with w(0), w(1) ≫ w(0.5) (Liu
et al., 2023c; Li et al., 2024b). This bias arises from causal masking and positional encoding decay in
Transformer layers—RoPE-based encodings exhibit long-range attenuation that weakens middle-context
dependency modeling (Kazemnejad et al., 2023). Consequently, document ordering within the retrieved
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set materially affects output; reordering equally scored passages alters factual accuracy, demonstrating the
model’s sensitivity to serial position (Cuconasu et al., 2025; Hsieh et al., 2024).

The combined retrieval-generation failure probability can be bounded as

Pr[failure] ≥ 1 − Pr[d⋆ ∈ Dr] · Pr[LLM attends to d⋆],

illustrating that generation fidelity depends jointly on exposure (ranking) and utilization (attention). While
reranking, iterative decoding, and attention-based reordering alleviate some degradation (Reddy et al., 2024;
Li et al., 2024b), the bottleneck persists: the serialized, token-bounded prompt enforces both top-k truncation
and position-dependent conditioning. Once critical evidence is omitted or placed unfavorably within the
context, the posterior P (y |x,Dr) cannot recover it. Retrieval quality in RAG is therefore limited not only by
what is retrieved, but by where and how it is positioned within the LLM’s representational scope.

5.1.3 Memory contamination.

RAG systems inherit a critical vulnerability from their external memory: any retriever that ranks based on
similarity s(q, d) = ⟨fQ(q), fD(d)⟩ can be adversarially biased through minimal perturbations of the knowledge
base (Xian et al., 2024; Zou et al., 2025). Let the retrieval corpus be D = Dclean ∪ P, where P is a small
poisoned subset. The retriever returns

Dr(q) = arg top-k
d∈D

s(q, d),

and the generator produces an answer distribution P (y | x=q,Dr(q)). The attacker seeks to inject poisons
that maximize

Lattack(P; q⋆, a⋆) = Pr
retrieval

[
P ∩Dr(q⋆) ̸= ∅

]
· Pr

gen

[
y=a⋆ | q⋆, Dr(q⋆)

]
,

subject to a small injection budget |P| = N ≪ |Dclean|. Empirically, PoisonedRAG demonstrates that
inserting only five poisoned documents per target query in million-scale KBs achieves ∼90% attack success
rates, establishing a highly efficient adversarial regime (Zou et al., 2025).

Orthogonal augmentation is the key mechanism: poisoned items are optimized such that

s(q⋆, p) ≫ s(q⋆, c), for many c ∈ Cclean, while ⟨fD(p), fD(c)⟩ ≈ 0,

i.e., they remain orthogonal to clean evidence yet maximally aligned with the query embedding. This displaces
authentic evidence from the top-k frontier under the same token budget B, corrupting retrieval without
overtly altering corpus semantics. Because retrievers reuse the same embedding manifold for paraphrased
queries q′∼Q(q⋆), poisons generalize across lexical variants, producing a knowledge corruption cascade (Chang
et al., 2025; Ha et al., 2025):

Pr[poison retrieved for q′] ≈ Pr[poison retrieved for q⋆], for most q′ ∈ Q(q⋆),

thereby inducing systemic bias in subsequent generations.

Post-hoc defenses, including activation-level poisoning detectors (Tan et al., 2024; Zhang et al., 2025a) and
forensic traceback via removal-based counterfactuals, can flag compromised passages but do not eliminate the
structural vulnerability.

The fundamental risk persists: retrieval operates over a mutable, token-bounded corpus. Any poisoned p
occupying a top-k slot both displaces clean evidence and dominates generation conditioning. The lower bound

Pr[failure] ≥ Pr[p ∈ Dr(q⋆)] Pr
[
P (y=a⋆ | q⋆, {p}) > θ

]
captures the multiplicative nature of exposure and utilization vulnerabilities. Hence, memory contamination
remains an intrinsic limitation of retrieval-based augmentation; the system’s factual reliability is only as
secure as the integrity of its external memory.
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5.2 To what extent do LLMs believe everything they read?

While the previous section focused on the fundamental causes that degrade retrieval quality, this section
examines the LLM’s own capacity to withstand such imperfections. Even with flawed or incomplete evidence,
an ideal model should reason cautiously, calibrate confidence, and prioritize consistent information. In
practice, however, large language models show limited robustness to imperfect retrieval, often absorbing noise
or contradictions without discrimination. This section examines the boundaries of that resilience.

Attention is distraction too

In retrieval-augmented LLMs, the same mechanism that enables contextual reasoning, multi-head self-
attention, introduces a fundamental vulnerability: distraction by irrelevant or misleading context (Amiraz
et al., 2025; Shi et al., 2023; Yang et al., 2025). Let the input sequence be a concatenation of the query q and
retrieved passages Dr = {d1, . . . , dk}. Within each Transformer layer l, attention operates as

A(l) = softmax
(
Q(l)K(l)⊤

√
d

)
V (l),

where Q(l) = W
(l)
Q hq and K(l) = W

(l)
K hDr

. The effective relevance of each passage to the generation process
is determined not by retrieval similarity s(q, di) but by the aggregate attention mass

αi = 1
L

L∑
l=1

∑
h∈H

mean
(
A

(l,h)
q→di

)
,

representing how strongly the model attends to passage di. When semantically related distractors dj satisfy
αj ≈ αi or even αj > αi for relevant di, the conditional distribution

P (y | q,Dr) =
k∑

i=1
αiP (y | q, di)

is biased toward irrelevant evidence, even if the retrieval itself is correct. This attention-relevance mismatch
systematically distorts the generative posterior and yields confident but erroneous reasoning.

Empirical analyses confirm this vulnerability: adding a single irrelevant passage can reduce accuracy by up to
30%, with degradation correlating to the distractor’s cosine similarity in embedding space (Yang et al., 2025;
Amiraz et al., 2025). Such distractibility arises because pretraining and supervised fine-tuning maximize
next-token likelihood conditioned on all tokens’ attention is optimized for coverage, not discrimination.
Consequently, attention weights αi do not encode epistemic confidence, and the model’s aggregation of
contextual signals remains indiscriminate.

Mathematically, distraction is inherent to the softmax attention mechanism. For tokens t1, t2 from relevant
and irrelevant passages, the ratio of normalized weights is

αt2

αt1

= exp
(q⊤(kt2 − kt1)√

d

)
,

implying that small perturbations in inner-product similarity exponentially amplify attention imbalance. In
high-dimensional spaces, spurious query-key alignments yield over-attention to distractors, and the resulting
activations propagate across layers, entangling noise and evidence. Since subsequent layers operate on these
contaminated representations, post-hoc filtering cannot easily reverse the effect.

Mitigation thus demands data-driven attention calibration. Robust training requires examples where irrelevant
passages D−r coexist with relevant ones D+

r , enforcing selective focus through penalties on non-relevant
attention mass:

Lrobust = −
∑

(q,Dr,y)

logP (y | q,Dr) + λ
∑

dj∈D−
r

αj .

33



Under review as submission to TMLR

Such training, explored in noise-augmented fine-tuning and entailment-consistency filtering (Xiang et al., 2024;
Yoran et al., 2023), reduces distraction but at significant computational cost, requiring large curated datasets
and layerwise attention attribution. Fundamentally, however, the vulnerability persists: attention aggregates
information linearly across all tokens and lacks an intrinsic mechanism to down-weight misinformation. Once
a distractor occupies token space within the fixed context window, its representation is fused into the model’s
latent state, irreversibly influencing generation. Thus, the same attention mechanism that enables flexible
reasoning also guarantees susceptibility to irrelevant or misleading context, a structural limitation of current
LLM architectures.

Parametric and retrieved knowledge conflicts

RAG generation performs an implicit source arbitration between an LLM’s parametric prior and its retrieved
evidence. Let sparam(y | q) denote the closed-book logit for answer y, and let sctx(y | q,Dr) denote the logit
obtained when conditioning on the retrieved passages Dr. We estimate sctx and sparam via paired forward
passes with and without retrieved context, following standard contrastive attribution protocols. The model’s
decision can be abstracted as:

y⋆ = arg max
y

[
λ(q)sparam(y | q) + (1 − λ(q))sctx(y | q,Dr)

]
,

where λ(q)∈ [0, 1] is an implicit trust weight influenced by entity familiarity and prompt framing. Empirically,
λ(q) varies sharply: models rely on parametric memory for well-known facts but defer to external context
when internal confidence is low (Du et al., 2024; Wu et al., 2024b).

Under knowledge conflict (yparam ̸=yctx), dominance follows the margin

∆(q,Dr) =
[
sparam(yparam) − sparam(yctx)

]
−
[
sctx(yparam) − sctx(yctx)

]
,

whose sign determines which source prevails. Because both scores depend on context order and evidence
composition, small perturbations in Dr or prompt layout can flip sign(∆), producing unpredictable reliance on
either source. Benchmarks such as ConflictBank and ClashEval report all four regimes, model-right/context-
wrong, model-wrong/context-right, both wrong, and both right across architectures and domains (Su et al.,
2024; Wu et al., 2024b).

Mechanistically, attention mediates the arbitration: sctx emerges from token-level aggregation where retrieved
passages accumulate attention mass that can amplify or suppress the parametric signal. Cutting or reweighting
early attention heads reduces context dominance when priors are strong, revealing that the LLM’s fusion of
sources is coherence-driven, not truth-driven (Jin et al., 2024). Even with realistic, time-updated corpora,
these behaviors persist, retrieval may override correct priors or reinforce outdated ones (Kortukov et al.,
2024).

Mitigation strategies fall into three limited families: Training-time biasing involves fine-tuning with
conflict-labeled data to calibrate λ(q), which is effective but costly and domain-sensitive. Inference-time
arbitration uses dual decoding or controller policies to compare parametric and contextual outputs via
entailment or consistency, offering robustness yet being latency-heavy and prone to over-deferring to fluent
context (Wang et al., 2024a). Structure-aware fusion applies graph- or claim-level gating to down-
weight sctx when contradictions arise, which reduces overt clashes but depends on the quality of structured
evidence (Kortukov et al., 2024).

Why this remains fundamental. The parametric prior is a frozen distribution sparam(y |q); retrieval injects
a mutable, position-biased likelihood sctx(y |q,Dr). Their mixture weight λ(q) is emergent, not optimized for
factuality but for token-likelihood consistency. Hence, minor shifts in Dr, prompt phrasing, or ranking can
cross the decision boundary

∆(q,Dr) = 0,
causing unstable source arbitration (Xu et al., 2024c). Even after calibration or structured fusion, attention
still aggregates conflicting signals under likelihood maximization, leaving λ(q) ungrounded. Hence, all current
LLMs, whether closed-book, open-book, or hybrid, remain vulnerable to contradictions; resolving them
requires explicit verifiers or external truth supervision beyond probabilistic conditioning.
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Pipeline limitations

A user query q is often an underspecified representation of the underlying intent z (Srinivasan et al., 2022).
Let p(z | q) denote the distribution over possible interpretations. Ideally, retrieval should maximize expected
coverage across intents:

D⋆
r ∈ arg max

|Dr|≤k
Ez∼p(z|q)

∑
d∈Dr

s
(
q(z), d

)
,

but most RAG pipelines collapse this distribution to a single interpretation, approximating p(z | q) ≈ δ(z = z0).
Methods such as RQ-RAG and Plan-RAG attempt to broaden coverage by generating rewrites {qi}m

i=1, yet
rewriting introduces new error sources and increases ranking complexity (Chan et al., 2024; Lee et al., 2024a;
Li et al., 2024c).

The core theoretical gap is that attention-based fusion performs an implicit mixture

P (y | q, {D(i)
r }) =

m∑
i=1

∑
j

αi,j P
(
y | q, d(i)

j

)
,

where αi,j are attention weights, whereas the Bayes-optimal decision marginalizes over latent intents:

y⋆ = arg max
y

Ez

[
logP

(
y | q(z), Dr(z)

)]
.

These coincide only if αi,j ∝ p(z | q) and passages are conditionally independent; conditions rarely met. Two
structural limitations follow: (1) non-identifiability of intent, because without explicit modeling the model
cannot determine which latent intent to prioritize; and (2) unprincipled fusion, in which attention merges
token-level signals without grounding in a calibrated posterior over intents, optimizing for fluency rather
than correctness (Izacard & Grave, 2020; Ye et al., 2023a; Chan et al., 2024; Verma et al., 2024).

Retrieval fragility thus once again exemplifies the underlying triad of limitations on LLM performance under
bounded resources. The relevance-coverage dilemma embodies finite information capacity: token budgets force
lossy compression of evidence. Ranking failures reflect statistical insufficiency: semantic drift accumulates
as retrieval breadth increases. Adversarial contamination exploits computational constraints: orthogonal
augmentation defeats similarity-based ranking. Thus, RAG systems inherit fundamental limits rather than
transcending them.

6 When Seeing Fails to Mean Understanding

By grounding LLMs in perceptual experience, i.e., enabling direct interpretation of visual and auditory
inputs, multimodal LLMs (MLLMs) are posited to overcome the hallucinations and abstraction biases that
constrain text-only systems (Hurst et al., 2024; Tong et al., 2024a; Wu et al., 2025d). DeepMind’s Flamingo
architecture was designed to “bridge powerful pretrained vision-only and language-only models” with the
goal of enabling few-shot visual reasoning across diverse tasks without fine-tuning (Alayrac et al., 2022).
Similarly, OpenAI’s GPT-4V(ision) was promoted for its “grounded visual understanding” through the ability
to “encode, integrate, and reason over arbitrarily interleaved language and vision signals” (Hurst et al., 2024).
Google’s Gemini models have positioned multimodality as central to overcoming the grounding problem, i.e.,
the lack of correspondence between abstract semantic content and real physical objects (Team et al., 2023).

The rationale is intuitive: if text-only models falter from a lack of perceptual grounding, then integrating
direct sensory input should alleviate these failures, allowing vision to anchor language and richer modalities
to yield more reliable reasoning (Xu et al., 2025c). Yet a paradox emerges from empirical evaluation, i.e.,
despite richer inputs, MLLMs inherit and often amplify the fundamental limitations of their language-model
backbones (Tong et al., 2024a; Cui et al., 2023). The holistic evaluation of GPT-4V shows that regional,
language, and prompt framing biases persist, showing that visual input does not eliminate inductive bias from
the training data (Cui et al., 2023; Brin et al., 2024; Senkaiahliyan et al., 2023). This is primarily because
most MLLMs are built by coupling pretrained vision and language models through modality adapters (Li
et al., 2023b; Alayrac et al., 2022). Consequently, the inductive and representational biases embedded in these
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pretrained components propagate into downstream MLLMs (Tong et al., 2024a), as similarly observed in text
models where encoder-level failures transfer to generative tasks (Tong et al., 2023). Furthermore, research
on compositional reasoning finds that state-of-the-art MLLMs exhibit the same brittleness documented in
text-only models (Ahn et al., 2025; Dziri et al., 2023). The models struggle with systematic generalization,
fail on minor perturbations to visual scenes(Zhang et al., 2025e; Clusmann et al., 2025b;a), and collapse
when forced to integrate multiple reasoning steps across modalities. Perhaps most troublingly, multimodal
architectures introduce novel failure modes, such as visual object hallucinations stemming from “over-reliance
on bag-of-objects representations and language priors” (Li et al., 2025c), that are absent in unimodal systems.

Multimodality does not resolve the fundamental computational and epistemic limits of LLMs (Wang et al.,
2025b). Apparent benchmark gains often mask persistent brittleness, as visual inputs introduce new
bottlenecks while preserving pretrained linguistic biases. This highlights the need to examine architectural
constraints and representational failures that govern what these models cannot do, regardless of sensory
input.

6.1 Cross-modal bottlenecks and linguistic priors

Despite the integration of vision encoders, audio processors and sensory modules, MLLMs exhibit lan-
guage dominance, where the linguistic representations systematically dominate, distort, and/or compress
non-linguistic modalities. This dominance is demonstrated through four fundamental mechanisms: (i) rep-
resentation imbalance in learned embeddings, (ii) alignment noise from vision-language pretraining, (iii)
information loss at modality fusion boundaries, and (iv) semantic distortion from tokenization granularity
mismatches.

6.1.1 Representation imbalance

MLLMs typically project visual features into a token space compatible with pretrained language models, but
this projection is asymmetric and corrupts visual semantic integrity (Wu et al., 2025c). Let V ∈ Rnv×dv

represent a sequence of nv visual tokens with dimension dv, and T ∈ Rnt×dt represent a sequence of nt text
tokens with dimension dt. In the architectures like LLaVa (Liu et al., 2023b) and BLIP-2 (Li et al., 2023b), a
trainable projection layer Wproj : Rdv → Rdt maps visual embeddings into text token space:

v′i = Wprojvi + b, vi ∈ V (43)

The feature dimensions between the two components are aligned using a projection layer (Liu et al., 2023b).
A two-layer MLP enhancing the vision-language connector representation can improve multimodal capabilities
over simple linear projections (Liu et al., 2024b). However, the optimization objective used to train Wproj is
principally text generation, specifically minimizing the causal language modeling loss via modifications in
vision to language mapping rather than joint representational adaptation. Empirical analysis reveals the
extent of representational imbalance. In VideoLLaMA-7B, output tokens attend to text tokens 157 times
more than to visual tokens on a per-token basis (Wu et al., 2025a). This observation of linguistic dominance,
driven by dataset and parameter imbalance, can be formalized as the following empirically testable claim.
Proposition 1. (Representational dominance). Let Hv denote the hypothesis class of visual representations
and Ht denote the hypothesis class of text representations in an MLLM with a frozen pretrained LLM backbone.
If the pretraining corpus DLLM has cardinality |DLLM| ≫ |Dalign|, where Dalign is the vision-language alignment
dataset, then the effective capacity of Ht dominates Hv in the sense that:

E(v,t)∼Dtest

[
∥∇vL∥2

]
≪ E(v,t)∼Dtest

[
∥∇tL∥2

]
, (44)

where L is the task loss and gradients are measured with respect to visual and text token representations.

The frozen LLM parameters encode strong linguistic priors from DLLM. During multimodal finetuning, updates
are confined to the adapter parameters and projection layer Wproj, which yields a posterior dominated by this
prior. Since |DLLM| ≫ |Dalign|, the gradient magnitude w.r.t visual empirical is suppressed relative to text
embeddings, consistent with empirical findings (Wu et al., 2025a).
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Pretrained LLMs encode strong linguistic priors, causing MLLMs to overrely on text while underutilizing
visual inputs (Liu et al., 2025a; Tong et al., 2024a). Training paradigms further prioritize textual tokens,
relegating images to a subordinate representational subspace and limiting their dynamic integration (Wu
et al., 2025a). To counteract this trend, recent work proposes modifying the instruction-tuning phase with
targeted reward functions designed to encourage a more balanced use of both modalities (Liu et al., 2025a).

6.1.2 Alignment noise

Most contemporary MLLMs rely on vision encoders pretrained with contrastive objectives, such as CLIP
(Contrastive Language Image Pretraining) (Radford et al., 2021). CLIP learns a joint embedding space by
maximizing the similarity between matched image-text pairs while minimizing similarity for mismatched
pairs:

LCLIP = − 1
N

N∑
i=1

log
exp

(
sim(vi, ti)/τ

)∑N
j=1 exp

(
sim(vi, tj)/τ

) , (45)

where vi and ti are the visual and text embeddings of sample i, sim(·, ·) is the cosine similarity, τ is the
temperature, and N is the batch size. While effective for retrieval, this objective introduces semantic
drift (Spataru et al., 2024), which is that the learned visual representations are not grounded in perceptual
properties of objects, but rather in their co-occurrence statistics with text descriptions from web-scraped
datasets. The concept of semantic drift can be illustrated through the following bound, which formally
connects the representational distortion to the statistical divergence of the training data.
Proposition 2. (Alignment drift bound). Let fv : Xv → Rd and ft : Xt → Rd be the CLIP vision and text
encoders, respectively. Let ptrue(v, t) denote the true joint distribution of visual concepts v and their linguistic
descriptions t, and let pdata(v, t) denote the empirical distribution in web-scraped data. Then the expected
semantic drift ∆ for a concept c satisfies:

∆(c) := Ev∼ptrue(v|c)
[
∥fv(v) − µtrue

c ∥2
]

≥
√
DKL(ptrue(v|c) ∥ pdata(v|c)) · σc (46)

where µtrue
c is the true perceptual centroid of concept c, and σc is the within-concept standard deviation.

This inequality states that the expected distortion between learned and true perceptual representations grows
proportionally to the divergence between real-world and dataset distributions, scaled by within-class variability.

The embedding spaces inherit the statistical biases, cultural associations, and spurious correlations of their
text corpora, and this semantic drift propagates into downstream MLLMs. For example, the concept “dog”
does not represent the visual entity itself but instead approximates the linguistic descriptions most frequently
associated with dogs in internet text.

An alternative approach focuses on improving the quality of the visual representations before they are fused.
Generative methods like Masked Image Modeling (MIM), used in models such as BEiT, force the vision
encoder to reconstruct masked image patches (Bao et al., 2021).

6.1.3 Modality fusion and structural loss

Multimodality fusion in MLLMs typically occurs through late concatenation or attention-based pooling (Lau-
rençon et al., 2024). In architectures such as Flamingo (Alayrac et al., 2022), visual tokens {v′1, . . . ,v′nv

}
and text tokens {t1, . . . , tnt

} are concatenated and fed into a transformer Z = [v′1, . . . ,v′nv
, t1, . . . , tnt

], with
cross-modal attention computed as:

Attention(Q,K,V) = softmax
(

QKT

√
dk

)
V, (47)

where queries Q typically come from text tokens and keys/values K,V from both modalities. While this is
effective, the joint attention over text and a large set of visual tokens creates a representational bottleneck in
which fine-grained spatial information cannot be fully preserved, i.e., the vision signal undergoes a form of
lossy compression, which limits downstream precision.
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Information-theoretic formulation. Using the Information Bottleneck (IB) principle (Tishby et al.,
2000), let V denote visual input, T text input, Y the target output (e.g., caption or answer), and Z the fused
representation. The IB objective seeks a compressed representation that maximizes task-relevant information
while minimizing total information:

min
p(z|v,t)

[
I(V, T ;Z) − βI(Z;Y )

]
, (48)

where β > 0 controls the trade-off between compression and task performance, and I(·; ·) denotes mutual
information.
Proposition 3. (Cross-modal information loss). Let G = (V,E) represent the relational structure of a visual
scene, where V are objects and E are spatial or semantic relations. Under attention-based fusion with k
attention heads, the mutual information between the fused representation Z and the relational structure G is
bounded by:

I(Z; G) ≤ k · log(nv + nt) +H(G) −H(G | co-occurrence), (49)

where H(G) is the entropy of the graph structure and H(G | co-occurrence) is the conditional entropy given
object co-occurrence statistics.

Attention computes weighted sums over token embeddings, which can be viewed as a rate-distortion compres-
sion (Tishby et al., 2000). The capacity is limited by the number of attention heads k and sequence length.
Since attention weights rely on dot products of embeddings, they primarily encode token co-occurrence rather
than relational structure. By the data processing inequality, I(V ; G) ≥ I(Z; G), and the bound follows from
finite attention capacity and co-occurrence statistics.

Pooling visual tokens collapses spatial or temporal structure, whereas cross-attention applied after pooling
loses fine-grained interplay between modalities, such as spatial relationships between visual regions, temporal
dynamics in video, or hierarchical scene composition. Fusion bottleneck architectures (Nagrani et al., 2021)
route cross-modal interactions through a small set of latent tokens, reducing computation but risking loss of
relational and visual detail as bottleneck size decreases.

6.1.4 Tokenization granularity mismatch

Another mismatch exists between the discrete, symbolic nature of language tokens and the continuous,
high-dimensional nature of visual inputs. To interface with language models, visual data must be tokenized,
typically through patch embeddings (as in ViTs) or vector quantization (VQ). Non-text modalities contain
redundant tokens, limiting their contribution to cross-modal attention (Wu et al., 2025a), referred to as
attention dilution.

Patch embeddings and spatial downsampling. ViTs (Dosovitskiy et al., 2021) divide an image into
fixed-size patches P ∈ R(H/p)×(W/p)×(p2·C), where H ×W is the image resolution, p is the patch size, and C
is the number of channels. Each patch is linearly projected into a d-dimensional token:

vi = Wpatch · flatten(Pi) + bpatch (50)

This process introduces a resolution bottleneck, i.e., fine-grained visual details smaller than the patch size
are irreversibly lost. This granularity mismatch means visual information is inherently underrepresented
compared to text (Wu et al., 2025c).

Vector quantization. VQ-based tokenizers (e.g., VQ-VAE (van den Oord et al., 2017), VQGAN (Esser et al.,
2021)) discretize continuous visual features by mapping them to a learned codebook C = {e1, . . . , eK} ⊂ Rd.
Given an encoder output ze(x), the quantized representation is:

zq = ek, k = arg min
j

∥ze(x) − ej∥2.

While VQ enables discrete tokenization, it introduces semantic distortion. When a VQ tokenizer is used,
multimodal understanding performance is lower compared to using a specialized semantic tokenizer (Jia
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et al., 2025). The quantization process forces continuous visual manifolds onto a finite discrete set, inducing
quantization error:

ϵquant = ∥ze(x) − zq∥2 (51)

that compounds when tokens are processed by downstream models.
Proposition 4. (Codebook collapse and semantic coverage). Let M ⊂ Rd be the manifold of visual features
with intrinsic dimension dM and volume Vol(M). For a codebook of size K trained with quantization loss
LVQ, the expected reconstruction error E[ϵ2quant] is lower-bounded by:

E[ϵ2quant] ≥ 1
K2/dM

·
(

Vol(M)
ωdM

)2/dM

(52)

where ωdM is the volume of the unit ball in dM dimensions. Moreover, if the training distribution is non-
uniform, at most Keff ≪ K codebook entries are utilized (codebook collapse), degrading the bound by a factor
of K/Keff. The K−2/dM scaling reflects the curse of dimensionality. Codebook collapse occurs when gradient
updates concentrate on frequently-accessed entries, leaving others untrained.

VQ suffers from codebook collapse: during training, only a subset of codebook vectors may be utilized, leaving
large regions of visual space poorly represented (Yu et al., 2024). Recent works have explored alternatives
like FSQ (Finite Scalar Quantization) (Mentzer et al., 2024) and Factorized Quantization (FQ) (Bai et al.,
2024c), but these methods still face fundamental granularity mismatch issues. Philosophically, the issue
is ontological i.e., language is inherently compositional and discrete (morphemes, words, sentences), while
vision is continuous and analog (pixel intensities, spatial gradients, object boundaries). Tokenization schemes
attempt to bridge this gap by discretizing vision, but no finite vocabulary can fully capture the infinite
variability of visual perceptions.

More sophisticated architectures, such as Q-Former’s learnable query bottleneck (Li et al., 2023b) and
DeepStack’s layer-distributed visual tokens (Meng et al., 2024), enhance cross-modal interaction but still
operate within a computational framework optimized for text generation, rearranging rather than resolving
linguistic dominance.

6.2 Post-training alignment

Multimodal instruction tuning (Liu et al., 2023b; Dai et al., 2023) fine-tunes MLLMs on (image, instruction,
response) triplets, often semi-synthetic, to teach complex visual reasoning and dialogue. While effective at
aligning outputs with human expectations, this process teaches statistical patterns of desired responses rather
than resolving underlying biases: models may reinforce spurious correlations present in synthetic training
data (Hosseini et al., 2025). Multimodal limitations thus amplify rather than resolve the unified framework
constraints: projection layers compress visual semantics into linguistically-dominated spaces (information
capacity limits), caption-mediated training learns co-occurrence rather than perceptual structure (statistical
insufficiency), and ambiguous inputs propagate uncertainty bidirectionally (computational undecidability).

6.3 Epistemic and cognitive pitfalls

We examine fundamental epistemic failures, the perceptual illusion of grounding, spurious statistical as-
sociations masquerading as spatial understanding, and compositional brittleness that defeats systematic
generalization, alongside two amplifying factors: cross-modal hallucination and cognitive overfitting to
synthetic training data, which rewards dataset exploitation over genuine understanding.

6.3.1 Perceptual illusion of grounding

MLLMs are built on the hypothesis of perceptual grounding that by processing images (or other modali-
ties) directly, models develop representations anchored in sensory experience rather than purely symbolic
abstractions. However, contemporary MLLMs exhibit what we term the perceptual illusion, i.e., they appear
grounded while continuing to reason over embeddings fundamentally detached from perceptual reality (Cao
et al., 2024). The visual embeddings generated are projected into the language model’s token space via Wproj,
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concatenated with text tokens, and processed by the LLM backbone (1). Critically, the LLM never accesses
raw pixel intensities, spatial gradients, or any continuous perceptual features; it operates entirely on discrete
token sequences in a learned embedding space (4).
Proposition 5. (Symbolic detachment of multimodal representations). Let P denote the set of perceptual
properties (e.g., 3D spatial layout, physical causality, object permanence) and RMLLM denote the representation
space of an MLLM. Suppose the vision encoder fv and projection Wproj are trained exclusively on paired
image-caption data {(xi, ci)}N

i=1 with a language modeling loss. Then the learned representations satisfy:

I(RMLLM; P) ≤ I(C; P)

where C denotes caption semantics and I(·; ·) is the mutual information operator. This implies that perceptual
properties not describable in captions remain unrepresented, upper-bounded by the mutual information between
captions and those properties.

A natural objection is that if MLLMs only generate text, caption-level representations should suffice. However,
this conflates output modality with representational requirements. Consider the query: “If this object is
rotated 90 degrees clockwise, which face will be visible?” While the answer is text, correct reasoning requires
internal representations of 3D geometry and mental rotation, perceptual properties P underspecified in typical
captions C. Formally, let T denote a task requiring reasoning over P with textual output. If I(C; P) < H(P),
then optimal performance requires I(RMLLM; P) > I(C; P), contradicting Proposition 5. Caption-mediated
representations may memorize common patterns for high in-distribution performance, yet fail on compositional
generalization, systematic spatial or causal reasoning, and adversarial robustness. While MLLMs achieve
behavioral adequacy (plausible text), they lack representational adequacy (internal perceptual models), evident
when tasks demand genuine perceptual reasoning beyond pattern matching. Empirical evidence supports
this symbolic detachment, demonstrating that even multimodal models like GPT-4V rely predominantly on
textual associations rather than direct visual input when predicting human perceptual judgments (Hirano
et al., 2024). The illusion of grounding arises because MLLMs excel at tasks where linguistic priors suffice (e.g.,
object recognition, scene classification) (Abdou et al., 2021) while failing on tasks requiring genuine perceptual
inference (e.g., physical stability, spatial navigation, fine-grained visual reasoning) (Rahmanzadehgervi et al.,
2025; Hirano et al., 2024; Zhang et al., 2025e; Clusmann et al., 2025a).

6.3.2 Grounding and reasoning failures

Even when MLLMs integrate textual and other information (image, video, audio, etc.), the learned associations
are predominantly spurious (Hosseini et al., 2025), which means that the associations are mere correlations in
training data rather than causal or compositional structures. This manifests most clearly in spatial reasoning
tasks, where models learn frequent co-occurrences (e.g., “cat on sofa”) but not the underlying geometric or
physical relations (Rahmanzadehgervi et al., 2025; Hou et al., 2025). Let S = {o1, . . . , on, rij} denote a visual
scene with objects oi and spatial relations rij (e.g., “on top of,” “left of,” “inside”). An ideally grounded
model would learn a representation ϕ(S) that factorizes as:

ϕ(S) =
n⊗

i=1
ϕobj(oi) ⊗

⊗
i,j

ϕrel(rij)

where ⊗ denotes compositional combination and ϕrel explicitly encodes geometric constraints (e.g., vertical
displacement for “on top of”). However, MLLM embeddings instead capture:

ψ(S) ≈
∑
i,j

wij · 1[co-occur(oi, oj)]

where wij are learned weights reflecting dataset co-occurrence frequencies and 1[co-occur(oi, oj)] indicates
whether objects oi and oj appear together in training images.
Proposition 6. (Spurious spatial associations). Let x denote an image and c its caption, with ptrain(oi, oj , rij)
the joint distribution of objects and relations in training data. Suppose ptrain(oi, oj , rij) ̸= ptrain(oi, oj) ·
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ptrain(rij | oi, oj) (i.e., relations are not conditionally independent of co-occurrence). Then an MLLM trained
with maximum likelihood on captions will satisfy:

E(x,c)∼ptest [L(MLLM(x), c)] ≥ E(x,c)∼ptrain [L(MLLM(x), c)] + λ ·DKL(ptest∥ptrain)

where λ > 0 quantifies sensitivity to distributional shift and DKL is the Kullback–Leibler divergence. This
implies that performance degradation scales with the divergence between training and test distributions of
object–relation co-occurrences. The model’s learned conditional distribution q(c | x) minimizes DKL(ptrain(c |
x)∥q(c | x)), but generalizes poorly when test data violates training correlations.

This spurious grounding is evident in compositional reasoning benchmarks. When presented with novel
spatial configurations (e.g., “a sofa on top of a cat,” inverting the typical arrangement), MLLMs produce
nonsensical outputs or refuse to generate descriptions, because the training data contains no instances of this
configuration (Thrush et al., 2022; Yuksekgonul et al., 2023). The model learns a statistical pattern, not
a geometric relationship that can be flexibly recombined. Research on compositional generalization shows
that multimodal models often perform poorly when tested on compositional reasoning tasks that require
understanding novel combinations of familiar concepts (Thrush et al., 2022). This limitation arises because
the number of possible multi-way combinations grows exponentially, while training coverage is inherently
limited (Lake et al., 2017; Bahdanau et al., 2019). It has been shown that even when models are explicitly
trained using reinforcement learning (RL), compositional gaps with visual inputs remain (Li et al., 2025b).
The failure is architectural: adding visual tokens simply expands the space of spurious correlations without
imposing compositional structure.

Cross-modal hallucinations. Consider the predictive variance decomposition:

Var[Y | V, T ] = VarV [Y | V ] + VarT [Y | T ] + 2 CovV,T [Y ].

The covariance term captures cross-modal contamination, where uncertainty or bias in one modality inflates
variance in the other. Ambiguous visual inputs (VarV [Y | V ]) can trigger textual hallucinations, while strong
linguistic priors (VarT [Y | T ]) can bias visual interpretation (Yue et al., 2024). Object hallucination occurs
when MLLMs generate text that is semantically coherent but inconsistent with the image. Contrastive
decoding mitigates this by reducing over-reliance on language priors, yet multimodal models only marginally
reduce such bias. Ambiguous visual embeddings (e.g., occlusion or low resolution) lead the language model
to “fill in” plausible but non-existent objects, whereas spurious visual patterns can induce incorrect textual
associations (Chen et al., 2025c). This bidirectional contamination worsens with modality imbalance, as the
dominant modality’s errors propagate unchecked (Leng et al., 2024).

Consequently, a significant line of research has focused on hallucination mitigation. For example, Multi-
Modal Mutual-Information Decoding (M3ID) is an inference-time method that explicitly amplifies the
influence of the reference image by favoring tokens with higher mutual information with the visual prompt,
effectively re-weighting the generation process towards the visual modality (Favero et al., 2024). On the other
hand, models like GROUNDHOG ground language to holistic segmentation masks, creating a much richer
connection between visual entities and textual phrases. This requires curating new datasets with fine-grained,
segmentation-based annotations but can significantly reduce object hallucination by design (Zhang et al.,
2024c). While these methods can reduce the frequency of hallucinations, they function primarily as safety
overlays rather than foundational cures.

Cognitive overfitting. Let Dsynthetic be synthetic paired data and Dreal true perceptual data. The bias of
the fused representation Z scales with their relative sizes:

Bias(Z) ∝ |Dsynthetic|
|Dreal|

Heavy reliance on synthetic captions or web-scraped image-text pairs causes MLLMs to overfit anthropomor-
phic and stylistic priors, propagating cognitive biases (Shumailov et al., 2023). Human-annotated captions
often impose subjective interpretations (e.g., “the dog looks happy”), while synthetic captions generated
by earlier models amplify errors across generations. As a result, MLLMs reproduce these biases, producing
homogenized outputs that reflect training artifacts rather than robust multimodal perception.
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6.4 Scaling limitations in multimodality

A persistent belief is that the architectural limitations of MLLMs can be overcome through scaling, i.e.,
adding more parameters, training on larger multimodal datasets, or increasing compute. This may be justified
for unimodal systems, where loss scales as a power law with model size, dataset size, and compute, leading to
monotonic improvements (Kaplan et al., 2020; Hoffmann et al., 2022b). However, when vision and language
are combined, scaling laws become fundamentally fragmented, introducing non-linearities that predictable
unimodal scaling cannot accommodate.

6.4.1 Divergent scaling laws by modality

For language models, loss (or perplexity) decreases with dataset size D and model size N following a power
law (Kaplan et al., 2020; Hoffmann et al., 2022b). Vision models exhibit similar behavior (Zhai et al., 2022).
Formally,

Ltext(N,D) = Ctext N
−αtext

N D−αtext
D ,

Lvision(N,D) = Cvision N
−αvision

N D−αvision
D ,

(αtext
N , αtext

D , αvision
N , αvision

D > 0)

where Ctext and Cvision are modality-specific constants.

When modalities are fused, the naive expectation is that combined loss would follow:

Lmulti(N,D) = g(Ltext(N,D), Lvision(N,D)).

Empirical work on mixed-modal scaling laws (Aghajanyan et al., 2023) shows that multimodal performance
depends not only on individual modality scaling but also on cross-modal synergy and competition. Conse-
quently, naive parameter or dataset scaling fails to yield uniform improvements, as the slower-scaling modality
can dominate the aggregate error. This scaling trend is also observed in native multimodal models (NMMs),
which demonstrate scaling laws comparable to modular approaches that employ separate tokenizers and
image encoders (Shukor et al., 2025).
Proposition 7. (Fractured multimodal scaling). For a multimodal system combining language and vision,
the observed loss LMLLM(N,Dt, Dv) deviates from the linear combination model as:

LMLLM = λLtext(N,Dt) + (1 − λ)Lvision(N,Dv) + ∆interaction(N,Dt, Dv)

Consequently, the effective scaling exponent αeff satisfies:

αeff = ∂ logLMLLM

∂ logN ∈ [min(αtext, αvision),max(αtext, αvision)] .

Here, αtext and αvision denote the scaling exponents for unimodal language and vision models, respectively.
This implies that multimodal scaling is bounded by, and does not exceed, the unimodal exponents.

The interaction term arises from modality competition during training. When scaling exponents differ
(αtext ≠ αvision), the optimizer must allocate gradient capacity asymmetrically. At smaller scales, language
dominates (faster initial loss decrease); at larger scales, vision scales slower, creating interference. The max
term captures this competition.

The system exhibits anti-scaling: increased data in one modality can paradoxically worsen overall performance
if modality imbalance is worsened. While modality balancing approaches, such as Liu et al. (2025a), propose
a solution during preference tuning on a much smaller dataset, it is unclear how such an approach can be
applied for pretraining at scale.

6.4.2 Data alignment noise

A critical phenomenon in large-scale multimodal datasets is the non-linear compounding of the alignment
noise. Let pmisalign be the fraction of misaligned image-text pairs. The effective noise in the fused pair scales
as:

ϵalignment ∼ 1 −
|D|∏
i=1

(1 − pmisalign)i ≈ 1 − (1 − pmisalign)|D|.
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Even small misalignment fractions accumulate rapidly as |D| grows. This leads to the degradation of
cross-modal grounding (Shu et al., 2025). At small scales, high-quality pairs dilute noise, but at billion-scale
datasets, misalignment dominates, causing the effective signal-to-noise ratio to decay roughly as

SNR(N) ∝ logN−1,

propagating into MLLM hallucinations (Wu et al., 2025d).

Larger models and datasets amplify misalignment and hallucinations, higher-resolution inputs raise compu-
tational cost quadratically, and linguistic priors continue to dominate reasoning. Multimodal brittleness is
qualitative, arising from architectural constraints, information-theoretic bottlenecks, and misaligned objectives
and scaling merely replicates these failures at higher fidelity.

6.5 Implications for robustness and deployment

The architectural, representational, and scaling failures converge on a conclusion that contemporary MLLMs
are synthetic correlators, not grounded reasoners. As such, they are limited by representation mismatch,
absence of causal reasoning, and biases inherited from web-scale datasets (Bommasani et al., 2022; Wu et al.,
2025a). This leads to implications for trustworthiness and deployment risks, such as reliability, interpretability,
and scalability limitations. Reliability. Cross-modal hallucinations and spurious grounding challenge model
outputs in critical domains such as medicine, autonomous systems, or scientific reasoning (Hirano et al.,
2024; Zhang et al., 2025e; Clusmann et al., 2025b; Cui et al., 2024). Interpretability. Token-level dominance
and attention imbalances impede clear understanding of how models integrate visual, audio, or textual
information (Wu et al., 2025a;c). Scalability. Computational cost of cross-attention and non-linear growth of
alignment noise constrain practical deployment of large-scale MLLMs in resource-limited settings (Hoffmann
et al., 2022b; Tay et al., 2022).

6.5.1 Promising directions

Addressing these limitations requires departures from current paradigms. Neuro-symbolic grounding
integrates multimodal embeddings with explicit symbolic reasoning to enforce compositional structure and
causal constraints, as in Cosmos (Sehgal et al., 2024) and NeSyGPT (Cunnington et al., 2024). Real-world
embodied data, including sensorimotor interactions and robotics datasets (Mon-Williams et al., 2025;
Chen et al., 2025a), provides perceptually grounded supervision that caption-mediated training cannot, as
demonstrated by EO-1 (Qu et al., 2025a) and Gemini Robotics (Team et al., 2025). Both directions point
toward the same conclusion: multimodal understanding requires embodiment and compositional structure,
not merely richer data fusion.

7 Benchmark Limitations

Having established that LLM failures stem from five fundamental theoretical limits, namely hallucination,
context compression, reasoning degradation, retrieval fragility, and multimodal misalignment, a natural
question emerges; why do current benchmarks suggest continuous progress despite these intrinsic ceilings?
This section demonstrates that contemporary evaluation practices systematically obscure these limits rather
than measure them. Data contamination inflates scores by rewarding memorization over reasoning; judge
bias incentivizes confident fabrication aligned with evaluator priors; compute-agnostic metrics hide the cost of
marginal gains; and evaluation instability masks the saturation of genuine capability. Together, these artifacts
create an illusion of progress that conflates benchmark score increases with fundamental capability advances.
Understanding evaluation limitations is thus essential to interpreting where scaling helps versus where it
merely exploits measurement artifacts. Despite substantial progress in evaluation frameworks, benchmarking
LLMs remains fundamentally constrained by issues of (i) data contamination, (ii) judge and protocol bias,
(iii) compute and efficiency, (iv) stability, and (v) equity and safety.

Data contamination. As models are trained on increasingly large corpora of web-scraped text, the
probability of benchmark test sets appearing in training data increases substantially (Apicella et al., 2025; Ni
et al., 2025).
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Let Dtrain denote the pre-training dataset, and B the benchmark dataset used for evaluation. Let Dinfo
train and

Binfo represent the sets of all informational content (text, semantics, or paraphrased variants) contained in
Dtrain and B, respectively. Benchmark Data Contamination (BDC) occurs when there exists overlap between
Dtrain and B, causing the model to have prior exposure to evaluation data or semantically related knowledge.
This overlap can substantially bias evaluation outcomes. Xu et al. (2025a) quantifies the contamination risk
as:

BDC = |Dinfo
train ∩ Binfo|

|Binfo|
. (53)

An empirical study by Lunardi et al. (2025) identified potential data contamination, especially in older
benchmarks, indicating memorization rather than true understanding. This underscores the need for
contamination-resistant benchmarks that are temporally updated and are semantically novel. The TS-Guessing
protocol (Deng et al., 2024) and PaCoST statistical framework (Zhang et al., 2025b) enable contamination
detection, though with inherent limitations in identifying sophisticated paraphrasing or semantic equivalence.
Longitudinal analysis of contamination shows that performance drops after models’ training cutoff dates
provide temporal evidence of contamination (Roberts et al., 2024). Beyond detection, recent work has explored
mitigation strategies, with mixed results regarding the effectiveness of decontamination approaches (Sun et al.,
2025). More fundamentally, Chen et al. (2025b) introduced a dynamic data generation method to benchmark
reasoning capabilities. Similarly, LiveBench (White et al., 2025) introduces a benchmark with automatically
generated, frequently-updated questions and objective scoring, substantially reducing contamination risk
through temporal dynamics.

Judge and protocol bias. Recent work highlights that benchmark outcomes for LLMs are heavily shaped
by judge bias and protocol sensitivity, rather than genuine model capability. In LLM-as-a-judge evaluations,
models used as evaluators often exhibit self-preference bias, favoring outputs generated in their own style
or by the same model family (Wataoka et al., 2024). GPT-4, for instance, has been shown to rate its own
responses higher than human judges do and to prefer text with low perplexity, that is, language it could
have plausibly generated itself (Wataoka et al., 2024). Additional artifacts include position bias, where the
order or labeling of options (A/B) alters preferences, and verbosity bias, where longer or list-formatted
responses receive inflated scores even when quality does not improve (Wataoka et al., 2024). These effects
were empirically observed in GPT-4-based benchmarks such as AlpacaEval, where longer answers and stylistic
conformity correlated spuriously with higher ratings; subsequent length-controlled variants achieved far better
alignment with human judgments (Dubois et al., 2024). Cross-model inconsistencies also emerge: different
judges, or even prompt variants of the same judge, yield different rankings, a phenomenon visible in LMSYS
Chatbot Arena, where Elo scores drift depending on whether comparisons are made by humans or AI (Dubois
et al., 2024). Together, these biases illustrate “judge drift,” in which over-reliance on a single LLM judge
skews benchmarks toward its linguistic and stylistic priors.

Beyond judge effects, evaluation results are acutely protocol-sensitive. Minor variations in prompt wording,
template formatting, or decoding parameters can swing model accuracy. A large-scale study tested 20 models
on 39 tasks with 6.5 million prompt variants and found that performance rankings frequently reversed
under semantically equivalent prompts (Mizrahi et al., 2024). Yet most papers still report single-prompt
results without disclosing templates or decoding settings, impeding reproducibility and exaggerating apparent
differences (Mizrahi et al., 2024). Even superficial changes, such as formatting the same input in plain text
versus JSON, can shift accuracy by up to 40 percentage points (He et al., 2024). Such findings underscore that
leaderboard scores are often artifacts of unreported evaluation choices, calling for multi-prompt evaluation
regimes and standardized documentation of prompts, context windows, and decoding parameters to mitigate
protocol bias and restore comparability across studies.

Compute and efficiency. A growing body of work cautions that headline benchmark scores can reflect
test-time compute inflation rather than genuine capability. Many recent evaluations allow models to consume
vast computational resources via multi-sample reranking, extended chain-of-thought (CoT) reasoning, or
external tool use, without normalizing for inference cost. As a result, higher accuracy often comes from
spending more FLOPs, not from improved reasoning. For instance, complex reasoning strategies like multi-
agent debate or Reflexion only surpassed simpler baselines when given larger compute budgets; under equal
computation, a basic CoT + self-consistency baseline matched or outperformed them (Wang et al., 2024b).
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Similarly, a recent study found that prompting models to “think step-by-step” can slow inference by 35-600%
(5-15 s vs. a few s) while yielding little or no accuracy benefit for stronger models (Meincke et al., 2025).
These findings suggest that some CoT-augmented evaluations and retrieval-augmented setups may overstate
ability: the same accuracy might be achievable with fewer samples or no external tools if the model were
better calibrated.

Beyond compute inflation, public leaderboards often neglect efficiency, cost, and latency. Accuracy remains
the dominant metric, while inference time, token usage, and energy cost, which are critical for real-world
deployment, are rarely reported. The HELM (Liang et al., 2023) initiative explicitly treats efficiency as
one of seven core metrics, measuring latency and token consumption, and finds top-scoring models like
GPT-4 and Claude 3 Opus to be highly token-heavy and slow. Analyses of HELM results show smaller
models (e.g., Mistral-7B, Cohere Command) deliver lower latency and higher throughput despite modestly
lower accuracy, yet such trade-offs are invisible in typical leaderboards (Liang et al., 2023). This omission
incentivizes “large-and-slow” models that dominate by brute force, even when less resource-intensive models
may be more practical. Some initiatives, like EfficientQA (Chaybouti et al., 2025) competitions, now constrain
model size or hardware budgets to promote cost-aware evaluation, but such standards remain rare. Moving
toward multi-objective leaderboards that jointly report accuracy, inference time, and cost would better align
benchmarking with deployment realities and reward models that are both capable and efficient.

Stability. A major limitation of current LLM benchmarks is the high variance and poor reproducibility of
results. Small test sets, stochastic decoding, and prompt sensitivity can lead to wide performance fluctuations,
sometimes large enough to reverse leaderboard rankings (Madaan et al., 2024). On math-reasoning benchmarks
such as AIME, AMC, and MATH, merely changing the random seed can shift Pass@1 scores by 5-15
percentage points, with single-question differences moving aggregate results by 2-3 points (Hochlehnert et al.,
2025). Sensitivity to prompt formatting and decoding parameters further compounds this fragility; minor
prompt paraphrases or temperature changes can meaningfully alter benchmark outcomes (Sclar et al., 2024).
Collectively, these results reveal that many leaderboard gains are statistically fragile, motivating multi-run or
ensemble-of-seeds reporting as standard practice (Blackwell et al., 2024).

Benchmark instability also stems from model version drift. API-based systems such as GPT-4 or Claude evolve
through unannounced updates, causing identical evaluations at different times to yield inconsistent results.
documents significant score shifts across months and introduces contamination-resistant and resampling
methods to stabilize longitudinal rankings (Zhang et al., 2025c). Even for static open-source models, minor
hardware or library differences can introduce nondeterminism in parallel computation, underscoring the need
for version tracking and controlled evaluation environments. Evidence from a recent report shows that single-
run accuracy can be misleading: when each question was answered 25 times, outcome distributions revealed
large intra-model variability, prompting metrics such as “≥ 51% correct” instead of one-off accuracies (Meincke
et al., 2025).

Equity and safety. Benchmark equity and safety robustness remain among under under-evaluated areas of
LLMs. Despite the broad adoption of multilingual and domain-specific benchmarks, many were created in
English or other high-resource languages and later translated, introducing artifacts that distort difficulty and
cultural meaning. Studies find that translation-based evaluation can over- or underestimate capability due to
phrasing differences, ambiguity, or loss of nuance. Accuracy disparities across languages strongly correlate
with training data abundance and translation quality rather than intrinsic reasoning gaps (Gupta et al.,
2025). Similarly, MM-Eval demonstrates that mere translations of benchmarks like MMLU or GSM8K yield
inconsistent results across linguistic variants because prompts differ in fluency and familiarity (Son et al.,
2025). These issues reflect broader concerns about Western-centric benchmark design as translated content
often fails to capture local references or idioms (Pawar et al., 2025; Talat et al., 2022). BenchMAX and
related frameworks propose using native-authored test sets and language-specific calibration to mitigate such
bias (Huang et al., 2025b). Furthermore, domain-specific benchmarks (e.g., PubMedQA, BigBench-Legal) are
often English-only, leading to inflated generalization claims. The literature thus calls for culture-grounded
benchmarks and transparent documentation of supported languages (Singh et al., 2024; Wu et al., 2025b).

Safety evaluations remain brittle. Many rely on static “red-team” prompt lists, allowing models to overfit
to known attacks (Perez et al., 2022). Studies show that even RLHF- or constitutionally aligned models
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remain vulnerable to paraphrased or multi-turn jailbreaks. A recent study finds that simple perturbations
like synonym swaps, role-play framing, or code-switching can bypass filters with high success rates (Xu
et al., 2024d). Further, JailbreakBench (Chao et al., 2024) demonstrates that defenses effective in one release
can fail in the next. Moreover, parameter changes can degrade refusal behavior without affecting the task
performance (Wei et al., 2024), confirming that alignment is not structurally robust. Finally, a multi-turn
study on LLM defenses to jailbreaking reveals that conversational persistence erodes safety consistency (Li
et al., 2024a).

8 Discussion and Future Work

Existing surveys on LLM reliability and scaling catalog empirical pathologies such as hallucination, reasoning
failure, or retrieval brittleness, yet stop short of unifying them under a formal theoretical account. Our work
closes this gap by establishing a rigorous, proof-based framework that connects these recurring failures to
fundamental theoretical ceilings. By integrating computability, information theory, and statistical learning,
we demonstrate that certain classes of errors are not removable artifacts of training or architecture—but are
necessary consequences of computation itself. This synthesis reframes LLM research: the challenge is not to
eliminate failure, but to understand, bound, and allocate it optimally.

Interpretation and implications. Our results formalize necessary limits on LLM capability under
scaling: diagonalization and uncomputability guarantee irreducible error sets; information-theoretic and
sample-complexity bounds impose compression and generalization constraints; and long-context dynamics,
like positional undertraining, encoding attenuation, and softmax crowding compress the effective context
window far below its nominal size. These ceilings are architecture-agnostic in principle but operationally
shaped by training distributions, inference policies, and system design. Engineering innovations (better
curricula, retrieval, routing, or memory) can help approach these ceilings, but cannot surpass them. Hence,
the future of scalable, reliable AI lies not in chasing asymptotic perfection but in designing systems that fail
gracefully, predictably, and transparently.

Because some error is intrinsic, systems should optimize where and how failure occurs. This includes calibrated
abstention over confident fabrication, task-aware decoding that modulates entropy when factual accuracy is
critical, and retrieval used as bounded oracle access under finite token budgets. Separating creative from
factual modes, or introducing confidence-aware grading and contamination-resistant benchmarks, can realign
incentives that otherwise reward confident guessing.

Methodological scope. Our theoretical arguments necessarily rely on stylized assumptions like indepen-
dence in long-tail distributions, simplified distractor models for softmax competition, and idealized capacity
measures to maintain analytical tractability. While these abstractions clarify mechanisms, deriving tight,
domain-specific constants remains an open challenge. Furthermore, we survey representative mitigation
avenues, not an exhaustive catalogue; integrating these ideas into production-scale architectures requires both
formal and empirical co-design.

Future work. We identify five promising fronts for extending this framework:

1. Quantifying intrinsic limits: Move from existence proofs to measurable lower bounds on irreducible
failure rates under realistic query distributions, enabling models to report how often failure is
inevitable.

2. Reliable systems and evaluation: Develop selective-prediction pipelines that couple calibrated
abstention with coverage guarantees (e.g., conformal prediction), and build contamination-audited,
confidence-aware benchmarks to expose the true risk–coverage trade-off.

3. Long-context and memory: Design objectives and curricula that maintain logarithmic-in-context
attention margins, and combine them with recurrent, SSM, or external-memory architectures guaran-
teeing efficient long-range information transport.

46



Under review as submission to TMLR

4. Retrieval under token budgets: Formalize retrieval-augmented generation as a constrained
optimization problem, deriving approximation guarantees for multi-hop coverage and robustness
under noisy or adversarial retrieval.

5. Reasoning and multimodality objectives: Go beyond likelihood by enforcing process consistency
(intermediate checks, constraint satisfaction) with explicit sample–compute trade-offs; add controllable
creativity–factuality mode switches with regret bounds; and rebalance multimodal gradients via
information-bottleneck regularization to reduce text dominance without harming language fluency.

By grounding empirical scaling laws in formal impossibility results, this paper provides a principled basis for
future progress in large-scale modeling. Understanding that these limitations are inherent, not incidental
invites a paradigm shift from asking how to make models infallible to asking how to make their fallibility
quantifiable, predictable, and aligned with task goals.

9 Conclusions

This work identifies and formalizes five fundamental limitations of LLMs that persist even under scaling:
hallucination, context compression, reasoning degradation, retrieval fragility, and multimodal misalignment.
Drawing from computability theory, information theory, and statistical learning, we establish that these are
not merely empirical artifacts but principled limits inherent to the design and deployment of LLMs. We
present theoretical impossibility results, bounded performance theorems, and capacity-aware diagnostics
to characterize where scaling helps, where it saturates, and where it fails. Existing surveys and empirical
analyses of LLM behavior document recurring failure cases without connecting them to the formal limits
of computation or learnability. By contrast, our framework unifies these observations under a proof-based
theoretical foundation, showing that many observed pathologies are not accidental engineering outcomes
but inevitable consequences of computability, finite information, and sample constraints. This connection
between theory and practice provides a rigorous synthesis of scaling limits across architectures, modalities,
and objectives. Our synthesis suggests that the future of reliable language modeling lies not in unbounded
scaling, but in architecture-aware, theoretically grounded design guided by an understanding of what models
cannot possibly learn, what data cannot provide, and where system-level interventions must operate.
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